
IEICE Communications Express, Vol.13, No.5, 151–155

LETTER

High-precision automatic optical axis alignment of LED backhaul in
lighting surroundings based on object detection

Yuma Nishimura1, a), Wataru Chujo A1, b), and Kentaro KobayashiA1

Abstract Research on high-throughput optical wireless communication
(OWC) has been progressing toward sixth generation. As half-power beam
width of near-infrared 600 Mbps light emitting diode backhaul (LEDBH)
consisting of LED and photodiode is narrow, high-precision optical axis
alignment of LEDBH is important. So far, the optical axis was manually
aligned using a scope. In this study, object detection using deep learning,
YOLOv7, is adapted to automatically align the optical axis. Average pre-
cisions of LEDBH detection are evaluated in lighting surroundings while
changing the camera exposure time. The optical axis is finely adjusted with
object detection and mechanical angle adjustment.
Keywords: optical wireless communication, optical axis alignment, object
detection, deep learning, LED backhaul, 6G
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1. Introduction

Research on high-throughput OWC has been underway as a
new carrier band candidate for sixth generation (6G) wire-
less communications [1]. OWC receivers are classified into
cameras using image sensors and photodiode (PD) receivers.
Cameras can simultaneously achieve high spatial resolution
and wide-angle field of view (FOV). However, the low data
rate property of optical camera communication (OCC) poses
a high barrier towards 6G.

On the other hand, PD receivers can achieve high data
rates. Integration of local 5G and OWC has also been studied
using PD receivers [2]. High-throughput OWC using PD
receivers is suitable candidate for 6G.

The drawback of high-throughput PD receivers is that they
cannot simultaneously satisfy high spatial resolution and
wide-angle FOV like cameras. If half-power beam width of
the PD receiver is narrowed to suppress interference, optical
axis alignment becomes difficult.

So far, the optical axis of high-throughput full-duplex
near-infrared (IR) LEDBHs [3] was manually aligned using
a scope. In this study, high-precision automatic optical axis
alignment is investigated using object detection.

Generally, to automatically align the optical axis of the
transceivers, a camera [4] or a quadrant PD array [5] is used.
However, the decision based on thresholds of the camera’s
received pixel value or the output amplitude of the quadrant
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PD array has difficulty distinguishing between LEDs for
communication and those for lighting in surroundings. In
lighting surroundings, these methods may capture multiple
LEDs and make false decision.

To identify only the LED transmitter in lighting surround-
ings, correlation localization techniques and object detection
techniques using deep learning (DL) have been proposed.
Correlation localization techniques use time-series correla-
tion with transmission patterns of communication LED [6].
On the other hand, object detection using DL detects LED
transmitters from captured images with a camera. Detection
of LED transmitters using convolutional neural networks
has been studied for high-throughput OWC using a PD re-
ceiver [7]. However, it is limited to simulations. Identifica-
tion of communication LEDs and lighting LEDs using You
Only Look Once (YOLO) has also been studied [8], which
experimentally demonstrates the effectiveness of communi-
cation LED detection using DL. However, it is limited to
low data rate OCC. There are no studies that combine high
data rate PD receivers with object detection by DL using
camera images.

In this study, optical axis alignment of a near-IR 600
Mbps LEDBH is experimentally demonstrated by detecting
LEDBH using object detection and mechanical angle ad-
justment using a motor. Average precision (AP) of LEDBH
based on object detection and throughput after optical axis
alignment are evaluated in lighting surroundings.

2. Experimental configuration and procedure for opti-
cal axis alignment using object detection

Figure 1 shows experimental configuration and specifica-
tions of LEDBH and camera. Two full-duplex near-IR
LEDBHs are facing each other at a distance, d, and the
throughput is evaluated in both directions. The data rate and
throughput of LEDBH are up to 750 Mbps in physical layer
and 600 Mbps in layer 2, respectively. So far, the optical

Fig. 1 Experimental configuration and specifications of LEDBH and cam-
era.
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axis was manually aligned using a scope. Instead of a scope,
a visible light (VL) camera without IR cut filter is attached
to the own station, LEDBH1. The camera is 30 frames per
second (fps), the image size is full high definition, and the
horizontal FOV is 62.2◦. The camera detects the oppo-
site station, LEDBH2, and the optical axis is mechanically
aligned by a motor so that the offset angle θ1 of the own
station is 0◦.

Figure 2 shows the angular characteristics of the through-
puts of LEDBH1 evaluated while varying the station’s offset
angle θ1 at a distance, d = 30 m. The offset angle θ2 of
the opposite station, LEDBH2, is set to 0◦. The transmitting
angle characteristics are more severe than the receiving. To
maintain 600 Mbps, it is necessary to suppress the angle
alignment error within ±0.2 degrees.

