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Abstract—Conflict-free Replicated Data Types (CRDTs)
are a very popular class of distributed data structures
that strike a compromise between strong and eventual
consistency. Ensuring the protection of data stored within
a CRDT, however, cannot be done trivially using standard
encryption techniques, as secure CRDT protocols would
require replica-side computation. This paper proposes an
approach to lift general-purpose implementations of CRDTs
to secure variants using secure multiparty computation
(MPC). Each replica within the system is realized by a group
of MPC parties that compute its functionality. Our results
include: i) an extension of current formal models used for
reasoning over the security of CRDT solutions to the MPC
setting; ii) a MPC language and type system to enable the
construction of secure versions of CRDTs and; iii) a proof
of security that relates the security of CRDT constructions
designed under said semantics to the underlying MPC
library. We provide an open-source system implementation
with an extensive evaluation, which compares different
designs with their baseline throughput and latency.

Index Terms—cloud security, cryptography, distributed
systems security, language-based security, security protocols

I. INTRODUCTION

Large-scale distributed software is ever more a reality.

One popular class of distributed applications are repli-
cated stores [19], in which a number of computers – or

replicas – maintain multiple copies of shared data and

exchange updates regularly to stay synchronized, while

clients can fetch data from any replica. For example, large-

scale Internet services may use geographically distributed

replicas, or online applications may combine cloud and

local replicas to support usage during offline periods.

Nonetheless, designing replicated stores requires bal-

ancing consistency and availability. They can provide

strong consistency, behaving as if a centralized entity is

handling all operations. However, this usually requires

synchronization among replicas, and can decrease avail-

ability in large-scale geo-replicated systems, due to high-

latency networks or network outages. For this reason,
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within project THEIA - POCI-01-0247-FEDER-047264, and project
LA/P/0063/2020.

many stores often provide weaker eventual consistency
guarantees, where replicas eventually reach the same

shared state if clients stop submitting updates.

Conflict-free Replicated Data Types (CRDTs) [39]

are a very popular class of distributed data structures

that strike a compromise between strong and eventual

consistency known as strong eventual consistency, i.e.,

replicas that have received the same updates have the

same state, automatically merging conflicting updates

without synchronization. CRDTs present a sequential-

style interface: a standard object (counter, set, etc) with

operations to query and update its state; the CRDT then

encapsulates operations for propagating effects between

replicas that are hidden from the application logic. CRDTs

have a wide range of applications due to their low latency

and high scalability. They are used in distributed NoSQL

databases like Redis and Azure Cosmos DB, as well as

in collaborative text editing or messaging applications,

and financial services like PayPal [22].

Similar to other systems for distributed storage and

processing, CRDTs raise important security concerns, as

remarked by their authors [35]. One is that a malicious

replica may interfere with the other replicas to undermine

global convergence or consistency, what can be mitigated

with standard authentication techniques [21]. Another

challenge, further accentuated with the decentralized

and geodistributed nature of cloud-based deployments,

is related to the privacy of the data stored within the

CRDT. This cannot be done trivially using standard

encryption techniques, as secure CRDT protocols would

require replica-side computation – on encrypted data –

to propagate operations. The work from [8] pioneers

a security model for CRDTs, and defines a few tailor-

made examples of secure CRDT constructions. Each

construction must be carefully designed to use dedicated

cryptographic techniques, so that the CRDT computations

between replicas can be performed over encrypted data.

On the other hand, much of the CRDT literature [3,

26, 39] is focused on the design of new CRDTs with

tailored consistency restoration behaviors, to suit varied

application requirements. For instance, even for the
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simple CRDT whose shared object is a boolean flag

with enable/disable updates, there are already several

possible behaviors for handling concurrent updates, such

as enable-wins, disable-wins or last-writer-wins [26].

Ideally, we would like to be able to directly transpose

each such CRDT implementation to its secure variant.

This is not possible with the approach from [8], as

there is limited expressiveness for computations over

encrypted data and the CRDT semantics would need

to be manually customized. Moreover, there is usually

a security tradeoff, which is also fixed and hard to

customize in the constructions from [8], between the

data that is kept secure and the data that is revealed to

allow non-encrypted computation.

The approach advocated in this paper is to show that

it is possible to lift general-purpose implementations

of CRDTs to secure variants using secure multiparty
computation (MPC) [9]. MPC denotes a collection

of cryptographic protocols that enable a number of

untrusting parties to compute a function on joint input

without disclosing their secure data. Recent advances [20]

have prompted a plethora of MPC languages inviting

programmers to write sequential-style ideal functionalities

that are automatically translated to distributed MPC

protocols over partitioned secret data. This possibility

had been considered in [8], but promptly discarded:

Intuitively, privacy-preserving CRDT opera-

tions could be realised through [...] general

MPC. However, such solutions would [...]

require sharing secret data between multiple

nodes, which goes against the purpose of

CRDTs in the first place.

Indeed, combining CRDTs and MPC is antagonistic if

we map each CRDT replica to a MPC party. This paper

reconciles these concepts by proposing an orthogonal

approach: to consider that each CRDT replica is realized

by a group of MPC parties that compute its functionality.

We first present an overview of our approach in Sec-

tion II. Section III reviews CRDT concepts, specification

and implementation. Section IV revisits the security

model for abstract CRDTs. Section V introduces our

MPC framework for concrete secure CRDTs and provides

a formal security proof. Our contributions are as follows:

• An extension of current CRDT security formal

models to the MPC setting and semantics.

• A high-level MPC language and type system to

enable the construction of secure versions of CRDTs.

• A proof that relates the security of CRDT con-

structions designed under said semantics to the

underlying MPC library used.

We provide an open-source reference implementation

— in Haskell — of a sample set of secure CRDT

constructions and of a client interface that closely follows

MPC This paper CRDTs
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Fig. 1. Overview of our approach. Legend: client; � MPC party;
© CRDT replica; − specification; − adversary control; plain secret
value; encrypted secret share; replica state; history of events.

our formal specification. This allows animating CRDT

execution in the ideal and in the real world, but has no

MPC support. We also provide an open-source system

implementation — in Java — of our secure CRDT

constructions, with MPC support. This is accompanied

by an extensive evaluation, which compares different

designs with their baseline throughput and latency. Both

our implementations and detailed instructions on how to

replicate our benchmarks are publicly available in [32].

A full version of this paper can be found in [33].

II. TECHNICAL OVERVIEW

This paper (Figure 1) advocates the use of MPC to

allow CRDT replicas to perform general-purpose privacy-

preserving computation over encrypted data. In MPC

(left column), a client interacts with a set of parties that

embody different trust domains and store partitions of

a secret, to collaboratively execute a privacy-preserving

protocol. In CRDTs (right column), a number of clients

may interact with any out of a set of replicas that

synchronize among them to increase the availability of

a distributed store. In our proposed approach (middle

column), each CRDT replica is composed by a set of

MPC parties. The intuition is that the CRDT client

interface remains the same, while the store is distributed

across two orthogonal axes: replicas duplicate the store

and ensure eventual consistency, and parties split each

replica’s data across trust domains to ensure data privacy.
Applications: One natural instantiation of our ap-

proach is a secure cloud service at scale, where replicas

are geo-distributed, with parties running in separate cloud

providers at the replica’s location. E.g., each replica can

be emulated by parties of different cloud providers, such

that no single cloud provider controls a threshold of

parties that allows recovering the secretly-stored data.

This, assuming non-collusion of cloud providers over the

given threshold, ensures privacy of stored data. Another

concrete use case are secret vaults [40] shared among

groups of users. They may use secure CRDTs formed

2
522



by coalitions of users behaving in standard MPC fashion:

simultaneously playing the role of an MPC participant

(party in a replica) and the role of a client of the service.

This enables a decentralized global secret vault within

the company, even in the presence of adversarial users.

More generally, our approach can be seen as a path

to scale existing MPC use cases, typically deployed in

a restricted setting and where trust domains are already

well-established; examples include confidential databases,

satellite-collision prevention, tax fraud detection and

cross-market or societal studies [5]. Our approach can also

be seen as a way to bring security to existing CRDT use

cases [24], but doing so requires a sensible partitioning

into trust domains. In many CRDT applications, users

run local replicas that synchronize user data such as

favorites or friend lists with decentralized application

servers; server-side replicas could be partitioned across

different infrastructures to ensure secure data processing.

In our approach, the mapping between MPC parties

and CRDT replicas is statically fixed. Some efforts

towards scaling MPC for large numbers of parties such

as the secure polling application from [7] consider

secure computation among dynamic groups of parties

and data replication through the use of n-out-of-m secret-

sharing schemes. Exploring a more general setting where

MPC parties can be dynamically selected to enable the

different CRDT replicas is interesting future work, but

falls outside the scope of the formal model developed in

this paper. Indeed, this would be useful to strengthen the

aforementioned secret vaults use case, allowing for users

to be dynamically added/removed from the coalitions.

