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LETTER

RSSI-based indoor localization using two-step XGBoost

Taisei Kosaka1, Steven Wandale1, and Koichi Ichige1, a)

Abstract In this letter, we propose a Received Signal Strength Indicator
(RSSI)-based indoor localization method using two-step extreme gradient
boosting (XGBoost). The proposed two-step XGBoost leverages one of
the location coordinates (x or y) as a feature to enhance the estimation
accuracy. Simulation examples confirm that the proposed two-step XG-
Boost approach could improve the estimation accuracy while maintaining
low computational complexity.
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1. Introduction

High precision location information is often needed in vari-
ous mobile applications such as interactive maps and social
networking services. To obtain this information, the Global
Positioning System (GPS) is commonly used on mobile de-
vices. However, GPS accuracy can be greatly reduced by
tall buildings and is often ineffective indoors.

The received signal strength indicator (RSSI) is com-
monly utilized for indoor localization as it can be imple-
mented with affordable hardware [1]. RSSI-based location
estimation methods come in two main approaches: database-
based and learning-based. Database-based methods utilize
RSSI and radio propagation models to estimate locations
and incorporate probabilistic and statistical concepts [2, 3].
Learning-based methods, on the other hand, use machine
learning (ML) to estimate locations via models such as re-
current neural networks (RNN) [4] or convolutional neural
networks (CNN) [5]. Though learning-based methods are
preferred for their high accuracy, they often require a signif-
icant computational load.

In this letter, we adopt extreme gradient boosting (XG-
Boost) [6] for RSSI-based indoor localization, enabling ac-
curate location estimation while maintaining a small com-
putational load. The XGBoost requires short evaluation
time and is easily implemented because it does not have to
compensate missing values. In our two-step XGBoost, the
(x, y)-coordinates are predicted separately in the first step.
Then, one of the coordinates is used as a feature in the second
step to improve the estimation accuracy. Simulation exam-
ples demonstrate that the proposed approach could improve
estimation accuracy and reduce computational complexity
due to the lightweight property of XGBoost.
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2. Basic principle of RSSI

The RSSI is a numerical value that expresses the strength of
a received signal, and it can be expressed as follows using
the lognormal shadowing model [7]:

RSSI(d) = Pt − PL(d0) − 10nlog
(

d
d0

)
− Xσ [dB], (1)

where d is the distance between an access point (AP) and a
receiver, Pt is the RSSI of the AP, d0 is the proximity refer-
ence distance, PL(d0) is the propagation loss at distance d0,
n is the propagation loss coefficient, and Xσ is a zero-mean
Gaussian distributed random variable with the standard de-
viation σ. The parameters d0, n, and σ represent the radio
propagation model and are determined by the ambient en-
vironment between the AP and receiver. The measurement
point can be calculated from the radio propagation model
and the measured RSSI, but its accuracy is significantly de-
graded in case of multipath propagation environment.

3. Proposed method

This section discusses the proposed two-step XGBoost ap-
proach for RSSI-based indoor localization. As mentioned
in Section 1, this approach offers two benefits: (i) it has
a significantly faster model evaluation time compared with
neural networks [9, 10], and (ii) it allows for missing values
to remain without requiring compensation. This is partic-
ularly useful as missing values are common and cannot be
prevented when measuring RSSI data.

Figure 1(a) shows a flow diagram of the proposed two-
step model, where f represents the data feature (RSSI value)
and (x, y) refers to the location coordinate. The two steps of
the proposed model are discussed as follows:
Step 1:
The x ′-coordinate and y′-coordinate are estimated using f
known from the measured values as input.
Step 2:
In this step, we incorporate one of the coordinates as an extra
feature value to enhance f as used in Step 1. Specifically, we
utilize the y-coordinates when estimating the x-coordinates
and the y-coordinates when estimating the y-coordinates.

The key contribution of the proposed method is that one
of the coordinates is used as a feature in the estimation. In
addition, the magnitude of RSSI is related to the distance
from the transmitter, even in a multipath environment. If
one of the coordinates is known, the estimated coordinates
only need to be in a one-dimensional direction, making the
estimation of only one direction more accessible than two
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directions such as (x, y). This means that the x-coordinate
can be estimated more accurately if the y-coordinate is used
as a feature, and vice versa. True values can be used as
feature coordinates in the training phase of Step 2, but they
are not available in the testing phase. Therefore, the esti-
mated coordinates (x ′, y′) from Step 1 serve as the feature
coordinates for test data.

The coordinates of test data in the proposed model, which
are inherently unknown data, can be incorporated as features
by estimating them in advance in Step 1. The flow diagram
of the standard one-step model for comparison is shown in
Fig. 1(b), where the variables used in this model are the
same as in Fig. 1(a).

4. Simulation

In this section, we assess the performance of the proposed
two-step XGBoost method through simulation experiments.

4.1 Parameter
We use a measured RSSI dataset [8] in this simulation. Ta-
ble I lists the parameters of the dataset. The number of
boostings in XGBoost was set to 10,000 and the learning
rate to 0.1. In addition, 20% of the training data was used as
validation data, and training was stopped early if the value
of the loss function for the validation data did not improve
during 100 boosting cycles. The other parameters were op-
timized by Optuna. The missing values in the dataset were
left as missing values because XGBoost can learn even if
there are missing values in the data.

