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Abstract—Security system designers favor worst-case security
metrics, such as those derived from differential privacy (DP), due
to the strong guarantees they provide. On the downside, these
guarantees result in a high penalty on the system’s performance.
In this paper, we study Bayes security, a security metric inspired
by the cryptographic advantage. Similarly to DP, Bayes security i)
is independent of an adversary’s prior knowledge, ii) it captures
the worst-case scenario for the two most vulnerable secrets (e.g.,
data records); and iii) it is easy to compose, facilitating security
analyses. Additionally, Bayes security iv) can be consistently
estimated in a black-box manner, contrary to DP, which is
useful when a formal analysis is not feasible; and v) provides a
better utility-security trade-off in high-security regimes because
it quantifies the risk for a specific threat model as opposed to
threat-agnostic metrics such as DP.
We formulate a theory around Bayes security, and we provide
a thorough comparison with respect to well-known metrics,
identifying the scenarios where Bayes Security is advantageous
for designers.

Index Terms—Leakage, Quantitative Information Flow, Bayes
risk, Bayes security metric, Local differential privacy

I. INTRODUCTION

Quantifying the level of protection given by security and
privacy-preserving mechanisms is a fundamental process in
secure system engineering. To perform a quantitative analysis,
one needs to define appropriate metrics that capture the
adversary’s gain, and, ultimately, what are the risks for the
system’s users.

A common way of evaluating threats in security and privacy
applications is to quantify the probability that an adversary
guesses some secret information; this metric is referred to
as the success rate or accuracy of an attacker. For example,
membership inference attacks against machine learning (ML)
models [31], where the attacker aims at guessing if a data
record was used for training the model, have been for long
evaluated w.r.t. the attacker’s accuracy.

Average-case metrics. The success rate (or accuracy) has a
very clear interpretation: it measures the probability that an
adversary succeeds in the attack. An important special case, the
Bayes vulnerability (e.g., [32]), is the accuracy of the (Bayes)
optimal adversary, who has maximal information about the
underlying uncertainty. Both Bayes vulnerability and accuracy
rely on the the prior probability of the secret information that
the attacker is trying to guess; unfortunately, this can result in
misleading conclusions about an attack’s strength [32]. In the
membership inference example, if the prior probability that a

data record is low (say, 0.1), a strawman attack that always
guesses “non-member” will achieve 90% accuracy; yet, this
is a rather weak attack. This shows that the accuracy metric
does not characterize well the risk of this attack.

An alternative criterion, used to evaluate cryptographic
primitives, is the advantage (e.g., [5]). Advantage defines the
prior probability over the secrets to be uniform, by construction,
and it relates this prior probability to the probability that the
adversary succeeds after having access to the model (accuracy).
Intuitively, this metric disregards the contribution of the prior,
and it quantifies the information leakage of the algorithm itself;
however, to the best of our knowledge, no known result shows
that this metric is prior-independent.

Both cryptographic advantage and Bayes vulnerability are
threat-specific, i.e., they are connected to the threat model under
which security is quantified. This gives a precise interpretation
of what attacks they protect against. However, they are rarely
used to study complex real-world systems, such as ML training
algorithms. The main reason is that, due to complexity, one
often needs to evaluate the security of individual parts of the
algorithm and then compose them; this is not known to be
possible with these metrics.

Worst-case metrics. At the other end of the spectrum, Differ-
ential Privacy (DP) has become the golden standard in privacy
analysis [14]. In DP, a parameter ε bounds the probability that
an algorithm’s output leaks any information. There are several
reasons why DP is generally preferred over other metrics: 1)
DP is easy to compose analytically; e.g., if two algorithms are
resp. ε1- and ε2-DP, their cascade composition is (ε1 + ε2)-DP.
2) DP is prior-independent: it measures the risk of releasing
a secret via the algorithm, independently of the secret’s prior
probability; 3) DP protects against virtually any threat model:
its guarantees hold whether the adversary wishes to learn an
entire data record or just one bit of information; we refer to this
property as being threat-agnostic. 4) DP considers the worst-
case scenario over the outputs, ensuring robustness against any
threat: it bounds the best gain an adversary can have, even if
their maximum gain is achieved with negligible probability.

DP, however, also comes with disadvantages. First, DP is
often too strict of a requirement: in many security settings,
such as traffic analysis, side channel protection, and privacy-
preserving ML (PPML), DP mechanisms that provide high
protection levels incur severe utility loss. This mostly comes
from the fact that DP is threat-agnostic. Second, it is theoreti-
cally impossible to estimate empirically ε-DP in a consistent
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manner (e.g., [10]) for black-box mechanisms; for example,
an empirical DP estimate would fail to properly assess a
mechanism that violates ε-DP with negligible probability.

Bayes security. In this paper, we study the multiplicative risk
leakage (β), a metric that generalizes the cryptographic advan-
tage defined for a Bayes-optimal adversary [9]. Specifically,
we focus on the minimizer of β across all prior probability
distributions, which we call the Bayes security metric (β∗). We
identify several properties about β∗ that make it suitable for
studying security and privacy threats of complex algorithms:
1) similarly to the Bayes vulnerability and the advantage,
Bayes security is threat-specific; 2) differently from them,
it quantifies the risk for the two most vulnerable secrets (worst-
case). 3) Similarly to DP, the composition of Bayes secure
algorithms is easy to study; 4) the formal analysis of complex
algorithms via Bayes security is further aided by its direct
relation with the total variation distance between the output
distributions of the algorithm; 5) when a formal analysis is not
possible (e.g., one needs to study a black-box system), there are
consistent methods for estimating Bayes security (Section VII).

Finally, because of its construction, Bayes security captures
the average (i.e., expected) risk for the worst-case pair of inputs
(e.g., data records, users). In this sense, it can be regarded as a
middle way between average and worst-case security metrics;
we argue that it gains benefits from both.

We summarize our contributions as follows:
3 We study multiplicative risk leakage [9], β, a generalization

of the advantage. We show that it reaches its least secure
setting, β∗, when assigning a uniform prior to the two most
vulnerable secrets. We call this minimum Bayes security,
which captures the expected risk for the two secrets that
are the easiest to distinguish for an optimal adversary
(Section III).

3 We study compositionality rules for algorithms that satisfy
Bayes security (Section IV).

3 We study the relation between Bayes security and mainstream
security and privacy notions. We provide a game-based
interpretation of Bayes security, which is equivalent to IND-
CPA, and one for local DP. We derive bounds w.r.t. DP and
local DP, which improve on the bound by Yeom et al. [39].
Our analysis shows Bayes security is in between worst-case
metrics (e.g., DP) and average ones (Section V). This enables
system designers to explore new security-utility trade-offs
(Section VIII).

3 We derive the Bayes security of three mainstream privacy
mechanisms: Randomized Response, and the Laplace and
Gaussian mechanisms (Section VI), and discuss suitable
applications (Section VIII).

3 Finally, we provide efficient means to compute β∗ in white-
and black-box scenarios (Section VII).

Due to space constraints, proofs are given in the appendix.

II. PRELIMINARIES

We consider a system (π, C), where a channel or mechanism
C protects secrets s ∈ S. Let D(S) be the set of probability

distributions over a set S. Secrets are selected as inputs to the
channel according to a prior probability distribution π ∈ D(S);
we write πs

def
= P (s). The channel is a matrix defining the

posterior probability of observing an output o ∈ O given an
input s ∈ S: Cs,o

def
= P (o | s). We denote by Cs ∈ D(O) the

s-th row of C (which is a distribution over O), and by CS the
set of all rows of C. Table I summarizes our notation.
Adversarial Goal. We consider a passive adversary A who,
given an output o, aims at inferring which secret s was input
to the mechanism. We model this adversary with the following
indistinguishability game, which we call IND-BAY:

IND-BAYAC
1 : A ← C, π
2 : s

π← S

3 : o
P (o|s)← O

4 : s′ ← A(o)
5 : return s = s′

We consider an optimal adversary that has perfect knowledge
of the channel C and of the prior distribution over the secret
inputs π (line 1). A challenger samples a secret s according
to the prior π (line 2), and inputs it to the channel C to
obtain an observable output o (line 3). For simplicity, the game
considers an individual observation, but we note that sequences
of observations (e.g., representing multiple uses of the same
channel to hide one secret, or simultaneous use of two channels
with the same secret) can be accounted for by redefining o to be
a vector. Upon observing the output o. the adversary produces
a prediction s′ (line 4). The adversary wins if they guess the
secret correctly: s = s′ (line 5). We evaluate the adversary
A with respect to their expected prediction error according to
the 0-1 loss function: RA def

= P (s 6= A(o)) = P (s 6= s′).
Extensions to further loss functions are possible, but out of
the scope of this paper.

This formulation is different from typical cryptographic
games because of the following reasons. First, we assume an
optimal adversary: instead of providing them with knowledge
of the cryptographic algorithm except for the key, and let them
query the primitive to learn its statistical behavior, we assume
that the adversary has perfect knowledge of the probabilistic
behavior of the channel. Second, we compute the advantage
with respect to the adversary’s error, while cryptographic games
compute the adversary’s probability of success. Third, this game
captures an eavesdropping adversary that cannot influence the
secret used by the challenger to produce the observable output.
This is considered to be a weak adversary in cryptography,
where typically the adversary is allowed to provide inputs
to the algorithm under attack. However, it corresponds to
many security and privacy problems where the adversary
cannot influence the secret and only observes channel outputs:
website fingerprinting [21], [37], privacy-preserving distribution
estimation [18], [29], [30], side channel attacks [25], [26], [33],
or pseudorandom number generation.
Adversarial Models. In this paper, we consider the Bayes
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adversary, an idealized adversary who knows both prior π and
channel matrix C, and guesses according to the Bayes rule:

s′ = A∗(o, π, C) = arg max
s∈S

P (s|o) = arg max
s∈S

Cs,oπs .

The expected error of the Bayes adversary (Bayes risk) is:

RA
∗
(π, C) = R∗(π, C) = 1−

∑
o∈O

max
s∈S
Cs,oπs .

When this adversary is confronted with a perfect channel,
whose outputs leak nothing about the inputs, their best strategy
is to guess according to priors: s′ = arg maxs∈S πs. The
expected error of this strategy is the random guessing error:
G(π) = 1−maxs∈S πs. Naturally, G(π) ≥ R∗(π, C).

Multiplicative Bayes risk leakage. We study the properties
of a metric, β, defined as [9]:

β(π, C) def
=

R∗(π, C)
G(π)

,

where it is assumed that G(π) > 0; we refer to β as the multi-
plicative Bayes risk leakage. Inspired from the cryptographic
advantage (Section V-A), β captures how much better than
random guessing an adversary can do. It takes values in [0, 1];
β = 1 when the system is perfectly secure (i.e., it exhibits
no leakage), and β = 0 when the adversary always guesses
the secret correctly. In the next section, we define the Bayes
security metric β∗(C) to be the minimizer (i.e., least secure
configuration) of β(π, C) for any prior π. We then study its
properties, which we argue make it suitable for analyzing the
security of complex real-world algorithms.

