
IEICE Communications Express, Vol.12, No.11, 575–578

LETTER

Implementation and evaluation of NoisyNets to reinforcement
learning of automated ICT system design

Tianchen Zhou1, a), Yutaka Yakuwa2, b), Natsuki Okamura1, c), Takayuki Kuroda2, d), and Ikuko Eguchi Yairi1, e)

Abstract This paper proposes to apply the method with an additional
noisy layer to the structure of the graph neural network for reinforcement
learning in automated design technology for information and communica-
tion systems. The automated design technology has an elementary problem
of huge learning time caused by overestimating a specific configuration be-
cause of hardly ever rewards despite huge exploration space with a vast
combination of selections, arrangements, and connections. The paramet-
ric noise applied to the network is learned with gradient descent and the
remaining network weights to reduce this harmful overestimation during
learning and increase the design exploration efficiency. The evaluation
result showed that using the proposed algorithm for our automated design
technology in development could shorten 15% of the episodes needed for
learning to converge.
Keywords: network system design, design automation, machine learning,
reinforcement learning
Classification: Network management/operation

1. Introduction

Design of an ICT system providing certain network applica-
tion services in a wide area, which consists of selecting
appropriate equipment for various requirements, optimal
arrangements, and correct connections, needs specialized
knowledge and enormous human power. Recently, deep re-
inforcement learning (DRL) has provided a powerful design
framework for design in distinguished fields [1], such as drug
synthesis [2], energy systems [3] and semiconductor chip de-
sign [4]. Automating some parts of the ICT system design
process has been proposed by applying DRL [1]. Applica-
tion of reinforcement learning usually faces the challenge
of environments containing vast combinations but sparse re-
wards which leads to a problem of huge learning time [5].
Automated ICT system design technology using DRL faces
the same problem due to the sparse rewards despite a vast
combination of selections, arrangements, and connections
in the ICT system, which should be solved. The speed for
updates on ICT system products is fast [6]. Shortening the

1 Graduate School of Science and Technology, Sophia University,
7–1 Kioi-cho, Chiyoda-ku, Tokyo, 102–8554, Japan

2 NEC Corporation, 5–7–1 Shiba, Minato-ku, Tokyo, Japan
a) tianchensp@yairilab.net
b) y-yakuwa@nec.com
c) okamura@yairilab.net
d) kuroda@nec.com
e) i.e.yairi@sophia.ac.jp

DOI: 10.23919/comex.2023XBL0101
Received July 19, 2023
Accepted August 3, 2023
Publicized October 17, 2023
Copyedited November 1, 2023

learning time is crucial for ensuring that the automated de-
sign technology can keep up with the frequent updates on
the information of ICT system products which is necessary
for performing auto-design in industrial operations. The
problem should be solved by improving the efficiency of
learning algorithms that function quickly and flexibly for
obtaining more optimal design results beyond human ability
with automated ICT system design [7]. The cause of this
problem is that very few situations in search obtain rewards
from the vast combination of ICT system design and some
random reward obtained accidentally will likely be overes-
timated and cause a learning efficiency slowdown. As pro-
posed solutions for this problem, the application of Heuristic
Search [8] and Double DQN [7] have achieved a 20%-25%
increase in learning efficiency. The design of an ICT system
can be denoted by graphs with nodes as objects and edges
representing the relationships between adjacent nodes [9].
The automated ICT system design technology in this paper
uses Graph Neural Network (GNN) to calculate each state
value for the system layout represented by graphs. This pa-
per challenges to adapt NoisyNets, which was applied to the
typical neural network (NN) in the original article [10], to
the GNN of automated ICT system design technology.

