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Proposal on rain attenuation prediction method using convolutional neural
network
Yuji Komatsuya1, a), Tetsuro Imai1, and Miyuki Hirose2

Abstract Recently, the practical application of HAPS (High Altitude
Platform Station) as the next-generation communication platform is studied
actively. HAPS employs adaptive rain attenuation countermeasure tech-
niques such as site diversity methods, therefore it is ideal to predict rain
attenuation on the path in real time. We proposed real-time rain attenuation
prediction method by convolutional neural network that inputs image of
rainfall rate and path distance. Result showed that prediction accuracy of
our proposed method is better than a method using conventional formulas.
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1. Introduction

Recently, the practical application of HAPS as the next-
generation communication platform is studied actively [1].
In Japan, the frequency band of 38-39 GHz is allocated to
the HAPS feeder link [2], and then the quality degradation
of communication due to rain attenuation is a problem.

ATPC (Automatic Transmit Power Control), AMC (Adap-
tive Modulation and Coding), and site diversity are being
considered for HAPS systems to counter rain attenuation [1].
It should be controlled in real-time because these counter-
measure methods are adaptive.

Rain attenuation estimation methods for non-terrestrial
network systems such as satellite communications and
HAPS have been standardized as ITU-R Recommendation
P.618 [3]. However, the ITU-R Recommendation P.618 is
designed to derive statistics for instance the attenuation to be
exceeded for p[%] of a year, and is not intended for real-time
rain attenuation prediction.

Real-time rainfall rate information is required for real-
time rain attenuation prediction. In Japan, “High-resolution
Precipitation Nowcasts [4]” (hereinafter referred to as “Now-
casts”) which is distributed every 5 minutes by the Japan Me-
teorological Agency are available. Nowcasts provide current
status of rainfall rate and short time range rainfall rate fore-
cast with a spatial resolution of 250 m square. In other words,
the nowcast can be regarded as two-dimensional rainfall rate
data with a temporal resolution of 5 minutes and a spatial
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resolution of 250 m.
Nowadays, in order to predict radio propagation loss with

high accuracy, a method using convolutional neural network
(CNN) has been proposed in mobile communication envi-
ronments. In the method, map data with building height and
path distance information are used as inputs [5, 6]. Here is,
since map data on rainfall rate along the path, are available
from Nowcasts, we thought it would be effective to follow the
CNN-based propagation loss prediction method in propos-
ing a rain attenuation prediction method. And also no such
study existed as far as I could find.

In this paper, we propose a rain attenuation prediction
method using a CNN with map data with rainfall rate and
path distance information as input, and validate effectiveness
of the method.

2. Conventional method

Rain attenuation per unit distance γ is indicated as ITU-R
Recommendation P.838 [7], called specific rain attenuation,
as calculated by

γ = kRα [dB/km] , (1)

where R is rainfall rate[mm/h], k and α are determined as
function of frequency. Equation (1) has originally intended
to derive rain attenuation statistics such as those ITU-R
Recommendation P.618, although in this paper, we use this
equation and Nowcasts to perform real-time prediction for
comparison with our proposed method.

The way to real-time rain attenuation prediction using
Equation (1) is as follows.

Let the distance between the transmitting (Tx) and receiv-
ing points (Rx) be D[m] and the elevation angle from Rx to
Tx is θ[deg]. First, the path is divided per 1 m, and the rain-
fall rate on the Nowcast for each of the segmented points is
Ri (i = 0,1, · · · ,D, i = 0: Tx, i = D: Rx). Rain attenuation
at point i, Ai is calculated by

Ai =
1

1000
1

cos θ
kRα

i [dB/m]. (2)

In consequence the rain attenuation value A[dB] for the en-
tire propagation path is given by

Ai =
1

1000
1

cos θ
k

D∑
i=0

Rα
i [dB]. (3)

Hereinafter this prediction method called as “ITU model”.
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3. Proposed method

