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Abstract—The conventional information leakage metrics as-
sume that an adversary has complete knowledge of the distri-
bution of the mechanism used to disclose information correlated
with the sensitive attributes of a system. The only uncertainty
arises from the specific realizations that are drawn from this
distribution. This assumption does not hold in various practical
scenarios where an adversary usually lacks complete information
about the joint statistics of the private, utility, and the disclosed
data. As a result, the typical information leakage metrics fail to
measure the leakage appropriately. In this paper, we introduce
multiple new versions of the traditional information-theoretic
leakage metrics, that aptly represent information leakage for
an adversary who lacks complete knowledge of the joint data
statistics, and we provide insights into the potential uses of each.
We experiment on a real-world dataset to further demonstrate
how the introduced leakage metrics compare with the conven-
tional notions of leakage. Finally, we show how privacy-utility
optimization problems can be formulated in this context, such
that their solutions result in the optimal information disclosure
mechanisms, for various applications.

Index Terms—Information Leakage, Subjective Leakage, Ob-
jective Leakage, Confidence Boost, Local Differential Privacy
Leakage, Subjective Local Differential Privacy Leakage, Imper-
fect Statistical Information, Quantifying Privacy

I. INTRODUCTION

Suppose a user, who wishes to remain anonymous, discloses
“pop music” to be one’s preferred music genre. Based on this
information alone, it may be deduced that the anonymous user
belongs to an age demographic of 16-19 as a 2018 statistical
survey shows the preference of such music genre among that
specific age group [1]. Disclosing an apparently harmless piece
of information can hence be used to infer, either correctly or
incorrectly, a potentially sensitive attribute of a user.

In general, the observation of a disclosed variable correlated
with a secret is expected to leak information about the secret.
The disclosure can be intentional (e.g., over social media plat-
forms) or can be the consequence of system design flaw (e.g.,
improperly secured communications or databases). Consider
an eavesdropper monitoring the channel that a user uses to
log into their private account. Even though the password is
usually encrypted while transferring over the network, it is
nevertheless possible for the eavesdropper to reduce the search
space of the password by analyzing the timing of the packets
as the packets are correlated with the keystrokes. Zhang and

Wang [2] have shown a method to reduce the password search
space by a factor of at least 250 using the keystroke timing.

Therefore, it is possible for the users’ information to ex-
tend beyond their expected privacy bound, essentially as a
consequence of the platform design, even in the presence of
various privacy safeguards. Such an extension leaks informa-
tion regarding the sensitive attributes of a user. One of the
fundamental topics of interest in computer security is how to
quantify this privacy leakage. Various privacy measures have
been proposed for quantifying the leakage previously, encom-
passing a broad range from information theory to data science.
When using such metrics for providing security guarantees, it
is essential to correctly specify their operational significance.

Various information leakage metrics have been proposed
based on Shannon’s entropy and mutual information [3], [4],
[5], [6]. Authors in [7] defined different one-shot measures
of information leakage, namely maximal leakage, maximal
realizable leakage, maximal correlation, and local differential
privacy leakage. Another notion in information theory, known
as min-entropy, has been studied extensively to define the
information leakage [8], [9], [10]. Each of these metrics
will only provide operational meaning when it is assumed
that the probabilistic mechanism used to disclose information
associated with the private data is completely known. Even
the recently proposed measures of information leakage based
on both f -information [11] and χ2-information [12] also have
the same assumption. For example, suppose the system utilizes
Gaussian noise as a privacy measure. In that case, the metrics
mentioned above assume that both the mean and variance
of the noise are known, whereas only the samples drawn
according to this distribution are not.

This assumption of complete knowledge of the joint dis-
tribution between the private and disclosed data (the end-to-
end joint distribution) does not hold in practice. In general,
even if the attacker tries to solve the same optimization
problem as the data owner solved when deriving their optimal
disclosure mechanism, the attacker no longer has access to
the same context that the data owner used to learn their
statistics. Since this results in mismatches between the real
and the attacker’s computed statistics, the previous notions of
information leakage do not provide an operational meaning. As
the attacker only has an approximation of the joint distribution,
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we need metrics to accurately determine the probability of
correct guessing by the adversary or the adversary’s belief
about how correct their guess is. It is plausible that the ad-
versary may act if they believe they have enough information
to infer a conclusion. Observe that here the correctness of the
inference is sometimes insignificant. As long as the adversary
is confident in their inferred conclusion, they will carry out the
action. It is important to note that there can be two different
ways to measure the confidence of the adversary: one is a
posterior evaluation, following the acquisition of the disclosed
data, and the other is an even more subjective prior evaluation.

The most pertinent work to our framework was performed
by Chatzikokolakis et al. [13]. In that paper, the authors also
considered the scenario where an adversary approximates the
joint distribution based on their collection of samples. The
authors subsequently analyzed the distribution of the estimated
mutual information between the private and disclosed informa-
tion. Eventually, they provided an estimation of the channel
capacity based on this estimated mutual information.

The rest of the paper is organized as follows. In Section
II, we discuss different state-of-the-art information leakage
metrics. The system setup is delineated in Section III. Section
IV discusses how to evaluate the correct probability that the
adversary has a correct guess after observing the disclosed
information. The proper evaluation of the attacker’s belief of
success is explained in Section V. Section VI analyzes the
metric to capture the subjective evaluation of the belief of the
attacker’s success. Several optimization problems have been
formulated in Section VII. We solve the proposed optimiza-
tion problem and compare the optimized worst-case leakage
values with the conventional notions of information leakage
in Section VIII. We review several prior works in Section IX.
Finally, in Section X, we summarize our paper and present the
concluding remarks.

II. ESTABLISHED MEASURES OF INFORMATION LEAKAGE

Numerous leakage metrics have been proposed to represent
information leakage in various scenarios. However, while
defining each metric, identifying the correct output is essential
to provide a contextual meaning. In this section, we shall group
different state-of-the-art leakage metrics by the properties of
the output these metrics capture.

Measurements of Uncertainty

The most straightforward way to define a privacy metric
is to measure the uncertainty of an adversary’s guess, and
for a secure system, such uncertainty will be high. Shannon
entropy [14] is the information-theoretic notion of measur-
ing uncertainty, and most information-theoretic metrics are
developed on this notion of entropy. Rényi entropy [15]
is a generalization of Shannon entropy, with an additional
parameter α. Depending on the value of α, Rényi entropy
can represent different measures. Shannon entropy is a special
case of Rényi entropy with α → 1. When α = 0, we shall
have Hartley (or max) entropy, and taking α → ∞ results in
min-entropy.