Figure 3 shows the procedure for automatically aligning
the optical axis of LEDBH1. So far, the optical axis was
manually aligned using a scope. It is assumed that the ap-
proximate location of LEDBH2 is known in advance. First,
the offset angle θ1 of LEDBH1 is coarsely adjusted to within
±1.2◦ by the motor. Next, the offset angle of LEDBH1 is
finely adjusted to 0◦ by the motor using object detection.

Since LEDs’ luminance is generally much higher than the
surrounding objects, pixel values captured with the camera
are easy to get saturated. Saturation of the pixel values
makes it difficult to classify categories with object detection.
Therefore, to learn the differences in LED radiation patterns,
it is necessary to shorten the camera’s exposure time.

Table I shows evaluation parameters to obtain suitable
exposure time. In the experiments in subsections 3.1-3.3,
it is assumed that the optical axis of the opposite station,
LEDBH2 does not align to LEDBH1. AP is evaluated while
the offset angle of LEDBH2 is fixed at θ2 = 0.86◦.

Fig. 2 Throughputs of LEDBH1 versus offset angle, θ1.

Fig. 3 Procedure for automatically aligning the optical axis.

Table I Evaluation parameters to obtain suitable exposure time.

In this study, YOLOv7 is used as the object detection
algorithm, where object categories are limited to only one
category, LEDBH2. The number of epochs is 400, the ratio
of training data, validation data, and test data is 8:2:1, and a
total of 440 images are used.

Normally, mean AP (mAP) is used as evaluation metrics
for object detection model. However, since LEDBH2 is the
only category, AP (IoU (Intersection over Union) ≥ 0.5) is
used as the evaluation metrics.

3. LEDBH detection using YOLOv7

3.1 Differences in AP due to exposure time in almost
no lighting surroundings

First, differences in AP (IoU ≥ 0.5) due to exposure time
was experimentally investigated in almost no lighting sur-
roundings based on the evaluation parameters (see Table I).
Figure 4 shows differences in AP using the training data,
where the offset angle of LEDBH2 is fixed at θ2 = 0.86◦ and
the distance between LEDBH1 and LEDBH2, d = 10 m. The
number of epochs required for AP convergence increases as
the exposure time becomes shorter. These results indicate
that the short exposure time is not effective in almost no
lighting surroundings. However, compared to 3.2 and 3.3,
this is due to insufficient resolution as the LEDBH2 image
becomes smaller as the exposure time becomes shorter.

In addition, Fig. 5 shows examples of LEDBH2 detection

Fig. 4 Differences in AP (IoU ≧ 0.5) due to exposure time in almost no
lighting surroundings (θ2 = 0.86◦, d = 10 m).

Fig. 5 Examples of LEDBH2 detection in the test data using the trained
model in almost no lighting surroundings (θ2 = 0.86◦, d = 10 m).

Table II Difference in AP versus exposure time for the test data in almost
no lighting surroundings (θ2 = 0.86◦, d = 10 m).
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in the test data using the trained model. Table II also shows
the difference in AP versus exposure time for the test data.
In Fig. 5, the confidence score decreases slightly as the
exposure time becomes shorter. However, in Table II, APs
of the test data are above 99.9% regardless of the exposure
time. Even when the exposure time is short, confidence score
is high in almost no lighting surroundings. However, when
the exposure time is short, the effect of improving AP cannot
be obtained due to insufficient resolution of LEDBH2.

3.2 Differences in AP due to exposure time in lots of
lighting surroundings

Second, differences in AP (IoU ≥ 0.5) due to exposure time
was experimentally investigated in lots of lighting surround-
ings based on the evaluation parameters (see Table I). Even
when the exposure time is short, if there are lots of lighting
in the surrounding area, the effect of improving AP may
be obtained. Figure 6 shows differences in AP due to ex-
posure time, where the offset angle of LEDBH2 is fixed at

Fig. 6 Differences in AP (IoU ≧ 0.5) due to exposure time in lots of
lighting surroundings (θ2 = 0.86◦, d = 10 m).

Fig. 7 Examples of LEDBH2 detection in the test data using the trained
model in lots of lighting surroundings (θ2 = 0.86◦, d = 10 m).

Table III Difference in AP versus exposure time for the test data in lots
of lighting surroundings (θ2 = 0.86◦, d = 10 m).

θ2 = 0.86◦ and the distance, d = 10 m.
When the exposure times are long, 33.3, 16,7, and 1 ms,

the convergence properties of AP in lots of lighting surround-
ings are worse than those in almost no lighting surroundings
(see Figs. 4(a), (b), and (c)). However, when the exposure
time is short, 0.5 ms, the convergence property of AP in
lots of lighting surroundings is better than that in almost no
lighting surroundings (see Fig. 4(d)).

These results indicate that the saturated LEDBH2 and
LED lightings images make categories difficult to classify
when the exposure times are long. On the contrary, the
differences between LEDBH2 and LED lightings radiation
patterns can be learned when the exposure time is short.

