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Response time of cloud-based facial recognition system utilizing homomor-
phic encryption
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Abstract We are developing a system that augments user accessibility by
integrating various facial recognition engines across multiple enterprises,
thereby facilitating the widespread adoption of facial recognition technol-
ogy within societal structures. In this system, homomorphic encryption
is employed to mitigate the risk of data leakage during facial recognition.
However, the use of homomorphic encryption in facial recognition signif-
icantly increases latency, making it challenging to meet practical response
time requirements. We experimentally evaluated the impact of adopting
homomorphic encryption on the response time. The evaluation revealed
that the number of registrants per facial recognition engine should be “<
120”. Additionally, we evaluated a clustering strategy for reducing the
response time to the level of practical application.
Keywords: homomorphic encryption, facial recognition, secure computa-
tion, cloud, clustering
Classification: Network system

1. Introduction

In recent years, facial recognition technology has been intro-
duced in various aspects of daily life. However, because var-
ious facial recognition techniques exist, facial recognition
engines are often developed differently by individual ven-
dors [1]. As a result, user registration is required for each
service, which reduces the degree of usability. For facial
recognition technology to be further incorporated into soci-
ety as a fundamental infrastructure, individual facial recog-
nition engines should not be isolated; rather, they should be
interconnected to enhance user convenience.

To address this issue, we implemented a Facial Recogni-
tion Integration Platform (FRIP) [2] that facilitates a cross-
functional use of the previously separated facial recognition
engines. Users can utilize various facial recognition en-
gines for cross-functional purposes such as office access,
residential entry, amusement-park admission, and payment
transactions, which significantly enhances usability.

However, the problem of information leakage is inherent
in this type of system, which necessitates data linkage with
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other facial recognition engines. In this system, facial fea-
tures extracted from facial images are stored on the servers
of cloud service providers. As the data are transmitted via
the internet, they may be vulnerable to unauthorized access
by third parties. If facial features are leaked, reconstructing
the original facial image from facial features is technically
feasible [3]. Furthermore, several studies state that imper-
sonation attacks utilizing the reconstructed facial images are
plausible [4, 5].

Homomorphic encryption [6], which is among the secure
computation technologies for cloud-based operations, has
been used to reduce the risk of data leakage. Employing ho-
momorphic encryption, the authentication completes with-
out decryption. The risk of plaintext facial features being
leaked is minimized, eliminating concerns over personal-
information exposure to cloud service providers, the owners
of facial recognition engines, or third parties. Related works
such as that of Drozdowski et al. [7] presented an architecture
for using homomorphic encryption in facial recognition.

However, homomorphic encryption has its own set of
complexities. The latency for facial recognition employing
homomorphic encryption significantly exceeds that in the
case of plaintext usage [8, 9]. Consequently, fulfilling the
required response time for practical use may be challeng-
ing [10, 11].

In this study, to address these issues, we propose the im-
plementation of homomorphic encryption for a real service
based on the FRIP. We quantitatively measured the im-
pact of employing homomorphic encryption in our system
on the response time. The response time can be evaluated
for actual business usage by evaluating the response time
using real services. Additionally, we evaluated the cluster-
ing method to reduce the response time, and found that the
cluster size necessary to achieve the response time required
for societal implementation was 120.

2. Structure and functions of FRIP

In this section, we describe the structural design and the
functions of the FRIP. This system can associate a facial
image with an array of facial recognition engines. Users no
longer need to repetitively register their facial images with
multiple facial recognition engines.

A schematic of this configuration is presented in Fig. 1.
The architecture comprises multiple facial recognition en-
gines, an API linkage server that bridges the FRIP and the fa-
cial recognition engines, and a storage server that safeguards
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Fig. 1 Structure of FRIP

authentication information. The FRIP is implemented in a
cloud-native environment, considering scalability. It has the
following four principal functions.
I. Registration of authentication information

The user registers facial images and attribute informa-
tion, such as age and gender, from a smartphone and
stores it on the storage server. This eliminates the need
for users to register multiple times with different facial
recognition engines.

II. Data linkage with other authentication servers
When the user opts in from the smartphone screen,
the authentication information registered in the storage
server is sent to each facial recognition engine through
the API linking server. In addition, information such as
authentication logs and backup data can be exchanged
and stored in the storage server.

III. Facial features generation for multiple engines
Facial images provided by the user are converted into
facial features in a format that can be analyzed by vari-
ous facial recognition engines. Thus, the FRIP supports
a wide variety of facial recognition engines.