Conditional entropy [16] is prevalent in communication
networks, where data is transmitted over a noisy channel, and
the receiver has to infer the transmitted data from the received
data. The sender aims to keep the conditional entropy as small
as possible, usually by using error-correction coding, to ensure
that the receiver can have a better inference.

Cross entropy measures the average number of bits required
to encode data originating from one distribution compared to
encoding the same data with a different distribution [17]. For
example, let us assume an event Z has been generated using
the underlying probability distribution P , and an approxima-
tion of this distribution P is Q. The cross-entropy between P
and Q, referred to as H(P,Q), thus represents the number of
bits required to represent this event Z when the encoding is
done using the probability distribution Q instead of P .
Quantification of Information Gain

In various privacy setups, an adversary eavesdrops on the
communication channel between the legitimate users to collect
information to compromise the users’ privacy. Thus, it is
important to quantify how much information the observation
has leaked about the private variable. Relative entropy (also
known as Kullback–Leibler divergence, DKL) is one such
metric [18]. Some applications rely on obfuscating data, for
example in smart metering. For such cases, relative entropy
indicates how far the distribution of distorted data is from the
true distribution.

Similarly, mutual information computes how much infor-
mation is shared between the random variable observed by
the adversary and the random variable representing the private
information. If mutual information between these two random
variables is high, the system will leak a considerable amount
of information. In a sense, the mutual information metric and
Kullback–Leibler divergence provide the same measure. How-
ever, mutual information is symmetric, while Kullback–Leibler
divergence does not maintain the symmetry.

Additionally, we can extend the notion of mutual infor-
mation to the scenarios where an adversary possesses prior
information regarding the private variable and the observed
variable. Such an extension will result in conditional mutual
information, and this metric computes the amount of infor-
mation about the private variable gained by the attacker upon
observing the disclosed information, conditioned on the prior
information [19]. Minor modification of mutual information
will result in maximal information leakage [20]. This metric
indicates the maximum amount of information an adversary
can gain upon obtaining only a single observation. Finally,
Fisher information [21] is a method of measuring the amount
of information that an observed variable contains regarding
the parameter of interest that models the distribution of the
observed variable.
Data Indistinguishability

Data Indistinguishability indicates if an adversary can dis-
tinguish between two separate objects of interest. Differential
privacy [22], formulated around two databases that differ by
a single entry, has emerged as the consensus definition of
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publishing data in a privacy-preserving manner. This metric
guarantees that the probability distributions of the result of a
database query are approximately the same (within a small
multiplicative factor of eϵ) for two neighboring databases.
Even though differential privacy provides formal privacy guar-
antees, a no-free-lunch theorem shows that such guarantees
degrade when data are correlated [23].

Relaxing the original notion of differential privacy, by using
a small additive noise δ, results in an approximate differential
privacy metric that allows a wider range of query types
[24] than the original differential privacy metric, albeit in
exchange for privacy. The usage of δ allows the analysis
not to be overly-restrictive when evaluating two probability
distributions on sets on which both distributions result in very
small probabilities. For example, if one distribution’s integral
over a small set results in 10−10 while the other distribution’s
integration over the same set results in 10−15, then their ratio
is 105. This ratio is a lot larger than eϵ but still irrelevant as the
integrals over both the distributions result in minimal values.

We can extend this approximate differential privacy to a
framework where users consider the data aggregator untrusted
and apply randomness to their own data before sending them
to the central server [25]. Another possible extension of differ-
ential privacy can be done to a framework where the parameter
controlling the generation of these datasets is protected instead
of protecting the datasets themselves. Such an extension re-
sults in distributional privacy [26]. Finally, characterizing the
distance between two datasets with distinguishability metrics
dχ, instead of Hamming distance, results in d−χ-privacy [27].

III. SYSTEM SETUP

In this paper, we shall consider a setup where each user
shares personal information in exchange for utility, such as
gratifications that can be achieved by social interactions. In
such a setup, each user will be comprised of several features.
A user may wish to keep some of these features private while
disclosing other feature values to get some form of utility.
For example, a user might be reluctant to reveal their political
affiliation. In contrast, they might be willing to let others know
their food preferences so that they can get better restaurant
recommendations. We shall refer to their political affiliation
as a private feature, and to their food preferences as a utility
feature. Additionally, we are also considering the existence of
some other features that are neither utility nor private features.

Throughout the paper, we shall use random variable Xp

to represent private features, and utility features will be repre-
sented by the random variable Xu. Note that no restrictions are
imposed on the correlation between Xu and Xp. Additionally,
we denote the rest of the features that are neither utility nor
private by X and assume that X is correlated with both Xp

and Xu. Finally, we denote the support of random variable
Xp as Xp, and support of Xu as Xu.

Let us discuss an example to understand the correlation
between Xp, Xu, and X . Consider the Netflix recommender
system [28]. The utility of the platform is achieved by issuing
a recommendation (Xu) for specific show to a user. However,

as can be seen from [28], in addition to the show’s features,
the recommender considers a variety of user features, like the
user interactions with the platform, the time of the day when
the show is being watched, along with the device on which
the user is watching the show, etc. These user features X
are clearly related to the recommendation Xu, but they may
also be related to the user’s political affiliation Xp, which the
user may expect to keep private. In fact, Narayanan et al. [29]
showed that it is possible to infer users’ political reference
from their movie ratings. Therefore, instead of releasing either
Xu (which in this case the user does not even know) or X ,
the user’s best option may be to release Y , a perturbed version
of X .

In essence, (Xp, Xu) → X → Y form a Markov chain.
Here, privacy is inversely proportional to the leaked informa-
tion about Xp from Y , whereas utility is directly proportional
to the gained information about Xu from Y .

Due to the Markov property, we get the following condi-
tional distribution of Y given X , Xp, and Xu:

PY |X,Xu,Xp
= PY |XPX|(Xu,Xp). (1)

Particular instantiations of the Markov chain include the
situations in which X = Xu [30], when

PY |X,Xu,Xp
= PY |Xu

PXu|Xp
, (2)

or Xu ⊂ X [31] in which case

PY |X,Xu,Xp
= PY |XPX|Xp

. (3)

When we have X = Xu, Xp → Xu → Y forms the Markov
chain whereas Xu ⊂ X results in the Xp → (Xu, X) → Y
Markov chain.