Security model: Both for MPC and CRDTs, formal

proofs are defined by relating idealized specifications to

real implementations, respectively the top and bottom

rows of Figure 1. Standard security results for MPC (left)

entail that, against some threshold of adversary-controlled

parties, protocols over secret shares behave like idealized

functionalities that process the secret data in a black-box

manner. Standard correctness results for CRDTs (right)

entail that replicas behave like abstract specifications that

know the global history of events.

Observe that replicas are virtual entities, composed

of sets of MPC parties. For simplicity, we establish that

they communicate directly with each other, or rather,

designated parties of different replicas communicate

directly with each other. We assume standard point-to-

point secure authenticated channels between MPC parties,

which can be instantiated with standard TLS-secured

channels. This will ensure that adversaries cannot trivially

break data privacy by eavesdropping in-transit shares.

This paper gives a proof that, against arbitrary thresholds

of adversary-controlled parties per replica, security of

our approach can be demonstrated upon standard results.

Deployment: Although the main contribution of this

paper is a formal model for MPC-based secure CRDTs,

it also makes some preliminary steps towards a language-

based framework for the design and execution of MPC-

based secure CRDTs. In particular, we exemplify how

our abstract general model can be instantiated with an

Haskell embedded domain-specific language for the

specification of secure CRDTs, allowing programmers to

reason about security tradeoffs while assuming idealized

MPC functionalities; this language could be integrated

with existing MPC frameworks [2, 20] to ensure the

secure compilation of general secure CRDT designs

to actual MPC implementations, but this has not been

exercised. To support our experimental evaluation, we

have instead implemented a set of selected secure CRDT

constructions and MPC protocols as an independent

Java library. Further interesting future work would be to

extend existing CRDT frameworks such as [27, 16] with

security guarantees, in order to allow users to describe

more simply the data to be securely replicated.

III. CRDTS

Despite more than a decade of research, there is no

universal formal definition for CRDTs [18, 28]. This

requires formalising not only the replication algorithms,

but also their communication patterns. Careful balance

of communication and application requirements has also

given rise to different families of state- [39], operation-

[39] or delta-based [3] CRDTs, with different assumptions

on when and how replicas synchronize updates.

A. Basic notions

We assume that n replicas are statically defined at

the beginning of the protocol, and can be identified by

i, j ∈ I. These nodes are accessible to an arbitrary number

of clients, which will perform query/update operations.

Each update operation performed on a CRDT replica will

be represented by an event e ∈ E. Query operations will

not be recorded as events, as they do not change the state

for further operations. We will also refer to sets recording

the history of events as E ∈ E, where E denotes the set

of sets of events. Following [26], we model an event as

e = (uid, op, deps), having a unique identifier uid(e),
an operation op(e) and a set of dependencies deps(e)
(all the events known at the origin replica where the

event was initially applied). Each unique event identifier

uid = (i, c) is a tuple of replica i and a unique replica-

local counter c. E(uid) will denote the unique event in

set E referred by uid. We also define the dependencies

of sets of events as deps(E) = (
⋃

e∈E deps(e)) \ E.

In our representation [26], each event also keeps

all its causal past, to allow for the expression of the

“happens-before” causality relation. e1 ≺ e2 means that

e1 happened before e2, i.e. the effects of e1 had been

3
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type State
data Query r
data Update
type Message
new :: I -> State
query :: I -> Query r -> State -> r
update :: I -> Update -> State -> State
propagate :: I -> I -> State -> Message
merge :: I -> I -> Message -> State -> State

Fig. 2. Abstract interface for a CRDT.

type StateGC = Map I Int
data QueryGC r where GetGC :: QueryGC Int
data UpdateGC = IncGC { incGC :: Int }
type MessageGC = Map I Int
newGC i = Map.empty
queryGC i GetGC st = Map.foldr (+) 0 st
updateGC i (IncGC n) st = Map.alter (Just . maybe n

(+n)) i st↪→
propagateGC i j st_i = maybe empty (Map.singleton i)

(Map.lookup i st_i)↪→
mergeGC i j m_i st_j = Map.unionWith max m_i st_j

Fig. 3. Grow-only counter CRDT [3].

applied in the replica where e2 was executed. We define

e1 ≺ e2 = deps(e1) ⊂ deps(e2). ci(E) denotes the filter-

ing of events in i before c ({e | e ∈ E ∧ e ≺ E((i, c))}).

B. Implementation

A CRDT can be simply seen as a regular abstract data

type that supports query and update operations. If all

the operations on the data type are commutative (i.e.,

independent of the order in which they are applied), then

it can be easily replicated. Unfortunately, this is not the

case for most data types, and several concurrent behaviors

are possible for non-commutative updates, requiring the

CRDT to explicitly handle concurrency.

Figure 2 presents an abstract CRDT interface in

Haskell. Each replica keeps an internal State, that

can be initialized with a new operation. The typed inter-

faces Query and Update can be respectively executed

using the query and update functions. To simplify,

queries only read state and updates only change state.

Updates that return output could be modeled as updates

plus queries. Note that Query is a generalized algebraic

data type, parameterized by a type variable r which

denotes the result type for each query that is seen by the

user. The additional propagate and merge functions

define the concurrent behavior of the CRDT, namely,

how a replica i shall produce a Message to be sent to

another replica j based on its State, and how replica j
shall merge a Message received from i into its State.

Figure 3 exemplifies the Haskell implementation of a

delta-based grow-only counter CRDT from [3].

C. Specification

Two of the first proposals to unify the formalization of

CRDTs were given in [13, 43]: the main idea, followed by

many other works such as [19, 26, 28, 34], is to separate

a CRDT implementation from its abstract specification,

defined not as a function on states but as a function

over the history of events (together with the relationships

between them). We extend each CRDT with an abstract

specification function F : I → Query r → E → r
that declaratively defines the correct query behavior

from the viewpoint of a single replica after a given

history of update events. For instance, we can define the

specification for the grow-only counter CRDT (Figure 3)

as FGC(i,GetGC, E) =
∑

e∈E incGC(op(e)).
A natural, albeit challenging way to prove properties

for CRDTs is to demonstrate functional correctness, i.e.,

guaranteeing that the concrete implementation respects

an abstract specification. The main challenge lies in

formalizing the relationship between the state of a replica

as a concrete sequence of operations is applied (denoting

a total ordering) and corresponding abstract histories of

events (that only capture a partial ordering) [13, 28, 43].

Following [43], we can define a consistency relation
E ≈ st that relates a history of events E with a concrete

state st: the intuition is that it shall hold for the empty

history and the new state, and be inductively preserved

as CRDT operations are applied to the state. Concretely,

we can inductively define this relation as in [18]:

E ≈ new i (1)

E ≈ st ∧ ( � ∃e ∈ E. e2 ≺ e) → (2)

E ∪ {e2} ≈ apply(op(e2),st)

The function apply applies a CRDT operation to a

state. We make further standard assumptions that all

domains are finite and that all operations terminate on all

inputs [39]. We define functional correctness as follows:

Definition 1 (Functional Correctness). If E ≈ st, then:
query i op st = F(i,op, E)

As domain-specific constructions, CRDTs have other

desired properties. The most important is strong eventual
consistency [39], which entails eventual update delivery

(and depends on the network [18]) and strong convergence

(replicas with same updates have equivalent state). As

made clear below, only functional correctness is assumed

in our notion of CRDT security, which is postulated even

for CRDTs that do not meet any additional properties.

IV. SECURE CRDTS

Following [8], we formalize CRDT security in the

Universal Composability (UC) framework [15]. The

intuition is depicted in Figure 4. At the center, we have

environment Z , whose role is to distinguish the real

world, where the CRDT protocol is executed, from an

ideal world, where it instead interacts with a trusted party

behaving as an ideal functionality. The role of Z is to

select inputs, using query and update, and then use the

4
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Fig. 4. Real versus Ideal world model for secure CRDTs.

adversary to schedule how the communication channels

behave, using propagate and merge.

To capture scenarios where an attacker breaches the

security of a participant of our secure CRDT protocol,

our model also considers corruptions. These will present

an additional challenge in the real-world, by having

participants i revealing some of their internal state to

A. For generality, our model for secure CRDTs does

not impose restrictions on participant corruptions. Some

protocols – with examples in [8] – can be shown to be

secure even if some participants are entirely corrupted,

while others – as is the case with our MPC-based

instantiation – require that corruptions on participants do

not exceed a specific threshold. We consider two common

relaxations of the model, related to participant corruptions:

corruptions are static, meaning that the corrupt parties are

defined at the beginning of the execution; and adversaries

are semi-honest, meaning that they observe the internal

state and communication messages of corrupt parties,

which we denote as the aggregated trace of operations.

The latter is a common assumption when outsourcing to

cloud providers [10, 17], as data breaches allow for an

adversary to observe an execution trace, but not to act

arbitrarily during the actual protocol execution.

