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A generalization of the four qubits single insertion error-correcting code

Taro ShibayamaA1, a)

Abstract The first quantum insertion code is the four qubits code given by
Hagiwara in 2021. Since then, several quantum insertion codes have been
proposed, but they are all unrelated to Hagiwara’s four qubits code. This
article provides a new class of quantum single insertion codes that include
the Hagiwara code. Furthermore, this construction gives a new decoder for
insertion errors in the Hagiwara codes.
Keywords: quantum error-correction, insertion/deletion code, single inser-
tion error
Classification: Fundamental theories for communications

1. Introduction

Insertion/deletion error-correcting codes in classical theory
were first given by Levenshtein in 1966 [1], while those in
quantum theory have a relatively short history. In fact, the
first quantum error-correcting code was proposed by Shor in
1995 [2], which could correct errors represented by unitary
matrices.

More than 20 years later, the first quantum deletion error-
correcting code was proposed by Nakayama in 2020 [3].
Several examples of quantum deletion codes have been given
so far since then [4, 5]. The first quantum insertion error-
correcting code is the four qubits code given by Hagiwara in
2021 [6]. This code was already known as a single deletion
error-correcting code [4], and its construction is simple and
basic. However, the decoding process for insertion errors
in the Hagiwara code is nontrivial and technical, and was
expected to be difficult to generalize. Recently, a class of
quantum single insertion codes was given [7], but the Hagi-
wara code is not included in that class and is still a unique
example.

This article gives a class of quantum single insertion codes
that are not yet known and presents their decoders. Our class
includes the Hagiwara code, and we have successfully con-
structed a new decoder in Hagiwara’s four qubits insertion
code.

2. Quantum single insertion

Fix n as a positive integer and [n] := {1,2, . . . ,n}. Suppose
that there are n particles p1, p2, . . . , pn whose quantum states
are level 2. These n particles can be represented by a 2n-by-
2n density matrix. The set of all density matrices of order
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2n is denoted by S(C2⊗n). We also use a complex vector
|ψ⟩ ∈ C2⊗n for representing a pure state |ψ⟩⟨ψ | ∈ S(C2⊗n).
The mapping of n particles p1, p2, . . . , pn to n + 1 particles
p1, p2, . . . , pi−1,q, pi, . . . , pn with a single particle q is called
a quantum single insertion. Note that the position of the
particle q is unknown. According to a recent report [7], if the
n quantum states before insertion are pure states, the single
insertion error is expressed as the map Ini,σ : S(C2⊗n) →
S(C2⊗(n+1)) defined as follows:

Suppose that the quantum state before insertion is ex-
pressed as a density matrix ρ =

∑
x,y∈{0,1}n mx,y |x⟩⟨y | ∈

S(C2⊗n) with mx,y ∈ C. For an integer i ∈ [n + 1] and a
quantum state σ ∈ S(C2), define the map Ini,σ : S(C2⊗n) →
S(C2⊗(n+1)) as

Ini,σ(ρ) :=
∑

x,y∈{0,1}n
mx,y |x1⟩⟨y1 | ⊗ · · · ⊗ |xi−1⟩⟨yi−1 |

⊗ σ ⊗ |xi⟩⟨yi | ⊗ · · · ⊗ |xn⟩⟨yn |.
Here we denote x = x1x2 . . . xn and y = y1y2 . . . yn. We
call the map Ini,σ a single insertion for quantum state σ with
the insertion position i. This article proposes a new class of
quantum codes that can correct any single insertion.

3. Code construction

In this article, we suppose that mutually disjoint non-empty
sets A,B ⊂ {0,1, . . . ,n} satisfy the following two conditions:

1. w ∈ W =⇒ n − w ∈ W , for any W ∈ {A,B}.
2. |w1 − w2 | ≤ 1 =⇒ w1 = w2, for any w1, w2 ∈ A ∪ B.

