Com€EX

IEICE Communications Express, Vol.13, No.5, 159-162

|LETTER

Evaluation on eBPF-based network failure prediction using AutoGluon

Tianhao Zhu' ¥, Jiwon Lee', Bojian Du', Ryoma Kondo', Kentaro Matsuura', Hiroyuki Morikawa',

and Yoshiaki Narusue!

Abstract This study evaluates an extended Berkeley Packet Filter (¢eBPF)-
based network failure prediction method using Autogluon-Tabular to pro-
cess the fine-grained network information extracted by eBPF. The ex-
tracted information is considered as input features of the proposed model,
which aims to predict the subsequent packet loss and determine a net-
work failure event before it causes a huge impact. Supervised learning and
semi-supervised learning are both adopted in Autogluon. The accuracy
and detection time are evaluated as the main criteria. Simulation results
show that F1 scores exceed 0.9 for our proposed method, and the proposed
method can achieve prediction for potential failure events within 30 and 40
seconds when symptoms such as packet loss occur.

Keywords: network failure prediction, packet loss, eBPF, Autogluon, fea-
ture selection

Classification: Network

1. Introduction

In recent years, there has been a rapid development of net-
work failure prediction methodologies as modern network
frameworks become increasingly complex and uncertain.
For network services like cloud-native functions (CNFs) and
network function virtualization (NFV), network failures tend
to become more complex and frequent [1], making proac-
tive operations more essential. In reality, network failures
such as gradual packet loss take a certain amount of time to
impact service quality, which enables us to predict failures
in advance to prevent potential service damage.

The extended berkeley packet filter (eBPF) is considered
one of the top candidates to provide detailed data about the
network for model construction. Observability is the most
essential function provided by eBPF in terms of network
failure prediction. Not only does eBPF enable the derivation
of fine-grained network information from the Linux kernel
space, but it is also capable of monitoring CNFs in 5G core
network (5GC) [2]. By applying the eBPF, network data
such as CPU queue latency and TCP retransmission count
can be easily collected.

Many researchers have studied eBPF-based methods for
addressing network failures. The authors of [3] proposed an
eBPF-based segementation routing (SR) method to achieve
flexible failure detection and rapid rerouting. Because the
IPv6 data plane of SR (also called SRv6) faces technical
issues in implementing NFV, eBPF enables it to execute
virtualized functions directly inside the Linux kernel without

1 Dept. of Electrical Engineering and Information System, Uni-
versity of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
) zhuth34 @hmlab.t.u-tokyo.ac.jp

DOI: 10.23919/comex.2023XBL0183
Received December 26, 2023
Accepted February 2, 2024
Publicized March 12, 2024
Copyedited May 1, 2024

modifying it. In [4], a network monitoring mechanism at
the kernel level was introduced for the Kubernetes cluster
in the Alibaba container service. The eBPF was used to
provide observability at the kernel level and achieve better
troubleshooting and fault location for a large number of
applications. These studies explored the effectiveness of
eBPFs in terms of network monitoring and observability.
However, they did not fully utilize the collected network
data and neglected their potential use in failure prediction.
In fact, the study in [5] evaluated the failure prediction model
of long short-term memory (LSTM) trained on fine-grained
eBPF data in CNFs and demonstrated its effectiveness.
This study aims to provide a more thorough evaluation
to confirm how early and accurate network failures in a
containerized environment can be predicted by eBPF com-
pared with previous works. Specifically, we consider mul-
tiple general machine learning (ML) models such as su-
pervised and semi-supervised learning models, regression
and classification models, instead of using only one ML
model. We trained these models on the eBPF data by apply-
ing AutoGluon-Tabular, an open-source automated learning
(AutoML) framework [6]. Both classification and regres-
sion were used for supervised learning. For semi-supervised
learning, we used normal behavior modeling based on re-
gression. Further, we conducted feature selection to increase
the training efficiency, and successfully reduced the number
of features to 200. The simulation results show significant
progress with respect to the F1 score and prediction time.

2. eBPF based network feature information extraction

The eBPF was originally proposed to address packet filtering
problems, and it has since been extended to other functions,
such as network observability and security. This enables
network programs to be conducted directly in the kernel
space, saving time for transferring data to the user space,
which better utilizes hardware resources and provides better
efficiency for networking tasks such as packet filtering [2].

Network feature information can be extracted using eBPF.
Because eBPF program is event-driven, eBPF code can be
registered to a network packet kernel event and programmed
to collect network data. In this case, when packet communi-
cation is established, fine-grained information such as CPU
run queue latency, TCP life time and TCP retransmission can
be successfully obtained. In addition, in terms of network
information extraction, cAdvisor is also applicable. It is an
open-source container monitoring tool provided by Google,
combined with eBPF, and can capture network information
in a layer lower than the containers.

