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Method for network-anomaly detection and failure-scale estimation

Naoya Ogawa1, 2, a) and Ryoichi Kawahara2, b)

Abstract In this study, we propose a novel method for network-anomaly
detection and failure-scale estimation using autoencoders, which are a type
of neural network. The proposed method first divides the network into sev-
eral groups. Subsequently, anomalies are detected using an autoencoder for
each intergroup traffic, and the failure-scale is estimated from the number
of autoencoders that have detected anomalies. We experimentally investi-
gated anomaly detection during communication through a virtual network
built using the network emulator Mininet and confirmed that the proposed
method can successfully detect anomalies and estimate the failure scale.
Keywords: anomaly detection, failure scale, autoencoder, mininet
Classification: Network system

1. Introduction

Recently, the use of artificial intelligence (AI) in network
operations has attracted attention [1]. Although research is
progressing in areas such as anomaly detection, root cause
analysis, and control recovery, research on estimating fail-
ure scales is limited thus far. In several cases, failure scales
are estimated manually, and as the sizes and complexities of
networks increase, such investigations are expected to be-
come increasingly difficult. To recover rapidly from failures
and improve service quality, a method must be established
for promptly and automatically estimating the failure scales
associated with detected anomalies.

Several related studies on anomaly detection have been
conducted. For example, Ikeda et al. [2] reported anomaly
detection using an autoencoder (AE), a type of neural net-
work. However, to the best of our knowledge, few studies
have been conducted on failure-scale estimation. In [3],
anomaly detection in a power-plant system was studied. Al-
though the fault durations were evaluated to determine fault
severities, the spatial spread of the faults was not discussed.
Hara et al. [4] proposed a method to evaluate the scale of
damage in the event of cascading failures associated with
traffic volume. However, if we consider various types of net-
work failures besides cascading failures in which the failures
are propagated by overloaded traffic, abnormal communica-
tions that are unrelated to the traffic volume may occur.

Therefore, in this study, we propose a method for detect-
ing various network anomalies and estimating failure scales
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Fig. 1 Image of a basic autoencoder

using AI. Specifically, the proposed method uses an AE to
detect anomalies. The network being monitored is divided
into multiple groups, anomalies in intergroup traffic are de-
tected using dedicated AEs, and the failure scale is estimated
from the number of AEs in which anomalies are detected.

2. Autoencoder

An AE is an unsupervised learning neural network used
in a wide range of fields, including anomaly detection and
generation systems. As shown in Fig. 1, an AE can learn the
relationships between items of input data by compressing
(encoding) dimensions and restoring the input data in its
middle and output layers, respectively.

For detecting anomalies, traffic data obtained during nor-
mal times are learned such that when normal data are input,
the data are restored with a small error. The error used
for detecting anomalies is defined as the mean square error
(MSE) as follows:

MSE(x) = 1
N

N∑
i=1

(x̂i − xi)2. (1)

Here, x = {x1, x2, . . . xN } is the input value, x̂ =
{ x̂1, x̂2, . . . x̂N } is the value restored by the AE, and N is
the number of dimensions of the input values. During learn-
ing, the MSE is optimized to be minimum when inputting
the training normal data. A threshold value is set based
on the MSE obtained from the normal data, and when the
MSE at the time of the test exceeds the threshold value, an
anomaly can be detected. This procedure is based on [2].

3. Proposed method

First, we divide the network being monitored into multiple
groups, as shown in Fig. 2. Even if network devices have
multilayered structures, they are considered to belong to a
single group. The finer the grouping, the more accurately the
failure scale can be evaluated; however, the computational
cost associated with AE learning and anomaly detection may
increase; therefore, the granularity of division is determined
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Fig. 2 Network groups Fig. 3 AEs for each inter-group
traffic

depending on the situation and application.
Next, we constructed multiple AEs that can detect anoma-

lies in intergroup traffic. In the example shown in Fig. 2, the
network is divided into five groups, therefore, the 10 AEs
shown in Fig. 3 are constructed. The evaluation index of the
failure scale is determined using Eq. (2) by considering the
total number of AEs, M , and the number of AEs, MA, that
detect anomalies.