3.1 Input data
3 maps data shown below are input to prediction model we

Fig. 1 Input data area

Fig. 2 Input data to prediction model we proposed

Table I Condition of Tx/Rx points

Fig. 3 Structure of proposed rain attenuation prediction model

proposed.
• Rainfall rate[mm/h]
• Distance from Tx[km]
• Distance from Rx[km]

For rainfall rate, we use the Nowcasts data described above.
As shown in Fig. 1, Input data to the model is 16 km

square around the midpoint (M) of Tx and Rx. Moreover as
we can find in Fig. 1, the input data is always defined so that
Tx and Rx are in a straight line and all Rx are in the same
direction as seen from M. The input size is 64 × 64 since
spatial resolution of Nowcasts is 250 m. Figure 2 shows an
example of input data to the model. The actual input data are
numerical matrix data without color, though they are plotted
here in color for illustrate.

3.2 Rain attenuation value
In this study, measured rain attenuation data from [8] is
used for evaluation. Data were measured every 1 second,
although these measured data were converted to the median
value for every 5 minutes in this paper. This is because to
remove instantaneous fluctuations and also to correspond to
Nowcasts time resolution. Tx and Rx were set as shown in
Table I. In addition, the frequency of radio wave used the
measurement is 39.75 GHz, and the polarization is vertical.

3.3 Model structure
The structure of the proposed rain attenuation prediction
model in this study is shown in Fig. 3. This configuration
is based on the CNN model known as VGG16 [9] with
reduced parameters. Specifically, the model consists of a
convolutional layer (C01 to C13 in Fig. 3) with 1/4 the
number of filters of VGG16, five Max pooling layers (P01
to P05 in Fig. 3), and two fully-connected layers (D01 and
D02 in Fig. 3) with the number of units changed from 4096
to 512. The ReLU function (Rectified Linear Unit) is used
as the activation function for the convolutional and fully-
connected layers of the model in this study. The output is an
identity function.

4. Evaluation method

4.1 Learn proposed model
Supervised learning is performed with 200 epochs, using
the “input data” as input and the measured rain attenuation
values corresponding to the input data as teacher data. And
also, in this study, mini-batch learning which batch-size is
256 is adopted.

Training data are from 2021-08-08 00:00 to 2021-09-
18 23:55 except 2021-08-15, and from 2021-10-14 00:00
to 2021-10-28 23:55. Data from 2021-08-15 (heavy rain),
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Fig. 4 Cumulative probability distribution of measured rain attenuation
value used as training data

2021-10-01 (heavy rain), 2021-10-07 (cloudy), 2021-10-13
(rainy), 2021-10-29 (clear), 2021-11-09 (heavy rain) [10]
were used as evaluation data to evaluate the learned model.
Note that, data after 2021-10-02 for Rx2 is not included in
learning and evaluation. Figure 4 shows cumulative proba-
bility distribution of measured rain attenuation value used as
training data at each Rx respectively with cumulative proba-
bility 50% or greater. Note that, the rain attenuation value in
the training data with cumulative probability less than 50%
are almost 0 (that is, not rainy).

In this study, Adam was used for the optimization al-
gorithm, mean squared error (MSE)[dB] as the loss func-
tion between the predicted and measured values, root mean
squared error (RMSE)[dB] for the evaluation function.

In this paper, in order to understand the maximum perfor-
mance of the model, the learning and evaluation is performed
20 times, then we discuss the cases in which the RMSE be-
tween the model’s predicted and measured values for the
evaluation data is the smallest.

4.2 Comparison method with ITU model
The evaluation data mentioned in the previous section are
input to the proposed model and the ITU model, while the
RMSE[dB] between the predicted rain attenuation and the
corresponding measured value in each model is calculated
to compare the prediction accuracy of the two models.