IV. Homomorphic encryption
Facial features generated in the previous phase are
subjected to homomorphic encryption using the
CKKS [12] method. The encrypted data are subse-
quently employed in the authentication procedure. We
explain this in detail in Section 3.

Next, we explain the key management methodology for
homomorphic encryption. Key management is crucial for
preventing information leakage. In this system, we utilized
a hardware security module (HSM) and implemented a pro-
cess of retaining keys for the minimal necessary duration,
followed by their immediate destruction [13].

The HSM is secure computer hardware that amalgamates
physical and logical protection functions and is adept at exe-
cuting key generation, management, and storage [14]. Upon
request, the management of decryption keys and data de-
cryption can be executed within the HSM. This strategy
precludes unnecessary private key information from persist-
ing on the authentication server and minimizes the risk of
information leakage due to key leakage.

3. Evaluation of response time

The latency for facial recognition employing homomorphic

Fig. 2 Authentication process using homomorphic encryption

encryption significantly exceeds that in the case of plaintext
facial features used. The response time is one of the crucial
factors for FRIP to provide practical service. Therefore, we
conducted an evaluation to minimize the response time of
authentication server sets in Fig. 1, assuming implementa-
tion in FRIP.

The detailed authentication procedure utilizing homomor-
phic encryption is presented in Fig. 2.

The components of the system are a facial recognition en-
gine, an edge server, and an authentication server. The au-
thentication server retains pre-registered user facial images
as facial features encrypted via homomorphic encryption.
The plaintext facial features utilized during registration are
deleted after the completion of the registration procedure.

In the authentication process, the facial image captured
by the authentication device is initially transmitted to the
edge server as input data. The edge server transforms these
data into facial features, which are sent to the authentication
server. The authentication server then applies homomorphic
encryption to the received facial features. Subsequently, cal-
culations are performed on a round-robin basis across all the
encrypted facial features registered within the authentication
server. This process is executed without the decryption of fa-
cial features. The comparison is executed by calculating the
Euclidean distance employed to quantitatively evaluate the
similarity of the facial feature vectors. The authentication
process retrieves the user data with the shortest Euclidean
distance. If the Euclidean distance is within a certain thresh-
old, the authentication result is approved and relayed to the
facial recognition engine.

The Euclidean distance between two encrypted facial fea-
ture vectors m = (m1,m2, . . . ,mn), m′ = (m′

1,m
′
2, . . . ,m

′
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can be derived as follows [15]:
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3.1 Evaluation method
The experimental environment is presented in Table I.
The facial recognition engine established a connection
with the edge server via HTTPS to transmit facial im-
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Table I Experimental environment

Language Server Facial recognition engine
Edge/Auth. server Face detection library Facial features

Extraction library
Homomorphic encryption

Library Facial image dataset

Python Azure Standard F2s v2
(2 vcpu/4 Gib) MTCNN FaceNet

OpenCV TenSEAL LFW dataset

Table II Breakdown of response time (unit: s)

Number of Registrants 100 110 120 130 140
Homomorphic encryption of facial features 0.004 0.005 0.005 0.006 0.005
Derivation of Euclidean distance 1.612 1.741 1.962 2.055 2.320
Procurement of minimal Euclidean distance data 0.025 0.026 0.028 0.030 0.032
Others 1.103 1.109 1.100 1.099 1.123
RTT 2.744 2.881 3.095 3.190 3.480

ages. TenSEAL [16] was used for homomorphic encryp-
tion. TenSEAL is an open-source library designed to facili-
tate the use of homomorphic encryption. The facial images
were obtained from the Labeled Faces in the Wild (LFW)
dataset [17].

We measured the processing time for the following pro-
cedures and analyzed the effect of homomorphic encryption
on the latency of each procedure:

• Homomorphic encryption of facial features
• Derivation of Euclidean distance between homomor-

phic ciphertexts
• Procurement of minimal Euclidean distance data
• Others (Network communication delays, etc.)
The round-trip time (RTT) is defined as the time taken

to complete authentication after the face image captured by
the facial recognition engine is input. The benchmark for
the RTT was set as 3 s. This is based on a previous report
indicating that more than half of website users leave the
website if loading takes more than 3 s [18]. Despite the
distinction between facial recognition engines and websites,
we assume that user tolerance to latency exhibits similar
characteristics between them. If the authentication of facial
recognition exceeds 3 s, users may perceive inconvenience
and the degree of usability reduced.

