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Novel micro-burst detection method in access/edge networks using
periodic IoT messages
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Abstract Real-time access edge computing demands access networks to
connect a lot of IoT devices to edge servers with ultra-low latency. A lot
of connected devices will cause the data bursts and sudden increase of
delay (i.e. micro-burst) in the upstream queues in gateways. This study
proposes a novel method for detecting such bursts to ensure low-latency
communication. The proposed method leverages the periodic messaging
behavior of certain IoT devices. It detects bursts based on the variation in
the arrival times of messages transmitted from already deployed multiple
IoT devices. This approach enables monitoring of delays and detecting
bursts without the need for additional probes or modifications to gateways.
The study validates the detection accuracy and feasibility through numerical
analysis and simulations.
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1. Introduction

Recently, researchers have proposed fixed access network
architectures for access edge computing, where applications
on edge servers control IoT devices (e.g. industrial robots
and sensors) in a real-time manner [1] (Fig. 1).

In such an architecture, the access network must guar-
antee ultra-low latency between edge servers and devices
connected via IoT Gateways (GW). In particular, we focus
on micro-bursts as a technical obstacle to provide stable low-
latency communication in the network. A micro-burst is a
spike of traffic that flows into a router/switch in a very short
period of time (a few tens of microseconds to a few millisec-
onds) and causes increased latency and packet drops [2].
Although this phenomenon is currently observed in Data
Center networks [2], we anticipate it will also arise in the
upstream flow in the future access network due to the in-
crease of connected devices.

A general method for detecting micro-bursts is to mon-
itor the queue lengths in switches/GWs and periodically
report them to the detection system. However, this method
may cause these devices to be expensive due to the addi-
tional features for monitoring and may consume the band-
width by the report messages. Several methods [3, 4] have
been proposed to estimate the one-way queueing delay by
measuring the variation in arrival timing of these periodic
messages (Fig. 2 (a)). For example, the authors in a previ-
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Fig. 1 Real-time control for IoT devices from edge applications across the
fixed access network.

Fig. 2 Comparison of our proposal with the existing studies.

ous study [4] proposed the passive measurement method for
one-way queueing delay, which utilizes the periodic VoIP
messages. These methods will be useful for detecting the
micro-bursts because it does not need additional features on
each device (i.e. switch/GW) and not consume bandwidth.

Here, we focus on the characteristic of IoT devices that
periodically send messages [5]. Specifically, our method
detects micro-bursts by analyzing the time-series of one-
way queueing delays estimated by measuring the variation
in arrival times of these periodic messages from multiple
IoT devices already deployed (Fig. 2 (b)). The existing
studies [3, 4] have already established queueing delay mea-
surement method which uses the pair of the periodic packet
sender/receiver. However, they do not satisfy high sampling
granularity required for detecting a micro-burst that occurs
in a few tens of microseconds to a few milliseconds. The
novelty of our work is to expand the existing method that
focused a single sender, to asynchronous and multiple peri-
odic senders (i.e. IoT devices) for improving the sampling
granularity, and to further propose the detection method con-
sidering the above characteristics. We evaluate the detection
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accuracy by numerical analysis, varying the number of de-
vices sending periodic messages, which is crucial for the
feasibility.

2. Micro-burst detection system

2.1 Network architecture
Figure 3 shows the architecture of the fixed access network
and a GW, focusing on the upstream traffic flow. The GW
connects numerous IoT devices in a local environment (e.g.
factory) to edge servers in a central office via the fixed ac-
cess network. For simplicity, we assumed the GW can be
modeled as M/M/1 [6] in the upstream traffic.

A control application on the edge server monitors these
devices and controls them in a real-time manner, responding
to the sensor data periodically sent from them. Our aim is
to detect a sudden increase of the upstream queueing delay
inside the GW. We assume some of IoT devices each of
which sends a message every T second, while other devices
send messages at random. We further define the number of
these periodic devices as a variable N , and assume T is a few
tens of milliseconds, according to the previous study [1], for
realizing the real-time control.