ScaleIndex =
MA

M
. (2)

This index is 0 if no anomaly has occurred and approaches
1 as the number of AEs detected as anomalies (i.e., the spatial
extent of failure) increases; therefore, this index can be used
to determine the failure scale. Furthermore, because this
method improves the understanding of the traffic between
groups in which anomalies occur, the cause of failure may
also be investigated using this method.

4. Experiment

4.1 Network topology
Figure 4 shows the virtual network topology built using
the Mininet network emulator [5, 6]. In the figure, h1–h9
are hosts and s1–s5 are OpenFlow [7] switches, and Ryu’s
switching hub [8] is used as the controller. Herein, we
assume that h1 is the Internet, h2–h9 are local hosts, and the
bandwidth of each link is set to 100 Mbps 1.

4.2 Communications
4.2.1 Internet to local hosts
We used traffic data on April 13, 2023 from Widely Inte-
grate Distribution Environment (WIDE) project [9, 10]. The
published data were processed by translating addresses and
removing payload data from packets to ensure privacy pro-
tection. As traffic cannot flow through the topology in this
state, the following preprocessing step was applied:

• Extract packets for eight destination addresses equiva-
lent to the hosts in the topology.

• Convert the destination IP and MAC addresses to match
each host in the topology.

• Interpolate removed data from the packet (insert any
byte sequence).

1 Transmission control protocol segmentation offload and generic
segmentation offload are enabled on each network interface;
therefore, packets larger than the maximum transmission unit
may be observed in packet captures.

Fig. 4 Network topology

Table I Condition settings used for communication

Source Host h2–h9

Destination Host h1 (local hosts to the Internet)
h2–h9 (local hosts to local hosts)

Request sending interval Exponentially distributed random
numbers (average 1 s)

Request message length Lognormally distributed random numbers
in bytes (average 1000, standard deviation 1000)
Request failure rate 5 %

Wait time for a response Uniformly distributed random
numbers (100ms – 300ms)

Response message length Lognormally distributed random numbers
in bytes (average 1000, standard deviation 1000)

Fig. 5 Topology grouping and constructed AEs

The preprocessed traffic data were replayed from h1,
which was assumed to be the Internet, using Tcpreplay ver-
sion 4.3.4 developed by A. Turner and F. Klassen [11] to
ensure communication flow to the topology 2.
4.2.2 Local hosts to the Internet
We sent a request from h2–h9, which are assumed to be
local host, to h1, which is assumed to be the Internet host,
for transmission control protocol (TCP) communication in
which a response was returned from h1 after a short waiting
time. Table I lists the corresponding conditions.
4.2.3 Local hosts to local hosts
TCP communication between the local hosts was almost the
same as that described in Section 4.2.2; however, the desti-
nation of the request was different. Specifically, each time
a request was sent, the destination was randomly selected
from h2–h9, with uniform probability, excluding the sender.

4.3 Models
4.3.1 Application of the proposed method
As shown in Fig. 5, we divided the topology into five groups
and constructed ten AEs that corresponded to the traffic
between each group.

2 Of the replay traffic, we observed 6 Mbps at maximum in
s1–s2 on the Mininet. On the other hand, the original size
of the corresponding capture data was more than 200 Mbps
at maximum. Therefore, packet loss was expected to have
occurred in the h1–s1 stage.
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Table II Data input to the AEs

Protocol Item Units From From
h1 h2–h9

TCP

Number of packets – ✓ ✓
Total lengths of the packets bytes ✓ ✓
Average of RTT ms ✓ ✓
SYN flag content rate – ✓ ✓
ACK flag content rate – ✓ ✓
PSH flag content rate – ✓ ✓
FIN flag content rate – ✓ ✓
RST flag content rate – ✓ ✓
Number of source IPs – ✓

UDP
Number of packets – ✓
Total lengths of the packets bytes ✓
Number of source IPs – ✓

ICMP
Number of packets – ✓
Total lengths of the packets bytes ✓
Number of source IPs – ✓