@0l
AP\ This work is licensed under a Creative Commons Attribution Non Commercial, No Derivatives 4.0 License.

Copyright © 2024 The Institute of Electronics, Information and Communication Engineers

However, not all data extracted by eBPFs are relevant to
fault occurrences. The use of all data to build ML mod-
els can lead to an increased model size and longer learning
and inference times, making it challenging to deploy them
on edge servers with limited computing resources. There-
fore, it is necessary to select effective feature data in order
to shorten the learning time of models and even improve
their accuracy by preventing high-dimensional input vector
overfitting problems.

3. Experiment

3.1 Dataset

In this study, we utilized the dataset provided by KDDI in
the ITU AL/ML in 5G Challenge 2022 [7]. The dataset was
simulated in a CNF-based 5GC test environment. Figure 1
illustrates the behavior within one cycle of the simulation
process. One cycle lasted for 700 seconds, and network
features were collected every 10 seconds, resulting in 70
rows of datasets per cycle. Three types of feature were
collected, namely cAdvisor, eBPF, and 5GC logs.

In one cycle, the first 100 seconds represents the prepara-
tion period during which the initialization of the SGC net-
work takes place. For normal cycles, which are cycles with
only very small number of failures, UE attach and detach
operations are repeated from 100 seconds to 700 seconds
(600 seconds duration). The initial number of UEs is 200,
and attach and detach operations occur between 200 and 220
UEs. For abnormal cycles, which are cycles with a certain
number of network failures, packet loss is considered as the
only failure type, starting at approximately 90-100 seconds
and increasing linearly during the cycles. The entire dataset
includes 75% of normal cycles and 25% of abnormal cy-
cles. Failure prediction models are trained to raise alarms as
early as possible for abnormal cycles, and do not cause false
alarms throughout the entire cycle for normal ones.

3.2 Experiment procedure

Autogluon-Tabular was used to train the model, which can
automatically select the submodels and adopt a multi-layer
stack ensembling strategy to conduct training [6]. The se-
lected submodels included neural networks, CatBoost and
random forest. We compared the performance of the three
most significant models in network failure prediction, which
are regression model and classification model of supervised
learning, and normal behavior model of semi-supervised
learning. These three models can comprehensively reflect
the feasibility of using the data extracted by the eBPF. By
determining the best learning model, we systematically con-
structed an eBPF-based methodology. The F1 score and

e

Start network Packet loss rate increase linearly
From 0% to 5% in 5G network

Preparation failure

0s 100s 700s Time

Fig. 1 Behavior within one cycle of simulation

IEICE Communications Express, Vol.13, No.5, 159-162

average detection time were utilized as the evaluation cri-
teria in our models. The prediction time is defined as the
earliest time at which the F1 score reaches 0.9, which in-
dicates that the model has achieved a good performance in
terms of both precision and recall.

In the regression model, the output is considered as the
number of packet loss at the last row of each cycle. For
input tunning, we conducted downsampling for all normal
cycles and adopted the data at the early stages of failure only
for abnormal cycles. In this process, a threshold determina-
tion is required. When the number of packet loss exceeds
the threshold, the entire cycle is considered abnormal. Val-
idation data with 100 cycles was created to determine the
threshold, where the ratio of normal and abnormal cycles
was maintained at 3:1. We changed the threshold from 20 to
60 and checked the F1 score at two different detection times:
130 seconds, which was the first time the F1 score exceeded
0.9, and 600 seconds, which corresponded to the last row of
each cycle. Figure 2 shows that the regression model had F1
scores of 0.961 at 130 seconds in red line and 0.993 at 600
seconds in blue line when the threshold was 30. Therefore,
we set the threshold to 30.

In the classification model, validation data for the thresh-
old is no longer required because the final output of the
models directly predicts the column “label” of each row,
which shows whether the cycle is normal or abnormal. The
data prepossessing method for the classification model was
the same as that for the regression model.

For the semi-supervised learning, a normal behavior
model that uses only rows of normal cycles to train the
model was utilized [8]. The normal behavior model sets
the model output of model as the number of packet loss,
which is simliar to the regression model in supervised learn-
ing. However, the output was set as the number of failures
at each row and the difference between the output of the
trained model and the actual number of failures was used
for evaluation. The threshold for this difference was set to
be three times the standard deviation of the trained model
according to the 3-sigma rule of the training data. Since the
standard deviation was 1.118, the threshold was set to 3.35.

