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LETTER

Error-control information reconciliation scheme for continuous-variable
quantum key distribution using fixed-bit polar codes

Kensuke Yamaura1, a), Hiroyuki Endo2, Eiji Okamoto1, Masahide Sasaki2, Mikio Fujiwara2, and Morio Toyoshima2

Abstract A challenging issue in continuous-variable quantum key distri-
bution (CV–QKD) is the improvement in error correction efficiency because
random number bits are encoded in a quadrature of faint optical pulses.
Herein, we propose an error-control information reconciliation method for
CV-QKD based on our recently proposed fixed-bit polar code. In the
present scheme, unreliable bits are embedded in the prepared “fixed bits,”
enabling the detection and reproduction of errors in these bits without error
correction, effectively improving the error-correction efficiency. Numerical
simulations demonstrate that the efficiency of the proposed scheme is 10%
higher than that of polar code-based reconciliation without fixed bits.
Keywords: continuous-variable quantum key distribution, information rec-
onciliation, polar codes, fixed bit polar codes
Classification: Fiber-optic transmission for communications

1. Introduction

Quantum key distribution (QKD) [1, 2] can establish a key
that is secure against plausible physical attacks and unlim-
ited computational resources. QKD protocols can be clas-
sified into two branches, based on whether the discrete or
continuous nature of the quantum is exploited. In the lat-
ter scheme, continuous-variable QKD (CV-QKD) [3, 4], a
sender (Alice) encodes a random bit into a quadrature of faint
coherent-state pulses, and a receiver (Bob) utilizes a homo-
dyne (or heterodyne) detector. CV-QKD protocols have
the advantage of lower implementation costs because their
components are compatible with those used in conventional
optical communication. Furthermore, they are insensitive to
stray light owing to a local oscillator.

Because random bits are encoded in faint optical pulses in
CV-QKD, the homodyne detector outputs highly erroneous
outcomes. The discrepancies in the shared bit sequences
between Alice and Bob should be corrected in classical
post-processing after quantum signal transmission. Error
correction in QKD, or information reconciliation, accom-
panies information exchange over an authenticated public
channel. The exposed information is regarded as leaked and
deleted in the subsequent privacy amplification step, which
decreases the total length of the generated secure key. There-
fore, a highly efficient error correction scheme is crucial for
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the development of long-distance and high-speed CV-QKD
systems.

One method to realize a highly efficient information-
reconciliation scheme involves utilizing highly efficient
error-correction codes. Among these, polar codes [5] are
gaining considerable attention because they support a higher
error-correction performance approaching the Shannon limit
at lower computational costs for encoding and decoding. Po-
lar codes have been applied to reconciliation schemes for
CV-QKD [6] and other QKD protocols [7, 8].

Recently, inspired by punctuation schemes in polar
codes [9], we proposed “fixed-bit polar codes” [10]. In fixed-
bit polar codes, the sender and receiver can agree on the val-
ues of some code word bits before transmission. Therefore,
errors in these bits can be detected and reproduced without
error correction at the receiver side [10]. We refer to these
bits as “fixed bits,” from which the name of the scheme is
derived. Although fixed bits degrade the error-correction
performance of polar codes, they can be employed for ad-
ditional functions. We proposed the application of fixed-
bit polar codes for channel estimation in free-space optical
communications [10] and decoding complexity reduction in
chaos modulation [11].

Herein, we propose the application of fixed-bit polar codes
for the reverse information reconciliation of an easily im-
plementable four-state CV-QKD protocol [4]. In the four-
state CV-QKD, Bob obtains a bit value by distinguishing the
measurement outcome output from the homodyne detector.
These outcomes work as a measure of the unreliability of the
received bits. Bob can reassign unreliable received bits as
fixed bits to negate the contribution of these bits in the error
correction process. The process can be regarded as the con-
trol of the quantum bit error rate (QBER), and the proposed
scheme is termed “error-control information reconciliation”
based on fixed-bit polar codes, to stress the difference be-
tween other schemes without fixed bits [7]. Numerical re-
sults show that the proposed method achieves approximately
10% higher efficiency than existing polar code-based infor-
mation reconciliation.