2.2 One-way queueing delay estimation
Our proposed method utilizes the existing technology [4] to
estimate the queueing delay experienced by messages sent
from each periodic device. The estimation relies on mea-
suring the time gap between the actual and expected (i.e.,
periodic) arrival times, achieved by capturing the messages.
Figure 4 shows the time-series of actual queueing delays
and estimated samples. The estimated samples from a sin-
gle periodic device, as indicated by each color in Fig. 4,
provides delay samples at a coarse granularity with interval
T . However, by aggregating delay estimation values from
multiple periodic devices (all in colors in Fig. 4), it becomes
possible to sample delays at a finer garrulity (with sample
interval ∆t). In this proposed method, messages from asyn-
chronously transmitting devices are captured at the central
office’s capture point. Please note that the timings when the
system estimates the delays are when each of periodic mes-
sages arrives and are not distributed at the same intervals
since each device sends messages asynchronously every T
second. The feature of our proposed method is to detect a
micro-burst considering the variable sampling intervals.

2.3 Micro-burst detection
Our method estimates the queue length inside GW based on
the time-series of estimated delays and judges a micro-burst
occurs when the estimated queue length exceeds pre-defined
data size L. Figure 5 depicts a part of actual delay time-series
(solid line) and estimated samples (colored circles).

Here, we assume two messages sent from two different
periodic devices arrive on the capture point at ti and ti+1,
and estimated queuing delays at these timings are d(ti) and
d(ti+1), respectively. If a burst occurs at tburst in the interval
period ∆ti(= ti+1−ti), and the queue length exceeds data size
L, then the queue length at ti+1 must be more than L − B∆ti
(B: outflow rate of the queue) and thus d(ti+1) > L/B−∆ti as

Fig. 3 Architecture for detecting micro-bursts by utilizing periodic mes-
sages (colored with red, blue and yellow) sent from IoT devices.

Fig. 4 Time-series of estimated queuing delays inferred from periodic
messages (blue, yellow, red) transmitted from three devices.

Fig. 5 Conceptual diagram of the proposed burst detection method.

Fig. 5 shows. On the other hand, if it does not occur, d(ti+1)
is considered to follow the stationary distribution defined
by the background traffic and the outflow rate B. Follow-
ing the above discussion about d(ti+1), the system judges
a micro-burst occurs during [ti, ti+1) when d(ti+1) exceeds
the threshold L/B − ∆ti and deviates from the stationary
distribution Ps . The latter condition can be defined by the
threshold zα: the upper α-percentile determined by the pre-
defined acceptable upper limit of false positive rate (FPR:
filled with gray in Fig. 5). Please note α = 100× FPR. The
pseudo-code is shown in Fig. 6.
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Fig. 6 Burst detection algorithm (pseudo-code).

3. Evaluation

3.1 Basic analysis when N = 100
To verify the basic performance of our proposal, we con-
ducted simulations using the M/M/1 queue model [6] as
GW (thus stationary distribution follows the geometric dis-
tribution) using the parameters shown in Table I. We gen-
erated burst traffic (1MB) at the 5 second and injected it
into the queue while generating background traffic for ten
seconds. We measured the detection accuracy by whether it
can detect the burst at the 5 second with three metrics (true
positive/false positive/false negative rates).

To demonstrate the superiority of our proposal, Fig. 7
compares it with other detection methods. The first method
(colored with green) for comparison is a naïve approach,
which detects micro-bursts when an estimated delay takes an
outlier from the steady-state distribution (i.e., when d(ti+1) >
zα). The second method (colored with blue) is based on a
fixed interval T/N , without considering variability of ∆ti =
ti+1−ti . In Fig. 7, the gray line represents the estimated delay
samples, and the star marks indicate the timings when each
method detected micro-bursts, and the dotted lines represent
the detection thresholds.

With the method using the steady-state distribution
(green), a peak value was falsely detected as a burst (false
positive) at a point (4.985 sec) other than the actual burst oc-
currence, as the estimated delay exceeded the fixed threshold
zα. On the other hand, when using the fixed sampling inter-
val (blue), the threshold is set higher than the actual burst,
leading to missed detections (false negative). This misde-
tection happens when a burst occurs in a large (> T/N)
sampling interval period. In contrast, the proposed method
successfully detected the burst indicated by the magenta star
mark by dynamically adjusting the threshold (magenta dot-
ted line) according to ∆ti .

To further compare the performance of our proposal with
the fixed sampling interval, Fig. 8 shows the true positive
rates (1 − false negative rates) as background traffic rate is
varied. It shows the proposed method could achieve almost
100% true positive rate, while the other missed approxi-
mately 40% of detections when the background traffic rate
was 1Gbps. We also measured their false positive rates and
observed the both methods achieved 0%.

3.2 Minimum required number of periodic devices
To assess the feasibility of our proposal, it is essential to

Table I Settings and parameters.