2. Methodology

2.1 Weaver
Weaver is an exploration based automated ICT system de-
sign technology originated by NEC [8]. The overview of
Weaver’s architecture is shown in Fig. 1(i). The essen-
tial elements are a) system requirement (SR) as the input,
b) concrete system configuration (CSC) as the output, c)
search tree carrying reification from SR to CSC, d) reifica-
tion rules (RR) applied to the search tree, and e) DRL model
of search. SR are shown as directed graphs called topolo-
gies representing the components and their relationships as
nodes and directed edges, an example shown in Fig. 1(ii).
Parts with solid lines indicate the details or relationship
are defined as “concreted,” and features with dot lines in-
dicate they are “still abstract.” Figure 1(iii) is an example
of reification in that the abstract part representing “applica-
tion and database HTTP connection” is converted to “TCP
connection between each running VM.” Figure 1(iv) shows
an example of the search tree and applicable RR. Weaver
converts abstract parts in a topology (a) into more concrete
figuration (b)-(d) and (e) step by step based on the applied
RR (X)-(Z) from many different RRs. The search ends ei-

This work is licensed under a Creative Commons Attribution Non Commercial, No Derivatives 4.0 License.
Copyright © 2023 The Institute of Electronics, Information and Communication Engineers

575



IEICE Communications Express, Vol.12, No.11, 575–578

Fig. 1 (i) Overview of Weaver’s architecture. (ii) An example of system
requirement. (iii) An example of reification rules. (iv) An example of
search tree

ther when all abstract elements are embodied, or all patterns
are tried. In this designing process, the DRL model chooses
better topologies by estimating each topology’s state value
with GNN. Weaver has adopted graph nets [9] as the GNN
model and DQN as the base algorithm of DRL. This paper
proposes to apply NoisyNets for the GNN part of Weaver to
deal with the problem of overestimating the selected action
because it is hardly ever rewarded. Our previous paper used

DDQN as the base algorithm of DRL instead of DQN to
cope with the same problem.

2.2 NoisyNets
A typical DQN-based algorithm has the feature of choosing
the action with the maximum Q value when learning [11].
As explained in the introduction there is a problem that
DQN overestimates the selected action, and the possibility
increases as the state space increases [5]. One of the rep-
resentative methods to deal with these problems is known
as NoisyNets [10], which aims to stimulate exploration and
meanwhile suppress overestimation by injecting noise into
the NN. The NoisyNets redefined the NN as following
Eq. (1).

ynoise
def
= (µw + σw ⊙ εw)x + µb + σb ⊙ εb . (1)

Weight w and bias b of a typical NN are decomposed as µw ,
σw , µb , σb where µ and σ represent mean and variance of
a normal distribution. εw , εb are randomly sampled noise
parameter from a normal distribution and ⊙ is the notation
of tensor product. This method aims to mitigate the negative
effect of overestimation by injecting stochastic noise εw and
εb for the action selection. Noise injection as learnable
parameters with backpropagation performs similarly to the
self-annealing method [12]. w and b are approximated like
w ∼ N(µwσw), b ∼ N(µb,σb), and the µ, σ of a normal
distribution also can be treated as learnable parameters in
the NN. The learnable parameters’ initialization follows the
original paper of NoisyNets. Taking the size of input as p,
µw and µb are sampled from U

[
− 1√

p
, 1√

p

]
. σw and σb are

sampled as a constant σ0√
p

with a hyper-parameterσ0 (default
0.5).

2.3 Applying NoisyNets to GNN
NoisyNets was originally an idea to replace the Dense Layer
(fully connected layer) of NN used in the DQN algorithm
with the Noisy Layer. This paper addresses the problem
of GNN overestimating a specific RR in the design process
by adding a Noisy Layer to the last fully connected layer
of GNN. Our previous paper confirmed the high effect of
Double DQN introduced instead of DQN [7]. Combining
noisy GNN and Double DQN is anticipated to be more
effective in future endeavor. Figure 2 shows the image of
using noisy GNN to estimate the next possible transition of
topology. Topology s has attribute values N of nodes, E of
edges, and u of globals. The GNN with NoisyLayer conducts
a convolution for the feature and outputs an updated graph
of N ′, E ′, and u′ with noises. Weaver uses the V value,
which represents the value of the state alone instead of the Q
value [7]. V value is calculated with s as the previous state
and the updated values N ′ and E ′ for maximum V value
selection. Weaver uses this unique structure of NoisyGNN+
DQN algorithm to perform learning. In design AI research,
there is no other example of applying a Noisy Layer to GNN;
this method is a new approach.

