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LETTER

Streaming quality control based on object-detection accuracy

Nobuaki Akutsu1, a), Takuya Shindo1, b), Takefumi Hiraguri1, c), Hideaki Yoshino1, d), and Nobuhiko Itoh1, e)

Abstract This study aims to establish an adaptive video quality con-
trol method that satisfies object-detection accuracy and reduces bandwidth
consumption simultaneously for remote real-time video analysis systems.
Existing video quality control methods determine video quality by consider-
ing human perceptual characteristics; this reduces bandwidth consumption
while providing a high quality of experience. However, it cannot reduce
bandwidth consumption in systems that use object-detection engines to de-
tect people and vehicles. Thus, this study proposes a video quality control
method to reduce bandwidth consumption. To this end, the bandwidth
consumption and ratio of the number of frames satisfying the mean average
precision requirements to the total number of frames (herein referred to
as the success rate) are evaluated. The results confirm that the proposed
method can reduce bandwidth consumption to 49% of that of the existing
video quality control method at the same success rate.
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1. Introduction

As image recognition technology and machine learning have
advanced along with mobile networks, new services for the
Internet of Things (IoT) are being developed with real-time
recognition for remote locations. For example, using mo-
bile networks, a connected car service can collect real-time
information, such as images around an intersection and lo-
cations of vehicles from connected devices, such as roadside
cameras and vehicles. Real-time information helps drivers
avoid road-traffic collisions. A road-traffic collision avoid-
ance scheme using roadside cameras was proposed by [1].
In the future, cameras located in public spaces can be used
for vehicle traffic control. By reducing the video bitrate per
camera while satisfying desired detection accuracy, various
cameras can be implemented in the social infrastructure,
contributing to the stable operation of remote-control ser-
vices with video streaming.

Although research on upgrading the object-detection en-
gine is being conducted worldwide to improve object-
detection accuracy in applications involving Yolov3 [2],
video quality control methods that optimize the video bi-
trate input to detection engines have not been sufficiently
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investigated.
Recently, H.265 constant rate factor (CRF) mode, which

is one of the conventional video quality control methods, has
been proposed [3] to address the abovementioned gap. How-
ever, the H.265 CRF mode causes fluctuations in the mean
average precision (mAP) when Yolov3 is used as the object-
detection engine. Therefore, the H.265 CRF mode has to
continuously send high-quality videos at all times, consid-
ering the periods of decreasing mAP, but this increases the
network load.

This study aims to overcome this challenge and proposes
a video quality control method that reduces the network load
caused by video transmission when Yolov3 is used to detect
objects with high accuracy. The proposed video quality
control method is favorable to object-detection engines and
networks, and this study demonstrates its effectiveness.

The remainder of this manuscript is organized as follows.
Section 2 presents H.265 CRF mode and its challenges.
Section 3 presents proposed dynamic CRF control. Section 4
presents performance evaluation. Finally, Section 5 presents
the conclusions drawn from the study findings.

2. H.265 CRF mode and its challenges

The H.265 CRF mode controls the video bitrate such that the
quality of experience (QoE) [4] is constant. Therefore, the
H.265 CRF mode is a superior video quality control method
for humans. The lower the CRF parameter, the higher the
video quality and bitrate.

The detection accuracy of the object-detection engine is
represented by mAP, which is a measure of match between
object-detection results and the correct data. To investigate
the basic characteristics of the H.265 CRF mode, we eval-
uated mAP using the H.265 CRF mode as a video quality
control method and Yolov3 as the object-detection engine.
A 10-min streaming video of a real intersection shown in
Fig. 1, was used as the evaluation video. The frame rate of
the video was 10 frames per second.

Figure 2 shows the mAP characteristics of the H.265 CRF
mode. The horizontal and vertical axes represent time and
mAP, respectively. Green indicates a high-quality video
(CRF = 2), and blue indicates a low-quality video (CRF =
30). mAP is commonly used as a measure of object-
detection accuracy [5]. In this study, mAP is calculated
using the common objects in context (COCO) dataset [6, 7].
As this study aims to support safe driving assistance, mAP
is only calculated for objects that include a person, bicy-
cle, motorcycle, car, truck, and bus in the COCO dataset.
Therefore, the mAP on the vertical axis in Fig. 2 shows the
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Fig. 1 Snapshot of evaluation video.