In this paper, we are considering an adversary who has
bounded resources and lacks complete statistical information
about the joint distribution of the private, utility, and disclosed
variables. It is possible for the adversary to gain information
regarding the joint distribution through some side-channels.
For example, the adversary can collect several (Xp, Xu, X, Y )
tuples, possibly from some of their friends, and use these
tuples to approximate the joint distribution.

Usually, the adversary approximates the true joint distribu-
tion between Xp and Y , P (Xp, Y ), as Q(Xp, Y ) based on
their collection of (Xp, Xu, X, Y ) tuples. We are assuming
that the adversary knows the correct initial distribution of
Xp, PXp . Thus, the uncertainty will arise due to the lack of
the knowledge of PY |Xp

and consequently the adversary will
approximate PY |Xp

as QY |Xp
.

The adversary can learn QY |Xp
in several ways. As a matter

of fact, the uncertainty about QY |Xp
arises from two sources.

One of them is the privacy mechanism, PY |X , while the other
one is the likelihood of X given Xp, PX|Xp

. It is possible
that the adversary may possess the complete knowledge of
either one of them. However, in most cases, the adversary
lacks the perfect knowledge of the statistics of both of these
distributions. Therefore, depending on the application domain
and the knowledge of the adversary, they can either learn
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the privacy mechanism or the likelihood of X given Xp or
both of these distributions directly from the collected tuples.
Note that the adversary learns each of the distributions with
possibly different resolution approximations. Accordingly, the
adversary can learn PY |X with certain accuracy and PX|Xp

with an accuracy that is most probably different from the
accuracy of the learned PY |X . Throughout the paper, we have
assumed that the adversary only lacks the true knowledge of
the privacy mechanism.

Once the adversary has QY |X , they can compute QXp|Y as
follows:

QXp|Y =
QXp,Y

QY
=

ΣXΣXuQY |XPX|(Xp,Xu)PXp,Xu

ΣXΣXuΣXpQY |XPX|(Xp,Xu)PXp,Xu
.

Note that, PXp|Y can also be computed using the
true privacy mechanism as follows: PXp|Y =

PXp,Y

PY
=

ΣXΣXuPY |XPX|(Xp,Xu)PXp,Xu

ΣXΣXuΣXpPY |XPX|(Xp,Xu)PXp,Xu
.

Similar to an adversary, a utility provider also lacks the
perfect knowledge of the privacy mechanism. Consequently,
the utility provider approximates the privacy mechanism as
Q′

Y |X . However, the utility provider is interested in inferring
the correct value of Xu from Y . Therefore, they utilize
collected (Xp, Xu, X, Y ) tuples to approximate PXu|Y as

Q′
Xu|Y =

Q′
Xu,Y

QY
=

ΣXΣXpQ
′
Y |XPX|(Xp,Xu)PXp,Xu

ΣXΣXuΣXpQ
′
Y |XPX|(Xp,Xu)PXp,Xu

, and
employ Q′

Xu|Y to infer Xu.
To summarize, in our proposed setup, each user has both

private (Xp) and utility (Xu) features. Additionally, we have
also considered other features that are neither private nor pro-
vide any utility (X) and disclosed a perturbed version of these
other features (Y ). Both the adversary and the utility provider
lack complete knowledge about the privacy mechanism. Thus,
they get an approximation of the privacy mechanism based
on their collected (Xp, Xu, X, Y ) tuples. Subsequently, the
adversary utilizes QXp|Y to infer Xp, whereas the utility
provider employs Q′

Xu|Y to guess Xu. Table I presents the
summary of the notations used throughout the paper.

IV. TRUE EVALUATION OF ATTACKER’S SUCCESS

We shall have several categories of the privacy measures in
our setup as the information leakage, in the proposed setup,
depends on the approximated mechanism QXp|Y . We shall
begin by providing a measure to evaluate the true probability
that the attacker made a correct guess regarding the value of
Xp after observing Y .

Let us analyze the definition of min-entropy leakage first.
This metric provides a one-shot measure for guessing Xp. For
a blind guess, that is, without collecting any Y , the adversary
will always choose such x ∈ Xp that will maximize the prior
probability of Xp (i.e., PXp

). This measure is known as min-
entropy and defined by (4):

H∞(Xp) = − log2 max
x∈Xp

PXp
(x). (4)

After observing Y , the adversary will believe that they can
have a better guess than the blind guess, and the uncertainty

Symbol Meaning
Xp Random variable to represent private features
Xu Random variable to represent utility features
X Random variable to represent features that are

neither utility nor private
Y Random variable to represent disclosed information
Xp Support of Xp

Xu Support of Xu

Y Support of Y
PXp,Xu Original joint distribution between Xp and Xu

PY Original distribution of Y
QY Approximated distribution of Y by adversary
PY |X Original privacy mechanism
QY |X Approximated privacy mechanism by adversary
Q′

Y |X Approximated privacy mechanism by utility provider
x∗
1(y) argmax

x∈Xp

PXp|Y (x|y)

x∗
2(y) argmax

x∈Xp

QXp|Y (x|y)

x∗
3(y) argmax

x∈Xu

Q′
Xu|Y (x|y)

umin Minimum utility of the system
δL Minimum distance between original and approximated

privacy mechanism
δU Maximum distance between original and approximated

privacy mechanism

TABLE I: Summary of notations

in guessing the correct value of Xp is reduced. Therefore,
the uncertainty in guessing Xp now is represented by the
conditional min-entropy H∞(Xp|Y ). Finally, the min-entropy
leakage, referred to as L(PXp|Y ), is defined as the difference
between these two measures of entropy. The mathematical
representation of the metric is shown in (5) [10]. We denote the
support of Y by Y , and we let x∗

1(y) = argmax
x∈Xp

PXp|Y (x|y),

leading to

L(PXp|Y ) = I∞(Xp;Y ) = H∞(Xp)−H∞(Xp|Y )

= H∞(Xp) + log2
∑
y∈Y

PY (y) max
x∈Xp

PXp|Y (x|y)

= H∞(Xp) + log2
∑
y∈Y

PY (y)PXp|Y (x
∗
1(y)|y).