4.3.2 Input data
The measured values obtained from the packet capture were
input to the AEs. The measurement period is 2 min, and the
items listed in Table II are measured for each source and des-
tination host. Herein, the actual traffic data included packets
of the user datagram protocol (UDP) and Internet control
message protocol (ICMP) in addition to TCP packets; there-
fore, the data items differed depending on whether the traffic
was sent from h1. Round trip time (RTT) is calculated as
the time difference between when a packet with a TCP flag
that does not include FIN or RST is obtained and when a
response from the destination host is obtained. Because the
message lengths fluctuate widely even under normal condi-
tions, a common logarithm was applied to suppress these
fluctuations. If the unmodified RTT was input to the AE, the
MSE would have been high even for a small delay; therefore,
the common logarithm was applied twice. Furthermore, if
the total length of the packets within a period was less than
1 byte and the average RTT was less than 10 ms, each value
was set to 0; if no TCP packets were observed, the content
rate of each TCP flag was set to 1.
4.3.3 Training
Table III presents the design of each AE. Data of nor-
mal communications in Section 4.2 were used to train the
AEs. As for WIDE traffic data, data collected over one day
(672 samples) were used to train the AEs. We trained each
AE using certain conditions, such as a val_loss of MSE,
a batch_size of 5, 1000 epochs, and a validation_split of
0.2, and the Adam optimizer was used. The input data to
the AEs were normalized by dividing each data item by the
maximum value among the 672 samples such that the max-
imum normalized value was 1. In addition, the conditions
were adjusted for the anomaly data described later by divid-
ing by the maximum value among the 672 samples. After
the training, the val_loss of each AE was less than 0.01,
confirming the constructed AEs could restore the data with
a small error when normal data were used as input.

4.4 Anomaly detection experiment
4.4.1 MSE threshold
The MSE threshold, MSEthres , used for anomaly detection
was determined using Eq. (3) and the MSE, MSEtrain, of
the training data (672 samples) to avoid falsely detecting

Table III Design of each AE

AE name Layer Dims Activation Dropout

AE01–AE04

1 46 – –
2 23 Sigmoid 0.2
3 11 Sigmoid 0.0
4 23 Sigmoid 0.0
5 46 Linear 0.0

AE05–AE10

1 64 – –
2 32 Sigmoid 0.2
3 16 Sigmoid 0.0
4 32 Sigmoid 0.0
5 64 Linear 0.0

Table IV MSE threshold of each AE
AE MSEthres AE MSEthres

AE01 1.95E-02 AE06 1.75E-02
AE02 3.81E-02 AE07 7.94E-03
AE03 1.08E-01 AE08 1.39E-02
AE04 1.54E-01 AE09 7.61E-03
AE05 1.26E-02 AE10 5.62E-03

Table V List of experiments

Experiment (Expt.) Description
Expt. 1 50 ms delay on link s1–s2
Expt. 2 500 ms delay on link s1–s2
Expt. 3 10 % packet loss on link s1–s2
Expt. 4 50 % packet loss on link s1–s2
Expt. 5 Limit link s1–s2 bandwidth to 10 Mbps
Expt. 6 Limit link s1–s2 bandwidth to 1 Mbps

Table VI Anomaly detection rate (Case 1: small traffic)

AE Expt. 1 Expt. 2 Expt. 3 Expt. 4 Expt. 5 Expt. 6
AE01 1.00 1.00 0.93 1.00 0.00 0.00
AE02 0.00 0.00 0.00 0.00 0.00 0.00
AE03 0.00 0.00 0.00 0.00 0.00 0.00
AE04 0.00 0.00 0.00 0.00 0.00 0.00
AE05 1.00 1.00 1.00 1.00 0.00 0.00
AE06 1.00 1.00 1.00 1.00 0.00 0.00
AE07 1.00 1.00 1.00 1.00 0.00 0.00
AE08 0.00 0.00 0.00 1.00 0.00 0.00
AE09 0.00 0.03 0.00 1.00 0.00 0.00
AE10 0.00 0.07 0.00 1.00 0.00 0.00

normal traffic data as anomalies. Table IV lists the MSE
threshold of each AE.

MSEthres = 2 × max MSEtrain. (3)

4.4.2 Overview of the experiments
Based on the MSE of each AE when failures such as delay,
packet loss, and bandwidth limitation occurred, we evalu-
ated the anomaly detection and failure-scale estimation ca-
pabilities of the proposed method. Table V summarizes the
anomaly detection experiments. Two cases were considered
in the experiments. A period of low actual traffic flowing
from the Internet to h2 and h3 (00:00 to 01:00) represented
as Case 1, and a period of high traffic represented as Case 2
(10:00 to 11:00).