2. Four-state CV-QKD protocol

We summarize the procedure in a four-state CV-QKD pro-
tocol [4]:
Step 1. Alice randomly sends one of four coherent states
{ | ± α⟩ , | ±iα⟩} to Bob over a quantum channel.
Step 2. Bob performs homodyne measurement on the re-
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ceived coherent state by randomly setting the phase of the lo-
cal oscillator to 0 (x̂-measurement) or π/2 (p̂-measurement.)
The measurement outcome m∈R follows a Gaussian distri-
bution owing to the quantum noises, the electrical noises in
receiving apparatus, and the excess noises caused by mali-
cious attacks by Eve.
Step 3. Upon repeating Steps 1 and 2 several times, Alice
and Bob expose the bases they used over the public chan-
nel. The bases are correct when Alice sends | ±α⟩ (| ±iα⟩)
and Bob performs x̂-measurement (p̂-measurement.) Oth-
erwise, bases are considered incorrect.
Step 4. Bob distinguishes the measurement outcome m
measured in correct basis into a bit value based on a certain
threshold T > 0. He assigns bit 1 for m > T and bit 0 for
m < −T . If m falls into [−T,T], he discards it because the
bit would be erroneous. Bob then discloses the locations of
the discarded outcomes.
Step 5. Alice assigns a bit value to the coherent states to
which Bob assigns a bit value. Bits 1 and 0 are assigned to
{| +α⟩ , | +iα⟩} and {| −α⟩ , | −iα⟩}, respectively.
Step 6. Alice and Bob estimate the QBER by exchanging
randomly extracted test bits from the common locations of
their bit sequences. The test bits are discarded. The remain-
ing bit sequences are called “sifted keys.”
Step 7. (Reverse information reconciliation) Bob calcu-
lates the information required for error correction (correction
information) and discloses it to Alice. Alice performs an er-
ror correction and obtains an estimation of Bob’s sifted key.
We call the resulting bit sequences “reconciled keys.”
Step 8. (Privacy amplification) Alice and Bob compress
their reconciled keys to delete leaked information, which
includes the contribution of Eve’s attack and the correction
information disclosed in Step 7. We call the resulting keys
“final keys.”

3. Proposed error-control information reconciliation
based on fixed-bit polar codes

First, the basics of polar codes are described. Polar codes
are characterized by a linear transformation represented by
an N-order square matrix

GN =

[
GN/2 0
GN/2 GN/2

]
G2 =

[
1 0
1 1

] . (1)

Figure 1 illustrates the butterfly-like transformation for
N = 8. This transformation divides an N-bit input sequence
u := [u1, . . . uN ] into reliable bits (with higher channel ca-
pacity) or unreliable bits (with lower channel capacity). To
encode K-bit message m := [m1, . . .mK ] using polar codes,
the sender assigns m onto the reliable bits. The values of
remaining (N − K)-bits f := [ f1, . . . , fN−K ] can be set arbi-
trary and should be shared between the sender and receiver
in advance. We call the bits f frozen bits. The codeword
c := [c1, . . . , cN ] of polar codes is then obtained as

c = uGN . (2)

The coding rate of the polar codes is defined as R = K/N .
The decoding of polar codes proceeds in the reverse direction

Fig. 1 Illustration of transformation in Eq. (1) for N = 8. A symbol ⊕
denotes the XOR operation of two inputs.

of encoding.
Subsequently, we introduce the fixed-bit polar codes. As

shown in Fig. 1, the number of input bits u ∈ u that con-
tributes to a codeword bit c ∈ c is different for each c. For
example, all input bits contribute to c1. In contrast, c8 equals
to u8, and c4 is an XOR of u7 and u8 (see blue lines). There-
fore, if the sender and receiver share the values of u7 and
u8, the receiver can detect the errors in c4 and c8 and repro-
duce them without error correction. We call these bits in the
codeword “fixed bits.” Generally, provided by the number
Nf = 2n (n is an integer) of fixed bits, they appear at every
Nf bit in the codeword c and are calculated from some of
the tail Nf bits of the input sequence u. We present a formal
description of the encoding process for fixed-bit polar codes
as follows:
(1) The tail Nf bits in input sequence u are set as frozen bits

to induce fixed bits.
(2) Assign the N − K − Nf bits with the lowest channel

capacity out of the remaining bits in u as frozen bits.
(3) As in normal polar codes, assign message bits m to the

remaining bits in u, and encode u into codeword c.
The concept of fixed bits differs from that of frozen bits.

The frozen bits belonging to the input sequence u are se-
lected before encoding based on the channel capacity of
each input bit. However, the fixed bits belong to codeword
c. In fixed-bit polar codes, the input bits that induce fixed bits
are selected from frozen bits for efficient sharing. However,
these bits are located at the tail of the input bits, regardless
of the channel capacity, which degrades the error-correction
performance of polar codes in exchange for the useful prop-
erties provided by the fixed bits [10, 11].

Finally, we describe the proposed fixed-bit polar code-
based error-control information reconciliation scheme in a
four-state CV-QKD. A flowchart of the scheme is illustrated
in Fig. 2, and the detailed procedure is provided below.
(1) Alice and Bob share a coding rate R determined based

on the estimated QBER, a fixed bit length Nf , a frozen
bit table with which they determine the locations of the
frozen bits and their values.

(2) Bob inputs his sifted key b into the swap operation
to swap an unreliable bit in b with a bit at the fixed-
bit location that appears in every Nf bit. This step is
illustrated in Fig. 3. Although we simply set T = 0
in this example, this scheme can be applied for any
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values of T . The fixed-bit locations are at b4 and
b8, for Nf = 2. The most unreliable bit is b3 as its
measurement outcome is the closest to α = 0. Bob
then swaps b3 and b4. In addition, he swaps b6 and
b8. He repeats the operation until the unreliable bits
are located at the fixed-bit locations, and obtains a
swapped key b′.

(3) Bob transmits the location of the swapped bits to Alice.
She applies a swap operation similar to Bob on her
sifted key a and obtains a swapped key a′.

(4) Bob generates a K-bit random sequence from his ran-
dom bit generator (RBG) as information bits m.