(5)

Observe that the measure of min-entropy leakage does
not consider the disclosure mechanism, approximated by the
adversary (i.e., QXp|Y ), in any capacity. Consequently, this
measure is not applicable for the adversary who lacks the
perfect knowledge of the privacy mechanism. Therefore, we
need to provide a measure to accurately compute the actual
information leaked by any system when an adversary lacks
the perfect knowledge of the privacy mechanism. We shall
refer to this measure of actual information leakage as objective
leakage. Depending on the application scenarios and the
characteristics of the adversary, we can have several classes
of objective leakage.
Average Objective Leakage

Let us begin by discussing how to compute, on average, how
much information has been leaked by Y . Adopting the same
approach of computing min-entropy leakage, we identify x ∈
Xp that maximizes QXp|Y . We denote this index as x∗

2(y) =
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PXp value
Xp = 1 0.3
Xp = 2 0.15
Xp = 3 0.35
Xp = 4 0.2

TABLE II: Example of initial distribution of Xp, PXp

argmax
x∈Xp

QXp|Y (x|y). Finally, we use this x∗
2(y), instead of

x∗
1(y) in (5), to compute the objective leakage.
This measure gives the actual leakage of the system,

averaged over all possible values of observations. Thus, we
refer to this metric as average objective leakage (AOL). The
mathematical formula for AOL is given by (6):

AOL(PXp|Y , QXp|Y ) = H∞(Xp)

+ log2
∑
y∈Y

PY (y)PXp|Y (x
∗
2(y)|y). (6)

Let us break down the definition to understand the meaning
behind such a formulation. For each y ∈ Y , PXp|Y (x

∗
2(y)|y)

represents the true probability that the adversary made a cor-
rect guess about the value of Xp after observing Y . Multipli-
cation with PY (y) provides the properly scaled measurement
of the true probability. Eventually, summing over all possible
values of y gives us the average scaled measurement of the
probability that the adversary’s guess is correct.

Issa et al. [7] introduced a framework to allow an adversary
to have multiple guesses instead of a single guess. The measure
of average objective leakage can easily be extended to a
multiple guessing framework. After observing Y , we shall let
adversary have k independent guesses to predict Xp, instead
of a single guess. To measure the average value of objective
leakage in this multiple guessing framework, we extend the
notion of average objective leakage to k-average objective
leakage (k-AOL).

Observe that H∞(Xp) provides a measure of initial un-
certainty in guessing Xp when the adversary is allowed to
have a single-blind guess. For measuring the initial uncertainty
in the multiple guessing framework, we need to extend the
measure of min-entropy to k guesses. The adversary can
exploit the knowledge of PXp to construct the k blind guesses
to maximize the probability of having the correct value of Xp.
The adversary can sort PXp

according to the probability of
each value of Xp and subsequently use the first k indices of Xp

as k independent guesses. For example, if PXp
is represented

by Table II and the adversary makes k = 2 guesses, then they
will guess Xp = 3 and Xp = 1 as these two values of Xp have
the highest two probabilities. The mathematical formulation of
min-entropy in multiple guessing framework is shown in (7).

Hk
∞(Xp) = − log2(

k∑
i=1

PXp
(x∗

0(i))) (7)

Here, x∗
0(i) is the value of Xp corresponding to the i-th

largest PXp(x), such that x∗
0(1) = argmaxx PXp(x). Note

that, for the rest of the paper, we shall use H∞(Xp) to indicate
the initial uncertainty in guessing Xp when we allow the

adversary to have a single guess and Hk
∞(Xp) will indicate

the initial uncertainty when we let the adversary make k
independent guesses.

Now we show how to measure AOL for k independent
guesses. Initially, for a specific y, consider the probability
of having a correct guess for the value of Xp for each
independent guess. Afterward, sum the probabilities for all the
k guesses to get the un-scaled measurement of true probability
that the adversary made a correct guess. Then, scale the value
by multiplying with PY (y). Finally, summing over all possible
y’s and adding the log of the summation with Hk

∞(Xp) gives
the average objective leakage for k independent guesses. The
formula for this measure is given by (8):

k-AOL(PXp|Y , QXp|Y ) = Hk
∞(Xp)

+ log2
∑
y∈Y

PY (y)

k∑
i=1

PXp|Y (x
∗
2(y, i)|y).

(8)

Here, PXp|Y (x
∗
2(y, i)|y) indicates the true probability that

the adversary has made a correct guess of Xp for that specific
y during their ith guessing attempt.

Maximum Objective Leakage

Average objective leakage provides an average guessing
performance of the adversary. It is possible to have some
realization of Y for which the probability of correct guessing is
high, but averaging over all realizations reduces the weight of
this leakage. However, if our Xp is sensitive data (e.g., medical
records of an individual), we must consider the maximum
information that can be leaked by the system and accordingly,
we get maximum objective leakage (MaxOL).

We know that for each y ∈ Y , PXp|Y (x
∗
2(y)|y) indicates

the true probability of the attacker having a right guess
regarding the value of Xp. We are only interested in measuring
the maximum leakage the adversary can realize for their
guess. Thus, we only need to consider maximizing such true
probabilities over all possible values of y. Summing the log2
of such maximization with the initial uncertainty will result
in the maximum objective leakage. The formula of maximum
objective leakage for the one-shot measure is shown in (9),
and (10) extends the one-shot measure to the multiple guessing
framework:

MaxOL(PXp|Y , QXp|Y ) = H∞(Xp)

+ log2 max
y∈Y

PXp|Y (x
∗
2(y)|y),

(9)

k-MaxOL(PXp|Y , QXp|Y ) = Hk
∞(Xp)

+ log2 max
y∈Y

k∑
i=1

PXp|Y (x
∗
2(y, i)|y).

(10)

Minimum Objective Leakage

Minimum objective leakage (MinOL) indicates the lowest
possible leakage the adversary can attain for their guess. Thus,
this metric represents the best-case information leakage for the
system designer. Formulas for one-shot measure and k-shots
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measure of minimum objective leakage are given by (11) and
(12), respectively:

MinOL(PXp|Y , QXp|Y ) = H∞(Xp)

+ log2 min
y∈Y

PXp|Y (x
∗
2(y)|y),

(11)

k-MinOL(PXp|Y , QXp|Y ) = Hk
∞(Xp)

+ log2 min
y∈Y

k∑
i=1

PXp|Y (x
∗
2(y, i)|y).