We note that β is closely related to the multiplicative Bayes
vulnerability leakage [6], which is defined as: L×(π, C) def

=
1−R∗(π,C)

1−G(π) . Differently from β, L× is defined for the adver-
sary’s probability of success (i.e., Bayes vulnerability) rather
than failure, and it takes values in [0, n]. Despite their similar
definition, these two metrics behave very differently (Section V).
An important result for L× is that it takes its worse value
(i.e., least secure configuration) on a uniform prior over the
secrets [6]. Therefore, even when the real priors are unknown,
a security analyst can easily compute a bound on the security
of the system. In the next section, we derive the counterpart
result for the β: it reaches its least secure configuration when
setting a uniform prior on the two most vulnerable secrets, and
a 0 prior probability elsewhere; the proof is substantially more
involved than the one for L×. We further discuss the relation
between the Bayes Security metric and multiplicative leakage
in Section V-E.

III. THE BAYES SECURITY METRIC

Leakage notions based on the Bayes risk generally depend
on the prior distribution over the secrets. This makes them
unsuitable for measuring security in real-world applications
where the true priors are unknown, e.g., traffic analysis [17],
[38] or membership inference attacks [31], and result in an
overestimation of a mechanism’s security if the real prior
implies more leakage than the prior considered in the analysis.

TABLE I: Notation

Symbol Description
S = {1, ..., n} The secret space.
O = {1, ...,m} The output space.
Cs,o (abbr. C) A channel matrix, where Cs,o = P (o | s) for

s ∈ S, o ∈ O.
Cs The s-th row of a channel matrix. It corresponds

to the probability distribution P (o | s), ∀o ∈ O.
π ∈ [0, 1]n A vector of prior probabilities over the secret

space. The i-th entry of the vector is πi.
πij A prior vector with exactly 2 non-zero entries, in

position i and j, with i 6= j.
υ = (1/n, ...1/n) Uniform priors for a secret space of size |S| = n.
R∗(π, C) (abbr. R∗) The Bayes risk of a channel.
G(π) (abbr. G) The random guessing error (error when only

priors’ knowledge is available).
β(π, C) Bayes security of a channel.
β∗(C) (abbr. β∗) Min Bayes security of a channel.

Given the similarity between multiplicative risk leakage and
multiplicative vulnerability leakage, one could expect that the
uniform prior also represents the worst case for the latter [6].
Unfortunately, this is not the case: Theorem 7 (Appendix A)
shows that, for secret spaces |S| > 2, there exists a prior π for
which β is smaller than the one achieved for a uniform prior.
Prior-independence for β. In this section, we show that the
multiplicative Bayes risk leakage, β(π, C), for a channel C,
is minimized when the prior π assigns equal weight to the
two secrets that are maximally distant (according to posterior
distribution), and 0 to all other secrets. We refer to this
minimizer, representing the highest risk for the channel w.r.t.
adversary’s prior knowledge, as the Bayes security metric; we
denote it with β∗(C) (omitting the argument if no confusion
arises). This result makes the Bayes security metric prior-
independent: for any prior knowledge the attacker may have
in practice, β∗ bounds their success.

For simplicity, we present our result in the one-try attack
scenario, as formalized by the IND-BAY game: the adversary
observes just one output of the system before guessing the
secret input. In Section IV we extend this result to cases where
the adversary can collect more observations.

Theorem 1. Consider a channel C on a secret space with
|S| ≥ 2. There exists a prior vector π∗ ∈ D(S) of the form

π∗ = {0, ..., 0, 1/2, 0, ..., 0, 1/2, 0, ..., 0}

such that

β∗(C) = β(π∗, C) = min
π∈D(S)

β(π, C) .

In the following, we provide an intuition of the concepts
involved with this proof.

We denote with U (k) ⊂ D(S), for k = 1, ..., |S|, the set
of distributions whose support has cardinality k, and with a
uniform distribution over its non-zero components:

U (k) def
=
{
u ∈ D(S) | us ∈ {0,

1

k
} for all s ∈ S

}
.

For example, if n = 3, then: U (1) = {(1, 0, 0), ..., (0, 0, 1)},
U (2) = {(1/2, 1/2, 0), (1/2, 0, 1/2), (0, 1/2, 1/2)}, and U (3) =
{(1/3, 1/3, 1/3)}.
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For a fixed channel C, the proof of Theorem 1 is based on
demonstrating the following two steps:

1) the function β(π, C) = R∗(π,C)/G(π) has its minimum in
the set U = U (1) ∪ ... ∪ U (|S|). The elements of U are
known in the literature as the corner points of G(π);

2) the minimizing prior π∗ of β(π, C) has cardinality 2; that
is, π∗ ∈ U (2).

The proof for the first step comes from the observation that
the function β is the ratio between a concave function, R∗,
and a function G that is convexly generated by U . Lemma 2
(Appendix B) shows that the minima of this ratio exist, and
that they must come from the set of corner points of G (i.e.,
the set U ). This determines the form of the minimizing priors.

For the second step, under the constraints given by Lemma 2,
the Bayes risk R∗(π, C) decreases quicker than G(π) as we
increase the number of 0’es in π ∈ U . By excluding the solution
π∗ ∈ U (1), which would force the denominator G = 0, it
follows that the minimizer of β(π, C), π∗, has exactly 2 non-
zero elements; that is, π∗ ∈ U (2).
Discussion. Theorem 1 has several consequences. First, the fact
that β∗(C) does not depend on a prior means that it captures the
actual leakage of the channel, excluding any prior knowledge
that the adversary may have. Conveniently, after Bayes security
is computed for the channel, one can recover the success rate
of the Bayes optimal adversary for desired levels of attacker’s
knowledge (Section V-E). Second, the fact that Bayes security
represents the risk for the two leakiest secrets means that:
• If the two leakiest secrets can be determined a priori, this

makes the security analysis straightforward (Section VI);
• If the two leakiest secrets cannot be determined a priori,

one only needs O(n2) computations (instead of O(n!))
to recover them.

Finally, Theorem 1 suggests that Bayes security can be
interpreted as a middle way between worst-case and average-
case security metrics: it represents the expected (i.e., average)
risk for the two most vulnerable (i.e., worst-case) secrets. We
argue that this, paired with the fact that Bayes security is
threat-specific, favors the interpretability of this metric. In the
next sections, we prove properties about Bayes security which
make it suitable for studying complex mechanisms.
Bayes security and total variation. We now introduce an
important result for β∗ which helps analyzing mechanisms in
practice: Bayes security is the complement of the total variation
of the two maximally distant rows of the channel:

Theorem 2. For any channel C, it holds that

β∗(C) = 1− 1

2
max
a,b∈S

‖Ca − Cb‖1 = 1− max
a,b∈S

tv(Ca, Cb) .

This result gives a clear interpretation of what β∗ represents:
it measures the maximal distance between the pairwise posterior
distributions of the outputs w.r.t. the secret inputs (Figure 1).
Further, thanks to this result: i) it is easy to analyze mechanisms
both analytically (Section VI) and via estimation techniques
(Section VII) by exploiting the plethora of results surrounding
the total variation distance between distributions.

Fig. 1: Posterior probability distribution for 5 secrets obfuscated
with a two-dimensional Laplace. The Bayes security metric
is the complement of the total variation distance between the
posterior of the most distinguishable secrets (shown in red).

IV. THE BAYES SECURITY METRIC UNDER COMPOSITION

Some of the properties that made DP so popular for studying
complex algorithms are its compositionality rules: given DP-
compliant mechanisms, it is very easy to determine the privacy
of a mechanism that combines them (e.g., by chaining them).
Further, compositionality enables studying complex threat
scenarios. For example, while so far we have only considered an
adversary who observes the channel’s output once, it is common
that a real adversary observes more than one channel at a time;
e.g., observing obfuscated locations at different layers [35]
or combining side channels [33]. Moreover, they can observe
the output of two sequential channels, e.g., users’ privacy-
preserving interactions with a database through anonymous
communication channels [34]; or they can observe more than
one output from one channel, e.g., by gathering several side
channel measurements from a hardware running cryptographic
routines [25], or observing more than one visit to a website
through an anonymous communication channel [24], [37].

In this section, we uncover compositionality rules for Bayes
security, which enable it to tackle the above examples.

A. Parallel composition

We first consider an adversary who has access to the outputs
of two channels that have as input the same secret [33],
[35] or where an adversary observes multiple channel outputs
belonging to the same secret [24], [25], [37].

Given two channels, C1 : S → O1 and C2 : S → O2, their
parallel composition is the channel C1||C2 : S → O1 × O2,
defined by (C1||C2)s,(o1,o2) = C1

s,o1 · C
2
s,o2 .

Theorem 3. For all channels C1, C2 it holds that

β∗(C1||C2) ≥ β∗(C1) · β∗(C2) .

In layman’s terms, the composition of two channels that are
respectively β∗1 -secure and β∗2 -secure leads to a β∗1β

∗
2 -secure

channel. This bound is tight.
Note that the security of this new channel is not necessarily

minimized by the secrets that minimize the composing channels
C1, C2, not even when the channel is composed with itself:
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Proposition 1. Let C be a channel for which β is minimized
for secrets (s1, s2). Then the composition channel C′ := C||C
is not necessarily minimized by secrets (s1, s2).

Proof. A counterexample follows.

C =


0.9 0.1 0.0
0.8 0.2 0.0
0.5 0.5 0.0
0.5 0.1 0.4


β∗(C) = 0.6 is obtained for secrets (s1, s3); β∗(C||C) = 0.36
is achieved for secrets (s2, s4).

B. Chaining mechanisms

Another typical configuration, used to strengthen the security
of the system, is to put in place a cascade of security
mechanisms (in-depth security). More formally, consider two
channels C1 : S1 7→ S2 and C2 : S2 7→ O. Their cascade
composition is the channel C1C2 in which the secret is input
in C1 and this channel’s output is post-processed by C2.

It is well understood that post-processing cannot decrease
the security of a mechanism. Therefore, C1C2 should be at
least as secure ask C1. Indeed, based on the concavity of R∗,
it is easy to show that R∗(π, C1C2) ≥ R∗(π, C1) for any prior
π. Consequently, β(π, C1C2) ≥ β(π, C1).