We adopt a network-agnostic view of CRDTs, similar

to modern CRDT libraries such as automerge [23] or

yjs [29]. As such, replicas execute asynchronously, and

the distinguisher is given full control over the scheduling

of operations in each replica. We will assume directional

channels between replicas, modeled as queues, which

ensures causal delivery. For simplicity, we assume that

secure operations execute atomically.

A. Real World vs Ideal World

In the real world, Z interacts with adversary A
and replicas i1, . . . , in, using two interfaces: query
and update trigger input/output operations in replicas,

producing an execution trace; propagate and merge are

used by A to animate the network propagation, also

producing an execution trace. This execution trace will

contain publicly observable information regarding the

protocol execution (e.g. exchanged messages), as well as

additional data from corrupt parties (e.g. the state stored

in a specific participant). In the ideal world, Z instead

interacts with a simulator S and an ideal functionality

F : query and update operations denote CRDT events on

F , which emulates the behavior of n replicas; propagate
and merge are handled entirely by S. We say that F
plays the role of a trusted black-box, receiving inputs in

a per-replica basis and following the CRDT specification
function F to provide outputs. The role of S is to emulate

the execution traces to Z: it receives some leakage from

F , and is given access to a sync procedure of the ideal

functionality, which idealizes the passing of events from

one emulated replica to another within F .

Observe that the behavior displayed by the ideal
world entails both correctness and security, as F behaves

according to F, and allows for nothing but the concretely

specified leakage to exit its controlled environment.

Leakage is kept abstract in our security model, and will be

made concrete for particular instantiations, e.g. revealing

the type of operations, or the message length. A protocol

is said to UC-realize a given ideal functionality F if, for

any real world adversary A interacting with a protocol,

there exists an ideal world simulator S such that no

environment Z can distinguish if it is interacting with A
and actual replicas running the protocol, or with an S
with very little information about the sensitive data in the

system, and an idealized black-box. The security result

entails that interactions observed by Z in the real world
are indistinguishable from those in the ideal world.

B. Ideal Functionality

The ideal functionality F that captures the expected

behavior of the CRDT (Figure 5) follows the structure

of [8], refined to have a more concrete initialization

procedure and a more straightforward synchronization

process. For each replica i ∈ I, it keeps track of its views,

defined as a set of of events Ei. Local counters ci identify

replica-local events uniquely and allow reconstructing an

event dependency graph. The environment interface either

writes an update to the event history, or reads the result

of a query over the current event history. For both query

and update operations, their level of security is defined

by a leakage specification function L : O → E → L that

receives an operation op ∈ O, a history of events E ∈ E,

and produces a leakage trace in the domain L; O denotes

the set of CRDT operations that result from invoking the

interfaces write, read or sync of F .

The ideal functionality allows S to control communica-

tion, using sync, which emulates the sending of updates

from a replica to another up to a certain local counter.

This counter is used by S to simulate the propagation

of older updates. The CRDT communication pattern is

abstracted by a communication specification function

5
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proc init():

For i ∈ I:
ci ← 0; Ei ← {}

Environment Z interface

proc write(i, op):
ci ← ci + 1
l ← L(update i op, Ei)
Ei ← Ei ∪ {(ci, op, Ei)}
Return l

proc read(i, op)):

v ← F(op, Ei)
l ← L(query i op, Ei)
Return (v, l)

Adversary S interface

proc sync(i, j, c):

l ← ε
op ← λ(sti, stj). merge j i (propagate i j sti) stj
If c ∈ [0..ci]:

C ← C(i, Ei, c)
If deps(C) ⊆ Ej :

Ej ← Ej ∪ C
l ← L(op, ci(Ei) × Ej)

Return l

Fig. 5. Ideal functionality F .

C : I → E → N → E, where C = C(i, E, c) must

obey certain rules: sent updates must be a subset of

source events before the counter; sync only synchronizes

source updates with applied dependencies in the target.

For instance, propagating a state in a state-based CRDT

equals sending all history of locally applied updates

(Cst(i, E, c) = ci(E)). Delta-based CRDTs only send

the history of locally-originated updates ((Cdt(i, E, c) =
{e|e ∈ E ∧ uid(e) = (i, ce) ∧ ce < c})). In operation-

based CRDTs, each update is typically broadcast to

all other replicas after having been locally applied

(Cop(i, E, c) = {e|e ∈ E∧uid(e) = (i, ce)∧ce = c−1}).

We further define communication correctness as follows:

Definition 2 (Communication Correctness). If ci(Ei) ≈
sti and Ej ≈ stj , and given C = C(i, Ei, c) such that
deps(C) ⊆ Ej , then:

Ej ∪ C ≈ merge j i (propagate i j sti) stj

C. CRDT Security

The concrete execution model considered for the real-

versus-ideal-world model is presented in Figure 6. In

the real world, we begin by initializing all replicas in I.
Afterwards, Z is allowed free interaction with the system.

This is done either using update and query, which calls

Π over a replica state, or using the adversarial interface

A. This essentially consists in scheduling the propagation

of operations according to the specifications of Π, calling

propagate to put a message in a communication channel,

or merge to fetch a message from a channel and apply

it to a replica. The execution of Π produces a trace t
which can be observed by A.

In the ideal world, we instead initialize the functionality

F and simulator S . Every call to update and query will

trigger the specified behavior in F . This will produce the

result (for query) and a leakage l, which will be used by

Game RealΠ,Z,A():

For i ∈ I:
sti ← Π.new()

b ← ZA,update,query()

Oracle update(i, op):

(sti, t) ← Π.update(i, op, sti)
Return t

Oracle query(i, op):

(v, t) ← Π.query(i, op, sti)
Return (v, t)

Oracle propagate(i, j):

(m, t) ← Π.propagate(i, j, sti)
Ci,j ← (Ci,j ,m)
Return t

Oracle merge(i, j):
t ← ε
If |Ci,j | > 0:

(m,Ci,j) ← Ci,j

(sti, t) ← Π.merge(i, j, sti,m)
Return t

Game IdealF,Z,S():

F.init()
S()
b ← ZS,update,query()

Oracle update(i, op):

l ← F.write(i, op)
t ← S(Update, i, l)
Return t

Oracle query(i, op)):

(l, v) ← F.read(i, op)
t ← S(Query, i, l)
Return (v, t)

Fig. 6. Real and Ideal security games for secure CRDTs. In the real
world (top), A has access to oracles propagate and merge. In the
ideal world (bottom), S has access to the adversarial interface of F .

S to emulate the real trace t. The adversarial interface

here is fully controlled by S, which must also emulate

traces for propagate and merge, using its interface on F
to trigger replica synchronization.

Our definition for secure CRDTs is as follows:

Definition 3 (CRDT security). Let F be an ideal
functionality and let Π be the corresponding CRDT
protocol. We say that Π securely realizes F if there exists
a simulator S such that, for any behavior of environment
Z and adversary A, the following is true.

RealΠ,Z,A ≈ IdealF,Z,S

Note that Definition 3, as usual for cryptographic

security definitions, implies functional correctness (Defi-

nition 1). This will become particularly clear in Section V,

when we resort to Definition 1 to prove Definition 3.

V. MPC-BASED SECURE CRDTS

Section IV presented a general model for the security of

abstract CRDTs from Section III. Since many proposals

of CRDTs come with pseudo-code descriptions, as

exemplified in Section III-B, we would like to lift them

to secure variants while preserving the same interface.

The path proposed in this section (Figure 7) is to:

1) reason about the MPC security of a program that

interacts with the user to execute secure CRDT

operations written in a MPC language (Theorem 1);

2) combine security of MPC programs implementation

with their functional correctness w.r.t. a specifica-

tion to obtain CRDT security (Theorem 2).

We emphasize the distinction between CRDT descrip-

tions (Section III) and their interface in the security

model (Section IV) by decoupling programs according
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Real MPC Library

Figure 6 Real World

Figure 10 Ideal WorldFigure 10 Real World

Theorem 1

Figure 6 Ideal World

Definitions 1 & 2

Definition 3

Theorem 2

Refines

Ideal MPC Library

MPC Library Security

Fig. 7. Outline of our formal rationale for MPC-based secure CRDTs.
Legend: virtual replica; encrypted secret value; MPC program;

MPC variable.

to two semantics: a non-interactive one animates CRDT

operations, and an interactive one articulates calls to

CRDT operations. This also connects elegantly to secure

execution using MPC: the non-interactive semantics can

be instantiated with any language that supports secure

computation, relying on assumptions that primitive MPC

operations offered by a MPC library are secure, while the

interactive semantics captures the articulation between

different replicas running MPC programs and clients.

Interestingly, in the MPC setting CRDT operations are

no longer atomic: they receive input, execute a sequence

of public and secret computations over the replica’s state,

and (possibly) return output. Indeed, the execution of

such computations will produce a trace, which must

be emulated by S in the ideal world. To accommodate

theses notions into our security model for MPC-based

CRDTs, we will adapt the program-based MPC security

framework from [2], where the adversary can interactively

control the step-wise execution of MPC programs and

observe their intermediate traces. Note that such MPC

traces will provide the finer granularity of all program

steps necessary to execute a CRDT operation.