(12)

Now we provide the operational meaning of the mini-
mum objective leakage. While maximum objective leakage
implies the worst-case information leakage for the designer,
the minimum objective leakage indicates the best-case private
information leakage scenario. However, if we substitute Xu for
Xp, this becomes a measure of the worst-case utility gain for
the utility provider. While designing the system, the designer
does not know beforehand how much gain the utility provider
will realize. Thus, the designer may consider the worst-case
scenario, and accordingly, ensure that the minimum objective
leakage of the system meets the utility requirement in this
worst case.

V. TRUE EVALUATION OF ATTACKER’S BELIEF OF
SUCCESS

Heretofore, we have introduced measures to compute the
true probability that the attacker made a correct guess about
Xp after observing Y . However, those measures do not reflect
the attacker’s belief of being successful. Depending on the
metric definition, it is possible to capture both true and
subjective assessments of the attacker’s belief of success. In
this section, we shall discuss the measures to calculate the true
estimation. We have termed the metrics that calculate this true
evaluation of attacker’s belief of success as confidence boost.

We already know that, based on the approximated mech-
anism QXp|Y , the adversary makes the guess x∗

2(y) for a
particular y. Putting this x∗

2(y) in QXp|Y gives the subjective
evaluation of the attacker’s belief. This belief indicates the
probability with which the adversary thinks they have made a
correct guess regarding the value of Xp for that specific value
of y. Therefore, this metric is related to the confidence gain
that the attacker believes they have achieved by observing Y .

Now we shall present the operational meaning of the
confidence boost metric. This metric will be important if the
adversary decides to perform an action based on their confi-
dence. Suppose an adversary plans to perform a harmful action
on an entity if such an individual has performed a specific
action. Consequently, the adversary observes the behavior of
said entity for a limited amount of time. It is plausible that the
behavior of that particular individual during that limited time
may not represent the usual behavior. However, if the attacker
gets a high confidence boost, they will most likely perform
the harmful action. Note that the correctness of the inference
is not of utmost importance in this case. The adversary acts
as long as their confidence boost is significant.

Let us provide an example to explain the application of
the confidence boost metric. Consider a scenario where the
police collect some public information that leaks several sen-
sitive attributes of a specific user. This collected information
supports the conclusion that this person is a criminal. Note
here that the police are collecting public information through
a mechanism that they do not know perfectly. Yet if they have
high confidence in their decision, they will arrest that specific
person irrespective of the correctness of their decision. In fact,
having higher confidence in a wrong decision, in this scenario,
can lead to potentially devastating consequences. Such an
incorrect inference will not only cause a significant personal
loss for that user but also cause considerable damage to the
administration, probably in terms of several lawsuits.

Now that we have shown the application of the confidence
boost metric, we shall provide the mathematical formulation of
the metric. Similarly to objective leakage, we can have several
classes of confidence boost as well.

Average Confidence Boost

Suppose we are interested in measuring the average true
confidence boost the adversary gets after observing Y . To
perform such a measurement, at first, for each value of y ∈ Y ,
take the probability with which the adversary believes they
have made a correct guess, and this belief is represented
by QXp|Y (x

∗
2(y)|y). Next, multiply the numeric value of

the belief with the true marginal distribution of Y , PY (y).
Summing over all possible values of y and adding the final
sum with the initial uncertainty of guessing Xp will provide
the measure of the average confidence boost (ACB) of the
adversary. The mathematical formulation for this measure is
given by (13), and (14) extends this one-shot measure to
multiple guessing framework:

ACB(PXp|Y , QXp|Y ) = H∞(Xp)

+ log2
∑
y∈Y

PY (y)QXp|Y (x
∗
2(y)|y), (13)

k-ACB(PXp|Y , QXp|Y ) = Hk
∞(Xp)

+ log2
∑
y∈Y

PY (y)

k∑
i=1

QXp|Y (x
∗
2(y, i)|y).

(14)

Maximum Confidence Boost

Recall from the previous section that when Xp corresponds
to sensitive information, the system designer will need to
consider the maximum information leakage that the adversary
can realize. Such consideration will result in maximum confi-
dence boost (MaxCB) for one-shot measure and k-maximum
confidence boost (k-MaxCB) for independent k guesses of
the adversary. The mathematical formulation of MaxCB and
k-MaxCB are given by (15) and (16), respectively. Here,
maxy∈Y QXp|Y (x

∗
2(y)|y) indicates the maximum possible

confidence boost the attacker can realize for any value of y.
Observe that we are not multiplying this confidence boost with
PY , as we did in the average measurement. Thus, MaxCB is
a function of only QXp|Y for the adversary:
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MaxCB(QXp|Y ) = H∞(Xp)

+ log2 max
y∈Y

QXp|Y (x
∗
2(y)|y),

(15)

k-MaxCB(QXp|Y ) = Hk
∞(Xp)

+ log2 max
y∈Y

k∑
i=1

QXp|Y (x
∗
2(y, i)|y).

(16)

Minimum Confidence Boost
Finally, we extend the notion of confidence boost metric to

compute both one-shot measure of minimum confidence boost
(MinCB) and minimum confidence boost for multiple guessing
framework (k-MinCB). The mathematical formulations are
shown in (17) and (18), respectively. Similar to MaxCB,
MinCB is also a function of only QXp|Y :

MinCB(QXp|Y ) = H∞(Xp)

+ log2 min
y∈Y

QXp|Y (x
∗
2(y)|y),

(17)

k-MinCB(QXp|Y ) = Hk
∞(Xp)

+ log2 min
y∈Y

k∑
i=1

QXp|Y (x
∗
2(y, i)|y).

(18)

Interestingly, the minimum confidence boost, both the one-
shot and k-shots measure, capture the characteristics of such
an adversary who is not at all confident about their approxi-
mated mechanism and always considers the worst-case output.
Thus, the minimum confidence boost measure represents the
confidence boost that a pessimistic adversary will gain upon
observing the disclosed variable Y .

VI. SUBJECTIVE EVALUATION OF ATTACKER’S BELIEF OF
SUCCESS

Formerly, we have defined the measures for both the proper
evaluation of the attacker’s success and the true evaluation of
the attacker’s belief of success. In this section, we shall extend
the measures to reflect the confidence boost that an attacker
expects to get by collecting additional Y .