Understanding the effect of C1 on C2 is less straightforward.
The composition C1C2 can be seen as the pre-processing of C2,
which is not necessarily a safe operation. Note that C2 receives
as input the output of C1, which is not necessarily the same as
S1. Hence, the prior π on the input secret in S1 is meaningless
for C2. Remarkably, as β∗ does not depend on the prior, it
allows to compare C1C2 and C2 despite the different input
spaces. From Theorem 2 we know that β∗(C1C2) is given by
the maximum `1 distance between the rows of C1C2. The key
observation is that the rows of C1C2 are convex combinations
of the rows of C2; but convex combinations cannot increase
distances, which brings us to the following result.

Theorem 4. For all channels C1, C2 it holds that

β∗(C1C2) ≥ max{β∗(C1), β∗(C2)} .

This means that neither pre-processing nor post-processing
decreases the Bayes security provided by a mechanism.

V. RELATION WITH OTHER NOTIONS

In the previous sections, we presented Bayes security,
discussed its properties and showed how to compute it in
an efficient manner. In this section, we compare it with
three well-known security notions: cryptographic advantage, a
mainstream threat-specific metric in the security community;
DP, the paradigmatic worst-case metric; and multiplicative
Bayes vulnerability leakage, which is closely related to β but
comes with different properties.

IND-MINBAYAC
1 : A ← C, π
2 : A selects s1, s2 ∈ S

3 : s
π1,2← {s1, s2}

4 : o
P (o|s)← O

5 : s′ ← A(o)
6 : return s = s′

IND-LDPAC
1 : A ← C, π
2 : A selects s1, s2 ∈ S
3 : A selects o ∈ O

4 : s
P (s|o)← {s1, s2}

5 : s′ ← A(o)
6 : return s = s′

Fig. 2: Security games for β∗ (left) and LDP (right).

A. Cryptographic advantage

In cryptography, the advantage Adv of an adversary A is
defined assuming that there are two secrets (|S| = 2) with a
uniform prior as input to a channel C. Formally (e.g. [39]):

Adv(C,A)
def
= 2|RA(υ, C)− 1/2| .

The factor 2 serves to scale Adv within the interval [0, 1].
Denoting by Adv(C) the advantage of the optimal (Bayes)

adversary and considering a uniform prior π = υ, we derive:

β(υ, C) = 1− 2|R∗(υ, C)−G(υ)| = 1− Adv(C). (1)

Hence the Bayes security metric can be seen as a generalization
of 1 − Adv for which the secret space S may contain more
than two secrets the prior is not necessarily uniform.1

Bayes security as IND-CPA security. In Section II, we
introduced the IND-BAY game to formalize the adversarial
setting captured by β(π, C). When considering this game in the
light of the minimizer, β∗(C), and our main result Section III (β
is minimized on the two leakiest secrets), the IND-BAY game
becomes a version of the traditional IND-CPA cryptographic
game that we call IND-MINBAY (Figure 2, left).

First, recall that the adversary has perfect knowledge of
the prior π and the channel C (line 1). Then, as opposed to
the IND-BAY game, where the adversary cannot influence the
input, we allow A to select the secrets and provide them to the
challenger (line 2). This is analogous to classical IND-CPA, and
it allows to capture the worst-case inputs. Then the challenger
selects one of the two secrets according to the prior π (line 3),
and returns to the adversary an obfuscated version according to
the channel probability matrix (line 4). The adversary guesses
one of the two secrets (line 5), and wins the game if the guess
is the secret selected by the challenger. The advantage of this
adversary is equivalent to that of a CPA adversary guessing
what message was encrypted by the challenger.

This equivalence of games reinforces that the Bayes security
metric sits in the middle between average metrics (measuring
the expected risk) and worst-case metrics (measuring the worst-
case risk across the secrets). In the next part of this section
we explore this relation further.

1Note that in cryptography the advantage is usually defined for a generic
(and not necessarily optimal) adversary.
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B. Local Differential Privacy

We investigate the relation between the privacy guarantees
induced by Bayes security (and, more in general, β), and those
induced by DP metrics.

For a parameter ε ≥ 0, we say that a mechanism is ε-LDP
(local DP) [13] if for every i, h, j:

Csi,oj ≤ exp(ε) Csh,oj . (2)

LDP is a worst-case metric, while recall that β has the
characteristics of an average metric. Therefore, we expect that
LDP implies a lower bound on β, but not vice versa. The rest
of this section is dedicated to analyzing this implication.

A game for LDP. We first illustrate the difference between
the threat model of Bayes security and the one considered by
Local Differential Privacy using security games. Figure 2, right,
represents the game for local differential privacy (IND-LDP).2

A first remarkable difference with respect to typical security
games is that, in addition to selecting the secrets as the IND-
MINBAY game, the adversary also chooses the observation
(line 3). This captures a worst-case in which the adversary not
only picks the most vulnerable inputs, but also the output that
makes them easier to distinguish. Upon receiving the secrets
and the observation, the challenger selects one of the secrets
according to the probability that it caused the observation (line
4). A second difference with respect to typical games, and
IND-MINBAY, is that the challenger does not show the chosen
value to the adversary. Otherwise, it would be a trivial win. The
adversary guesses a secret (line 5), and wins if this is the secret
the challenger chose (line 6). Note that, because the adversary
has much greater freedom in their choices, their chances to
win are considerably greater than than in IND-MINBAY or
traditional games. Therefore, the LDP game captures a stronger
attacker than most cryptographic games, but it is much harder
to map it to a realistic threat scenario.

LDP induces a lower bound on Bayes security. In general,
if there are no restrictions on the channel matrix, the lowest
possible value for β is 0; this is achieved when the adversary
can identify the value of the secret from every observable
with probability 1. Assuming that |S| ≥ 2 and that π is not
concentrated on one single secret,3 and that S contains at least
two elements, β can only be zero if and only if the channel
contains at most one non-0 value for each column.

If the matrix is exp(ε)-LDP, however, then the ratio between
two values on the same column is at most exp(ε). Intuitively,
under this restriction, β cannot be 0 anymore: the best case
for the adversary is when the ratio is as large as possible, i.e.,
when it is exactly exp(ε). In particular, in a 2× 2 channel, we

2We use this game for a qualitative comparison between the metrics. How-
ever, we observe that the parameter ε of LDP can be recovered from this game
by ensuring a uniform prior when sampling from P (s | o) = P (o|s)/(2P (o))

(i.e., P (s1) = P (s2) = 1/2), and by evaluating the game with the following
success metric: ε = ln(V ∗/1−V ∗), where V ∗ = maxs P (s | o) is the
probability that a Bayes-optimal adversary guesses the secret correctly.

3If the probability mass of π is concentrated on one secret, then
G(π) = 0 and β(π, C) is undefined. However also R∗(π, C) = 0, and
limπ′→π β(π

′, C) = 1.
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Fig. 3: Two examples of n ×m matrices C∗ which achieve
minimum β value β∗(C∗) = 2

1+exp(ε) . In the first matrix:

a = exp(ε)
k(1+exp(ε)) , b = 1

(m−k)(1+exp(ε)) and c = 1
m . In the

second matrix: d = exp(ε)
1+exp(ε) and e = 1

1+exp(ε) .

expect that the minimum β is achieved by a matrix that has
the values exp(ε)/1+exp(ε) on the diagonal, and 1/1+exp(ε) in
the other positions (or vice versa). The next theorem confirms
this intuition, and extends it to the general case n×m.

Theorem 5.
1) If C is ε-LDP, then for every π we have

β(π, C) ≥ 2
1+exp(ε) .

2) For every n,m ≥ 2 there exists a n×m ε-LDP channel
C∗ such that β∗(C∗) = 2

1+exp(ε) . Examples of such C∗’s
are illustrated in Figure 3.

Bayes security does not induce a lower bound on LDP.
Theorem 5 shows that ε-LDP induces a bound on Bayes
security, and that we can express a strict bound that depends
only on ε. The other direction does not hold. The main reason
is that if a column contains both a 0 and a positive element,
then ε-LDP cannot hold, independently from the value of β.

C. Approximate Differential Privacy

One may consider (ε, δ)-LDP [15]. This is a variant of LDP
in which small violations to Equation 2 are tolerated. Precisely,
a mechanism is (ε, δ)-LDP if for every si, sj ∈ S and O ⊆ O:∑

o∈O

(
Csi,o − exp(ε) Csj ,o

)
≤ δ . (3)

With (ε, δ)-LDP, a column may contain 0 and non-0 values,
as long as the latter are smaller than δ. Similarly to pure DP,
approximate DP is threat-agnostic; this makes it harder to
match (ε, δ) values to the risk of an attack occurring.

Surprisingly, we observe a direct relation between Bayes
security and the special case (0, δ)-DP:

Proposition 2. Let C be a β∗-secure channel. Then it is also
(0, δ)-LDP, with δ = 1− β∗.

This comes from the fact that, for ε = 0, the LHS of
Equation 3 becomes

∑
o∈O

(
Csi,o − Csj ,o

)
, which is max-

imized for O∗ = {o ∈ O | Csi,o > Csj ,o}. Observe
that

∑
o∈O∗

(
Csi,o − Csj ,o

)
corresponds to the total variation

between Csi,o and Csj ,o. Applying the equivalence between β∗

and total variation (Theorem 2) concludes the argument.
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The special case of (0, δ)-LDP mechanisms is not commonly
studied. Intuitively, it corresponds to a mechanism that is com-
pletely vulnerable, but only with probability δ. We hope that the
direct correspondence between β∗, δ, and the cryptographic
advantage can give further insights in the decision of the
parameter choices for approximate DP.

D. Differential privacy [16]

Differential privacy is similar to LDP, except that it involves
the notion of adjacent databases. Two databases x, x′ are
adjacent, denoted as x ∼ x′, if x is obtained from x′ by
removing or adding one record.

The definition of ε-differential-privacy (ε-DP), in the discrete
case, is as follows. A mechanism K is ε-DP if for every x, x′

such that x ∼ x′, and every y, we have

P (K(x) = y) ≤ exp(ε)P (K(x′) = y).

A relation between the Bayes security and DP follows from
an analogous result in [1] for the multiplicative Bayes leakage
L×(π,K), and the correspondence between the latter and the
Bayes security (cfr. Section V-E), which is given by

β(π, C) =
1− (maxs πs)L×(π, C)

1−maxs πs
. (4)

The following result, proven by Alvim et al. [1], states
that ε-DP induces a bound on the multiplicative vulnerability
leakage, where the set of secrets are all the possible databases.
The theorem is given for the bounded DP case, where we
assume that the number of records present in the database is
at most a certain number n, and that the set of values for the
records includes a special value ⊥ representing the absence
of the record. The adjacency relation is modified accordingly:
x ∼ x′ means that x and x′ differ for the value of exactly
one record. We also assume that the cardinality v of the set
of values is finite. Hence also the number of secrets (i.e., the
possible databases) is finite.