A. MPC Security

Each replica i (in the real world) is emulated by a set of

computing parties Pi = pm1 , . . . , pmi that collaboratively

compute a distributed protocol over secret-shared data,

where mi is the number of participants in the replica’s

MPC protocol. For concreteness, we consider a linear

secret sharing scheme where a value s is shared as

sm1 , . . . , smi , denoted as s. We assume authenticated

communication channels among MPC players. Per replica,

we allow for a threshold of parties Ci ⊂ Pi to be corrupt,

sharing their internal state and messages sent/received to

the adversary A. We assume static corruptions, which

means that sets Ci are fixed at the start of the protocol.

B. MPC Programming Language

Even though the MPC security framework from [2] is

postulated generically, for concreteness we will follow

Section III-B and consider the design of an embedded

domain-specific MPC language in Haskell1.

Type System: To make our language security-aware,

we define a new abstract type S a to denote secure data

of type a. Secure types and operations will be highlighted

in red. The rationale is to rely on the type system to

enforce a strict separation between secret and public data:

host programs do not get to know the value of S-tagged

data. As such, all expressions over secure data need to be
delegated to an external MPC library2. We will always

assume that programs are well-typed.

MPC library: Figure 8 defines the MPC library

operations that will be later used in our examples. Note

that this list is not exhaustive, and many other MPC oper-

ations may be supported. Syntax may overload standard

Haskell functions. We denote MPC secure operations as

sop. They will have two interpretations: an ideal-world

specification, given by a function fsop(�v) = (v, l) over

values that ignores security labels and returns leakage;

and a real-world protocol πsop(�s) = (s, τ), that captures

its distributed secure execution over a vector of secret-

shared values, returning a new secret-shared value and

a trace. The two special fclassify(a) = (a, ε) and

fdeclassify(a) = (a, a) operations are the only ones that

translate between public and secret data. Allowing for

secret data to be made explicitly public is important

when designing MPC protocol, as it allows for exploring

efficiency/security trade-offs, e.g. avoiding branching on

secret values by declassifying the conditional value. In

our MPC library, no operation besides declassify has

leakage. The following sub-section details the security

definition expected from the MPC library.

1) Semantics: As common for MPC [1, 2, 36], the

execution of our language follows a small-step operational

semantics with ideal- and real-world interpretations.

Ideal: The ideal-world semantics is modeled as if

a single trusted party was executing the program and

defined as a binary relation on expressions:

Γ � e −→
hs

e′

e
ε−→ e′

fsop(�v) = (v, l)

e[sop(�v)]
l−→ e[v]

The intuition is that the ideal semantics describes the

step-wise reduction of expressions e, until it produces a

1For clarity of presentation, the Haskell code found in the paper
is a simplification of our reference implementation in [32].

2Our Haskell embedding [32] crucially guarantees this by defining
secure CRDT implementations as polymorphic over the type of S.
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class MPC a where
classify :: a -> S a
declassify :: S a -> a

class SNum a where
(+) :: S a -> S a -> S a
(-) :: S a -> S a -> S a
if' :: S Bool -> S a -> S a -> S a

class SEq a where
(==) :: S a -> S a -> S Bool

class SOrd a where
(>=) :: S a -> S a -> S Bool
max :: S a -> S a -> S a

(||) :: S Bool -> S Bool -> S Bool
(&&) :: S Bool -> S Bool -> S Bool
not :: S Bool -> S Bool

Fig. 8. Secure MPC library.

final value v or diverges (no rule applies). For non-MPC

expressions, we rely on the semantics of the host language,

where Γ is a fixed global context with definitions for

CRDT functions and constants: Γ � e −→
hs

e′ denotes a

small-step reduction of expression e into expression e′

under context Γ. We use a call-by-value convention for

the semantics of MPC operations, where e[e′] is used

to denote the selection/substitution of sub-expression e′

in e3. We keep the syntax and semantics of values and

expressions largely abstract, as it is orthogonal to our

formalization; an example of a concrete semantics for the

subset of Haskell that we are using, which is rather

standard, may be found in [41]. We say that the big-

step evaluation of expression e terminates in value v

with leakage l, written e ⇓l v, if e
l−→∗ v, where −→∗

forms the reflexive transitive closure of → and leakage

is concatenated into a leakage trace.
Real: In the real-world semantics, a set of parties

P jointly computes the functionality; we reuse the secret

sharing notation for multiparty expressions. Each party

locally executes its own copy of the original expression,

cooperating through the execution of protocols triggered

by calls to MPC operations:

p ∈ P Γ � e −→
hs

e′

e[p �→ e]
ε
=⇒ e[p �→ e′]

πsop(�v) = (s, τ)

e[sop(�v)]
τ
=⇒ e[s]

For non-MPC expressions, parties may progress in-

dependently. Evaluation of MPC operations enforces

synchronization by requiring that all parties are evaluating

the same expression (modulo sharings of secret data). To

guarantee that all parties go through the same steps when

executing the same expression, we rely on two main

assumptions on the semantics of the host language [2]:

deterministic local reduction, which is reasonable for an

actual language implementation; and independence from

secret values, which is guaranteed by the type system.

3Our actual embedding [32] uses Haskell’s call-by-need semantics
for pure expressions. To ensure party synchronization, we use monads
to perform secure operations (and capture necessary implementation
side-effects such as party communication).

C. Security of the MPC library

Our framework adopts the notion of secure MPC

library from [2]. The intuition is that the environment and

adversary only inspect the corrupted views of intermediate

computations, but control the full secret-shared inputs

and outputs. This allows a slightly more relaxed notion of

security for intermediate computations, which facilitates

security reasoning for composed operations.

We assume a linear secret-sharing scheme and a

randomised procedure share(s) = s that converts a value

s in its shared form s; and its left-inverse unshare(s) = s
that converts s into the original value s. We denote

C(s) as the subset of shares controlled by corrupted

parties. In particular, we define input operations with no

leakage: in the ideal world, finput(s) = (unshare(s), ε)
simply computes the unshared value; in the real world,

πinput(s) = (s, ε) corresponds to the identity protocol.

For the case of output operations: in the ideal world,

foutput(s) = (share(s), ε) simply shares the value; in the

real world, πoutput(s) runs a standard resharing protocol

that re-randomizes a secret-shared value. Other secret

operations, generically called sop, are left abstract.

Following [2], we define the security of operations

(input is trivial since it has an empty trace) as follows:

Definition 4 (MPC library security). The real MPC
library is said to be a secure realisation of the ideal
MPC library if there exist simulators Soutput, and Ssop

(for any other secret operation), such that the experiments
on the left- and right-hand side of Figure 10 are
indistinguishable.

D. Interactive MPC Programs

In order to reason about the security of MPC-based

CRDT implementations, we adapt the security model

from [2] to consider the parallel execution of multiple

MPC programs that animate multiple CRDT replicas.

Interactive MPC Semantics: In order to reflect the

CRDT security model (Section IV-C), we extend our

MPC programming language and its semantics to support

the specific input/output behavior of CRDTs. Figure 9

presents a small-step semantics that captures the inter-

active behavior of a replica i. Following [2], the small-

step semantics has access to input (I) and output (O)

channels that interact with the external environment and

hold optional secret-shared values. An input is a specific

CRDT operation (query/update/propagate/merge) and

its additional arguments; only query/propagate produce

output (other CRDT operations do not need to block the

output buffer). The environment is also responsible for

passing messages (a propagate output to a merge input)

among replicas. A replica-local configuration σ = 〈ζ, st〉
is comprised of a program state st and a call state ζ that

mediates the execution of CRDT operations. A replica

8
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〈
s, st

〉
���i 〈m, e〉 (Input processing for replica i (used in the ideal and real worlds): Given shared value s and shared replica state st,

enters mode m for executing secret-shared expression e. Values overloaded as shares for one party.)

INPUTQUERY 〈
Query s, st

〉
���i

〈
Query,query i s st

〉 INPUTUPDATE 〈
Update s, st

〉
���i

〈
Update,update i s st

〉

INPUTPROPAGATE
e = propagate i j st〈

Propagate j, st
〉
���i 〈Propagate j, e〉

INPUTMERGE 〈
Merge j s, st

〉
���i

〈
Merge j,merge i j st s

〉

〈o, s〉 ���i 〈m, v〉 (Output processing for replica i (used in the ideal and real worlds): Given mode m and secret-shared value v,
produces secret-shared output s under output mode o. Values overloaded as shares for one party.)