Average Subjective Leakage
Recall that for each y ∈ Y , QXp|Y (x

∗
2(y)|y) indicates the

probability with which the adversary believes they have made
a correct guess for the value of Xp for that specific y. Mul-
tiplying this value of belief with the attacker’s approximated
marginal distribution QY will result in the attacker’s expected
confidence boost. The formula for one-shot measure of average
subjective leakage (ASL) is shown in (19), and (20) extends
this one-shot measure to the multiple guessing framework:

ASL(QXp|Y ) = H∞(Xp)

+ log2
∑
y∈Y

QY (y)QXp|Y (x
∗
2(y)|y), (19)

k-ASL(QXp|Y ) = Hk
∞(Xp)

+ log2
∑
y∈Y

QY (y)

k∑
i=1

QXp|Y (x
∗
2(y, i)|y).

(20)

To understand what aspect of the measure this subjective
leakage portraits, observe that the definition of the metric
relates the probability with which the attacker thinks they
have made the correct guess for each y ∈ Y to the attacker’s
approximated distribution of Y , QY (y). Thus, this metric
represents an apriori measurement of the confidence boost an
adversary will expect to get if they decide to collect more
Y . This measure will enable the adversary to decide if the
cost incurred during the process of gathering the disclosed
information is worth the effort.

Let us again consider the example where the police collect
public information that leaks private information about a
user. The collected public information is consistent with the
conclusion that the user is a criminal. However, the police
may believe they do not have enough information to infer
the conclusion with high confidence. The question now arises
how many more resources the police is willing to invest
in collecting additional public information that leaks private
information about the user.

The average subjective leakage metric will enable the police
to answer the question. Let us assume that the police have
collected information about the user’s behavior for a week and
want to analyze if further information collection for another
week is worth the effort. Consequently, they compute the
average value of the subjective leakage using the gathered
information, and if the average subjective leakage is minimal
for a further collection of information, the police may con-
clude that further information collection may not boost the
confidence any higher and may decide not to allocate more
time and resources for the information collection.

Observe that we do not have notions of maximum subjective
leakage or minimum subjective leakage. Subjective leakage
allows the adversary to make a decision through the utilization
of QY . Recall that for measuring either the maximum or
minimum of any proposed metrics, we have dropped the
multiplication with the marginal distribution of Y as such
multiplication does not have any operational meaning. There-
fore, we do not have any mathematical formulation of either
maximum subjective leakage or minimum subjective leakage.
Subjective Local Differential Privacy Leakage

The measures we have introduced heretofore deal with
both the information gain and reduction in uncertainty of the
adversary for guessing Xp after observing Y . Now, we shall
introduce measures to capture the data distinguishing ability
of the adversary upon observing the disclosed variable Y .

Adhering to the formulation provided by the authors in
[7], we get (21) to represent the local differential privacy
leakage (LDPL) of the original distribution PXp|Y . This LDPL
measure computes the ratio of likelihoods for two values of
Xp and a specific Y :

LDPL(PXp|Y ) = max
y∈Y

x,x′∈Xp

log2
PY |Xp

(y|x)
PY |Xp

(y|x′)
. (21)

The local differential privacy leakage measure maximizes
over Y and thus, implies the worst-case leakage for the system
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designer. It is possible to extend the metric to represent the
average leakage of the system. We shall refer to such metric
as average local differential privacy leakage (ALDPL):

ALDPL(PXp|Y )

= Σy∈YPY (y) max
x,x′∈Xp

log2
PY |Xp

(y|x)
PY |Xp

(y|x′)
.

(22)

Here, maxx,x′∈Xp
log2

PY |Xp
(y|x)

PY |Xp
(y|x′)

indicates the true log-

likelihood ratio of distinguishing two elements of Xp for each
y ∈ Y . Subsequently, we compute the average of such ratios
over the possible realizations of Y , to have the average local
differential privacy leakage metric.

We can also extend the notion of local differential privacy
leakage to represent the subjective evaluation of the adver-
sary’s belief of distinguishing two input values based on a
specific set of realizations of the disclosed variable Y . Suppose
we replace PY |Xp

with QY |Xp
in (21). In that case, we get

the attacker’s subjective evaluation of the belief about their
capability to differentiate two different values of Xp for a
specific Y . Here we are maximizing over all possible values of
Y , and accordingly, we shall refer to the measure as maximum
subjective local differential privacy leakage (MaxSLDPL). The
mathematical formulation is shown in (23).

MaxSLDPL(QXp|Y ) = max
y∈Y

x,x′∈Xp

log2
QY |Xp

(y|x)
QY |Xp

(y|x′)
(23)

The adversary will be highly confident that they can differ-
entiate between x and x′ if (23) results in a high value. Thus,
this metric also represents the confidence of the attacker.

Let us now analyze how the metric MaxSLDPL can let
the police assess their conclusion that the specific user is a
criminal. Police can compute QY |Xp

beforehand from their
collected (Xp, Xu, X, Y ) tuples. Once they observe a specific
behavior of interest, specified by Y , from the particular user,
straightaway they can employ MaxSLDPL metric to measure
how much difference this particular realization of Y has made
to the belief of the police regarding the user being guilty.
Here, x can represent the scenario where the user is guilty of
a crime, and x′ can indicate those situations where the user is
innocent. If the value of MaxSLDPL is high and positive, the
police will be more confident in their conclusion that the user
is indeed a criminal while a negative value of the difference
will reduce the confidence of police in their conclusion.

We can also formulate minimum subjective local differential
privacy leakage (MinSLDPL) which captures the characteris-
tics of a pessimistic adversary. The definition is shown in (24):

MinSLDPL(QXp|Y ) = min
y∈Y

max
x,x′∈Xp

log2
QY |Xp

(y|x)
QY |Xp

(y|x′)
. (24)

Finally, we can also have the average measure of the
subjective local differential privacy leakage metric. Depending
on the definition of the metric, it is possible to capture both the
true estimation and subjective belief of the confidence boost
of the adversary to distinguish between two inputs of Xp.

We have proposed the objective average subjective local
differential privacy leakage (OASLDPL) to represent the true
confidence boost of the adversary to distinguish between
two input values for a fixed observed Y . The mathematical
formulation is shown in (25):

OASLDPL(PXp|Y , QXp|Y )

= Σy∈YPY (y) max
x,x′∈Xp

log2
QY |Xp (y|x)
QY |Xp (y|x′) .