The encoder EncA,B : S(C2) → S(C2⊗n) is defined as

EncA,B(α |0⟩ + β |1⟩) = α |D̃A⟩ + β |D̃B⟩, (1)

with α, β ∈ C. Here, {|0⟩, |1⟩} ⊂ C2 is an orthonormal basis
of a two-dimensional Hilbert space with inner product ⟨, ⟩,
and

|D̃W ⟩ :=
1√∑

w∈W
(n
w

) ∑
w∈W

∑
x∈{0,1}n
wt(x)=w

|x⟩

for W ∈ {A,B}. Here wt(x) is Hamming weight of the
classical bit sequence x ∈ {0,1}n. Note that the state |D̃W ⟩
is not just a Dicke state. Set QA,B as the image of the encoder
EncA,B. Note that the code QA,B, defined above, is already
known as a single deletion error-correcting code [5]. This
article claims that the code QA,B is also single insertion
error-correctable.

4. Error-correction

This section describes the decoding process of the codes
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QA,B for single insertions. The proofs of Lemmas given in
this section are shown in Appendix at the end of this article.

4.1 Measurement
In general, if we perform a measurement described by mea-
surement operators M = {Mm} that satisfies the complete-
ness relation

∑
m M†

mMm = I under a state ρ, the probability
to get an outcome m is p(m) = Tr(M†

mMmρ) and the after
measurement state is MmρM†

m/p(m). Here, I denotes an
identity matrix and Tr(M) denotes the sum of the diagonal
elements of a square matrix M . In the following, we define
the measurement operatorM used in the decoder of the code
QA,B for single insertions.

First, vectors needed for the construction of the measure-
ment operators are defined. For W ∈ {A,B}, i ∈ [n + 1] and
b ∈ {0,1}, define a vector |vW

i,b
⟩ ∈ C2⊗(n+1) as

|vWi,b⟩ :=
1√∑

w∈W
(n
w

) ∑
w∈W

∑
x∈{0,1}n+1

wt(x)=w+b
xi=b

|x⟩.

Lemma 1 For sets W,W ′ ∈ {A,B}, integers i, i′ ∈ [n + 1]
and bits b, b′ ∈ {0,1},

⟨vWi,b |v
W ′

i′,b′⟩ =


1 i f W = W ′, b = b′and i = i′,
1/2 i f W = W ′, b = b′and i , i′,
0 otherwise.

(2)

Next, using |vW
i,b

⟩, define unit vectors |uW
i,b

⟩ that are or-
thogonal to each other. For W ∈ {A,B}, i ∈ [n + 1] and
b ∈ {0,1}, define a vector |uW

i,b
⟩ ∈ C2⊗(n+1) as

|uWi,b⟩ :=
√

2i
i + 1

©­«|vWi,b⟩ − 1
i

∑
j∈[i−1]

|vWj ,b⟩
ª®¬ . (3)

Note that |uW1,b⟩ = |vW1,b⟩ in Eq. (3).
Lemma 2 For sets W,W ′ ∈ {A,B}, integers i, i′ ∈ [n + 1]
and bits b, b′ ∈ {0,1},

⟨uWi,b |u
W ′

i′,b′⟩ =
{

1 i f W = W ′, b = b′and i = i′,
0 otherwise.

Define Mi,b := |uA
i,b

⟩⟨uA
i,b

| + |uB
i,b

⟩⟨uB
i,b

| for i ∈ [n + 1]
and b ∈ {0,1}. For the space V ⊂ C2⊗(n+1) with the basis
{|uW

i,b
⟩ | W ∈ {A,B}, i ∈ [n + 1], b ∈ {0,1}}, choose a

basis {|ei⟩} of its orthogonal complementary space V⊥ and
define M∅ :=

∑
i |ei⟩⟨ei |. Then M := {M∅} ∪ {Mi,b | i ∈

[n+1], b ∈ {0,1}} is a set of measurement operators because
the completeness relation

M†
∅M∅ +

∑
i∈[n+1]
b∈{0,1}

M†
i,b

Mi,b = I

is satisfied. Here, I is the identity matrix of size 2n+1.