Theorem 6 (From [1], Theorem 15). If K is ε-DP, then, for
every π, L×(π, C) is bounded from above as

L×(π, C) ≤
(

v exp(ε)

v − 1 + exp(ε)

)n
.

and this bound is tight when π is uniform.

From Theorem 6 and Equation 4 we immediately obtain a
bound also for the Bayes security:

Corollary 1. If K is ε-DP, then, for every π, β(π, C) is bounded
from below as

β(π, C) ≥
1− (maxs πs)

(
v exp(ε)

v−1+exp(ε)

)n
1−maxs πs

.

and this bound is tight when π is the uniform distribution υ
which assigns 1/vn to every database, in which case it case it
can be rewritten as

β(π, C) ≥
vn −

(
v exp(ε)

v−1+exp(ε)

)n
vn − 1

.

Fig. 4: The blue line illustrates the lower bound of ε-DP on
β expressed by Corollary 2). The orange line represents the
lower bound on β derived from the one proved in Yeom et
al. [40] for the advantage of a membership inference adversary.

Alvim et al. [1] show that the reverse of Theorem 6 does
not hold, and as a consequence the reverse of Corollary 1 does
not hold either. The reason is analogous to the case of LDP: a
0 in a position of a non-0-column implies that the mechanism
cannot be DP, independently from the value of β.
Membership inference. In Corollary 1 the secrets are the
whole databases. Often, however, in DP we assume that the
attacker is not interested at discovering the whole database,
but only whether a certain record belongs to the database or
not. We can model this case by isolating a generic pair of
adjacent databases x and x′, and then restricting the space
of secrets to be just {x, x′}. On this space, the mechanism
can be represented by a stochastic channel C{x,x′} that has
only the two inputs x and x′, and as outputs the (obfuscated)
answers to the query. It is immediate to see that K is ε-DP
iff C{x,x′} is ε-LDP for any pair of adjacent databases x and
x′. Hence, the relations we proved between Bayes security
and LDP hold also for DP. In particular, the following is an
immediate consequence of Theorem 5.

Corollary 2. If K is ε-DP, then for every pair of adjacent
databases x and x′ and every π we have

β(π, C{x,x
′}) ≥ 2

1 + exp(ε)
.

and this bound is strict.

A similar investigation was done by Yeom et al. [39]. They
studied the privacy of C{x,x′} in terms of the advantage, defined
in the context of membership inference attacks (MIA). The
authors established that, if a mechanism is ε-DP, then the
following lower bound for holds for Adv(C{x,x′}), for any
adjacent databases x and x′:

Adv(C{x,x
′}) ≤ exp(ε)− 1 (5)

By using the relation between the advantage and the Bayes
security metric (Equation 1), we derive the following bound:

β(υ, C{x,x
′}) ≥ 2− exp(ε) . (6)

where υ is the uniform distribution.
By exploiting the equivalence between Bayes security and the

advantage, we conclude that the bound by Yeom et al. [39] is
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loose; from Corollary 2 and Equation 1, we derive the following
(strict) bound for the advantage of an ε-DP mechanism:

Adv(C{x,x
′}) ≤ exp(ε)− 1

exp(ε) + 1
.

which is much tighter than their bound (see Figure 4).
Concurrent work by Humphries et al. [22] proved a similar

bound for (ε, δ)-DP in the context of membership inference
attacks. Their bound is more general than ours, since it captures
approximate DP; however, we prove tightness for our bound.
Whether tightness can be proven for the bound by Humphries
et al. is to our knowledge an open problem.

E. Leakage notions from Quantitative Information Flow

We discuss multiplicative risk leakage (β) and its minimizer
(β∗) from the point of view of Quantitative Information
Flow (QIF), and compare it with similar metrics stemming
from the field. QIF measures the information leakage of
a system by comparing its vulnerability before and after
observing its output. It starts with a vulnerability metric V (π),
expressing how vulnerable the system is when the adversary
has knowledge π about the secret. The posterior vulnerability is
defined as V (π, C) =

∑
o p(o)V (δo), where δo is the posterior

distribution on S produced by the observation o; intuitively,
it expresses how vulnerable the system is, on average, after
observing the system’s output. Leakage is defined by comparing
the two, either multiplicatively or additively:

L×(π, C) =
V (π, C)
V (π)

, L+(π, C) = V (π, C)− V (π) .

One of the most widely used vulnerability metrics is Bayes
vulnerability [32], defined as V (π) = maxs πs = 1 − G(π);
it expresses the adversary’s probability of guessing the secret
correctly in one try.4 For the posterior version, it holds that
V (π, C) = 1−R∗(π, C). The multiplicative risk leakage follows
the same core idea: G(π) can be thought of as a prior version
of R∗: indeed, it holds that R∗(π, C) =

∑
o p(o)G(δo) where

δo are the posteriors of the channel. Hence, β can be considered
to be a variant of multiplicative vulnerability leakage, using
Bayes risk instead of Bayes vulnerability.

Since the two are closely related, one would expect to be able
to directly translate results about L×(π, C) to similar results
on β(π, C). This would be the case for additive leakage, since
V (π, C)− V (π) = G(π)−R∗(π, C), but in the multiplicative
case, the “one minus” in both sides of the fraction completely
changes the behavior of the function.
Capacity vs β∗. One should first note that, while β takes lower
values to indicate a worse level of security, L× takes higher
values. In both cases, a natural question is to find the prior π
that provides the worst level of security; in the case of leakage,
its maximum value is known as channel capacity, denoted by
ML×(C) = maxπ L×(π, C).
ML×(C) is given by the uniform prior [6], andML×(C) =∑
o maxs Cs,o. Our main result (Theorem 1) shows that β(π, C)

4The tightly connected notion of min-entropy, defined as log V (π), is used
by many authors instead of Bayes vulnerability.

is minimized on a uniform prior over 2 secrets. Hence, despite
the similarity between Bayes vulnerability and Bayes risk,
the corresponding leakage and security metrics behave very
differently. Note that this difference makes ML×(C) easier to
compute for arbitrary channels; it is linear on both |S| and
|O|, while β∗ is quadratic on |S|. We discuss fast ways for
computing (or estimating) Bayes security in Section VII.
Channel composition. Despite their difference w.r.t. the prior
that realizes each notion, ML× and β∗ behave similarly w.r.t.
parallel and cascade composition. It was shown that [19]:

ML×(C1||C2) ≤ ML×(C1) · ML×(C2) , and

ML×(C1C2) ≤ min{ML×(C1),ML×(C2)} .

The same bounds are given in Section IV for β∗. Note, however,
that the proofs for β∗ are completely different and cannot be
directly obtained from those of ML×.
Bounds on Bayes risk. The goal of a security analyst is to
quantify how much information is leaked by a mechanism in
the worst case. This is captured by both ML× and β∗ which
focus on the prior that produces the highest leakage instead of
the true prior. The user, however, is mostly interested in the
actual threat that he is facing: how likely it is for the adversary
to guess his secret, given a particular prior π that captures the
user’s behavior. In this sense, the Bayes risk, R∗(π, C), has a
clear operational interpretation for the user.

Fortunately, having computed either ML× or β∗, we can
obtain direct bounds for the prior π of interest:

R∗(π, C) ≥ β∗(C) ·G(π) , and

R∗(π, C) ≥ 1−ML×(C) · V (π) .

The goodness of either bound depends on the application.
Intuitively, how good the bound is depends on how close π
is to the one achieving ML× or β∗. Concretely, since the
former implies uniform priors, and the latter a vector with only
2 non-empty (uniform) entries, the tightness of these bounds
depends on the sparsity of the real prior vector π.

We study empirically how tight these bounds are. We
consider two channels with |S| = 10 inputs and |O| = 1K
outputs. The first channel (hereby referred to as the random
channel) is obtained by sampling at random its conditional
probability distribution P (o | s); the second one (geometric
channel) has a geometric distribution as used by Cherubin et
al. [10], with a noise parameter ν = 0.1. To evaluate the effect
of sparsity, we set a sparsity level to σ ∈ 0, 1, ..., n− 2, and
we sample a prior that is σ-sparse uniformly at random. We
compute the values of L× and β, and measure their absolute
distance respectively from ML× and β∗. The experiment is
repeated 1K times for each sparsity level.

Figure 5 shows the results. As expected, the multiplicative
vulnerability leakage bound is tighter for vectors that are less
sparse, and the Bayes security one for higher sparsity levels.
However, we observe that the Bayes security bound is loose
for high values of sparsity in the case of the geometric channel,
but not for the random one. The reason is that if the real prior
has maximum sparsity (i.e., only 2 non-zero entries), then it is
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TABLE II: Security metrics comparison: Local Differential Privacy (LDP), Multiplicative leakage capacity, and Bayes Security
(β∗). Note that the cryptographic advantage is a special case of β∗, and therefore not included in this table. “Consistent
Black-box Estimation” refers to the existence of a statistically consistent estimator for the security metric (e.g., [10]).

Property LDP (ε) ML× β∗

Range [0,∞) [1, n] [0, 1]

Smaller is more secure Smaller is more secure Larger is more secure
Attacks Any attack Concrete attack Concrete attack
Security Guarantee Worst case for 2 leakiest secrets Expected risk among all secrets Expected risk for 2 leakiest secrets
Qualitative Intuition Bounds probability of ever distin-

guishing two secrets
Bounds the probability of guessing
among all secrets

(Complement of) the advantage of
an attacker in guessing the secret
w.r.t. the random baseline

Quantitative Intuition None for general case. Can be de-
fined w.r.t. mechanism

ML× = k means the adversary is
k times more likely to guess the
secret

1 − 1/2β∗ is the probability that
the adversary guesses the secret
correctly

Composable 3 3 3

Consistent Black-box Estimation 7 3 3

Prior-agnostic 3 3 3

Fig. 5: Tightness of the bounds on Bayes security and
multiplicative leakage with respect to sparsity. Note that,
because the two metrics have different scales, these plots are
useful to compare their behavior, and not their actual values.

more likely that the secrets on which β is minimized are not
the same 2 secrets on which the prior is not empty.

As a consequence of this analysis, we suggest ML× is
better suited to analyze deterministic mechanisms with a large
number of secrets distributed close to uniformly (see [32]). For
deterministic programs, β∗ is always 0, unless the program
is non-interfering; the bound obtained by β∗ is then trivial,
while ML× can provide meaningful bounds if the number of
outputs is limited. On the other hand, β∗ is advantageous if π
is very sparse (e.g., website fingerprinting, where the user may
be visiting only a small number of websites): since π is very
different than the uniform one, and more similar to the one
achieving β∗, the latter will provide much better bounds. We
discuss application examples for Bayes security in Section VIII.