OUTPUTQUERY 〈
Out,Query v

〉
���i 〈Query, v〉

OUTPUTUPDATE 〈St, v〉 ���i 〈Update, v〉
OUTPUTNEW 〈St, v〉 ���i 〈New, v〉

OUTPUTPROPAGATE 〈
Out,Propagate j v

〉
���i 〈Propagate j, v〉

OUTPUTMERGE 〈St, v〉 ���i 〈Merge j, v〉

〈σ, I,O〉 l−→i

〈
σ′, I′,O′〉 (Ideal-world semantics for replica i: Under local configuration σ, input buffer I and output buffer O,

yields σ′, I′ and O′ and returns leakage l.)

IDEALINPUT
I �= ∅ finput(I) = (s, ε) 〈s, st〉 ���i 〈m, e〉

〈〈Idle, st〉, I,O〉 ε−→i 〈〈Runme, st〉, ∅,O〉
IDEALSTEP

e
l−→ e′

〈〈Runme, st〉 , I,O〉 l−→i 〈〈Runme′, st〉 , I,O〉

IDEALOUTPUT
〈Out, v′〉 ���i 〈m, v〉 foutput(v′) = (O, ε)

〈〈Runmv, st〉 , I, ∅〉 ε−→i 〈〈Idle, st〉 , I,O〉
IDEALEXIT

〈St, st′〉 ���i 〈m, v〉
〈〈Runmv, st〉 , I,O〉 ε−→i 〈〈Idle, st′〉 , I,O〉

〈Σ, I,O〉 τ
=⇒i

〈
Σ′, I′,O′〉 (Real-world semantics for replica i: Under global configuration Σ, input buffer I and output buffer O,

yields Σ′, I′ and O′ and returns trace τ .)

REALINPUT
I �= ∅ πinput(I) = (s, ε)

〈
s, st

〉
���i 〈m, e〉〈

〈Idle, st〉, I,O
〉

ε
=⇒i

〈
〈Runme, st〉, ∅,O

〉 REALSTEP

e
τ
=⇒ e′

〈
〈Runme, st〉, I,O

〉
τ
=⇒i

〈
〈Runme′, st〉, I,O

〉

REALOUTPUT

〈
Out, v′

〉
���i 〈m, v〉 πoutput(v′) = (O, τ)

〈
〈Runmv, st〉, I, ∅

〉
τ
=⇒i

〈
〈Idle, st〉, I,O

〉 REALEXIT

〈
St, st′

〉
���i 〈m, v〉

〈
〈Runmv, st〉, I,O

〉
τ
=⇒i

〈
〈Idle, st′〉, I,O

〉

Fig. 9. Ideal and real interactive MPC semantics.

Game Realsop(�v):

(v, τ) ← πsop(�v)

Return (unshare(v), C(v), τ)

Game Idealsop(�v):

(v, l) ← fsop(unshare(�v))
(vC, τ) ← Ssop(C(�v), l)
Return (v, vC, τ)

Game Realoutput(v):

(v′, τ) ← πoutput(v)

Return (unshare(v′), C(v′), τ)

Game Idealoutput(v):

(v′, ε) ← foutput(unshare(v))
τ ← Soutput(C(v), C(v′))
Return (unshare(v), C(v′), τ)

Fig. 10. Real and Ideal security games for MPC library security.

is either Idle or evaluating an expression e in CRDT

operation mode m (Runme). A global configuration

Σ holds Pi local configurations for each MPC party

executing the replica i in the real world. Particular CRDT

operations that interact with the user execute special

input and output operations that convert a secret-shared

value to a secret value and vice-versa.

Our richer structure on inputs and outputs (to control

the scheduling of CRDT operations) is another difference

to [2]. We abuse notation and assume that all inputs or out-

puts are represented in secret-shared form. We replicate

public data across parties using zipping and unzipping

operators: an operation Op p s with public argument p
and secret-shared argument s can be “unzipped” to Op p s
and “zipped“ back to Op p s.

E. MPC Security Model

We now propose a tailored security model for MPC-

based CRDTs in Figure 11. Its main characteristic is that

the experiment maintains a configuration Σi to record

the program state of each replica, which is defined as

the multiple oracles are called, and processed via the

step trigger. As such, in the real world, setInput writes a

specific CRDT operation and its secret-shared arguments

to the input buffer I. getOutput retrieves the output of

query/propagate operations, by checking output buffer

O. Oracle step animates the program for a particular

replica. Following the interactive MPC semantics, it may

read CRDT operations from I and set to evaluate the

corresponding MPC program; perform a reduction in the

MPC program; or exit evaluation, returning to idle mode

or producing an output. Note that the communication

between replicas is controlled by the environment, which
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Game RealΠ,Z,A():

For i ∈ I:
Ii ← ∅
Oi ← ∅
Σi ← 〈RunNew (new i),⊥〉
σi ← 〈RunNew (new i),⊥〉

b ← ZA,setInput,getOutput()
b ← ZS,setInput,getOutput()

Oracle step(i):

If 〈Σi, Ii,Oi〉 ⇒i:

〈Σi, Ii,Oi〉 τ
=⇒i 〈Σi, Ii,Oi〉

If 〈σi, Ii,Oi〉 →i:

〈σi, Ii,Oi〉 l−→i 〈σi, Ii,Oi〉
τ ← S(l)
Return τ

Oracle setInput(i, I):

If (Ii = ∅):
Ii ← I

Oracle getOutput(i):
Switch Oi:

Case v:
Oi ← ∅
Return v

Fig. 11. Real and Ideal security games for MPC-based CRDTs. A has
access to oracle step. Changes in blue reflect the Ideal world.

is responsible for receiving the secret-shared result of

propagate on one replica and forward a secret-shared

merge request to the respective replica.

The ideal world is very similar to the real world;

Figure 11 highlights the differences in blue. We maintain

values σi for every emulated replica, which are updated

according to input I . Here, the simulator will observe the

leakage of each operation, and must produce a simulated

trace t corresponding to each step.

Intuitively, CRDT operations are now described as

sequences of operations where private data is processed

according to the MPC semantics, and thus by an under-

lying MPC library. This allows us to borrow the security

argument of [2], and state that the security of any CRDT

construction written under such semantics is as secure

as its underlying MPC library.

Theorem 1. Under the assumption that the real MPC
library is a secure realisation of the ideal MPC library,
for any environment Z in Figure 11, the following is true

RealZ,A() ≈ IdealZ,S()

The full proof can be found in the full version [33]. The

intuition is as follows. For a single replica instance, any

CRDT implementation written under the MPC semantics

will behave as a specific program in the language of [2].

As such, any advantage that allows Z to distinguish

the experiment of Figure 11 can be used to build a

distinguisher Z ′ against Theorem 1 of [2]. Since all

n replicas receive input shares and produce uniformly-

distributed output shares, this is equivalent to executing

the described experiment n times in parallel.

F. MPC-based CRDT Security

We are now ready to prove the CRDT security of our

MPC-based instantiation. This is not immediate for two

main reasons. Going from Figure 11 to Figure 6 requires

determining a specific simulation strategy, which estab-

lishes how the simulator handles propagate traces only

having access to the sync operation at F . Additionally,

we have to argue that the Ideal small-step semantics

behavior of Figure 11 is equivalent to the Ideal behavior

over histories of events displayed by F .

In terms of leakage, we give the most general definition

for which our instantiation is secure. In practice, other

higher-level leakage specifications could be considered,

as exemplified in [1]. We define a leakage specification

L(op,E) as Pub(op)∪{Pub(st)∪Pub(res)∪l | ∀st. E ≈
st∧ (apply op st) ⇓l res}. The intuition is that leakage

should be defined directly over the history of events and

the same for any state consistent with the history of

events. Pub denotes the public parts as defined by the

security type system. Note that, for sync, the leakage will

be that of the operation defined in Definition 2.

Let Π be a CRDT protocol defined by algorithms

query, update, propagate and merge, constructed as a

sequence of operations following the small-step semantics

of Figure 9, and let F be its ideal counterpart.

Theorem 2. Under the assumption that propagate has
no leakage, if the behavior of Π ensures functional
correctness and communication correctness w.r.t. F , then
Π securely realizes F according to Definition 3.

We now detail the intuition of the proof, available in the

full version [33]. Since our Π is constructed as a sequence

of small-step operations in the MPC language, the real

world of Figure 6 is a strictly weaker version of the real

world of Figure 11. This allows us to hop to a hybrid

game, in which we have a functionality that follows

an equivalent implementation of the CRDT following

its ideal-world semantics. We now rely on the assumed

functional and communication correctness properties to

replace said functionality with the functionality that

follows the idealized behavior of the CRDT (Figure 5).

Concretely, S has to remember when propagates occur

to trigger the correct sync queries at F , and then rely

on the small-step simulators to produce the sequence of

traces t corresponding to each CRDT operation.