The computer environment used in the simulation was
CPU: Intel(R) Core(TM) i5-7400 CPU at 3.00GHz, Mem-
ory: 16GB, OS: Windows 10, Software: Python 3.10.5 with
the XGBoost library of scikit-learn.

Fig. 1 Flow of proposed and standard models

Table I Parameter of dataset [8].

Number of APs 6
Number of RSSIs to obtain in one measurement 11
Number of training data 30,335
Number of measurement points (training data) 365
Number of test data 3,120
Number of measurement points (test data) 175

4.2 Evaluation methods
In this paper, three indices are used to evaluate the model:
mean error, root mean square error (RMSE), and cumulative
distribution function (CDF). The error is defined by the
distance between the true value and its estimation, defined
by the following equation:

Di =

√
(xgt − x)2 + (ygt − y)2, (2)

where Di is the error for the i-th piece of data, (xgt, ygt ) is the
true value, and (x, y) is the estimated value of the location.
The RMSE is defined as:

RMSE =

√√√
1
N

N∑
i=1

D2
i , (3)

where N denotes the number of data. The CDF is the prob-
ability that the random variable X is less than or equal to a
certain value x, and is expressed as,

F(x) = P(X ≤ x), (4)

where P denotes the probability.

4.3 Conventional methods
In this paper, we evaluate the performance of our model
by comparing it with four conventional methods, together
with the baseline (standard one-step XGBoost) model. The
first method is the long short-term memory (LSTM) [4].
This model comprises two hidden layers, each with 100
neurons. A dropout layer with a dropout rate of 0.2 follows
each hidden layer. The second is the multi-layer perceptron
(MLP) [9], featuring a single hidden layer with 500 neurons.
Also the multi-layer neural network (MLNN) [10], which
has three hidden layers with 200, 200, and 100 neurons,
respectively. The last one is the weighted k-nearest neighbors
(WKNN) [11], where the parameter K was experimentally
set to 10.

4.4 Numerical results
The results of the simulation for each model are shown in
Table II, which contains not only the (x, y) evaluation values,
but also the evaluation values for the x and y-coordinates.

The proposed model outperformed the standard model in
terms of mean error and RMSE across all x-coordinates, y-
coordinates, and (x, y) combinations. These results confirm
that including one coordinate as a feature while estimating
the other coordinate enhances the accuracy of the estimation.

The improvement rate for the x-coordinates was larger
than that for the y-coordinates, due to the fact that the y-
coordinates used to estimate the x-coordinates were more
reliable values in the test phase. The results of the compar-
ison model in Table II show that the estimation error was
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Table II Mean of error and RMSE.

Mean of error [m] RMSE [m]
LSTM [4] (x, y) 0.883 1.120
MLP [9] (x, y) 1.743 2.084
MLNN [10] (x, y) 1.561 1.953
WKNN [11] (x, y) 1.584 2.082

x 0.833 1.355
One-step model y 0.748 1.001

(x, y) 1.330 1.685
x 0.783 1.172

Proposed model y 0.783 0.949
(x, y) 1.233 1.508

Fig. 2 Comparison of CDF of different RSSI-based localization methods.

smaller for the y-coordinate than for the x-coordinate. In
other words, the y-coordinate was closer to the true value
(but unknown in the test phase) than the x-coordinate for
the coordinate used as the feature in Step 2 of the proposed
model. Therefore, in Step 2, the error in estimating the x-
coordinate became smaller since the y-coordinate was used
when estimating the x-coordinate. The estimation error of
the x-coordinate of the comparison model was not large.
Thus, in Step 2 of the proposed model, the x-coordinate
also became a reliable feature when the y-coordinate is esti-
mated, and therefore the estimation error of the y-coordinate
also became smaller.

Compared with the conventional methods [4, 9, 10, 11],
the estimation accuracy of the proposed method was better
than the methods in [9, 10, 11] but worse than the LSTM-
based method [4].

4.5 CDF results
Figure 2 shows the behavior of the CDF of the proposed
model and the other models. As is shown, the proposed
two-step model had a larger CDF than the standard one-step
model from 1m to 3.5m. Compared with the conventional
methods [4, 11], the LSTM-based method [4] had a smaller
error overall than the proposed model. This is consistent
with the numerical results in Table II. Also, as aforemen-
tioned, the proposed model has an advantage in terms of
computational cost. However, compared with the MLP [9],
MLNN [10] and WKNN [11], the proposed method has a
larger CDF while requiring a smaller computational cost.

4.6 Computational complexity
Table III compares the computational complexity of the dif-
ferent methods. We see that the proposed model required

Table III Computational complexity.

Evaluation Time [ms]
LSTM [4] 859.384
MLP [9] 9.471
MLNN [10] 11.535
WKNN [11] 15.425
One-step model 4.146
Proposed model 5.983

much less computation time than the conventional meth-
ods [4, 9, 10, 11]. The LSTM-based method [4] generates
random trajectories from the coordinates of measurement
data, as if targets were moving in a range that the targets
can move within a sample interval. This trajectory can
be regarded as time-series data. On the contrary, our pro-
posed model does not require such complex preprocessing,
which significantly contributes to reducing the implementa-
tion time in all phases.

5. Conclusion

In this paper, we proposed a two-step XGBoost model for
RSSI-based indoor localization. With two-step XGBoost,
one of the coordinates could be used for the features, which
contributed to the improvement of the estimation accuracy.
The estimation accuracy in Step 1 of the proposed model
significantly affects the estimation accuracy of the entire
model. Further improvement of the method remains a future
problems.
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