Miracle theorem. Both Bayes vulnerability and Bayes risk can
be thought of as instantiations of a general family of metrics
parameterized by a gain function g (for vulnerability) or a
loss function ` (for risk). For generic choices of g and `, we
can define g-leakage L×g (π, C) and the corresponding security
notion β`(π, C), in a natural way (detailed in Appendix F).

A result by Alvim et al. [2], known as “miracle” due to its
arguably surprising nature, states that

L×g (π, C) ≤ ML×(C) ,

for all priors π and all non-negative gain functions g. This gives
a direct bound for a very general family of leakage metrics.

For β`, however, we know that a corresponding result does
not hold in general, even if we restrict to the family of [0, 1] loss
functions. Identifying families of loss functions that provide
similar bounds is left as future work.

VI. CASE STUDIES: BAYES SECURITY OF WELL-KNOWN
MECHANISMS

We now exploit the various properties we proved about
Bayes security to study well-known mechanisms: Randomized
Response, and the Gaussian and Laplace mechanisms. These
are often used as building blocks for more complex ones.

A. Randomized Response

Randomized Response (RR) is a simple obfuscation protocol
that guarantees ε-LDP. It randomly assigns a data record to a
new data record from the same range. Assuming S = O, RR
is represented as the following channel matrix, R : S 7→ O:

Rs,o = P (o|s) def
=

{
exp(ε)

n+exp(ε)−1 if o = s
1

n+exp(ε)−1 otherwise .

We can derive β∗ easily for RR because it obfuscates each
secret according to the same distribution. For any two secrets si
and sj , the rows of the channel matrix are identical except for
positions i and j, where their values are inverted; therefore, the
Bayes security is the same between any two secrets, and thus
all are equally vulnerable. Using the results in Section VII-A,
we just need to look at any two rows, e.g., the first two. Let
Rab indicate the sub-channel matrix containing only the first
two rows, and let υ = 1/2. The corresponding Bayes risk is
R∗(υ,Rab) = n

2(exp(ε)+n−1) ; hence the Bayes security is:

β∗(R) =
n

exp(ε) + n− 1
, (7)

where n is the number of secrets and observables.
Discussion. Equation 7 captures the risk that an optimal
adversary can distinguish between any two data records (secrets)
from the RR output; by Theorem 1, these are the easiest two
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(a) Randomized Response (b) Laplace mechanism (c) Gaussian mechanism

Fig. 6: Relation between Bayes security and DP for various mechanisms; (ε, δ)-DP is used for the Gaussian mechanism.

records to distinguish, and it implies Bayes security for any
other subset of the secret space.

We use this equation to relate Bayes security and ε w.r.t. the
number of data records (secrets) in Figure 6 (a). We observe
that the number of data records is essential for security. For
a rather loose DP parameter of ε = 10, having a dataset of
1M gives β∗ ≈ 0.978; assuming the two data records have the
same prior, the probability that the adversary guesses correctly
is 0.511. With the same ε, having a dataset of 10M ensures a
practically perfect Bayes security of 0.998 (Bayes vulnerability
for a uniform prior: 0.501). Overall, this shows that, if we are
interested in a specific threat model(s), then a threat-specific
metric such as Bayes security can reassure us on the security
of the mechanism even when DP suggests it is not.

In the appendix (Section H), we include an empirical study
of RR for the Census1990 dataset. We observe that, in this
specific case, a good utility (95%) is only achieved for a rather
large ε = 3.3; in principle, one would disregard the mechanism
to be unsafe in this particular instance. Yet, Bayes security
(β∗ = 0.99999 for ε = 3.3, and β∗ = 0.99995 for ε = 4.8)
reassures us on its security within this threat model.

B. Laplace mechanism

For parameter a λ, we define the Laplace mechanism as
L : s 7→ s + Λ(0, λ), where Λ(µ, λ) is a µ-centered Laplace
distribution with scale λ.

Proposition 3. L is β∗-secure with

β∗ = exp

(
− max
si,sj∈S

|si − sj |
2λ

)
,

Discussion. We can use this analysis to compare β∗ with
DP. Let f : D 7→ R be a real-valued function with sensitivity
∆f

def
= maxx,y∈D f(x)−f(y). The mechanism f(x)+L(0, λ)

with scale parameter λ = ∆f
ε is ε-DP. By using the last result,

the Bayes security of this mechanism is β∗ = exp(− ε2 ).
Now, suppose we care about the probability of an adversary

at distinguishing the two maximally distant points s1, s2 =
arg maxx,y∈D f(x) − f(y). For a relatively strong DP level
of ε = 0.1, we get β∗ ≈ 0.95; This implies a non-negligible
advantage for the adversary; e.g., assuming the two points have
identical prior 1/2, the probability that the optimal adversary

distinguishes between them is roughly 0.525. Figure 6 (b)
shows the overall behavior.

C. Gaussian mechanism

For parameter σ, the Gaussian mechanism adds noise to a
secret s from a Gaussian distribution: G : s 7→ s+N (0, σ2).

Proposition 4. G is β∗-secure with β∗ = 1−(Φ(α)−Φ(−α)),
where Φ is the CDF of N (0, 1), and α = maxsi,sj

|si−sj |
2σ .

Discussion. Because the Gaussian mechanism does not satisfy
pure DP, we compare Bayes security with approximate DP. For
a function f with sensitivity ∆f , and for ε < 1, the following
mechanism satisfies (ε, δ)-DP: f(x) +N (0, 2 ln(1.25/δ)(∆f)2

ε2 ).
By applying Proposition 4 we obtain β∗ = 1 − (Φ(α) −

Φ(−α)) with α = ε/2
√

2 ln(1.25/δ. As desired, security does not
depend on the sensitivity of the function.

We observe a similar behavior to what we observed for
the Laplace mechanism (Figure 6 (c)). Consider a dataset
containing N = 1K records, for which an appropriate choice
of δ according to the literature is δ = 1/N2. For a relatively
secure setting (ε = 1), we have β∗ = 0.925. As before, an
interpretation of this value is that an optimal attacker will
distinguish the two most vulnerable secrets with probability
0.538; this is clearly non-negligible. We note that only a stricter
value such as ε = 0.1 ensures a strong guarantee against the
attack (β∗ = 0.992).

Overall, Bayes security enabled us to interpret the privacy
guarantees of various mechanisms, by matching them back
to the probability of success of an optimal attacker under a
specific threat model.

VII. COMPUTATIONAL ESTIMATION OF β∗

Suppose that, differently from the cases we just analyzed
(Section VI), a simple closed-form expression of the mechanism
does not exist: how can we determine its Bayes security?
Theorem 1 shows that to quantify Bayes security, the minimizer
of multiplicative risk leakage β, we just need to estimate β
for all pairs of secrets; this requires O(n2) measurements. A
measurement for a pair of secrets is obtained by estimating
the Bayes risk of the mechanism for those two secrets; we
can do this analytically, if we have white-box knowledge of
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the mechanism, or in a black-box manner5. In either case,
if the mechanism is complex enough (e.g., large input or
output space), each measurement may need a non-negligible
computational time, from seconds to tens of minutes.

In this section, we investigate techniques for improving
the search time. Since the bottleneck is the time it takes to
measure β(π, C) for one prior π, we seek to reduce the number
of such measurements. We first assume white-box knowledge
of the system (subsections VII-A-VII-C), and then study the
black-box case (subsection VII-D).

Initial observations. Denote by πab be the sparse prior vector
(0, ..., 0, 1/2, 0, ..., 0, 1/2, 0, ..., 0) such that the two non-zero
elements of value 1/2 are in positions a and b, and a 6= b.
Given a channel C, from the definition of β we get that

β(πab, C) = 2−
∑
o

max
s∈{a,b}

Cs,o .

The crucial observation (shown in the proof of Theorem 2)
is that the above quantity is equal to the complement of the
total variation distance tv(Ca, Cb) between the rows Ca and
Cb of the channel. The total variation distance of two discrete
distribution is 1/2 of their L1 distance (seen as vectors); hence:

β(πab, C) = 1− tv(Ca, Cb) = 1− 1

2
‖Ca − Cb‖1 .

Then, from Theorem 1, we get that minimizing β is
equivalent to finding the rows of the channel that are maximally
distant with respect to L1. This is the well-known diameter
problem (for L1): given the set of vectors CS, find the two that
are maximally distant (i.e., find the diameter of the set).

A. Computing β∗ with domain knowledge

In practical applications, domain knowledge may enable a
priori identification of the two leakiest secrets. For example,
the smallest and largest webpages users can visit in website
fingerprinting (Section VIII); and the smallest and largest
exponents in timing side channels against exponentiation
algorithms [10]. There are also applications where all the secrets
are equally vulnerable; hence β∗ is obtained for any pair of
distinct secrets. For instance, when the mechanism operates in
such a way that all secrets enjoy the same protection (e.g., the
Randomized Response mechanism, Section VI).

More generally, if one does not know the exact minimizing
secrets, but knows that they belong to a set S′ ⊂ S, then to
determine β∗ it suffices measuring β for all s1, s2 ∈ S′.

B. Computing β∗ in linear time n

The geometric characterization given by Theorem 2 implies
that obtaining β∗ requires computing the diameter of a set of
n = |S| vectors of dimension m = |O|. The direct approach
is to compute the distance between every pair of vectors, i.e.,
perform O(n2m) operations. This quadratic dependence on n
can be prohibitive when the number of secrets grows.

5We remark that black-box estimation of the Bayes risk (and, therefore,
Bayes security) can be done consistently via distribution-free techniques [10].

We first show that, by using an isometric embedding of Lm1
into L2m

∞ , β∗ can be computed in O(n2m) time. Concretely,
each x ∈ Rm is translated into a vector φ(x) ∈ R2m , which
has one component for every bitstring b of length m, such that
φ(x)b =

∑m
i=1 xi(−1)bi . Note that the equivalence ‖φ(x) −

φ(x′)‖∞ = ‖x − x′‖1 holds for all x, x′ ∈ Rm. The L∞
diameter problem can be solved in linear time: we only need
to find the maximum and minimum value of each component.

This computation is linear in |S| but exponential in |O|.
It outperforms the direct approach when the number of
observations is small, but the problem becomes harder as
the number of observations grows. When m = Θ(n) there is
no sub-quadratic algorithm for the Lp-diameter problem for
any p ≥ 0 [12] . This suggests that there may not be any
sub-quadratic time for computing β∗ either.

C. An efficient approximation of β∗

We present an estimation of β∗ that can be obtained in
O(nm) time. One selects an arbitrary distribution q ∈ D(O)
and computes the maximal distance d between any channel
row and q. The diameter of CS is at most 2d, giving a lower
bound on β∗. Furthermore, if q lies within the convex hull of
CS (denoted by ch(CS)), then the diameter is at least d, giving
also an upper bound:

Proposition 5. Let C be a channel, q ∈ D(O), and d =
maxs∈S ‖Cs − q‖1. Then 1 − d ≤ β∗(C) . Moreover, if q ∈
ch(CS) then β∗(C) ≤ 1− d/2 .