In addition, to select the most appropriate feature informa-
tion, we use a feature importance ranking algorithm, which
can reduce the number of input parameters and increase the

1.0 1

0.8

0.6 1

F1 score

0.4

0.2 A

0.0 1

20 25 30 35 40 45 50 55 60
Threshold

Fig. 2 Threshold determination for regression model

160

Regression model for normal cycles

Classification model for normal cycles

IEICE Communications Express, Vol.13, No.5, 159-162

NBM model for normal cycles

2004 2001

1501

—
%
=}

100

Number of Cycles
=
o
o

Number of Cycles

50

[
1=}

= =]
o I =}
o =3 Sy

Number of Cycles

u
=}

0 2 4 6 8 0 2
Row index

(a)

Regression model for abnormal cycles

Row index

©

Classification model for abnormal cycles

6 8 0 10 20 30 40 50 60 70
Row index

©)]

NBM model for abnormal cycles

60

w w
=} «

N
v
N
o

w
o

Number of Cycles
= N
w o
Number of Cycles

=

o
N
o

v
—
o

Number of Cycles
N w £ w o ~

.

0 T T T T T T T
11.00 11.25 11.50 11.75 12.00 12.25 12.50 12.75 13.00

o

15 20 25 40

10.00 10.25 1050 10.75 11.00 11.25 11.50 11.75 12.00 30 35
Row index Row index Row index
(b) (d ()

Fig.3 (a)Normal cycles for regression model. (b)Abnormal cycles for regression model. (c)Normal cycles for
classification model. (d)Abnormal cycles for classification model. (e)Normal cycles for normal behavior model.

(f)Abnormal cycles for normal behavior model

calculation efficiency. By randomly selecting five normal
cycles (5 x 60 rows = 300 rows) and two abnormal cycles
(2 X 50 rows = 100 rows), while maintaining the 3:1 ratio,
we compared the performance of the model with different
numbers of features four time and ranked the feature impor-
tance. We then obtained a table showing the order of the
feature importance.

3.3 Experimental result
3.3.1 Models trained with all metrics
The experimental results of the three proposed models us-
ing all the features are shown in Fig. 3. In these figures,
the horizontal axis represents the row index for the time at
which the cycle was determined to be abnormal, whereas the
vertical axis represents the number of cycles. In addition,
the row index is set as -1 when the cycle is considered as nor-
mal all the time. Figures 3(a) and (b) present the results of
network failure prediction using the regression model. Ap-
proximately 98.7% of the normal cycles did not exceed the
threshold, and retained the value of —1. In Fig. 3(b), it can be
observed that the abnormal cycles first exceed the threshold
between 10th-to the 12th rows, and approximatelhy 90.7%
of abnormal cycles can be predicted within index 11, which
is 120 seconds. The accuracy of the regression model was
calculated and an F1 score of 0.922 was achieved at the pre-
diction time of 120 seconds, and maintained a high F1 score
(0.993) until the end of the cycle.

Figures 3(c) and (d) also show the good performance of
the classification model. Figure 3(c) shows the results of
the normal cycles, where approximately 99.6% of normal

cycles were correctly classified. The results of the abnormal
cycles are shown in Fig. 3(d), where abnormal cycles were
predicted between rows 10 and 12, revealing that approxi-
mately 77.3% of the cycles could successfully predict the
ongoing failure before index 12 (130 seconds).

For normal behavior model, the performance became rel-
atively low, as shown in Figs. 3(e) and (f). In normal cycles,
approximately 82.7% of them did not exceed the threshold
of 3.35 throughout the entire cycle, and were correctly clas-
sified. However, the abnormal cycles exceed the threshold
over a wide range of 0-45, which reveals that the prediction
time of the network failure is performed later than supervised
learning. Figure 3(f) shows that the F1 score was 0.905 at a
time of 340 seconds, and 0.987 at 600 seconds. Because the
normal behavior model does not use failure data, the failure
prediction time is longer than that of supervised learning.
As a result, the normal behavior model is only capable of
determining a failure event for a cycle 240-250 seconds after
the packet loss starts.

3.3.2 Models trained with selected features only

The results of feature importance selection are summarized
in one table by calculating the average importance value and
arranged in descending order. As shown in Table I, the
types and number of features in the top 200 are presented
in descending order. The three most important features are
“tcpwin,” “tcprtt,” and “runglat,” which are collected by the
eBPF and reflect the state of TCP communication and the
scheduling process of CPU.

We used the regression model of supervised learning as an
example and employ the selected features to reconstruct it.