To ensure the precision of the authentication in the experi-
mental environment, the verification across 500 registration
data was conducted in advance, We confirmed that there
were no false positive results, e.g., a user being authenti-
cated as the wrong registrant.

3.2 Evaluation result
As shown in Fig. 3, the RTT in facial recognition was ap-
proximately 1.13 s for a single user, 3.10 s for 120 users,
and 4.95 s for 250 users, increasing significantly with an
increase in the number of registrants. Presuming an im-
plementation standard of 3 s, the number of registrants in
each facial recognition engine must be constrained to 120
for practical implementation.

Subsequently, we assessed the time required for each pro-
cess. As shown in Fig. 3, the time required for deriving
the Euclidean distance between homomorphic ciphers was
proportional to the number of registrants, reaching 3 s for
approximately 190 registrants and 3.8 s for 250 registrants.
When the time required for procurement of minimal Eu-
clidean distance data was added to the Euclidean distance

Fig. 3 Experimental result overview

acquisition time, the total duration was 3.03 s for 190 regis-
trants and 3.86 s for 250, as shown in Fig. 3. These results
also increased in proportion to the number of registrants.

Table II presents the RTT of each process for 100–140
registrants. The time required to derive the Euclidean dis-
tance between homomorphic ciphertexts accounted for a
large proportion of the RTT. The RTT for the process
of performing homomorphic encryption on the target fa-
cial features remained constant regardless of the number of
registered users, thus having a minimal effect on the RTT.
Although the processing time for procurement of the min-
imal Euclidean distance data increased proportionally with
the number of registrants, it constituted only approximately
1% of the RTT for approximately 120 registrants; hence, it
also had a minimal effect on the RTT.

Factors significantly influencing the RTT of the Euclidean
distance acquisition process included the computational cost
of the distance acquisition process, which increases in pro-
portion to the number of registrants, and the substantial
increase in the data size of the facial features due to ho-
momorphic encryption [9]. The average size of plaintext
facial features was 4,160 bytes, whereas the average size of
homomorphic ciphertext was approximately 334,300 bytes.
Compared with plaintext, the data size of homomorphic
ciphertext was approximately 80 times larger, which signif-
icantly impacted the processing time for Euclidean distance
acquisition.

Finally, we consider measures for reducing the RTT. One
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approach is to restrict the targets of the Euclidean distance
calculation. The time required for Euclidean distance cal-
culation is directly proportional to the number of registrants
because calculations are performed on a round-robin basis
across all the data registered within the authentication server.
To limit the calculation targets while ensuring authentica-
tion accuracy, users can be grouped via methods such as
k-means clustering, and the Euclidean distance calculations
can be performed on a group-by-group basis, eliminating
unnecessary calculations.

Executing the Euclidean distance calculations in parallel
for multiple clusters is considered to be effective for reduc-
ing the RTT, although the computational load remains un-
changed. When this method is applied to the experimental
results above, the size of each cluster should be maintained
below 120, so that the RTT does not exceed the implementa-
tion standard. Assuming that the upper limit on the number
of registrants for the conventional facial recognition engine
in practical application is 500, five clusters are required:
(5 = ⌈500/120⌉). Each cluster executes the Euclidean dis-
tance acquisition process in parallel to reduce the RTT.

4. Conclusion

We evaluated the response time of facial recognition engines
in the FRIP when homomorphic encryption was applied in
the authentication process.

Under the current implementation, the response time ex-
ceeds the 3 s benchmark with a total of approximately 120
registrants. Therefore, the maximum cluster size should be
less than 120. An evaluation of the duration for each pro-
cess revealed that the computation of the Euclidean distance
between encrypted facial features accounted for a large pro-
portion of the response time. Furthermore, we examined
parallel processing with clustering to reduce the response
time. When the upper limit of registrants for facial recog-
nition engines in practical application is set as 500, five
clusters are required for parallel processing. According to
the evaluation, we obtained insight into the FRIP design
using homomorphic encryption that applies to practical ap-
plications.

In future research, we aim to investigate the operational
expenses, which increase proportionally with the number
of prepared clusters, along with more efficient clustering
methodologies, such as the k-means algorithm. From the
perspectives of response time and operating cost, we will
investigate the configuration and authentication process of a
FRIP using homomorphic encryption.
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