3. Evaluation and result

The experiment compares the learning convergence speed of

576



IEICE Communications Express, Vol.12, No.11, 575–578

Fig. 2 The image of using noisy GNN to estimate the next possible tran-
sition of topology.

the original DQN and our proposed method of NoisyNets as
follows: (1) to have a try with the testing question after every
100 episodes of learning, (2) to record the number of search
steps for each try and compute the moving average across
ten consecutive tries, within a single trial comprising 80
tries which are equivalent to 8,000 episodes, (3) to calculate
the average of the moving average of 10 trials, and (4) to
evaluate the episodes number in each algorithm when the
number of search steps converges to around 50 based on the
property of the testing question [8].

Weaver is currently in the developmental stage, focusing
on evaluating learning efficiency, and does not yet provide a
quantitative assessment of other criteria, such as design qual-
ity. In this paper, average converged episode numbers are
used as the elementary evaluation metric for measuring the
time efficiency of the reinforcement learning algorithm [7].

Figure 3 shows the experimental results of the conver-
gence speed increased by about 15%. The results with
NoisyNets of different initial factor values (σ0) 0.1/0.5/1.0
are 6,400/6,300/6,500 episodes compared to 7,500 episodes
for the original DQN. Referring to Fig. 3(A), setting σ0 at a
higher value gives high initial values for σw and σb , which
leads to higher start values of search steps as expected. The
higher value stimulates the exploration at the early stage of
learning and leads to a faster convergence speed in later
episodes. Even though the three cases have quite different
start values, they converge at almost the same number of
episodes, and the difference between them is only about 100
episodes. These differences are a slight variation because
Weaver measures the search steps for the test question every
100 episodes. The convergence speed is at the top whenσ0 is
set to 0.5, and hereafter the result of σ0 = 0.5 is the primary
result for applying NoisyNets. Referring to Fig. 3(B) of only
the primary result and the original DQN, although the num-
ber of search steps for the NoisyNets is much higher than
the original DQN in early episodes, both lines first intersect
at about 300 search steps at almost the same time (around
2000 episodes). This shows that the Noisy DQN has a faster
convergence speed than the original DQN, which may also
be told by comparing the difference in curvature of both
lines. This observation is undoubtedly considered to be the
facilitation effect of perturbations from the NoisyNets. As
the circled part in Fig. 3(B), the original DQN encounters
stagnation at (1) 3,000-4,000 episodes and (2) 5,500-6,500
episodes because of the negative effect of overestimation. At
(1), a similar stagnation was observed in the NoisyNets but
considerably eased. The stagnation at (2) is entirely resolved
with the NoisyNets. These results prove that NoisyNets is

Fig. 3 (A) Results for NoisyNets. (B) Results comparing with original
DQN

Table I Statics of original DQN and Noisy DQN

effective in mitigating overestimation.
To further evaluate the significance of our proposed Noisy-

DQN compared to the original DQN, we perform a simple
2-sample t-test, which is considered to be a popular signif-
icance measure metric for reinforcement learning [13], on
the average convergence episodes of two. The statistics for
the t-test are provided in the following Table 1. The differ-
ence between original DQN and Noisy DQN is statistically
significant (t(18) = 3.24, p = 0.008) in a significance level
of α = 0.01.

4. Conclusion

This paper verified the effectiveness of introducing
NoisyNets to the GNN of the automated ICT system design
technology Weaver. The number of episodes for conver-
gence indicates a valid improvement in learning efficiency
by about 15%. NoisyNets successfully suppresses harmful
overestimation done by GNN before value prediction and ac-
tion selection by DQN. Our previous research used Double
DQN without NoisyNets on GNN, and this method worked
to decline overestimation too [7]. As expected, these two
methods can be easily combined with no conflict for further
improvement. A further task is in progress for applying or
integrating the remaining methods of Rainbow other than

577



IEICE Communications Express, Vol.12, No.11, 575–578

NoisyNets and Double DQN. In the future, we would like to
realize a full-force Rainbow agent [14] in Weaver and intend
to explore methods for measuring the quality of the output
design.