5. Evaluation result

5.1 Comparison of prediction and measured values
For Rx3, the measured rain attenuation (red), the predicted
rain attenuation by the proposed model (green), and the
approximate total rainfall rate along the path at the same time
as these values (blue), are shown in Fig. 5. The horizontal
axis (index) in Fig. 5 is corresponds to sorted the evaluation
data in ascending order by date and time. The “index” 0 to
287 is 2021-08-15, 288 to 497 is 2021-10-01, 498 to 780
is 2021-10-07, 781 to 895 is 2021-10-13, 896 to 1182 is
2021-10-29, and 1183 to 1470 is 2021-11-09. And also, in
Fig. 5, the corresponding areas in 2021-10-01, 2021-10-13
and 2021-11-09 are colored light gray. Further, Table II

Fig. 5 Comparison result and sum of rainfall rate on the path at Rx3

Table II Correlation between predicted and sum of rainfall rate on the
path

Table III RMSE between predicted and measured at each receive point
and all evaluation data

shows the correlation between predicted by proposed model
and sum of rainfall rate on the path, at each Rx.

Figure 5 shows the overall prediction is in line with theory,
such as the attenuation become large when it was heavy
rain, while they become small when it was sunny. And also,
from Fig. 5 and Table II, it can be seen that there is strong
correlation between predicted value by proposed model and
sum of rainfall rate on the path. These results indicates
when a CNN model is constructed and trained with rainfall
rate as input, the model can be regarded as outputting rain
attenuation values by selecting rainfall rate values that fall
primarily on the propagation path of the input data. It means
prediction is based on physical phenomenon of occurring
rain attenuation, and therefore the learning is reasonable.

5.2 Comparison of proposed model and ITU model
For each Rx and all evaluate data, RMSE[dB] between pre-
dicted and measured value for the proposed model and the
ITU model respectively, are shown in Table III. The predic-
tion accuracy of the proposed model is better than that of
the ITU model in all cases.

In addition, The rate of improvement of the RMSE in the
proposed model at each Rx from that of the ITU model was
confirmed to be Rx3, Rx2, and Rx1, in that order, and the
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Fig. 6 Cumulative probability distribution of absolute value of prediction
error with the proposed model and ITU model

difference was observed depending on the Rx.
This should be mainly due to the learning characteris-

tics of CNNs. When the prediction model is trained by
supervised learning with CNN, the prediction model will
eventually be such that the value of the loss function (in this
study, it is the mean squared error (MSE), which is prac-
tically equivalent to the RMSE) for the error in the entire
training data will be small. In this study, the prediction
model was fitted to dataset with larger rainfall attenuation
values in order to reduce the MSE for the entire training data
during the learning process. Here, the “dataset with larger
rainfall attenuation values” mainly corresponds to the Rx3
data (refer to Fig. 4) with the longest path distance. In other
words, the weights of the prediction model were adjusted to
reduce the MSE of the entire training data during the train-
ing process of the CNN, resulting in a prediction model that
fits the Rx3 data better.

Therefore, it can be considered that the RMSE of the
proposed model for Rx3 is significantly improved from the
ITU model. For the Rx1 and Rx2 data, the path distance of
Rx2 is closer to that of Rx3, so the prediction was performed
with the prediction model that fits the Rx3 data, and the
RMSE improvement from the ITU model was higher in Rx2
than in Rx1.

Figure 6 shows that cumulative probability distribution
of the absolute value of the error between predicted and
measured value with cumulative probability 70% or greater
for the proposed model and the ITU model respectively. We
find that the absolute value of the error of the proposed
model with respect to the probability value is consistently
better than that of the ITU model from 70% to 99.95%
cumulative probability.

From the results, we conclude that the advantage of the
proposed model over the ITU model in terms of prediction
accuracy.

6. Conclusion

In this paper, we proposed a rain attenuation prediction
method using a convolutional neural network with map data

with rainfall rate and path distance information as input, and
validated effectiveness of the method. The main results are
as follows:

• The correlation between predicted rain attenuation and
rainfall rate on the path was higher than 0.9,

• the RMSE of the predictions was less than 3.19 dB.
These show that our proposed method reflects well physical
phenomenon and is effective for rain attenuation prediction.
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