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Link delay estimation under undeterministic routing using neural network

Yuta Ushizuka1 and Ryoichi Kawahara1, a)

Abstract Network virtualization allows the provision of various network
services and enables flexible control by dynamically changing the path ac-
cording to the service etc. While conventional network tomography uses
path information to estimate the internal network status, such as each link
delay, dynamic path changes make it difficult to determine the path that
a packet will take. For networks with undeterministic routing, this study
proposes a method for estimating the status of each link using a neural
network that does not require path information as an input. Instead, it es-
timates the status of each link using only end-to-end measurements. The
neural network is trained using various patterns of individual link statuses
as teaching signals on a simulated network where the path changes dynam-
ically. We evaluated the effectiveness of our method through simulations.
The results show that the proposed method can identify degraded links with
a true positive rate of 98% and false positive rate of 8%.
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1. Introduction

Virtual network technologies such as network functions vir-
tualization (NFV) and software-defined networking (SDN)
have attracted significant attention. Network virtualization
allows the provision of various network services and enables
flexible control by dynamically changing the path according
to the service etc.

Network providers must correctly understand the internal
status of a network to manage dynamically changing traffic
and maintain the quality of service (QoS). However, the
factors affecting the QoS may be complex because of the
diversity in services [1]. Therefore, estimating and control-
ling the internal status of a network are significant technical
challenges. Network tomography can be used to estimate the
internal status of a network based on end-to-end measure-
ments [2]. Most network tomography techniques combine
end-to-end measurements with path information, which de-
scribes the links/network components through which end-
to-end measurements pass (e.g., [3, 4, 5]).

However, in virtual networks, such as those using SDN,
the path varies according to the service and traffic condi-
tions; hence, flows can take different routes, even if the
origin–destination node pairs are the same. It is difficult or
costly to identify the path through which each flow passes
by using a routing table etc. Therefore, it is difficult to apply
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conventional network tomography techniques that require
path information to networks with undeterministic routing,
such as virtual networks.

This study presents a network tomography technique that
can be used to estimate the internal status of a network with-
out path information. Instead, the proposed method uses a
neural network to estimate the status of each link, such as link
delay from end-to-end measurements, by simulating various
patterns of individual link statuses on a simulated network
in which the path changes dynamically. The neural network
was trained using data consisting of multiple patterns of
individual link statuses and corresponding end-to-end mea-
surement data on the simulated network. In other words,
our method uses the simulated link statuses as teaching sig-
nals. It was tested by inputting end-to-end measurements
and estimating the status of each link. This method does
not require path information; therefore, it can be applied to
virtual networks in which the path changes dynamically.

In a related work, Tagyo et al. [6] proposed network to-
mography for undeterministic routing that uses the estimated
path information by defining the routing probability based on
the measured number of flows recorded at each link. In con-
trast, our method does not require any path information as
an input when estimating the internal network status. Ma et
al. [7] proposed neural-network-based tomography. In con-
trast to our goal, their objective was to infer end-to-end path
performance metrics for all unmeasured node pairs when
the measured end-to-end path performance metrics are for a
subset S of T where T is the complete node pair set.

2. Proposed Method

2.1 Prerequisites
There are several perquisites for the proposed method. First,
a simulated network is prepared to simulate the behavior of
each link in the network to be estimated, such as link delay.
We simulate various patterns of individual link statuses in
a simulated network to collect end-to-end measurements
resulting from undeterministic routing. (The procedure is
explained in detail in the following subsection.) That is,
as training data, we collect multiple patterns of individual
link statuses as teaching signals and the resulting end-to-end
measurements (end-to-end delays) as the input signals for a
neural network. Subsequently, the neural network is trained
using the training data.

Next, end-to-end measurements are collected from the
target network for analysis, and the status of each link is
estimated using the trained neural network. The proposed
method is intended for use by network administrators who
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Fig. 1 Schematic diagram of the proposed neural network

need to estimate the internal status of a network; however,
owing to its versatility, it may be used by other parties, such
as application service providers, who have relatively limited
access to network information.