References

[1] H. Sun, H.V. Burton, and H. Huang, “Machine learning applications
for building structural design and performance assessment: State-of-
the-art review,” Journal of Building Engineering, vol. 33, Jan. 2021.
DOI: 10.1016/j.jobe.2020.101816

[2] M.H.S. Segler, M. Preuss, and M.P. Waller, “Planning chemical sys-
theses with deep neural networks and symbolic AI,” Nature, vol. 555,
pp. 604–610, March 2018. DOI: 10.1038/nature25978

[3] A.T.D. Perera, P.U. Wickramasinghe, V.M. Nik, and J.-L. Scartezzini,
“Introducing reinforcement learning to the energy system design
process,” Applied Energy, vol. 262, 114580, March 2020. DOI:
10.1016/j.apenergy.2020.114580

[4] A. Mirhoseini, A. Goldie, M. Yazgan, J. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, S. Bae, A. Nazi, J. Pak, A. Tong,
K. Srinivasa, W. Hang, E. Tuncer, A. Babu, Q.V. Le, J. Laudon, R.
Ho, R. Carpenter, and J. Dean, “Chip placement with deep reinforce-
ment learning,” arXiv preprint arXiv:2004.10746, April 2020. DOI:
10.48550/arXiv.2004.10746

[5] S. Thrun and A. Schwartz, “Issues in using function approximation
for reinforcement learning,” Proceedings of the 1993 Connectionist
Models Summer School, Dec. 1993.

[6] M. Nakamura, “Study on ICT system today and future for engineering
chain connection in manufacturing from product design to produc-
tion,” Journal of the Japan Society of Presice Engineering, vol. 81
no. 3, pp. 220–224, 2015. DOI: 10.2493/jjspe.81.220

[7] N. Okamura, Y. Yakuwa, T. Kuroda, and I.E. Yairi, “Applying double
DQN to reinforcement learning of automated designing ICT system,”
IEICE Commun. Express, 2022, vol. 11, no. 10, pp. 667–672, Oct.
2022. DOI: 10.1587/comex.2022XBL0100

[8] T. Kuroda, T. Kuwahara, T. Maruyama, K. Satoda, H. Shimonishi, T.
Osaki, and K. Matsuda, “Weaver: a novel configuration designer for
IT/NW services in heterogeneous environments,” 2019 IEEE Global
Communications Conference (GLOBECOM), Waikoloa, HI, USA,
pp. 1–6, Dec. 2019. DOI: 10.1109/globecom38437.2019.9014133

[9] P.W. Battaglia, J.B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V.
Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R.
Faulkner, C. Gulcehre, F. Song, A. Ballard, J. Gilmer, G. Dahl, A.
Vaswani, K. Allen, C. Nash, V. Langston, C. Dyer, N. Heess, D.
Wierstra, P. Kohli, M. Botvinick, O. Vinyals, Y. Li, and R. Pascanu,
“Relational inductive biases, deep learning, and graph net-works,”
arXiv preprint arXiv:1806.01261, 2018. DOI: 10.48550/arXiv.
1806.01261

[10] M. Fortunato, M.G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V.
Mnih, R. Munos, D. Hassabis, O. Pietquin, C. Blundell, and S. Legg,
“Noisy networks for exploration,” arXiv preprint arXiv:1706.10295,
2017. DOI: 10.48550/arXiv.1706.10295

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A.A. Rusu, J. Veness, M.G.
Bellemare, A. Graves, M. Riedmiller, A.K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.
DOI: 10.1038/nature14236

[12] J. Branke, S. Meisel, and C. Schmidt, “Simulated annealing in the
presence of noise,” J. Heuristics, vol. 14, pp. 627–654, 2008. DOI:
10.1007/s10732-007-9058-7

[13] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup,
and D. Meger, “Deep reinforcement learning that matters,” Proc.
32nd AAAI Conf. Artif. Intell., pp. 3207–3214, 2018. DOI:
10.1609/aaai.v32i1.11694

[14] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W.
Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow: Com-
bining improvements in deep reinforcement learning,” Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.
DOI: 10.1609/aaai.v32i1.11796

578