Good choices for q are distributions that are likely to lie
“in-between” the two maximally distant rows, for instance the
centroid of CS (mean of all rows).

Several advanced approximation algorithms exist for the
L2 diameter problem [23]; these could be employed using
some embedding of L1 into L2. The trivial embedding has
distortion

√
m (since ‖x‖2 ≤ ‖x‖1 ≤

√
m‖x‖2), hence the

approximation factor may be too loose as |O| grows. Low
distortion embeddings of L1 into L2 exist [3], but it is unclear
if they can be applied to the diameter problem. In Section I,
we conduct an empirical study of these approximations.

D. Black-box estimation of β∗

The previous sections assume full knowledge of the channel
C. In practice, this assumption may fail: systems may be too
complex to analyze, or their behavior may be unknown. In
such cases, we can estimate the Bayes risk, and therefore
β, using black-box estimation tools (i.e., only observing the
system’s inputs and outputs), such as F-BLEAU [10]. As with
the white-box case, we need to reduce the number of priors π
for which we estimate β(π,C).

Bounds. A first approach is to use the bounds given by
Proposition 5, which can be computed in a black-box setting.
One can interact with the system to obtain observations for q.
For instance observe: the mean row, by drawing observations
from the channel with secrets that are chosen uniformly at
random; the any row of the channel, by drawing observation for
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a secret chosen arbitrarily; or a row with arbitrary distribution,
e.g., by sampling q uniformly at random from the set O.
Building upon R∗ black-box estimators [10]. If domain
constraints do not enable identifying the pair of leakiest secrets
(Section VII-A), we can try to reduce the search space. For
instance, we can exploit the triangle inequality on the total
variation distance to discard some solutions before computing
them. E.g., given the Bayes security for the priors πac and πbc:

β(πac, C) + β(πbc, C)− 1 ≤ β(πab, C)
≤ 1− |β(πac, C)− β(πbc,C)| .

Thus, if β(πab, C) is larger than some already-known β(πij , C)
there is no need to compute it. Conversely, if it is upper
bounded by a small quantity, we can compute it earlier aiming
at discarding other combinations.

VIII. DISCUSSION AND CONCLUSIONS

This paper provides building blocks for studying complex
algorithms on the basis of Bayes security, a metric that
generalizes the cryptographic advantage. Bayes security inherits
benefits from both average-case metrics, such as advantage and
Bayes risk, and worst-case metrics, such as DP. Similarly to
the advantage, Bayes security is threat-specific: it captures the
risk for the users in a specified threat model (e.g., what’s the
probability that a user’s data record is leaked). Like DP, Bayes
security is easily composable, and it reflects the worst-case
for the two most vulnerable secrets (e.g., data records). Yet,
Bayes security is a weaker worst-case notion than DP, which
may enable utility gains in high-security regimes (Section VI).
Applications. The above characteristics make Bayes security
suitable for a broad range of security and privacy settings.
Below, we discuss some particularly fitting examples.
Website fingerprinting. In website fingerprinting (WF), an
adversary with access to an encrypted network tunnel (e.g.,
VPN or Tor) aims to infer the websites being visited by a
user. The success rate (or accuracy) of an attacker has been
used for years as a way of evaluating an attack’s goodness.
However, this metric suffers from some drawbacks [24], [36].
First, comparing success rate across studies is meaningless, as
the number of websites the user can visit strongly affects it:
the attack is very simple is the user is only allowed to visit
2 websites as opposed to 100. Second, the prior probability
of each website being visited highly skews the success rate;
if a website is easy to distinguish from the others and it is
very likely to be visited, then the attacker’s accuracy would be
largely inflated. The use of Mutual Information was suggested
as an alternative metric [28]. However, Smith showed that this
metric does not capture the standard threat model used in WF,
and it may be misleading if we are ultimately interested in
learning about an attacker’s success probability [32].
β was introduced for WF evaluation [11], although without

any theoretical justification. In this work, we developed a theory
for β, and we showed that its minimizer, the Bayes security
metric, is particularly suited for WF: i) it is prior independent;
ii) it measures the risk for the two leakiest secrets (i.e., the

two websites that are the easiest to tell apart); iii) as shown
in Figure 5, it is captures particularly well the case of sparse
prior – in WF, the prior over websites is highly sparse. Overall,
this suggests Bayes security is an appropriate choice evaluating
the user’s risks against WF and, similarly, the information
leakage of WF defenses. Future work may study if Bayes
security implies bounds w.r.t. other metrics of interest, such as
True/False positives or Precision and Recall (Section V).
PPML. We suspect privacy preserving ML (PPML) algorithms
can be easily studied by using Bayes security. Its strengths for
this kind of analysis are: i) it is easy to derive it analytically
(e.g., as the total variation of the posterior for the two leakiest
secrets) (Section III); ii) for a large secret space (e.g., data
records in a dataset), it characterizes the risk for the most
vulnerable ones; this, we argue, gives an easy interpretation
of its guarantees; iii) its prior independence helps studying
mechanisms irrespective of the adversary’s prior knowledge;
and, once the attacker’s prior is known, it can be plugged in
to better capture the risk (Section V); iv) where an analytical
study is not possible, Bayes security can be easily estimated
in a black-box manner (Section VII). Overall, we expect
future work can provide Bayes security-style guarantees for
complex ML training pipelines. For example, by exploiting
our results on the Gaussian mechanism (Section VI), it
may be possible to study the security of DP-SGD against
common attacks such as membership inference [31], attribute
inference [20], and reconstruction [4], [7]. This will enable
bypassing bounds relating ε and the advantage [22], [40],
by computing the advantage (or Bayes security) directly.
One immediate implication of Theorem 1 is that evaluating
membership inference attacks via the cryptographic advantage
(which, in this case, matches Bayes security), gives guarantees
for any prior probability that “members” may have.
Data release mechanisms. Our analysis in Section VI suggests
that, when defending large datasets, Bayes security may help
getting better utility than DP in high-privacy regimes.
Fairness. Bayes security captures the risk for the most vulner-
able pair of users (Theorem 1). We suspect this characteristic
can be adapted for evaluating privacy fairness (e.g., whether
some population subgroups enjoy better privacy than others).
Further extensions. In this paper, we discussed various
extensions that may further improve Bayes security’s suitability
to tackle complex algorithms. For example, proving a form
of the miracle theorem (Section V-E) would give analysts
even further flexibility when defining threat models for real-
world attacks. Moreover, given the equivalence between Bayes
security and total variation (Theorem 2), it may be possible
to exploit research on total variation estimation to improve
black-box leakage estimation techniques.

In conclusion, Bayes security opens a new space in the
security metrics space, offering designers the opportunity to
obtain different trade-offs than previous metrics. As we showed
in Section VI, these trade-offs enable the choice of security
parameters that provide strong protection and potentially with
less utility impact under the threat model one chooses.
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APPENDIX

A. In general, β is not minimized by the uniform prior

We start with the following lemma.
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Lemma 1. Suppose that β(π, C) = 0, for some system
(π, C), and that π has k non-zero components. Let π′ =
(1/k, ..., 1/k, 0, ..., 0), where the non-zero components are in
correspondence of the non-zero components of π. Then we
have β(π′, C) = 0.

Proof. Consider the k-dimensional simplex Simp determined
by the k non-zero components of π. Since π′ has at most the
same k non-zero components, it is an element of Simp. Con-
sider imaginary lines from π′ to each of the vertices of Simp.
A vertex of Simp is a vector of the form (0, ..., 0, 1, 0, ..., 0),
i.e., one component is 1 and all the others are 0. Furthermore,
the 1 must be in correspondence of a non-zero component
of π. These lines determine a partition of Simp in convex
subspaces, and π must belong to one of them. Hence π can be
expressed as a convex combination of π′ and some vertices of
Simp, say π1, ..., πh. Namely, π = cπ′ + c1π1 + ... + chπh
for suitable convex coefficients c, c1, ..., ch. Furthermore, since
π has k non-zero components, it is an internal point of Simp,
and therefore c must be non-zero. Hence, we have:

0 = R∗(π, C)
= R∗(cπ′ + c1π1 + ...+ chph, C)
≥ cR∗(π′, C) + c1R

∗(π1, C) + ...+ chR
∗(πh, C)

= cR∗(π′, C) ,

where the third step comes from the concavity of R∗, and the
last one is because R∗(πj , C) = 0, ∀j, since πj is a vertex.
Therefore, since c is not 0, R∗(π′, C) must be 0.

We can now prove our result.

Theorem 7. Let n = |S|, and let υ denote the uniform prior on
S. For any prior π with k non-zero components, if β(π, C) = 0
then

β(υ, C) ≤ 1− k/n

1− 1/n
.

Moreover, there exists a channel C for which equality is reached.

Proof. Let m = |O|, and let S′ be the set of the non-zero
components of π.

It is sufficient to note that:∑
o∈O
Cs,oυ(s)

= 1/n
∑
o∈O

max
s∈S
Cs,o

≥ 1/n (Cs1,o1 + ...+ Csm,om) where si = arg max
s∈S′
Cs,oi

= k/n ;

the last equality is due to the fact that, by definition of si,∑
o

max
s∈S′
Cso = (Cs1,o1 + ...+ Csmom) .

Therefore, for π′ defined as in Lemma 1, β(π′, C) = 0 implies
1/k(Cs1,o1 + ...+ Csmom) = 1, from which we derive (Cs1o1 +
...+ Csmom) = k. This proves the first statement.

The second claim of the theorem states the existence of a
channel C′ for which equality is reached. We define C′ so that
it coincides with C in the rows corresponding to the non-zero
components of π. Define all the other rows identical to the
previous ones (it does not matter which ones are chosen). Then:

∑
o

max
s∈S
C′s,o =

∑
o∈O

max
s∈S′
C′s,o =

∑
o∈O

max
s∈S′
Cs,o = k ,

therefore proving the second part of the theorem.

B. Proof of Theorem 1

Let U (k), for k = 1, ..., n, be the set of priors with exactly
k non-zero components, and such that the distribution on those
components is uniform. In the following we indicate with U
the set U = U (1) ∪ U (2) ∪ ... ∪ U (n).

We start by recalling the following definition from [8]
(Definition 3.2, simplified).

Definition 1. Let S be a subset of a vector space, let g : S 7→
R, and let S′ ⊆ S. We say that g is convexly generated by S′

if for all v ∈ S there exists S′′ ⊆ S′ such that there exists a set
of convex coefficients {cu}u∈S′′ (i.e., satisfying

∑
u cu = 1

and cu ≥ 0 ∀u ∈ S′′) such that:

1) v =
∑
u∈S′′

cuu , 2) g(v) =
∑
u∈S′′

cug(u) .