4.5 Results of anomaly detection
The percentage of MSE exceeding the threshold obtained
using the 1-h dataset (29 samples) used in each experiment
was calculated as the anomaly detection rate. Tables VI and
VII list the results obtained from Cases 1 and 2, respectively.

The results of Expts. 1 and 2, in which a delay was applied
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Table VII Anomaly detection rate (Case 2: large traffic)

AE Expt. 1 Expt. 2 Expt. 3 Expt. 4 Expt. 5 Expt. 6
AE01 1.00 1.00 1.00 1.00 0.00 0.69
AE02 0.00 0.00 0.00 0.00 0.00 0.00
AE03 0.00 0.00 0.00 0.00 0.00 0.00
AE04 0.00 0.00 0.00 0.00 0.00 0.00
AE05 1.00 1.00 1.00 1.00 0.00 0.69
AE06 1.00 1.00 1.00 1.00 0.00 0.69
AE07 1.00 1.00 1.00 1.00 0.10 0.69
AE08 0.00 0.66 0.00 1.00 0.00 0.00
AE09 0.00 0.72 0.00 1.00 0.00 0.00
AE10 0.00 0.66 0.03 1.00 0.00 0.00

Table VIII Estimated scale indices

Expt. Average Standard deviation
Case1 Case2 Case1 Case2

Expt. 1 0.40 0.40 0.00 0.00
Expt. 2 0.41 0.60 0.03 0.14
Expt. 3 0.39 0.40 0.03 0.02
Expt. 4 0.70 0.70 0.00 0.00
Expt. 5 0.00 0.01 0.00 0.03
Expt. 6 0.00 0.28 0.00 0.19

to link s1–s2, revealed that the anomaly detection rate corre-
sponding to AE01, AE05, AE06, and AE07 passing through
s1–s2 was 1.0. Furthermore, in Case 2 of Expt. 2, the
anomaly detection rates corresponding to AE08, AE09, and
AE10 were also high. In Case 2, substantial traffic flowed
in link s1–s2, and we assumed that a traffic jam occurred,
causing a delay that exceeded the set value. AE08, AE09,
and AE10 corresponded to communications between local
hosts, and the destination was randomly selected each time a
request was sent. At this time, if a destination via s1–s2 was
selected, a delay occurred, and the number of requests that
were sent within the measurement period decreased. Ac-
cordingly, an anomaly was considered to have been detected
because the number of packets observed decreased even in
AE08, AE09, and AE10, which did not travel through s1–s2.

In Expts. 3 and 4, in which packet loss was applied, an
anomaly was detected in the traffic passing through s1–s2 by
the corresponding AE, and in Expt. 4, in which the packet-
loss rate was high, anomalies were detected by AE08, AE09,
and AE10 owing to the delay caused by the packet loss.

In Expts. 5 and 6, in which the bandwidth was limited,
anomalies were detected when the traffic flow exceeded the
bandwidth.

4.6 Result of failure-scale estimation
Table VIII lists the averages and standard deviations of the
scale indices obtained from the 29 samples used in each
experiment. The scale indices obtained from Expt. 4 were
larger than those obtained from Expt. 3. A similar trend was
observed in other experiments, and the anomaly strength,
including the length of the delay and loss rate, influenced
the anomaly detection and failure-scale estimation. Addi-
tionally, in Expts. 2 and 6, the scale indices were higher in
Case 2 than those in Case 1. This indicated that the amount
of traffic affected the results.

5. Conclusion

In this study, we proposed a method for simultaneously de-

tecting network anomalies and estimating the associated fail-
ure scales and evaluated the performance of this method
through emulated network experiments. Through experi-
ments, we successfully detected anomalies that caused de-
lays, packet loss, and bandwidth limitations and identified
that successful anomaly detection and failure-scale estima-
tion depended on the failure strength and the amount of
traffic.

Although these experiments were limited to a small-scale
topology, we believe that it is possible in principle, this
method can be applied to large-scale networks. However,
1–2 min is required for processing the data input from the
time of packet capture to reaching the AEs and anomalies
being detected, and the high computational cost may be a
hindrance to the application of this method to large-scale
networks. Although the calculation time largely depends
on the performance of the computer being used, the effec-
tiveness of the proposed method when using low-cost traffic
data, such as those obtained from flow measurements and
packet sampling, must be estimated.
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