161

Table I Important features of the regression model

Important Feature \ Number
eBPF tcpwin 44
eBPF tcprtt 40
eBPF runglat 27
eBPF tcpretrans 15
cAdvisor interfaces 12
cAdvisor container memory rss 10
cAdvisor container memory working set bytes 10
cAdvisor container memory mapped file 9
cAdvisor container memory cache 6
cAdvisor container memory usage bytes 6
cAdvisor devices 4
cAdvisor container cpu usage seconds 3
5G SM PduSession 3
cAdvisor container cpu system seconds 2
cAdvsior container last seen 2
cAdvsior container cpu cfs periods 2
eBPF tcpdrop 1
eBPF pidnss 1
5G RM DeregSucc 1
cAdvisor container cpu user seconds 1
eBPF runglen 1
Total 200
600
500
g 400
s
§ 3001
a
200
1001
100 150 200 250 300 350 400

Number of Features

Fig. 4 Performance of models using selected features

Most of the parameter tuning was the same as that in the pre-
vious section; however only the selected features with high
importance were adopted. When rebuilding the regression
model, we compared the performance of different numbers
of features among the top 400, 200, 180, 160, 150, 140,
and 100 features. Figure 4 shows the relationship between
the number of features used and the prediction time in the
reconstructed regression model. In Fig. 4, the horizontal
axis shows the number of features selected, and the vertical
axis shows the prediction time at which the F1 score first ex-
ceeds 0.9. Specifically, the prediction time was 130 seconds
when 400 or 200 variables were selected. When the number
of features was reduced to 160 or 180, the time decreased
slightly to 140 seconds. As a result, the use of the top 200
features is the most appropriate approach for realizing ac-
curate prediction and a fast training speed simultaneously,
which can be utilized in future work.

IEICE Communications Express, Vol.13, No.5, 159-162

4. Conclusion

This study evaluated an eBPF-based network failure predic-
tion method using Autogluon-Tabular and comprehensively
determined its feasibility and performance with all general
Al models. We compared the regression and classification
models of supervised learning and normal behavior model
of semi-supervised learning by adjusting the parameters in
Autogluon. The results show that the network data extracted
by the eBPF can realize fast and accurate network failure
prediction when supervised learning is adopted. However,
semi-supervised learning model still needs further improve-
ment given its relatively low performance. Semi-supervised
learning can work as an alternative when the amount of fail-
ure data is not enough. In addition, by evaluating feature
importance, we prove that the top 200 network features se-
lected by our algorithms can simultaneously achieve good
performance and increase training efficiency.

Acknowledgments

This work was supported by KDDI Research, Inc.
References

[1] S. Imadali and A. Bousselmi, “Cloud native 5G virtual network func-
tions: Design principles and use cases,” Proc. 2018 IEEE 8th Inter-
national Symposium on Cloud and Service Computing (SC2), Paris,
France, pp. 91-96, Nov. 2018. DOI: 10.1109/SC2.2018.00019

[2] S. Miano, M. Bertrone, F. Risso, M. Tumolo, and M.V. Bernal, “Cre-
ating complex network services with eBPF: Experience and lessons
learned,” Proc. 2018 IEEE 19th International Conference on High
Performance Switching and Routing (HPSR), Bucharest, Romania,
pp. 1-8, June 2018. DOL: 10.1109/HPSR.2018.8850758

[3] M. Xhonneux and O. Bonaventure, “Flexible failure detection and
fast reroute using eBPF and SRv6,” Proc. 2018 14th International
Conference on Network and Service Management (CNSM), Rome,
Ttaly, pp. 408—413, Nov. 2018.

[4] C.Liu, Z. Cai, B. Wang, Z. Tang, and J. Liu, “A protocol-independent
container network observability analysis system based on eBPF,” Proc.
2020 IEEE 26th International Conference on Parallel and Distributed
Systems (ICPADS), Hong Kong, pp. 697-702, Dec. 2020. DOI:
10.1109/ICPADS51040.2020.00099

[5] J. Kawasaki, D. Koyama, T. Miyasaka, and T. Otani, “Failure pre-
diction in cloud native 5G Core with eBPF-based observability,”
Proc. 2023 IEEE 97th Vehicular Technology Conference (VTC2023-
Spring), Florence, Italy, pp. 1-6, June 2023. DOI: 10.1109/VTC2023-
Spring57618.2023.10200028

[6] N. Erickson, J. Mueller, A. Shirkov, H. Zhang, and A. Smola,
“Autogluon-tabular: Robust and accurate automl for structured
data,” arXiv preprint arXiv 2003.06505, 2020. DOI: 10.48550/arXiv.
2003.06505

[7] ITU, “ML5G-PS-005: Network failure prediction on CNFs 5GC with
Linux eBPE,” ITU, https://challenge.aiforgood.itu.int/match/matchit
em/64/, Feb. 2022.

[8] A. Patcha and J.M. Liu, “An overview of anomaly detection tech-
niques: Existing solutions and latest technological trends,” Com-
puter networks, vol. 51, no. 12, pp. 3448-3470, 2007. DOI: 10.1016/
j-comnet.2007.02.001

162