4.2 Recovery operator
For any i ∈ [n + 1] and any b ∈ {0,1}, we can choose a size
2n+1 unitary matrix Ui,b such that Ui,b |uA

i,b
⟩ = |0 . . . 00⟩

and Ui,b |uB
i,b

⟩ = |0 . . . 01⟩. We call the unitary matrix Ui,b

a recovery operator.

4.3 Error-correction process
Let σ =

∑
b0 ,b1∈{0,1} cb0b1 |b0⟩⟨b1 | ∈ S(C2) denote the state

of the particle to be inserted, where c00 + c11 = 1. For the
state expressed in Eq. (1), the state after a single insertion
Ini,σ is

Ini,σ(α |D̃A⟩ + β |D̃B⟩)

=
∑

b0 ,b1∈{0,1}
cb0b1 (α |vAi,b0

⟩ + β |vBi,b0
⟩)(ᾱ⟨vAi,b1

| + β̄⟨vBi,b1
|).

For this state, the probability to get the outcome ( j, b) when
performing the measurement M is cbb |⟨u j ,b |vi,b⟩|2 since

p( j, b)

=Tr
(
M†

j ,b
Mj ,b Ini,σ(α |D̃A⟩ + β |D̃B⟩)

)
=
∑
k

⟨k |M†
j ,b

Mj ,b

∑
b0 ,b1∈{0,1}

cb0b1 (α |vAi,b0
⟩ + β |vBi,b0

⟩)

(ᾱ⟨vAi,b1
| + β̄⟨vBi,b1

|)|k⟩

=
∑

b0 ,b1∈{0,1}
cb0b1

∑
k

(ᾱ⟨vAi,b1
| + β̄⟨vBi,b1

|)|k⟩⟨k |M†
j ,b

Mj ,b(α |vAi,b0
⟩ + β |vBi,b0

⟩)

=
∑

b0 ,b1∈{0,1}
cb0b1 (ᾱ⟨vAi,b1

| + β̄⟨vBi,b1
|)M†

j ,b

Mj ,b(α |vAi,b0
⟩ + β |vBi,b0

⟩)
=cbb(ᾱ⟨vAi,b |u

A
j ,b⟩⟨u

A
j ,b | + β̄⟨v

B
i,b |u

B
j ,b⟩⟨u

B
j ,b |)

(α |uA
j ,b⟩⟨u

A
j ,b |v

A
i,b⟩ + β |u

B
j ,b⟩⟨u

B
j ,b |v

B
i,b⟩)

=cbb |⟨u j ,b |vi,b⟩|2(ᾱ⟨uA
j ,b | + β̄⟨u

B
j ,b |)(α |u

A
j ,b⟩ + β|u

B
j ,b⟩)

=cbb |⟨u j ,b |vi,b⟩|2,

and the after measurement state is α |uA
j ,b

⟩ + β |uB
j ,b

⟩ ∈
S(C2⊗(n+1)) since

Mj ,b Ini,σ(α |D̃A⟩ + β|D̃B⟩)M†
j ,b

=
∑

b0 ,b1∈{0,1}
cb0b1 Mj ,b(α |vAi,b0

⟩ + β|vBi,b0
⟩)

(ᾱ⟨vAi,b1
| + β̄⟨vBi,b1

|)M†
j ,b

=cbb(α |uA
j ,b⟩⟨u

A
j ,b |v

A
i,b⟩ + β|u

B
j ,b⟩⟨u

B
j ,b |v

B
i,b⟩)

(ᾱ⟨vAi,b |u
A
j ,b⟩⟨u

A
j ,b | + β̄⟨v

B
i,b |u

B
j ,b⟩⟨u

B
j ,b |)

=cbb |⟨u j ,b |vi,b⟩|2(α |uA
j ,b⟩ + β |u

B
j ,b⟩)(ᾱ⟨u

A
j ,b | + β̄⟨u

B
j ,b |)

=p( j, b)(α |uA
j ,b⟩ + β|u

B
j ,b⟩)(ᾱ⟨u

A
j ,b | + β̄⟨u

B
j ,b |).