Fig. 2 mAP of the H.265 CRF mode.

detection-accuracy results for the objects per frame.
Figure 2 shows that the temporal variation in mAP can

be suppressed when a high-quality video is used, whereas
the temporal variation in mAP is large when a low-quality
video is used. Therefore, to maintain a high mAP at all
times, a high-quality CRF should be set, which requires a
large video-transmission bandwidth and places a huge load
on the network. However, there are several segments in
which mAP was equivalent to that of a high-quality video,
even for low-quality videos. Examples include the intervals
from 26 to 29 s and from 71 to 76 s. Therefore, it is not
necessary to transmit high-quality videos at such intervals,
and transmitting low-quality videos reduces network load
while maintaining mAP.

3. Proposed dynamic CRF control

As indicated in Section 2, the H.265 CRF mode requires
transmitting high-quality streaming video to maintain a high
mAP. At certain intervals, mAP equivalent to that of high-
quality video can be obtained, even if a low-quality video
is transmitted. This section proposes a method to reduce
data required for streaming video transmission by dynami-
cally changing video quality, particularly the CRF parameter,
while maintaining mAP equivalent to that of the conven-
tional H.265 CRF mode.

3.1 Architecture
The architecture of the proposed system, as illustrated in
Fig. 3, consists of a surveillance camera, IoT gateway(IoT-
GW), base station, and server. The link between the surveil-
lance camera and the IoT-GW is wired, the link between

Fig. 3 Architecture of the proposed method.

the IoT-GW and the base station is wireless, and the link
between the base station and the server is wired. The video
from the surveillance camera reaches the server via the IoT-
GW, base station, and mobile networks. The server detects
objects from the streaming video, for example, in the case
of a vehicle-traffic safety system, and sends alert messages
to high-risk vehicles based on the detection results. The
robustness of the vehicle-traffic safety system depends on
the object-detection accuracy. Therefore, a higher mAP is
required.

The sequence of the proposed system is as follows. First,
the surveillance camera sends a raw high-quality streaming
video (high quality) to the IoT-GW, and then, the IoT-GW
performs two processes upon receiving the raw streaming
video. In the first process, the IoT-GW inputs the raw stream-
ing video into the object-detection engine to obtain ground
truth (GT), including the type of detected objects and their
bounding boxes that indicate the location of the objects in the
high-quality video. Here, GT obtained from as the raw data
was used to calculate mAP on the server. This is because the
raw data are the highest-quality video and the detection re-
sults based on that high-quality video are the most accurate.
The second process involves encoding the video received
from the surveillance camera based on the CRF parameters
specified by the server. Following the two processes, the
IoT-GW sends the GT and encodes the video to the server.
When the server receives this data, it calculates mAP using
the two received datasets and determines the next stream-
ing video quality. This method for determining the quality
of the next streaming video is explained in detail in Sec-
tion 3.2. When the server determines the quality of the next
video, it notifies the IoT-GW of the CRF parameters for the
subsequent streaming video.

3.2 CRF selection algorithm
The proposed algorithm controls the quality of the next video
frame based on the detection accuracy of the previous frame.
As frame rates are increasing and the time interval between
frames is becoming smaller, we assumed that the quality of
the video in the previous frame is effective in determining
the quality of the video in the next frame. Specifically, it
determines the CRF for the next video frame CRFt+1 based
on the current mAP mAPt of the video encoded by the
current CRF CRFt .

In the algorithm for mAPreq , which indicates the required
value of detection accuracy, the upper threshold of mAP,
mAPupper and the lower threshold of mAP, mAPlower were
preset and divided into four states. The next CRF can be
determined using the following equation:
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CRFt+1 =


CRFt + α (mAPt ≥ mAPupper ),
CRFt (mAPreq ≤ mAPt < mAPupper ),
CRFt − β (mAPlower ≤ mAPt < mAPreq),
γ (mAPt < mAPlower ),

(1)
where α, β, and γ are constants. In the case of mAPt ≥
mAPupper , we considered that CRFt was excessive and
CRFt+1 was set as CRFt + α to downgrade the video qual-
ity. This degradation decreased the network load. In the
case of mAPreq ≤ mAPt < mAPupper , CRFt+1 was set
as CRFt because the current video quality was appropri-
ate. When mAPlower ≤ mAPt < mAPreq , the algorithm
marginally upgraded the video quality. Specifically, CRFt+1
was set as CRFt − β. When mAPt < mAPlower , the al-
gorithm drastically upgraded the video quality to recover
mAP degradation. Specifically, CRFt+1 was set to γ, which
presents high quality.