In addition, Fig. 7 shows examples of LEDBH2 detec-
tion in the test data using the trained model. When the
exposure time is 33.3 ms in Fig. 7(a), LEDBH2 is detected
with a confidence score of 0.99. However, LED lighting
is falsely detected with a confidence score of 0.89. On the
contrary, when the exposure time is 0.5 ms in Fig. 7(b), only
LEDBH2 is correctly detected with a confidence score of
0.96. Moreover, Table III shows the difference in AP versus
exposure time for the test data. AP with short exposure time
is slightly better than that with long exposure time. These
results also indicate that it is easy to learn the differences
between LEDBH2 and LED lightings images when the ex-
posure time is short.

3.3 Differences in AP due to exposure time under VL
cut condition

Third, differences in AP (IoU ≥ 0.5) due to exposure time
was experimentally investigated under VL cut condition in
lots of lighting surroundings (see Table I). Even where
lots of lighting surroundings, only near-IR LEDBH2 can be
learned with high resolution using VL cut filter. Figure 8
shows differences in AP due to exposure time under VL
cut condition, where the offset angle of LEDBH2 is fixed at
θ2 = 0.86◦ and the distance, d = 10 m. In lots of lighting
surroundings, the convergence properties of AP with VL cut
filter is better than those without VL cut filter (see Fig. 6).
Moreover, under VL cut condition, the convergence proper-
ties of AP when the exposure time is 0.5 ms in Fig. 8(d) is
almost the same as those when the exposure time is 33.3 ms

Fig. 8 Differences in AP (IoU ≧ 0.5) due to exposure time under VL cut
condition in lots of lighting surroundings (θ2 = 0.86◦, d = 10 m).
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Fig. 9 Examples of LEDBH2 detection in the test data using the trained
model under VL cut condition (θ2 = 0.86◦, d = 10 m).

Table IV Difference in AP versus exposure time for the test data under
VL cut condition (θ2 = 0.86◦, d = 10 m).

in Fig. 8(a). Even when the exposure time is short, LEDBH2
can be learned accurately under VL cut condition.

In addition, Fig. 9 shows examples of LEDBH2 detection
in test data using the trained model. When the exposure
time is 33.3 ms in Fig. 9(a), confidence score for LEDBH2
decreases to 0.74. On the contrary, when the exposure time is
0.5 ms in Fig. 9(b), confidence score for LEDBH2 increases
to 0.95. Table IV also shows the difference in AP versus
exposure time for the test data. AP for the test data with short
exposure time is much better than that with long exposure
time. These results indicate that AP with short exposure time
can be improved more than that with long exposure time
because the radiation pattern of LEDBH2 can be learned
more accurately under VL cut condition.

4. Mechanical optical axis alignment based on object
detection

Mechanical optical axis alignment was conducted based on
object detection under VL cut condition (see subsection 3.3),
where the exposure time is reduced to 34 µs, the offset
angle of LEDBH2, θ2 = 0◦, and the distance, d = 10 m.
After coarse alignment of the offset angle θ1 of LEDBH1
within ±1.2◦, the angle is finely aligned to 0◦ by the motor
using object detection (see Fig. 3). Figure 10(a) shows
horizontal single-axis control mechanism for LEDBH1. The
angular resolution and accuracy of the motor are 0.1◦ and
±0.5◦, respectively. The accuracy is improved to 0.1◦ by
combining mechanical alignment and LEDBH2 detection
using YOLOv7. Figure 10(b) shows throughputs after fine
adjustment of the offset angle, θ1, to 0◦ within a range of
±1.2◦. LEDBH1 can be accurately aligned to 0◦ using the
LEDBH2 detection image. The variations in throughput
were suppressed to a maximum of 7 Mbps for Tx and 0.1
Mbps for Rx. The object detection within θ1 = ±1.2◦ was
demonstrated.

Figure 11 shows examples of LEDBH2 detection within

Fig. 10 Control mechanism and throughput after fine adjustment, where
the exposure time is further reduced to 34µs (θ2 = 0◦, d = 10 m).

Fig. 11 Examples of LEDBH2 detection within θ2 = ±1.2◦, where θ1 =
0◦.

θ2 = ±1.2◦, where θ1 = 0◦. Although the peak of the
detected image shifts to the left at θ2 = −1.2◦, to the center
at 0◦, and to the left at +1.2◦, confidence scores of more than
0.95 are obtained. The object detection within θ2 = ±1.2◦
was demonstrated.

5. Conclusion

High-precision automatic optical axis alignment of 600
Mbps near-IR LEDBH was achieved by object detection
using YOLOv7. APs of LEDBH detection are evaluated in
lighting surroundings while changing the exposure time of
VL camera without IR cut filter. The object detection us-
ing short-exposure-time camera can learn the differences in
radiation pattern between LEDBH and other LED lighting.
High-throughput 600 Mbps transmission was maintained
with an accuracy of 0.1◦ by aligning the optical axis based
on object detection within θ1 = ±1.2◦.
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