2.2 Proposed neural network
The proposed neural network is illustrated in Fig. 1. It is an
all-coupled model, where the input layer has dimension m;
there are two hidden layers of dimension s where s ≈ m×1.3
and the activation function is assumed to be sigmoid; and
the output layer has dimension n. The input vector consists
of the end-to-end measurement of each source-destination
node pair, and the output vector consists of each link delay.
In this study, we set the number of epochs to 3000 and the
batch size to 4 during training. Pair i from source node o to
destination node d is labeled odi . The number of node pairs
that perform end-to-end measurements m is the number of
node pairs in the network, excluding adjacent node pairs n
where n is the number of links. Therefore, if the number of
nodes is Nn, m = NnC2 − n. We assume that the network is
treated as an undirected graph.

In our method, multipath routing is assumed because we
wish to consider a virtual network with undeterministic
routing in which the path changes dynamically and flexi-
bly. Specifically, we assume that the probability of passing
through the shortest path (in terms of the hop count) in odi
is p1,i . Similarly, the probability of passing through the
second-shortest path is p2,i , where p1,i + p2,i = 1. Let t1,i
and t2,i denote the end-to-end measurement values obtained
for the shortest and second-shortest paths, respectively. Sub-
sequently, the expected value of the end-to-end measurement
ei for odi is expressed as

ei = t1,i × p1,i + t2,i × p2,i . (1)

In this study, we estimated link delay. Let xj denote the
delay in link j. The end-to-end measurement on the shortest
path t1,i of odi is the sum of the delays of all the links on the
path and is expressed as

t1,i =
∑
j∈S1,i

xj, (2)

where S1,i denotes the set of links along the shortest path of
odi . Moreover, t2,i can be defined similarly.

The input vector for the neural network is defined as
E = [e1, e2, . . . , em]T . The output vector is defined as
L = [x1, x2, . . . , xn]T . The neural network is trained us-
ing end-to-end measurements and the status of each link.
Specifically, the status of each link xj is given and the end-
to-end measurements are calculated using Eqs. (1) and (2),

respectively. The model is trained sufficiently to predict the
status of each link from the given end-to-end measurements
during the testing phase.

3. Simulation experiment

The network topology used in this study was created using
Python and was based on the topology in [8], as shown in
Fig. 2. In the experiment, random numbers were used as the
status of each link, that is, link delay.

Fig. 2 Topology of the target network

3.1 Experimental setup
The experimental data consisted of end-to-end measure-
ments and link status data. The procedure used to generate
the data is as follows:

Assign a value to each link as its status: First, a delay
value is assigned to each link. The delay value was randomly
generated with an exponential distribution of the average
value of 10 ms and rounded to two decimal places.

End-to-end measurement: Once the status of each link
was assigned, end-to-end measurements were calculated us-
ing Eqs. (1) and (2), respectively. First, routes with the
shortest and second-shortest paths (in terms of the hop count)
were selected. If multiple routes have the same number of
hops, the node with the smallest number is used to deter-
mine the shortest path. We set p1,i = 2/3 and p2,i = 1/3 in
Eq. (1).

The number of node pairs that perform the end-to-end
measurements m is given by m = 9C2 − 13 = 23. The
dimension s of the middle layer of the neural network was
set to be 30 for both the layers.

Generating multiple patterns of data: The set of data
containing the status of each link and the end-to-end mea-
surements generated by the above procedure was considered
as one pattern, and 1100 patterns were prepared. Of the 1100
patterns, 900 were used as training data, 100 as evaluation
data, and 100 as test data.

During the training phase, the status of each link was
used as the teaching signal, and the neural network was
trained to estimate the status of each link from end-to-end
measurements. During the test phase, we evaluated the
ability of the neural network to estimate the status of each
link using unknown end-to-end measurements.