The following results were also proven in the same reference
(Proposition 3.9 in [8]).

Proposition 6. G is convexly generated by U .

Proposition 7. R∗(π, C) is concave on π.

The elements of U are called corner points of G, and the
elements of each set U (k) are the corner points of order k.

We now prove that if a function is defined as the ratio
of a concave function and a convexly generated one, then its
minimum is attained on one of the corner points of the function
in the denominator. This will be important to characterize the
minimum of the Bayes security metric, which is indeed defined
as the ratio of the Bayes risk and the guessing error.

Lemma 2. Let S be a subset of a vector space. Let f : S 7→
R≥0 be a concave function, and let g : S 7→ R≥0 be a function
that is convexly generated by a finite S′ ⊆ S, and which is
positive in at least some of the elements of S. Then there exists
u ∈ S′ such that u = arg minv:g(v)>0

f(v)/g(v).

Proof. Assume by contradiction that ∃v ∈ S such that g(v) >
0 and ∀u ∈ U with g(u) > 0

f(v)

g(v)
<
f(u)

g(u)
. (8)
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Since g is convexly generated by S′, and g(v) > 0, ∃S′′ ⊆
S′ such that g(v) =

∑
u∈S′′ cug(u), where cu are suitable

convex coefficients, and ∀u ∈ S′′ g(u) > 0. Therefore:
f(v)
g(v) = f(v)∑

u∈S′′ cug(u)

≥
∑
u∈S′′ cuf(u)∑
u∈S′′ cug(u) (by concavity of f )

>
∑
u∈S′′ cug(u)

f(v)
g(v)∑

u∈S′′ cug(u) (by Equation 8)

= f(v)
g(v)

which is impossible. Furthermore, S′ is finite, hence
{
f(u)
g(u) |

u ∈ S′, g(v) > 0
}

has a minimum.

Corollary 3. The minimum of {β(π, C)|π ∈ D(S), G(π) > 0}
exists, and it is in one of the corner points of G.

Proof. The statement follows from the definition β(π, C) =
R∗(π,C)
G(π) , and from Proposition 6, Proposition 7, and Lemma 2.

Furthermore, note that because G in its corner points of
order 1 takes value 0, the corner point of G on which β is
minimized must have order k ≥ 2.

We now can prove Theorem 1. It remains to show that the
corner points on which β is minimized have order k = 2.

Theorem 1. Consider a channel C on a secret space with
|S| ≥ 2. There exists a prior vector π∗ ∈ D(S) of the form

π∗ = {0, ..., 0, 1/2, 0, ..., 0, 1/2, 0, ..., 0}

such that

β∗(C) = β(π∗, C) = min
π∈D(S)

β(π, C) .

Proof. We show this result by induction over n, the cardinality
of S, where we assume n ≥ 2.

Base case (n = 2). Since ∀π ∈ U (1) the guessing error is
G(π) = 0, the minimizer has to have order 2.

Inductive step. Assuming we proved the result for n, we
prove it for n+ 1. By Corollary 3, it is sufficient to show that:

∀π ∈ U (n+1) ∃π′ ∈ U (n) R∗(π, C)
G(π)

≥ R∗(π′, C)
G(π′)

. (9)

Consider the (n+ 1)×m channel matrix C. For each row i,
we define pi as the sum of elements of the row which are the
maximum in their column. (Ties are broken arbitrarily.) I.e.,

pi
def
=
∑
o

Ci,o I(Ci,o = max
s
Cs,o) .

where I(S) is the indicator function, i.e., the function that
gives 1 if the statement S is true, and 0 otherwise.

Similarly, we define qi as the sum of elements which are
the second maximum in the columns that have maximum
in column i. More precisely, let smax(A) be the function

returning the second maximum in a set A; for instance, if
a1 ≥ a2 ≥ a3 ≥ . . ., then smax({ai}) = a2. Again, ties are
broken arbitrarily. Then:

qi
def
=
∑
o

Cj,o I(Ci,o = max
s
Cs,o and Cj,o = smaxsCs,o) .

Note that the elements that compose qi are in rows different
from i and possibly different from each other.

Without loss of generality, assume that we have:

pn+1 − qn+1 = min
i

(pi − qi) . (10)

We further denote by ro, for o = 1, . . . , k, the elements of the
(n+ 1)-th row that are not the components of pn+1, namely

{ro | o = 1, . . . , k} def
= {Cn+1,o | Cn+1,o 6= max

s
Cs,o}

The following observation is immediate:

Fact 1. For all i ∈ {1, ..., n+ 1}, we have qi ≥ ri.

We can now prove Equation 9. We will prove it for π′ =
(1/n, ..., 1/n, 0), while π = (1/(n+1), ..., 1/(n+1)) necessarily.

Observe that:

R∗(π, C) = 1− 1

n+ 1

n+1∑
i=1

pi =
n+ 1−

∑n+1
i=1 pi

n+ 1

G(π) =
n

n+ 1

R∗(π′, C) = 1− 1

n

n∑
i=1

pi − qn+1 =
n−

∑n
i=1 pi − qn+1

n

G(π′) =
n− 1

n
.

Therefore, to prove Equation 9 we need to demonstrate that:

(n−1)

(
n+ 1−

n∑
i=1

pi − pn+1

)
≥ n

(
n−

n∑
i=1

pi − qn+1

)
.

By simplifying and rearranging:
n∑
i=1

pi − n pn+1 + n qn+1 + pn+1 ≥ 1 .

By the assumption in Equation 10, we have:

n∑
i=1

pi − n pn+1 + n qn+1 + pn+1

≥
n∑
i=1

pi −
n∑
i=1

pi +

n∑
i=1

qi + pn+1

=

n∑
i=1

qi + pn+1 “Fact 1”

≥
n∑
i=1

ri + pn+1 = 1 . “C is stochastic”
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C. Proofs of Section VII

Theorem 2. For any channel C, it holds that

β∗(C) = 1− 1

2
max
a,b∈S

‖Ca − Cb‖1 = 1− max
a,b∈S

tv(Ca, Cb) .

Proof. Denote by πab the prior assigning probability 1/2 to
a, binS, a 6= b. We show that

β(πab, C) = 2−
∑
o

max
s∈a,b

Cs,o = 1− 1

2
‖Ca − Cb‖1 , (11)

Denote C↑,o = maxs∈a,b Cs,o and C↓,o = mins∈a,b Cs,o. The
fact that β(πab, C) = 2 −

∑
o C↑,o comes directly from the

definition of β.
Since Ca and Cb are probability distributions, it holds that∑

o

(C↑,o + C↓,o) = 2

Hence, we have that

‖Ca − Cb‖1 =
∑
o

(C↑,o − C↓,o) = 2
∑
o

C↑,o − 2

and (11) follows directly. We conclude by Theorem 1.

We now show that taking convex combinations of vectors
cannot increase the diameter of a set, which will be useful for
both Proposition 5 and Theorem 4. Denote by diam(S), ch(S)
the diameter and the convex hull of S respectively.

Lemma 3. For any S ⊆ Rn, it holds that

diam(ch(S)) = diam(S),

where distances are measured wrt any norm ‖ · ‖.

Proof. Let d = diam(S). Since S ⊆ ch(S) we clearly have
d ≤ diam(ch(S)), the non-trivial part is to show that d ≥
diam(ch(S)).

We first show that

∀a ∈ S, b ∈ ch(S) : ‖a− b‖ ≤ d . (12)

Let a ∈ S, b ∈ ch(S) and denote by Bd[a] the closed ball of
radius d centered at a. The diameter of S is d, hence

Bd[a] ⊇ S , and since balls are convex
Bd[a] = ch(Bd[a]) ⊇ ch(S) ,

which implies ‖a− b‖ ≤ d.
Finally we show that

∀b, b′ ∈ ch(S) : ‖b− b′‖ ≤ d .

Let b, b′ ∈ ch(S), from (12) we know that Bd[b] ⊇ S, and
since balls are convex we have that Bd[b] ⊇ ch(S), which
implies ‖b− b′‖ ≤ d.

Proposition 5. Let C be a channel, q ∈ D(O), and d =
maxs∈S ‖Cs − q‖1. Then 1 − d ≤ β∗(C) . Moreover, if q ∈
ch(CS) then β∗(C) ≤ 1− d/2 .

Proof. Let s, s′ ∈ S, from the triangle inequality we have that

‖Cs − C′s‖1 ≤ ‖Cs − q‖1 + ‖C′s − q‖1 ,

hence diam(CS) ≤ 2d; Theorem 2 implies the lower bound.
Moreover, assume that q ∈ ch(CS). Since Cs ∈ ch(CS) for

all s ∈ S, it holds that

diam(ch(CS)) ≥ max
s∈S
‖Cs − q‖1 = d .

From Lemma 3 we get that

diam(CS) = diam(ch(CS)) ≥ d ,

which gives us an upper bound from Theorem 2.

D. Proofs of Section IV

Theorem 3. For all channels C1, C2 it holds that

β∗(C1||C2) ≥ β∗(C1) · β∗(C2) .

Proof. Recall that πab ∈ D(S) denotes the prior that assigns
probability 1/2 to both a, b ∈ S, a 6= b. We will use the fact
that for such priors, β(πab, C) can be written as

β(πab, C) =
∑
o∈O

min
s∈{a,b}

Cs,o . (13)

This comes from the definition of β and the fact that the rows
Ca and Cb are probability distributions, hence

(
∑
o∈O

min
s∈{a,b}

Cs,o) + (
∑
o∈O

max
s∈{a,b}

Cs,o) =
∑
o∈O

∑
s∈{a,b}

Cs,o = 2 .

We also use the basic fact that for non-negative {qi, ri}i:

(min
i
qi) · (min

i
ri) ≤ min

i
(qi · ri) (14)

The proof proceeds as follows:

β∗(C1)β∗(C2)
=

(
min
a,b∈S

β(πab, C1)
)(

min
a,b∈S

β(πab, C2)
)

“Theorem 1”

≤ min
a,b∈S

(
β(πab, C1) · β(πab, C2)

)
“(14)”

= min
a,b∈S

( ∑
o1∈O1

min
s∈{a,b}

C1
s,o1

)( ∑
o2∈O2

min
s∈{a,b}

C2
s,o2

)
“(13)”

=

min
a,b∈S

∑
o1∈O1

∑
o2∈O2

(
min

s∈{a,b}
C1
s,o1

)(
min

s∈{a,b}
C2
s,o2)

)“Rearranging sums, distributively”

≤ min
a,b∈S

∑
o1∈O1

∑
o2∈O2

min
s∈{a,b}

C1
s,o1C

2
s,o2 “(14)”

= min
a,b∈S

∑
o∈O1×O2

min
s∈{a,b}

(C1||C2)s,o “Def. of C1||C2”

= min
a,b∈S

β(πab, C1||C2) “(13)”

= β∗(C1||C2)

This bound is tight. E.g., β∗(C||C) = β∗(C) · β∗(C) for

C =

[
0.4 0.6
0 1

]
.