From Eq. (2) and Eq. (3), we get ⟨uA
j ,b

|vA
i,b

⟩ = ⟨uB
j ,b

|vB
i,b

⟩,
and we denoted this value as ⟨u j ,b |vi,b⟩ in the above. On
the other hand, from the definition of M∅, the probability of
obtaining outcome ∅ is 0.

After obtaining the outcome ( j, b), we apply the recovery
operator Uj ,b , which gives

Uj ,b(α |uA
j ,b⟩ + β |u

B
j ,b⟩) = α |0 . . . 00⟩ + β |0 . . . 01⟩.

Finally, the original state α |0⟩ + β |1⟩ ∈ S(C2) can be ob-
tained by deleting the 1st through the nth particles and error-
correction is completed. Note that this error-correction pro-
cess does not depend on the insertion position i and the
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quantum state σ ∈ S(C2), and error-correction is possible
no matter what state is inserted at any position.

5. Examples

5.1 Decoder for the 4 qubit insertion code
The sets A and B such that n is the smallest are A = {0,4}
and B = {2}. In this case

|D̃A⟩ =
1
√

2
(|0000⟩ + |1111⟩),

|D̃B⟩ =
1
√

6
(|0011⟩ + |0101⟩ + |0110⟩ + |1001⟩

+ |1010⟩ + |1100⟩),

Table I Values of | ⟨u j ,b |vi ,b ⟩ |2 for i, j ∈ [5] and b ∈ {0, 1}

i = 1 i = 2 i = 3 i = 4 i = 5
(j , b) = (1, b) 2/2 1/4 1/4 1/4 1/4
(j , b) = (2, b) 0 3/4 1/12 1/12 1/12
(j , b) = (3, b) 0 0 4/6 1/24 1/24
(j , b) = (4, b) 0 0 0 5/8 1/40
(j , b) = (5, b) 0 0 0 0 6/10

Fig. 1 Error-correction process for the 4-qubit insertion code when σ =
1
2 |0⟩ ⟨0 | +

1
2 |1⟩ ⟨1 | ∈ S(C2) is inserted in the 3rd position

Table II All codes with length 8 or less

Length (A, B)
4 ({0, 4}, {2}).
5
6 ({0, 6}, {3}), ({0, 6}, {2, 4}).
7 ({0, 7}, {2, 5}).
8 ({0, 8}, {4}), ({0, 8}, {3, 5}), ({0, 8}, {2, 6}),

({1, 7}, {4}), ({1, 7}, {3, 5}), ({2, 6}, {4}),
({0, 4, 8}, {2, 6}), ({0, 2, 6, 8}, {4}).

where the code QA,B is the 4 qubit insertion code given by
Hagiwara [6]. However, the decoder given in this article is
different from the one first given by Hagiwara.

Table I shows the values of |⟨u j ,b |vi,b⟩|2 for integers
i, j ∈ [5] and a bit b ∈ {0,1}. For the state after encoding,
if σ =

∑
b0 ,b1∈{0,1} |b0⟩⟨b1 | is inserted at the ith position,

the probability of obtaining the outcome ( j, b) by applying
the measurement M is cbb |⟨u j ,b |vi,b⟩|2. Therefore, it is
possible to calculate that probability using Table I.

For example, if σ = 1
2 |0⟩⟨0|+

1
2 |1⟩⟨1| ∈ S(C2) is inserted

in the 3rd position, the probabilities of obtaining outcomes
(1, b), (2, b), (3, b), (4, b), (5, b) are 1/8, 1/24, 1/3, 0, 0,
respectively. The decoding process after obtaining each
outcome is shown in Fig. 1.

5.2 All codes with length 8 or less in our construction
The list of all codes with length 8 or less is shown in Ta-
ble II. In particular, there are no codes with length 5 in our
construction. Of course, codes with lengths greater than 8
can be constructed in the same way.

6. Conclusion

This article gave the first class of quantum single inser-
tion error-correcting codes which includes Hagiwara’s four
qubits insertion code. From that construction, a new decoder
for the Hagiwara code was given.