(25)

Note that we are multiplying the attacker’s belief about
their capability to differentiate two input values (i.e.,

maxx,x′∈Xp
log2

QY |Xp
(y|x)

QY |Xp
(y|x′)

) with PY . Thus, similar to con-

fidence boost metrics, this multiplication indicates the true
confidence boost that adversary realizes for distinguishing
between two inputs upon observing Y .

Similarly to subjective leakage, if we multiply

maxx,x′∈Xp log2
QY |Xp

(y|x)
QY |Xp

(y|x′)
with QY we shall get a

metric representing the attacker’s expectation of their ability
to differentiate two input values upon further collection
of Y . We have termed the metric as subjective average
subjective local differential privacy leakage (SASLDPL) and
the formulation is given by (26):

SASLDPL(QXp|Y )

= Σy∈YQY (y) max
x,x′∈Xp

log2
QY |Xp (y|x)
QY |Xp (y|x′) .

(26)

VII. PROBLEM SETUP

Heretofore, we have introduced various information leakage
metrics and explained the application scenario of each of the
introduced metrics. In this section, we begin by summarizing
the intuition behind the formulation of each metric. Afterward,
we shall present the problem formulation utilizing these dif-
ferent notions of information leakage metrics.

The importance of the true evaluation of the attacker’s
success (i.e., objective leakage) is apparent. Such a measure
will indicate the correctness of the inference made by the
adversary upon observing the disclosed information. The sub-
jective leakage measures will enable the adversary to decide if
further information collection for a specific individual is worth
the effort. For example, let us assume an adversary tracked an
individual for a certain period and collected information about
the said individual’s behavior. Afterward, the adversary wants
to determine whether to keep collecting information about the
specific user. For this, the adversary may compute the expected
gain that can be achieved by a further collection of information
and check if the gain is significant or not. The subjective
leakage measures will facilitate such decision-making. On
the other hand, confidence boost metrics measure the true
boost of belief for an adversary. These metrics can be of
significant importance if the adversary decides to perform an
action based on her confidence. Upon collecting information,
an adversary may get a significant confidence boost on an
incorrect inference. However, as the confidence boost is high,
the adversary will make a decision based on that wrong
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inference. The adversary may carry out the unpleasant action
simply because of the confidence in their inferred result (such
an attacker is referred to as “robber” in [32]).
Comparison with g-leakage Framework

Let us compare the proposed metrics to the g-leakage
framework of [33]. In the g-leakage framework, the authors
introduced a gain function g to quantify how close the adver-
sary’s guess is to the true secret. This measure, nonetheless,
still assumes the perfect knowledge of the privacy mecha-
nism. However, the measure appropriately identifies that an
adversary can gain information even if their guess is slightly
wrong. Such a framework is different from our setup. The
objective leakage measure indicates the true probability that
the adversary has made a correct guess. For computing the
objective leakage, we need to analyze that specific guess
of the adversary. Such a guess is made by analyzing the
approximated privacy mechanism. The same conclusion also
holds for the leakage measures that evaluate the attacker’s
belief of success. For each of the evaluations of the attacker’s
belief of success, we have quantified either the subjective or
true gain in confidence for the adversary. Such a measure is
performed to understand the behavior of an adversary and
whether such an adversary would take actions that can lead
to potentially serious consequences. The measure of g-leakage
does not quantify the gain in confidence for the adversary but
rather the partial gain that the adversary achieves through their
incorrect guess.

Utility Measurement

Recall that the utility provider infers Xu from Y based on
their collection of (Xp, Xu, X, Y ) tuples. They approximate
the true distribution PXu|Y as Q′

Xu|Y and afterward, for each
y ∈ Y , the utility provider guesses x ∈ Xu that maximizes the
probability of having a correct guess of Xu. We have referred
to this guess as x∗

3(y) = argmax
x∈Xu

Q′
Xu|Y (x|y) (See Table

I). Now, we need to identify the correct metric that properly
reflects the gain of the utility provider. If we compute the
various minimum one-shot measures that are introduced in
the paper, for such a utility provider, we get (27), and (28):

MinOL(PXu|Y , Q
′
Xu|Y ) = H∞(Xu)

+ log2 min
y∈Y

PXu|Y (x
∗
3(y)|y),

(27)

MinCB(Q′
Xu|Y ) = H∞(Xu)

+ log2 min
y∈Y

Q′
Xu|Y (x

∗
3(y)|y).

(28)

Notice that confidence boost metric is a function of Q′
Xu|Y .

For each y ∈ Y , Q′
Xu|Y (x

∗
3(y)|y) indicates the utility

provider’s subjective evaluation of the probability with which
they think they have inferred the correct value of Xu. Hence,
if we measure confidence boost metric in this scenario, we
shall get the confidence boost the utility provider obtains
through a collection of (Xp, Xu, X, Y ) tuples. Even though
such measurement can have applications in decision making,
confidence boost is not a suitable measure for utility.

The objective leakage on the other hand puts x∗
3(y) in the

correct distribution PXu|Y , and computes the corresponding
leakage, as shown in (27). Thus, the objective leakage metric
accurately represents the actual leakage of the system for the
utility provider, and accordingly, we adopt objective leakage
for computing the utility. We have seen in section IV that
there are several classes of the objective leakage. Depending
on the applications, the designer may employ any of them as
the utility measure. However, typically the designer will be
concerned about the worst-case leakage the utility provider
can realize, and in that scenario, minimum objective leakage,
as shown in (27), provides the accurate measure of the utility.
Problem Formulation

For our problem formulation, we are considering a system
designer whose objective is to design a disclosure mechanism
such that Y leaks minimal information about Xp while reveal-
ing a significant amount of information about Xu. These two
conditions are contradictory to each other. Thus, we shall have
a constrained optimization problem, and the solution of the
optimization problem will result in a mechanism that ensures
the information leakage between Xp and Y is minimized while
maintaining the utility constraint.

In the previous subsection, we have explained the measure
of utility. To ensure the usability of the system, the designer
needs to ensure that the utility of the designed system is higher
than a nominal utility umin. Therefore, we have the utility
constraint as U(Xu, Y ) ≥ umin.