(5) Alice and Bob agree on the frozen bits f including fixed
bits, by referring to the preshared information listed in
Step (1).

(6) Bob constructs an input sequence u from information
bits m and frozen bits f. He inputs u into a polar
encoder and obtains a codeword c with fixed bits.

(7) Bob calculates a bitwise XOR between polar codeword
c and swapped key b′. He transmits the resultant se-
quence c ⊕ b′ to Alice.

(8) Alice calculates bitwise XOR between her swapped
key a′ and the sequence transmitted from Bob. She
obtains the resultant sequence (c ⊕ b′) ⊕ a′.

(9) Alice reproduces the fixed bits in (c ⊕ b′) ⊕a′ and then
inputs it into a polar decoder to obtain an estimation
m′ of message sequence.

(10) Bob and Alice adopt message bit m and its estimation
m′ as their reconciled keys.

The swap operation in Step (2) is the core of the proposed

Fig. 2 Flowchart of proposed error-control reconciliation method based
on fixed-bit polar codes.

Fig. 3 Example of swap operation with Nf = 2 and T = 0.

scheme. The sequence (c ⊕ b′) ⊕a′ generated in Step (8)
can be regarded as the erroneous version of c, on which the
discrepancies between b′ and a′ are transferred. The swap
operation ensures that the error bits in (c ⊕ b′) ⊕a′ caused
by the unreliable bits in b′ are at the fixed bits and hence
reproduced before error correction. Thus, the QBER is
suppressed, and the error-correction efficiency is effectively
enhanced. We should investigate the leaked information dur-
ing the swap operation. In the process, Bob only discloses
the locations of the swapped bits. This information did not
include the values of the sifted keys. Therefore, the swap
operation prevents the leakage of information from the sifted
key.

4. Numerical evaluation of the proposed scheme

We present the results of a numerical simulation to verify the
error-correction performance of the proposed scheme. As
a figure of merit, we utilized the error-correction efficiency,
defined as

η = Nrec/Nsift, (3)

where Nsift denotes sifted key length and Nrec denotes rec-
onciled key length. The larger the η, the more efficient
the information reconciliation becomes. The code length
N was set to 2048, frozen bit table was determined using
Monte Carlo method, and a successive cancellation list de-
coder with a list number of eight was used as the decoding
algorithm.

Figure 4 shows an average value of η as a function of
QBER for different coding rates R and fixed bit lengths Nf .
Each curve has two regions: the plateau where the QBER
is smaller, and the decreasing region where the QBER is
larger; hence, the block error rate (BLER) increases. When
R = 0.75 (solid lines), the curves for Nf = 128 (red line
with circular markers) and 256 (blue line with triangular
markers) almost overlap and outperform those for Nf = 512
(green line with square markers). However, when R = 0.5
(dashed lines), the curve for Nf = 512 surpasses the others.
This suggests increase in optimal Nf value with increase in
coding rate R.

We also show the results for the polar code-based rec-

Fig. 4 Error correction efficiency.
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Fig. 5 Performance comparison with or without using fixed bits.

onciliation method without fixed bits (gray lines with cross
markers), which are essentially the same as the protocol pro-
posed in [7]. The comparison illustrates that the curve of the
method without fixed bits is lower than that of the fixed-bit
polar code-based method; specifically, the fixed bits improve
the error-correction performance. However, when R = 0.75,
the curve with Nf = 512 is lower than that without fixed bits.
In this case, all frozen bits (512 bits) are used to generate
fixed bits. Except for such extreme cases, the improvement
in error-correction performance induced by the fixed bits
outweighs the reduction in error-correction performance.

In practical situations, Alice and Bob must select a cod-
ing rate such that the code corrects more errors with a lower
BLER. Such a coding rate is located at the right-end of the
plateau region of QBER-η curves. In Fig. 5, such points
attaining a BLER of 10−5 are arranged for various coding
rates. We simultaneously show the results of our proposed
scheme based on a fixed-bit polar code (blue line with cir-
cular markers) and the scheme without fixed bits (red line
with triangular markers) [7]. The fixed bit length Nf used
for each coding rate R is set as follows:

Nf =


128 (R > 0.75)

256 (0.75 ≥ R > 0.5)
512 (R ≤ 0.5)

(4)

The results show that the proposed method is more efficient
in all QBER regions, with a maximum efficiency increase
of approximately 10%, indicating the effectiveness of the
proposed method.

5. Conclusion

We proposed an error-control information reconciliation
scheme for four-state CV-QKD based on fixed-bit polar
codes. Numerical calculations show that the proposed
method can achieve an error-correction performance that
is 10% higher than that of the polar code-based information
reconciliation method without fixed bits [7]. This efficiency
can be improved further by employing a more sophisticated
decoding scheme aided by cyclic redundancy codes [8, 12].
The proposed scheme can contribute to the development of
long-distance and high-speed CV-QKD systems. However,

we only showed the efficacy of our method for a limited
number of coding rates and fixed bit lengths, and clarified
their behaviors. To implement our method in practical sys-
tems, intensive studies are required to determine the opti-
mum length of the fixed bits.
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