Already known decoders for quantum deletion codes and
quantum insertion codes often use projective measurements.
In this study, we presented a decoder using a generalized
measurement described by measurement operators. Of
course, keeping in mind the axioms of quantum mechan-
ics, generalized measurements can be described using pro-
jective measurements. However, for the decoder presented
in this paper, generalized measurements are simpler to de-
scribe. Based on this idea, we would like to construct new
codes and clarify the relationship between insertion codes
and deletion codes.
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Appendix A. Proofs of lemmas

A.1 Proof of Lem. 1
If W , W ′ or b , b′, then ⟨vW

i,b
|vW ′

i′,b′⟩ = 0 from the 2nd
condition about sets A and B. If W = W ′, b = b′ and i = i′,
then ⟨vW

i,b
|vW ′

i′,b′⟩ = 1 by direct calculation.
In the case of W = W ′, b = b′ and i , i′, we have

⟨vWi,b |v
W ′

i′,b′⟩ =


1∑

w∈W
(n
w

) ∑
w∈W

(
n − 1
w

)
i f b = 0,

1∑
w∈W

(n
w

) ∑
w∈W

(
n − 1
w − 1

)
i f b = 1.

(A.1)

Note that
(n−1
w

)
:= 0 for n = w and

(n−1
w−1

)
:= 0 for w = 0.

We have
∑

w∈W
(n−1
w

)
=
∑

w∈W
(n−1
w−1

)
from the 1st condition

about sets A and B. In addition, since
(n
w

)
=

(n−1
w

)
+
(n−1
w−1

)
,

we obtain∑
w∈W

(
n − 1
w

)
=

∑
w∈W

(
n − 1
w − 1

)
=

1
2

∑
w∈W

(
n
w

)
.

Therefore, from Eq. (A.1), ⟨vW
i,b

|vW ′

i′,b′⟩ = 1/2 is shown. □

A.2 Proof of Lem. 2
If W , W ′ or b , b′, then ⟨uW

i,b
|uW ′

i′,b′⟩ = 0 by Lem. 1. If
W = W ′, b = b′ and i = i′, then we have

⟨uWi,b |u
W
i,b⟩ =

2i
i + 1

⟨vWi,b |vWi,b⟩ −
1
i

∑
j∈[i−1]

⟨vWi,b |v
W
j ,b⟩

−1
i

∑
j∈[i−1]

⟨vWj ,b |v
W
i,b⟩ +

1
i2

∑
j ,k∈[i−1]

⟨vWj ,b |v
W
k ,b⟩


=1

by Lem. 1.
In the case of W = W ′, b = b′ and i , i′, we prove

by induction on i ∈ [n + 1]. Fix k ∈ [n] and assume that
⟨uW

i,b
|uW

i′,b⟩ = 0 holds for different positive integers i, i′ ∈
[k]. Then, it is sufficient to prove ⟨uW

k+1,b |u
W
i,b

⟩ = 0 for any
i ∈ [k].

It can be checked by direct calculation that

|uWk+1,b⟩ =
√

2(k + 1)
k + 2

(|vWk+1,b⟩ − |vWk ,b⟩) +
√

k
k + 2

|uWk ,b⟩

holds. Therefore,

⟨uWk+1,b |u
W
i,b⟩

=

√
2(k + 1)

k + 2
· 2i

i + 1

(
⟨vWk+1,b | − ⟨vWk ,b |

)

©­«|vWi,b⟩ − 1
i

∑
j∈[i−1]

|vWj ,b⟩
ª®¬ +

√
k

k + 2
⟨uWk ,b |u

W
i,b⟩

=


√

2(k + 1)
k + 2

· 2i
i + 1

· 0 +
√

k
k + 2

· 0 i f 1 ≤ i < k√
2(k + 1)

k + 2
· 2k

k + 1
·
(
−1

2

)
+

√
k

k + 2
· 1 i f i = k

=0

by Lem. 1. From the above, it is proved that ⟨uW
i,b

|uW
i′,b⟩ = 0

for all different positive integers i, i′ ∈ [n + 1]. □
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