G. Alternative Corruption Model

Observe that we are considering that a threshold of

corrupt parties Ci per replica i. As such, security of

our MPC library (Definition 4) requires that all states

propagated from replica i to replica j have to be uniformly

distributed, and thus produced by πoutput. This prevents a

trivial attack, in which a combination of corrupt parties in

different replicas would allow an adversary to reconstruct

shared data: if the MPC at replica i and j allow for 1-out-

of-3 corruptions, one can corrupt party P0 in i and P1 in j,

which gives him 2-out-of-3 shares when either one sends

their shares to the other. Consequently, this requires the

replica to reshare its data before all propagate operations,

which entails an additional communication round.
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type StateGC1 = Map I (S Int)
data QueryGC1 r where GetGC1 :: QueryGC1 (S Int)
data UpdateGC1 = IncGC1 { incGC1 :: (S Int) }
type MessageGC1 = StateGC1
newGC1 i = Map.empty
queryGC1 i GetGC1 st = Map.foldr (+) (classify 0) st
updateGC1 i (IncGC1 n) st = Map.alter (Just . maybe n

(n+)) i st↪→
propagateGC1 i j st_i = maybe Map.empty (Map.singleton

i) (Map.lookup i st_i)↪→
mergeGC1 i j m_i st_j = Map.unionWith max m_i st_j

type StateGC2 = Map I (S Int,T)
data QueryGC2 r where GetGC2 :: QueryGC2 (S Int})
data UpdateGC2 = IncGC2 { incGC2 :: (S Int) }
type MessageGC2 = StateGC2
newGC2 i = Map.empty
queryGC2 i GetGC2 st = Map.foldr (\(n,_) -> n+)

(classify 0) st↪→
updateGC2 i (IncGC2 n) st = Map.alter (Just . maybe

(n,startT) (\(n',t') -> (n + n',nextT t'))) i st↪→
propagateGC2 i j st_i = maybe Map.empty (Map.singleton

i) (Map.lookup i st_i)↪→
mergeGC2 i j m_i st_j = Map.unionWith (maxOn snd) m_i

st_j↪→

Fig. 12. Two secure grow-only counter CRDTs, following [3].

This overhead can be avoided if one assumes the same

corruption threshold C over all replicas, i.e. a corruption

of computing party 0 in replica i entails the corruption

of party 0 in all other replicas. This also makes the proof

of Theorem 2 easier, as performing operations on all

replicas is now equivalent to interacting with a single

MPC library that maintains the state of all replicas. This

corruption model is consistent with a deployment where

all replicas are emulated by servers in the same trust

domain, e.g., cloud providers.

VI. MPC-BASED CRDT IMPLEMENTATIONS

To demonstrate our approach, this section discusses

secure implementations of CRDTs from the literature.

A. Counters

Grow-only counter: Figure 12 presents two secure

implementations of the grow-only counter CRDT. The

first variant (GC1) is a direct implementation of the delta-

based description from [3]. The only difference to the

original non-secure version (Figure 3) is that we treat

the local counter kept by each replica (and the global

counter computed from those) as secure. Consequently,

all operations over counter values, namely initialization,

increment and comparison, need to be performed securely.

The most expensive secure operation is max, which

requires communication among MPC parties.

The second variant (GC2) is an optimization. Given

the monotonic nature of the grow-only counter, we can

avoid this secure computation by extending the state

to include a per-replica public timestamp, known as a

Lamport clock. The implementation guarantees that a

greater timestamp corresponds to a greater counter value.

Since timestamps can be inferred from the history of

type StatePNC = (StateGC2,StateGC2)
data QueryPNC r where GetPNC :: QueryPNC (S Int)
data UpdatePNC = IncPNC (S Int}) | DecPNC (S Int)
type MessagePNC = StatePNC
newPNC i = (newGC2 i,newGC2 i)
queryPNC i GetPNC (pst,nst) = p - n
where p = queryGC2 i GetGC2 pst

q = queryGC2 i GetGC2 nst
updatePNC i (IncPNC n) (pst,nst) = (updateGC2 i (IncGC2

n) pst,nst)↪→
update_PNC i (DecPNC n) (pst,nst) = (pst,updateGC2 i

(IncGC2 n) nst)↪→
propagatePNC i j (pst_i,nst_i) = (propagateGC2 i j

pst_i,propagateGC2 i j nst_i)↪→
mergePNC i j (pm_i,nm_i) (pst_j,nst_j) = (mergeGC2 i j

pm_i pst_j,mergeGC2 i j nm_i nst_j)↪→

Fig. 13. Secure Positive-Negative Counter CRDT, following [38].

type StateBC = (S Int,Map (I,I) (S Int,T),Map I (S
Int,T))↪→

data UpdateBC = IncBC (S Int) | DecBC (S Int) | TransfBC
(S Int) I↪→

data QueryBC r where GetBC :: QueryBC (S Int)
type MessageBC = StateBC
newBC i k = (classify k,Map.empty,Map.empty)
queryBC i GetBC (k,r,u) = n where

p = Map.foldrWithKey (\(k1,k2) (n,_) -> if k1==k2
then (n+) else id) k r↪→
n = Map.foldr (\(n,_) b -> (b - n) p u

updateBC i (IncBC n) (k,r,u) = (k,r',u) where
r' = Map.alter (Just . (\(n',t') -> (n+n',nextT
t')) . fromMaybe (classify 0,startT)) (i,i) r↪→

updateBC i (DecBC n) st@(k,r,u) = (k,r,u') where
lr = localRights i st
u' = Map.alter (Just . (\(n',t') -> (if' (lr >= n)
(n+n') n'},nextT t')) . fromMaybe (classify
0,startT) ) i u

↪→
↪→
updateBC i (TransfBC n j) st@(k,r,u) = (k,r',u) where

lr = localRights i st
r' = Map.alter (Just . (\(n',t') -> (if' (lr >= n)
(n+n') n'},nextT t')) . fromMaybe (classify
0,startT) ) (i,j) r

↪→
↪→
propagateBC i j st_i = st_i
mergeBC i j (k,r_i,u_i) (_,r_j,u_j) = (k,r_i',u_i')

where↪→
r_i' = Map.unionWith (maxOn snd) r_i r_j
u_i' = Map.unionWith (maxOn snd) u_i u_j

localRights i (k,r,u) = p + rr - rs - n where
rr = Map.foldrWithKey (\(k1,k2) (n,_) -> if k2==i
then (n+) else id) (classify 0) r↪→
rs = Map.foldrWithKey (\(k1,k2) (n,_) -> if k1==i
then (n+) else id) (classify 0) r↪→
p = maybe (classify 0) fst (Map.lookup (i,i) r)
n = maybe (classify 0) fst (Map.lookup i u)

Fig. 14. Bounded counter specification, adapted from [6].

events, both variants have the same leakage, that can

be succinctly characterized as the number of update

operations performed at each replica.

Positive-Negative counter: Using two grow-only

counters, we can construct a counter that supports

both increment operations as shown in [38], with spec-

ification FPNC(i,GetPNC, E) = FGC2(i,GetGC2, E) −
FGC2(i,GetGC2, E). This is demonstrated in Figure 13.

Bounded counter: In CRDTs, it is notoriously hard

to preserve application invariants while avoiding synchro-

nization [27]. One classical example of an application

invariant is to guarantee that a counter never goes below

some minimum value. Figure 14 demonstrates a secure
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type StateMAX = S Int
data QueryMAX r where
GetMAX :: QueryMAX (S Int)

data UpdateMAX = SetMAX { setMAX :: (S Int) }
type MessageMAX = StateMAX
newMAX i = classify minBound
queryMAX i GetMAX st = st
updateMAX i (SetMAX n) st = max n st
propagateMAX i j st = st
mergeMAX i j m_i st_j = max m_i st_j

Fig. 15. Secure maximum value CRDT.

type StateLWW a = Maybe (a,LC)
data QueryLWW a r where
GetLWW :: QueryLWW a (Maybe a)

data UpdateLWW a = UpdLWW a T
type MessageLWW a = StateLWW a
newLWW i = Nothing
queryLWW i GetLWW st = fmap fst st
updateLWW i (UpdLWW v t) st = let st' = Just (v,LC t i)
in maxOn (fmap snd) st st'

propagateLWW i j st_i = st_i
mergeLWW i j m_i st_j = maxOn (fmap snd) m_i st_j

Fig. 16. Secure last-writer-wins register CRDT, following [38].

bounded counter CRDT adapted from [6], where parties

can transfer “decrementing rights” among them. The

only difference is that our version, likewise our secure

counter, avoids comparisons over secure values. Note that

the CRDT initialization procedure receives the minimal

value k, which is used only by the query procedure. The

specification requires expressing replica-local rights.

B. Maximum

The CRDT from Figure 15 keeps the maximum value,

where minBound denotes the smallest possible value.

Its specification is defined as FMAX(i,GetMAX, E) =
max(minBound ∪ {setMAX(op(e))|e ∈ E}). When a

value is received, each replica must ensure that its state

is updated if and only if the new value is greater than

the one stored, regardless of how recent it is.

C. Polymorphic CRDTs

Container CRDTs, which are polymorphic over the

type of elements, can be directly made to hold secure

elements, keeping the container structure public.