3.2 Experimental items
Two experiments were conducted. These results are pre-
sented in the following subsections.
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Fig. 3 Estimation accuracy for Exp. 1

Table I Exp. 1: MAE (in ms) of the estimated and true values

Mean Median Max. Min.
MAE 1.44 1.24 6.22 0.56

Exp. 1: Delay estimation: The delay is estimated, and
the accuracy of the estimation is evaluated.

Exp. 2: Degraded-link identification: The degraded
links are identified experimentally. The test data consisted
of end-to-end measurement data including a link delay of
100 ms for one of the 13 links, representing a performance-
degraded link. Ten patterns were prepared for each link,
which resulted in 130 sets of test datasets. The trained
model was the same as that used for the delay estimation. In
other words, no degraded links were included in the training
dataset. A threshold was defined, and if the estimation result
of a link was equal to or larger than the threshold, the link was
considered degraded. The results are evaluated to determine
whether the location of the degraded link can be identified.

3.3 Evaluation Results
3.3.1 Exp. 1: Delay estimation
Using 100 test data patterns, we evaluated the mean absolute
error (MAE) of the estimated and true values of 13 links for
each pattern. The estimation results of the test data are
shown in Fig. 3, where the y-axis represents the MAE and
the x-axis represents the index of the test data. The mean,
median, maximum, and minimum values of the MAE for
100 patterns of the test data are listed in Table I. Figure 4
shows the scatter plots of the test data when the MAE was
approximately equal to the median value (upper graph) and
when it was at its maximum value (lower graph).

At the maximum MAE, the standard deviation of the delay
on each link in the test data was 22.86 ms. In contrast, at the
minimum MAE, the standard deviation of the delay on each
link was 3.51 ms. This indicates that the accuracy decreased
when there was a variation among the links. However, from
Fig. 3 and the fact that the average MAE was 1.44 ms com-
pared to the average link delay of 10 ms, we can conclude
that the proposed method can be used to estimate the delay.
3.3.2 Exp. 2: Degraded link identification
We conducted an experiment to identify the degraded links.
A threshold was defined, and links were considered degraded
if the estimated delay of the link was greater than or equal
to the threshold. The average of the estimated results for
the 13 links was used as the initial threshold value. We then
evaluated the accuracy of the degraded link identification
when the threshold was increased by average × 0.1 from

Fig. 4 Scatterplot in Exp. 1: upper: median, lower: max

Fig. 5 ROC curve when identifying degraded links

average × 1.0 to average × 4.0. If the estimated value of a
link was greater than or equal to the threshold, and the true
value of the link was less than 100 ms, it was considered a
false positive. If the estimated value was below the threshold
and the true value was greater than or equal to 100 ms, it
was considered a false negative. If the estimated value was
greater than or equal to the threshold, and the true value
was greater than or equal to 100 ms, it was considered a
true positive. Finally, if the estimated value was below the
threshold and the true value was less than 100 ms, it was
considered a true negative. The false positive rate and true
positive rates (FPR and TPR, respectively) were calculated.
The receiver operating characteristic (ROC) curve was then
plotted for thresholds up to average×4.0, as shown in Fig. 5
(where coordinates (1,1) and the graph are connected). The
x- and y-axes indicate FPR and TPR, respectively.

When the threshold was average × 1.0, the FPR and
TPR were 0.263 and 1.0, respectively. When the threshold
was average×3.0, the FPR and TPR were 0.079 and 0.980,
respectively. The area under the curve (AUC) was calculated
as 0.97. Therefore, we conclude that the proposed method
can successfully identify degraded links.

4. Conclusion

It is difficult to estimate the internal status of a network using
conventional network tomography because it is difficult to
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determine the path information of end-to-end measurements
in a virtual network environment. Therefore, we used a
neural network to address this problem, and the proposed
network tomography method estimated the status of each
link from end-to-end measurements without knowing the
path information. This was achieved by collecting end-
to-end measurements and the status of each link using a
simulation, and using these data to train the model. We
evaluated whether the status of each link could be estimated
from the end-to-end measurements at the time of estimation.
The results show that the proposed method is an effective
means of estimating each link delay and identifying degraded
links.
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