When developing a state-of-the-art object-detection en-
gine using the proposed method, the object-detection en-
gines of the IoT-GW and the server, as shown in Figure 3, can
be replaced with the latest object-detection engine. More-
over, the video quality can be determined based on the de-
tection accuracy of the object-detection engine. Therefore,
if the latest object-detection engine can maintain the desired
detection accuracy even when a low-quality video is input,
a low-quality CRF can be selected using the proposed algo-
rithm. Thus, the proposed method can be easily integrated
into the latest object-detection engine, because the quality
of video that can satisfy the desired detection accuracy is
dynamically selected by the proposed CRF selection algo-
rithm.

4. Performance evaluation

4.1 Simulation setup
The proposed algorithm was compared with the H.265 CRF
mode by simulation. The content shown in Fig. 1 was used
for evaluation. The desired detection accuracy mAPreq was
considered to be 90%. The CRF value that satisfied the
desired detection accuracy of 90% in the H.265 CRF mode
was 10, as confirmed by a preliminary evaluation. Therefore,
the performance of the H.265 CRF mode was measured by
setting CRF to 10.

The novelty of the proposed algorithm lies in the fact that it
can be used to classify four states using mAPupper , mAPreq ,
and mAPlower and to dynamically control CRF according
to these states. Performance evaluation was conducted to
confirm the effectiveness of the dynamic control of CRF.
Therefore, to satisfy the desired mAPreq , the values that
corroborated well with the experimental results were used.
Specifically, mAPupper , mAPlower , α, β, and γ were set to
98, 88, 2, 2, and 10, respectively.

The dynamic CRF selection calculates CRFt+1 every 100
ms at a frame rate of 10 frames per second. This study
compared the success rates and bandwidth consumption,
and the success rate SuccessRatemAP can be formulated as
follows:

SuccessRatemAP =
SuccessFrame
TotalFrame

· 100, (2)

Fig. 4 Total bandwidth consumption.

Fig. 5 Success rate.

where SuccessFrame is the number of frames satisfying
the desired detection accuracy mAPreq during the simula-
tion and TotalFrame is the total number of frames sent by
surveillance during the simulation.

The proposed method is considered to be effective if
the SuccessRatemAP of the proposed method is equal to
or greater than the SuccessRatemAP of the conventional
method, and if the bandwidth consumption of the proposed
method is less than or equal to that of the conventional
method. For the simulation evaluation, mAPreq was set to
0.9, and the percentage of frames satisfying the condition
mAPt is equal to or greater than mAPreq was calculated.

4.2 Simulation results
The total bandwidth consumption and success rate are pre-
sented in Figs. 4 and 5, respectively. The total bandwidth
consumption of our proposed method was computed as the
sum of the bandwidths of GT and the streaming video. As
the H.265 CRF mode does not send GT information, we set
GT to zero in the H.265 CRF mode.

As shown in Fig. 4, the total bandwidth consumption of
the proposed method is 49% of that of the H.265 CRF mode.
Although the proposed method has an extra overhead for GT
transmission of slightly 415 kbps, the overhead enables the
proposed method to constantly monitor the object-detection
accuracy and dynamically select the optimal CRF. Conse-
quently, the proposed method can reduce the total bandwidth
consumption.

As shown in Fig. 5, the success rate of the proposed
method is approximately equal to that of the H.265 CRF
mode. Therefore, the proposed method achieves the same
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object-detection accuracy as the H.265 CRF mode while
reducing the total bandwidth consumption to 49% of that of
the H.265 CRF mode.

5. Conclusion

This study proposed a dynamic CRF control method based
on the current mAP to reduce the total bandwidth consump-
tion and achieve the same object-detection accuracy as the
H.265 CRF mode. The simulation results reveal that the to-
tal bandwidth consumption of our proposed method is 49%
of that of the H.265 CRF mode while achieving the same
success rates as the H.265 CRF mode. Therefore, the pro-
posed method enables the setting of a CRF that satisfies the
desired detection accuracy and adapts to the characteristics
of object-detection engines. We will work on the optimiza-
tion method of the threshold used in the proposed method
as a future study.
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