Registers: Registers are classical CRDTs that main-

tain a general opaque value. Two different register

specifications have been proposed [38]: the multi-value

register (MVR) and the last-writer-wins (LWW) register.

Figure 16 presents a secure implementation for the

second; the first can be found in the supplementary

material. Note that their CRDT operations perform no

secure computations, since their behavior is polymorphic

over the secret values (of type a) stored by users.

For the LWW register, the only adaptation from the

original proposal [38] has to do with the timestamps:

instead of including a now() operation, we establish

that the client is expected to generate timestamps. We

type StateGSet a = [S a]
data UpdateGSet a = AddGSet { addGSet :: S a }
data QueryGSet a r where

GetAllGSet :: QueryGSet a [S a]
ExistsGSet :: S a -> QueryGSet a (S Bool)

type MessageGSet a = StateGSet a
newGSet i = []
queryGSet i GetAllGSet st = st
queryGSet i (ExistsGSet x) ys = foldr (\y b -> (|| (x ==

y) b)}) (classify False) ys↪→
updateGSet i (AddGSet x) st = insertGSet x st
propagateGSet i j st = st
mergeGSet i j m_i st_j = foldr insert st_j m_i
insert x ys = if declassify b then ys else x : ys

where b = foldr (\y b -> (|| (x == y) b))
(classify False) ys↪→

Fig. 17. Secure state-based grow-only set, following [38].

make no assumption on timestamp uniqueness/causality;

the interface may hide this to the user and simply

provide, e.g., its wall clock. Its specification consists

of an optional most recent value (using a global ordering

on replica ids to guarantee uniqueness) seen as a set

(FLWW(i,GetLWW, E) = {v|e ∈ E ∧ op(e) = Upd v t ∧
(�e′ ∈ E.op(e′) = Upd v′ t′ ∧ (t, id(e)) < (t′, id(e′)))}).

For the MVR register, each replica keeps a multiset

of values, each bound to a vector clock (a vector of

Lamport clocks) as in [38]. Queries return a a multiset,

implemented as a list sorted by vector clocks. Its specifi-

cation can be defined as a multiset of most recent values

(FMVR(i,GetMVR, E) = {{v|e ∈ E ∧ �e′ ∈ E.e ≺ e′}}).

Other container CRDTs: Many other container

CRDTs, such as lists, maps and trees have been proposed

in the literature [3, 26, 37]. Their MPC-based instantiation

is similar to registers. A CRDT array implementation is

shown in the report included as supplementary material.

D. Sets

Grow-only set: Sets are other classical container

CRDTs. They are traditionally simpler than lists, since

the ordering of elements does not need to be preserved;

[26, 38] derive set constructions by extending the logic

of counters. However, secure set CRDTs are harder to

implement than secure lists, since they are no longer fully

polymorphic and require comparison of elements, whose

result affects the structure of the set.

Figure 17 presents a standard implementation of a state-

based grow-only set [38], where the type of elements is

secret. For simplicity, we encode the set as a list (regular

Haskell sets requires ordering for efficient intermediate

data structure), but order is not preserved. Instead, we

only require equality on secret values, which implies that

each set operation must perform a linear traversal. We

exemplify two operations on the set: one returns the whole

set, and the other tests if an element exists in the set. The

most relevant detail is the insert auxiliary function: in

order to decide if the new element shall be added to the

set or not, we need to declassify the result of the secure
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equality comparisons. Note that, in this setting, we cannot

perform a secure conditional because the result of the

comparison affects the public list structure. To minimize

leakage, we avoid declassifying the result of all equality

comparisons, and reveal only if each inserted element

already exists in the set. The specification is defined

as FGSet(i,GetAllGSet, E) = {addGSet(op(e))|e ∈
E} and FGSet(i,ExistsGSet x,E) = ∃v.v ∈
FGSet(i,GetAllGSet, E) ∧ v = x.

Other set CRDTs: Similar to counters, our grow-

only set construction can be generalized to build more

general sets. Nonetheless, it is not fully secure, as merging

leaks element comparisons. Balancing such leakage with

efficiency is precisely the craft of MPC, and the tradeoffs

have been vastly explored in the context of implementing

efficient versions of classical algorithms using MPC [1,

42]. The included technical report discusses some possible

set constructions with no leakage.

VII. EXPERIMENTAL EVALUATION

We now present the results of an experimental evalua-

tion of the CRDT constructions defined in Section VI.

A. System Implementation

For the evaluation, we implemented the secure CRDTs

as a Java Library. It’s deployed as a CRDT replica, that

consists of independent MPC parties to store secrets and

evaluate queries. This deployment follows the execution

model outlined in Section V-A. For the computation

of MPC protocols, we used an implementation of the

Sharemind protocols [11]. These protocols use additive

secret sharing scheme and are optimized for a static

three-party setting, As such, each CRDT replica consist

of three independent parties. To illustrate the associated

performance cost, we also implemented the same CRDTs

without any security measures. We denote these as

baseline implementations.

The Sharemind protocol suite provides an interface sim-

ilar to the abstract interface defined in Section V-B. More

specifically, it provides methods to share, unshare
and declassify secrets; protocols to multiply secrets,

and protocols for equality and ordering comparison.

Most of these protocols require multiple communication

rounds, with the ≥ protocol having the highest number of

rounds and secret multiplication requiring only a single

communication round. The addition of secrets is the only

operation that can be done without any communication.

B. Experimental Setup

The evaluation was conducted on four machines, each

with two Intel(R) Xeon(R) Silver 4210 CPU @ 2.20

GHz and 256 GB of RAM. The cluster consisted of

a single CRDT replica, split into three separate parties

connected via Ethernet 10 Gigabit, communicating via

TCP. We used the Python Locust framework to evaluate

the performance of our system. Using this framework,

we implemented workloads for CRDTs and made them

publicly available. The benchmark client was deployed

in the cluster on a dedicated host. The network latency

between all hosts was ∼ 200μs.

C. Experimental Workloads

We measure the throughput and latency of the update
and query operations for the secure CRDTs defined in

Section IV. To isolate the overhead of MPC protocols, we

used dedicated workloads for each CRDT construction.

LWW and Max CRDTs: The workloads for these

CRDTs start by initializing a replica with a random

value. The evaluation of the update operation consists

on inserting random values, and the evaluation of the

query operation consists on the client retrieving the

latest value from a replica.

Counter CRDTs: We implemented three distinct

workloads for the GC2, PNC, and BC CRDTs. The

workloads have the same setup, and initialize the counter

at 1. The update operation increments the counter by

a single value for all CRDTs. However, the PNC and

BC workloads differ as the update operation can also

decrement the counter. This is relevant for BC, as the

operation uses several MPC protocols to decrement a

counter, only if it has enough "decrement rights".

GSet: The performance of the secure GSet CRDT

depends on the set size. The workload of the update
operation consists in starting with an empty set and

measuring the overhead of adding a single random value.

The workload of the query operation initializes a set

with a fixed size, and measures the overhead of testing

set membership of a random value. For both operations,

we evaluate sets sizes from 23 to 26 elements.

We also compare the performance of our MPC con-

structions with the specialized secure CRDT constructions

presented by Barbosa et al. [8]. They leverage standard

encryption and deterministic encryption techniques to

implement LWW and Set, respectively, and Paillier

homomorphic encryption [30] to implement GC2 and

PNC. Given that none of these mechanisms allows for

replica-side comparison over ciphertexts, they have no

similar implementation of MAX or BC. Their bounded

counter construction is functionally different from ours

and delegates invariant verification to the client, since

Paillier does not allow for ciphertext comparison.

D. Benchmark Results

Table I shows the maximum throughput achieved by

our MPC constructions, the constructions of [8], as well

as our baseline insecure implementations of the same

CRDTs. We evaluated the performance of all CRDTs

by measuring their update and query workloads for
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CRDT Operation Baseline [8] MPC

LWW
Query 1517 1516 1505

Update 1513 1512 1514

MAX
Query 1518 n/a 1503

Update 1514 n/a 9

GC2
Query 1519 1519 1499

Update 1515 1515 1516

PNC
Query 1517 1518 1497

Update 1513 1513 1516

BC

Query 1516 n/a 1233

Increment 1516 n/a 1378

Decrement 1516 n/a 9

TABLE I
AVERAGE THROUGHPUT OF UPDATE AND QUERY OPERATIONS FOR

THE BASELINE AND TWO VERSIONS OF SECURE CRDTS.

an increasing number of clients, from 1 to 64. Across

all MPC constructions presented in this paper, the peak

troughput was achieved by GC2, with 1519 ops/s for 64

concurrent clients. As the number of clients increases,

the performance of the MPC constructions begins to

decline due to the overhead of data resharing among

parties. Overall, the MPC CRDT operations presented

in Table I have an overhead of less than ∼ 2% when

compared to the baseline. Detailed results for the different

number of clients are presented in the report included as

supplementary material.