Theorem 4. For all channels C1, C2 it holds that

β∗(C1C2) ≥ max{β∗(C1), β∗(C2)} .
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Proof. The β∗(C1C2) ≥ β∗(C1) part is easy, and comes from
the fact that

R∗(π, C1C2) ≥ R∗(π, C1)

for all priors π, hence also for the one achieving β∗(C1C2).
The more interesting part is to show that β∗(C1C2) ≥ β∗(C2).

The key observation is that the rows of C1C2 are convex
combinations of those of C2:

(C1C2)s1 =
∑
s2∈S2

C1
s1,s2C

2
s2 for all s1 ∈ S1

Denote by CS = {Cs | s ∈ S} the set of C’s rows, we have:

(C1C2)S1 ⊆ ch(C2
S2) , hence

diam((C1C2)S1) ≤ diam(ch(C2
S2)) .

Finally, from Lemma 3 we get that

diam((C1C2)S1) ≤ diam(ch(C2
S2)) = diam(C2

S2) .

Theorem 2 concludes, since β∗(C) = 1− 1
2diam(CS).

E. Proofs of Section V

Theorem 5.
1) If C is ε-LDP, then for every π we have

β(π, C) ≥ 2
1+exp(ε) .

2) For every n,m ≥ 2 there exists a n×m ε-LDP channel
C∗ such that β∗(C∗) = 2

1+exp(ε) . Examples of such C∗’s
are illustrated in Figure 3.

Proof. From Theorem 1 we know that for every C there exists
a π∗ with a support containing only two secrets, and uniformly
distributed on them, such that β∗(π∗) = minπ β(π, C). Given
C, let us assume, without loss of generality, that the two secrets
are s1 and s2, and that for each o in the first k columns we
have Cs1,o ≥ Cs2,o, and in the last m − k columns we have
Cs1,o < Cs2,o. Then, if we define

a
def
=

k∑
j=1

Cs1,oj and b
def
=

m∑
j=k+1

Cs2,oj , (15)

we have 1− b ≤ a and 1−a < b. From the constraints (2), we
also know that a ≤ exp(ε)(1−b) and b ≤ exp(ε)(1−a). Hence
there exists x, y with 1 ≤ x ≤ exp(ε) and 1 < y ≤ exp(ε)
such that a = x(1 − b) and b = y(1 − a). The figure below
illustrates the situation in the first two rows of the matrix:

a = x (1− b) 1− a
1− b b = y (1− a)

From a = x(1− b) and b = y(1− a) we derive

a =
xy − x
xy − 1

and b =
xy − y
xy − 1

, (16)

from which we can compute the Bayes risk of C in π∗, as a
function of x and y:

f(x, y)
def
= R∗(π∗, C) (17)

= 1− π∗s1a− π
∗
s2b (18)

= 1− 1

2
(a+ b) (19)

=
1
2 (x+ y)− 1

xy − 1
. (20)

In order to find the minimum of f(x, y), we compute its partial
derivatives:

∂f

∂x
(x, y) =

− 1
2y

2 + y − 1
2

(xy − 1)2
,

∂f

∂y
(x, y) =

− 1
2x

2 + x− 1
2

(xy − 1)2
.

Since 1 ≤ x ≤ exp(ε) and 1 < y ≤ exp(ε), we can easily see
that both partial derivatives are negative, hence the minimum
value of R∗(π∗, C) is obtained for the highest possible values
of x and y, namely x = y = exp(ε). Therefore, using (20):

R∗(π∗, C) ≥
1
2 (exp(ε) + exp(ε))− 1

exp(ε) exp(ε)− 1
=

1

exp(ε)− 1
.

(21)

Finally, since G(π∗) = 1/2, we conclude:

β(π, C) =
R∗(π, C)
G(π)

≥ R∗(π∗, C)
G(π∗)

(by Theorem 1)

≥ 2

1 + exp(ε)
(by (21)).

2 Consider the values a, b defined in (15). Any n×m matrix
C∗ for which these values are

a = b =
exp(ε)

exp(ε) + 1

achieves the above lower bound for β:

β∗(C∗) = β(π∗, C∗) =
2

1 + exp(ε)

Hence the bound is a minimum. Figure 3 shows two examples
of such matrices.

F. Generalization using gain/loss functions

We describe here the generalizations of L× and β, parame-
terized by a gain function g (for vulnerability) or a loss function
` (for risk), discussed in Section V.

Let W be the set of guesses the adversary can make about
the secret; a natural choice is W = S, but other choices model
a variety of adversaries, (e.g., guessing a part or property of
the secret, or making an approximate guess). A gain function
g(w, s) models the adversary’s gain when guessing w ∈W and
the actual secret is s ∈ S. Prior and posterior g-vulnerability
[2] are the expected gain of an optimal guess:

Vg(π) = maxw
∑
s πsg(w, s) , Vg(π, C) =

∑
o p(o)Vg(δ

o) ,

where δo is the posterior distribution on S produced by the ob-
servation o. Then g-leakage expresses how much vulnerability
increases due to the channel: L×g (π, C) = Vg(π, C)/Vg(π).

404



Similarly, we use a loss function `(w, s), modelling how the
adversary’s loss in guessing w when the secret is s. Prior and
posterior `-risk are the expected loss of an optimal guess:

R`(π) = minw
∑
s πs`(w, s) , R`(π, C) =

∑
o p(o)R`(δ

o) .

Then β` can be defined by comparing prior and posterior risk:
β`(π, C) = R`(π, C)/R`(π).

Clearly, L× = L×g for the identity gain function, given by
g(w, s) = 1 iff w = s and 0 otherwise. Similarly, β = β` for
the 0-1 loss function, `(w, s) = 0 iff w = s and 0 otherwise.

G. Proofs of Section VI

We first prove results on the Bayes security of Gaussian
mechanisms, which serves as a template for the security
derivation for the Laplace distribution.

Proposition 4. G is β∗-secure with β∗ = 1−(Φ(α)−Φ(−α)),
where Φ is the CDF of N (0, 1), and α = maxsi,sj

|si−sj |
2σ .

Before determining the Bayes security of this mechanism,
we prove a simple lemma:

Lemma 4 (Total variation of two Gaussians).

tv(N (µp, σ
2),N (µq, σ

2)) = Φ(α)− Φ(−α)

where Φ is the CDF of N (0, 1) and α =
|µp−µq|

2σ .

Proof. This proof follows closely the proof of Theorem 3.1
in [27]. Let us first calculate the total variation between the
following two Gaussians: P ∼ N (µp, 1) and Q ∼ N (µq, 1).
Without any loss of generality, let µp ≤ µq; hence, P (x) ≥
Q(x) for x ≤ µp+µq

2 .

tv(P,Q) =

∫ µp+µq
2

−∞
P (x)−Q(x)dx

=

∫ µp−µq
2

−µp−µq2

P (x)−Q(x)dx

= PA∼N (0,1)

(
A ∈

[
−µp − µq

2
,
µp − µq

2

])
= Φ

(
µp − µq

2

)
− Φ

(
−µp − µq

2

)
Now, observe that the total variation is scale-

independent. Hence we have: tv(N (µp, σ
2),N (µq, σ

2)) =
tv(N (µp/σ, 1),N (µq/σ, 1)). Applying the result obtained
above to the scaled means concludes the proof.

Proposition 3. L is β∗-secure with

β∗ = exp

(
− max
si,sj∈S

|si − sj |
2λ

)
,

Sketch proof. We first compute the total variation distance
between Λ(µp, 1) and Λ(µq, 1). By applying similar arguments
to the one used for Lemma 4, we obtain:

tv(Λ(µp, 1),Λ(µq, 1)) = F (α)− F (−α) ,

where F is the CDF of L(0, 1), and α =
|µp−µq|

2 .

Fig. 7: Randomized Response obfuscation mechanism on
the US Census1990 dataset. Utility (blue line) vs security
measured in Min Bayes security (green line) and DP (x-axis).

Via explicit computation of F :

tv(Λ(µp, 1),Λ(µq, 1)) = 1− exp(−α) .

We apply the above result to compute the total variation
between Λ(µp/λ, 1) and Λ(µq/λ, 1) (which is equal to the
total variation between Λ(µp, λ) and Λ(µq, λ)), and use the
equivalence between total variation and Bayes security metric
to conclude the proof.

H. Empirical evaluation of Randomized Response

Dataset. The US 1990 Census dataset (Census1990) com-
prises 2,458,285 records with a number of attributes for each
record. As Murakami and Kawamoto [30], we reduced the
attributes to those we judged potentially sensitive: age (8
values), income (5 values), marital status (5 values), and sex
(2 values). Overall, the number of values that can be taken by
the vectors describing an individual is 8 × 5 × 5 × 2 = 400.
This is the size of both the secret and output spaces for RR.

Methodology. First, we use RR to obfuscate the
Census1990 dataset to guarantee different levels of
ε-LDP, and measure the resulting utility by computing the
total variation distance between the empirical estimation p̂ and
the true distribution p.

Second, we compute the Bayes security for RR, both
analytically using Equation 7 for different number of secrets
n = |S|, and empirically using fbleau [10]. Because the
Bayes security between any pair of secrets obfuscated by RR
is identical, one computation for one arbitrary pair suffices to
obtain β∗.

Results. We show in Figure 7 the security of the empirical
estimation p̂ (Bayes security, empirical and estimation, in green,
and DP in the x-axis), and the utility after applying RR to
obtain ε-LDP for ε ∈ [0.01, 10]. We observe that utility is low
for values ε < 2. Concretely, utility reaches 95% for ε = 3.3.
While this is weak protection in terms of differential privacy,
we obtain β∗ = 0.96 fbleau estimate (β∗ = 0.99999 from
Equation 7), which means that the adversary’s probability of
success is small. Even for ε = 4.8, which yields utility of 99%,
β∗ is above 0.9 (β∗ = 0.99995 analytic value).
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Fig. 8: β∗ and bounds for Rand. Response. Left: |S| = |O| = 10
while varying ε. Right: ε = 0.5 while varying |S| = |O|.

I. Bayes security approximation via Proposition 5

In Figure 8, we show β∗ and various lower bounds for the
Randomized Response mechanism (RR) (Section VI). Two of
the bounds are obtained via Proposition 5, by setting q to be
the mean row (the uniform distribution for RR) and any row of
C (all rows are equal for RR). The third bound is obtained via
the L2-diameter by using the trivial embedding. The mean-row
bound is the most accurate in this case.
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