Fig. 7 Detection of a micro-burst with several methods and their thresh-
olds.

Fig. 8 Comparison of true positive rate between proposed method with
adjusted threshold and the other method with the fixed interval.

determine how many periodic devices are required. A small
N (number of periodic devices) expands the sampling in-
terval, reducing granularity and increasing false negatives.
Conversely, requiring thousands of devices makes our pro-
posal impractical. Here, we assess the feasibility through
formulating false negative rate as a function of N .

In the proposed method, if a burst occurs at tburst , and
∆tburst (the interval between the time tburst and the nearest
sampling timing ti+1) satisfies the condition L − B∆tburst >
zα ⇐⇒ ∆tburst < (L − zα)/B, the system judges a micro-
burst occurs. That is, if we define X as (L − zα)/B, the
lower bound of the true positive rate can be expressed as P
(∆tburst < X), thus the upper bound of the false negative
rate we want to derive is 1 – P (∆tburst < X). We derived
the theoretical values of 1 – P (∆tburst < X) as follows (see
Appendix for details):

1 − P (∆tburst < X)
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= 1 − N/T ×
(∫ X

0
∆ti f (∆ti) d∆ti +

∫ T

X

X f (∆ti)d∆ti

)
(1)

where f (∆ti) = (N − 1)(1 − ∆ti/T)N−2/T .
To verify the above formulation, we compared the theoret-

ical values obtained from the formula with the false negative
rates obtained through the simulations while varying the
number of N under the same conditions as in Section 3.1.
As Fig. 9 shows, the theoretical values are consistent with
the simulation results.

The minimum necessary number of periodic devices can
be calculated by finding the minimum N that satisfies the
condition that 1 − P (∆tburst < X) is higher than the pre-
defined acceptable false negative rate. Please note that X
is determined by parameters L, B and zα affected by the
background traffic. In Fig. 10, we show the minimum pe-
riodic devices, when setting the acceptable false negative

Fig. 9 Comparison between the false negative rates obtained from theo-
retical values and those from simulation results.

Fig. 10 Number of periodic devices required to achieve a false negative
rate of 1% when the transmission interval T is varied.

Fig. 11 Transmission interval T and the sampling intervals.

rate = 1% and varying the transmission interval T with each
background traffic rate. The result shown in Fig. 11 indi-
cates that a micro-burst can be detected with an accuracy
of less than 1% false negative rate if approximately 50 pe-
riodic devices are connected to the GW. Since this number
of devices can be accommodated by a commodity-available
64-port switch with fixed lines, we consider our proposal
has a reasonable feasibility.

4. Conclusion

This paper presents a method that leverages the periodic
transmission characteristic of IoT devices to detect micro-
bursts. Simulation results demonstrate that the proposed
method detects the bursts with fewer false positives and neg-
atives compared to other methods. Additionally, we estab-
lished how the number of periodic devices impacts detection
accuracy to validate our proposal’s feasibility.
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Appendix

For deriving P (∆tburst < X), we first derived the proba-
bility density function for ∆ti , the length of the sampling
interval where a micro-burst occurs. As Fig. 11 shows,
each sampling interval ∆t can be seen as fractions of [0,
T) divided by (N − 1) random points since each periodic
device asynchronously transmits messages every T sec-
ond. Therefore, this problem can be seen a broken-stick
problem (see [7]). The probability density function for
sampling interval ∆t is derived according to the existing
solution: f (∆t) = (N − 1) (1 − ∆t/T)N−2 /T (2). Further,
assuming that micro-burst occurs at a random timing tburst ,
the probability density function for ∆ti can be derived as
g (∆ti) = f (∆ti) × ∆tiN/T (3).

Our target condition, i.e., ∆tburst < X , can be classified
into two cases: (a) where ∆ti is smaller than X , and (b)
where ∆ti is greater than X but ∆tburst is smaller than X .
Therefore, P (∆tburst < X) can be represented as the sum of
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these two cases, by substituting Eq. (2) and Eq. (3).

P (∆tburst < X)

= P (∆ti < X) + P (∆ti ≥ X ∩ ∆tburst < X)

=

∫ X

0
g (∆ti) d∆ti +

∫ T

X

g(∆ti) × X/∆tid∆ti

= N/T ×
(∫ X

0
∆ti f (∆ti) d∆ti +

∫ T

X

X f (∆ti)d∆ti

)
(4)
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