It’s important to highlight the overhead of the update
operation in the MAX CRDT. This operation is ∼ 168
times slower than the baseline as shown in Table I and

stabilizes at ∼ 9 ops/s for 2 concurrent clients. For

any number of concurrent clients greater than 2, the

request latency increases significantly. This overhead is

to be expected, as the update operation uses MPC

protocols for equality comparison, greater than
or equal to comparison, and secret multiplication.

The update operation of the BC CRDT also differs in

performance to the other counters. As shown in Table I the

secure increment operation throughput decreases by

∼ 9% in comparison to the baseline as it does not require

any MPC protocol. However, the secure decrement
operation uses the equality and the greater than
or equal to MPC protocols to ensure that the counter

does not decrease bellow its lower bound. As such, the

maximum throughput is ∼ 9 ops/s.

Across all CRDTs, the MPC constructions have com-

parable throughput to the constructions in [8]. The largest

difference is present in the PNC update operation, with

a throughput decrease of ∼ 1.4%. Due to the limitations

of the underlying cryptographic mechanisms, MAX and

BC CRDTs are not made available in the work of [8].

SET CRDT Operation Set Size

8 16 32 64

MPC
Query 9.77 6.03 3.41 1.76

Update 9.02 5.80 3.45 2.08

Baseline
Query 24.04 24.05 23.89 23.66

Update 40.10 40.13 40.13 40.12

[8]
Query 23.80 23.80 23.78 23.73

Update 24.11 24.09 24.08 24.05

TABLE II
AVERAGE THROUGHPUT OF UPDATE AND QUERY OPERATIONS FOR

BASELINE AND SECURE GSET CRDT WITH FIXED SET SIZES.

Finally, Table II presents the throughput of the

update and query operations of GSet, evaluated for

a single client. The secure update has a maximum

throughput of ∼ 9 ops/s for the smallest set size, and

decreases to ∼ 2 ops/s for a set with 64 elements.

In contrast, the baseline update has a consistent

throughput of ∼ 40 ops/s and the baseline query has

∼ 24 ops/s. Since [8] is using deterministic encryption,

their performance is predictably similar to that of the

baseline. On the other hand, it has significantly more

leakage, as update operations reveal which elements are

duplicate, and query operations reveal which element

was retrieved. Our solutions prevent this leakage via

replica-side comparisons of private data via MPC.

E. Discussion

When compared to the established baseline, all exper-

imental results show that the majority of secure MPC

construction have an overhead of 2% for both update
and query operations. The slowest constructions are the

MAX update, GSET, and the BC decrement. Notably,

the BC decrement operation is ∼ 168× slower than

the baseline. This overhead stems from multiple factors,

including our non-optimized implementation of secure

CRDTs and the underlying MPC protocols. The feasibility

of our MPC-based approach is further supported by our

comparison with the secure CRDT protocols of [8], as our

design allows for complex replica-side computations over

private data without meaningful performance sacrifice.

Optimizing CRDT Constructions: The current im-

plementation of the secure CRDT constructions is a

prototype. It can be optimized to reduce the number

of MPC protocols per operation. For example, the MAX
update operation uses at least 3 MPC protocols that

have a high number of communication rounds. This can

be reduced at least to 2, thus reducing network bandwidth

usage. Additional optimizations can be achieved by

designing specialized MPC protocols for CRDTs.

Multiparty Protocols: We can improve the perfor-

mance of our constructions by using different MPC
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protocols. We used the Sharemind protocols which are

optimized for data analysis in the three-party setting, but

our contributions are independent from the underlying

protocols. The protocols can be replaced by optimized

versions of said protocols [4], or by using a different

class of protocols such as function secret sharing that

have a constant number of communication rounds [12].

The results of this preliminary experimental evaluation,

suggest the practical applicability of our theoretical

contributions. Secure CRDTs can have throughput similar

to a baseline system by minimizing the number of MPC

protocols, while ensuring data confidentiality.

VIII. RELATED WORK

This section summarizes existing work closely related

to secure CRDTs. A more extended related work can be

found in the supplementary material.

Programming languages: There is a long line of

research on language-based secure compilation [31], and

on the particular compilation of regular programs to MPC

protocols [2], with the proposal of a plethora of high-

level languages and compilation frameworks [20]. The

essential concepts are summarized in our MPC language.

On the other side, there is a growing interest in language-

based approaches to the design and analysis of CRDTs,

including the formal reasoning about specifications and

implementations [18, 28] adopted in this paper. A few

recent approaches have proposed to simplify the design of

replicated data types, allowing some synchronization [27]

or finer control over consistency restoration [16]. How-

ever, none of these approaches considers the privacy of

the data shared among the replicas.

Secure CRDTs: Secure CRDTs were first formalized

by Barbosa et al. [8]. The authors present constructions

for secure registers, counters and set CRDTs that leverage

deterministic encryption and partial homophobic encryp-

tion schemes. Most of the existing work in this area is

adjacent to Barbosa et al. seminal paper. Recent work by

Jannes et al. [21] uses standard cryptographic techniques

to ensure confidentiality and authentication of CRDTs,

but their approach is also restricted by not allowing

any operations for merging encrypted data. Cachin et
al. [14] proposed Authenticated Data Types (ADTs) for

authenticated data outsourcing in a single-server/single-

client setting. Snapdoc [25] presents a solution for

collaborative document edition with history-privacy.

IX. CONCLUSION AND FUTURE WORK

This paper proposes the first approach to general-

purpose implementations of secure CRDTs using MPC.

We propose an MPC language to facilitate the develop-

ment of such protocols, a proof that attests to the security

of our constructions under such language, and several

MPC-based CRDT constructions.

Our work includes an open-source implementation,

and our experimental results suggest practical feasibility

of this approach, with considerable room for future

improvements and optimizations.
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and P. Černỳ. Sequential programming for replicated

data stores. Proceedings of the ACM on Program-

ming Languages, 3(ICFP):1–28, 2019.

[28] H. Liang and X. Feng. Abstraction for conflict-free

replicated data types. In PLDI 2021, pages 636–650.

ACM, 2021.

[29] P. Nicolaescu, K. Jahns, M. Derntl, and R. Klamma.

Near real-time peer-to-peer shared editing on ex-

tensible data types. In GROUP 2016, pages 39–49.

ACM, 2016.

[30] P. Paillier. Public-key cryptosystems based on com-

posite degree residuosity classes. In EUROCRYPT
1999, pages 223–238. Springer, 1999.

[31] M. Patrignani, A. Ahmed, and D. Clarke. Formal

approaches to secure compilation: A survey of

fully abstract compilation and related work. ACM
Computing Surveys, 51(6):1–36, 2019.

[32] Pedro Jorge, Rogério Pontes, Bernardo Portela,

Hugo Pacheco. Secure CRDT. https://github.com/

SecureCRDT/.

[33] B. Portela, H. Pacheco, P. Jorge, and R. Pontes.

General-Purpose Secure Conflict-free Replicated

Data Types. Cryptology ePrint Archive, Paper
2023/12020, 2023.

[34] N. Preguiça. Conflict-free replicated data types: An

overview. arXiv preprint arXiv:1806.10254, 2018.

[35] N. Preguiça, C. Baquero, and M. Shapiro. Conflict-

free Replicated Data Types (CRDTs). In Encyclo-
pedia of Big Data Technologies. Springer, 2019.

[36] A. Rastogi, M. A. Hammer, and M. Hicks. Wysteria:

A programming language for generic, mixed-mode

multiparty computations. In S&P 2014, pages 655–

670. IEEE, 2014.

[37] H.-G. Roh, M. Jeon, J.-S. Kim, and J. Lee. Repli-

cated abstract data types: Building blocks for col-

laborative applications. Journal of Parallel and
Distributed Computing, 71(3):354–368, 2011.

[38] M. Shapiro, N. Preguiça, C. Baquero, and M. Za-

wirski. A comprehensive study of convergent and

commutative replicated data types. Technical report,

Inria–Centre Paris-Rocquencourt; INRIA, 2011.

[39] M. Shapiro, N. Preguiça, C. Baquero, and M. Za-

wirski. Conflict-free replicated data types. In SSS
2011, pages 386–400. Springer, 2011.

[40] M. Sporny, D. Buchner, and O. Steele. Confidential

storage 0.1. Unofficial draft, W3C, Aug. 2021.

https://identity.foundation/confidential-storage.

[41] M. Sulzmann, M. M. Chakravarty, S. P. Jones, and

K. Donnelly. System F with type equality coercions.

In TLDI 2007, pages 53–66. ACM, 2007.

[42] Q. Ye and B. Delaware. Oblivious algebraic data

types. Proceedings of the ACM on Programming
Languages, 6(POPL):1–29, 2022.

[43] P. Zeller, A. Bieniusa, and A. Poetzsch-Heffter.

Formal specification and verification of CRDTs. In

FORTE 2014, pages 33–48. Springer, 2014.

16
536