Subsequently, we shall develop another set of constraints
for the space of QXp|Y . We have specified previously that
the adversary will collect several (Xp, Xu, X, Y ) tuples and
approximate PXp|Y as QXp|Y . However, recall that we have
assumed that the adversary only lacks the perfect knowledge
of the privacy mechanism, and thus, approximates the privacy
mechanism, PY |X , as QY |X . Let us assume that the adversary
approximates the privacy mechanism as QY |X upon collecting
several (Xp, Xu, X, Y ) tuples. For each X = x, the adversary
collects n samples of Y . Now, using Theorem 11.2.1 in [34],
we can write:

Pr(DKL(PY |X=x, QY |X=x) > ϵ) ≤ 2−n(ϵ−|X|
log(n+1)

n
). (29)

Note that (29) ensures that QY |X converges to PY |X , with
probability 1, when n → ∞. Now, from Pinsker’s inequality
[35], we know that:

dTV (PY |X=x, QY |X=x) ≤
√

1
2
DKL(PY |X=x, QY |X=x). (30)

Here, dTV indicates the total variation distance between two
distributions.

Therefore, from (29), we can write:

Pr(dTV (PY |X=x, QY |X=x) >
√

1
2
ϵ) ≤ 2−n(ϵ−|X|

log(n+1)
n

). (31)

Additionally, if we denote the Hellinger distance between
PY |X=x and QY |X=x as h(PY |X=x, QY |X=x), then from
Lemma 12.2 of [36], we get the following:

h2(PY |X=x, QY |X=x) ≤ dTV (PY |X=x, QY |X=x). (32)
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Fig. 1: Distribution of mQ

Let us assume Y1 ∼ PY |X=x and Y2 ∼ QY |X=x. Fur-
thermore, E[Y1] = mP , E[Y2] = mQ, Var(Y1) = σ2

P , and
Var(Y2) = σ2

Q. Thus, if mP ̸= mQ, Theorem 1 of [37]
provides the following lower bound on h2(PY |X=x, QY |X=x):

h2(PY |X=x, QY |X=x) ≥ 1−

√
1− a2

a2 + (σP + σQ)2
, (33)

where a = mP −mQ. From (32) and (33), we can write:

dTV (PY |X=x, QY |X=x) ≥ 1−

√
1− a2

a2 + (σP + σQ)2
. (34)

Note that mP is fixed, and according to the central limit
theorem, mQ will have a normal distribution with mean mP

and variance σ2
P

n . Thus, for any a∗, Pr(a > a∗) will be
represented by the darker region of Figure 1. If a∗ is small,
then such a probability will be high.

The adversary does have an incentive to have an approxi-
mated privacy mechanism as close as possible to the original
privacy mechanism, such that they can have a maximum prob-
ability of having a correct guess. Due to a lack of the perfect
knowledge of the true privacy mechanism, the adversary fails
to achieve such a feat. However, the adversary still tries to have
an approximated mechanism to maximize their probability of
having a correct guess. Depending on the value of n (number
of samples of Y for each value of X = x), (31) dictates that
there exists an upper bound (δU ) for dTV (PY |X=x, QY |X=x),
whereas (34) shows the existence of lower bound (δL) for
the same measure. Therefore, we need to optimize over all
possible QY |X that are within these bounds of PY |X . From the
perspective of a system designer, such a constraint is certainly
important as lower values of both δL and δU mean that the
approximated mechanism is closer to the true mechanism, and
thus, the system can leak significant information regarding Xp.

Depending on the characteristics of the adversary, we can
have several optimization problems. Let us consider designing
the privacy mechanism for a pessimistic adversary where the
system designer is interested in minimizing the confidence
boost. As the adversary is of pessimistic nature, they will
be doubtful about their approximated mechanism. Therefore,
the designer needs to consider the lowest possible confidence
boost that can be extracted from the approximated mechanism.

Thus, the system designer needs to find the optimized privacy
mechanism that minimizes the minimum confidence boost.
Contrarily, if the designer were interested in devising the
information disclosure mechanism for an optimistic adversary,
the metric of interest would be the maximum confidence boost
(MaxCB) as such an adversary will always be highly confident
about their approximated mechanism. Finally, for a generic
adversary, we shall have L(Xp, Y ) = ACB(PXp|Y , QXp|Y ).

The next step of the designer would be to find the optimized
privacy mechanism QY |X . Observe that the designer does not
know beforehand which QY |X will be chosen by the adversary.
The only information that the designer has is that QY |X ,
chosen by the adversary, is at least δL away from PY |X ,
and within δU of PY |X . Therefore, the designer always needs
to consider the worst case and consequently, find PY |X that
minimizes the worst-case value of L(Xp, Y ). Accordingly, we
have the following optimization problem:

min
PY |X

max
QY |X

L(Xp, Y ),

such that U(Xu, Y ) ≥ umin,

dTV (PY |X=x, QY |X=x) ≤ δU (∀x),
and dTV (PY |X=x, QY |X=x) ≥ δL(∀x).

(35)

For solving the optimization problem, we have adopted a
greedy approach. The details are given below.

• The algorithm iteratively finds the optimum PY |X while
a specific threshold condition is maintained. We initialize
our step size, µ, to a random value. Next, we utilize the
function OPT P to find the optimum PY |X at distance
µ from the initial PY |X , and accordingly, we update our
privacy mechanism to the new PY |X . At the same time,
we keep track of the optimized worst-case leakage value.
Afterward, we reduce the value of µ by half (µ = µ

2 ) and
check if the reduced value of µ has further optimized the
worst-case leakage. Such a check is done by computing
the difference between the worst-case leakage values that
we achieved for both µ and µ

2 . We keep repeating the
process while the difference between these two leakages
is higher than 0. The details are shown in Algorithm 1.

• Now we shall describe how OPT P results in the op-
timum PY |X for a fixed µ. We initialize PY |X and
generate a list of P̂Y |X that are µ away from PY |X .
Then, we use the function OPT Q to find the optimum
P̂Y |X for the next iteration. We update our PY |X to this
value of P̂Y |X and keep repeating the process while the
difference between the previous leakage value and the
current leakage value is higher than 0. The details are
shown in algorithm 2.

• Finally, we shall discuss how OPT Q finds the P̂Y |X for
the next iteration. Recall that we need to consider all
QY |X that are at least δL away from PY |X and within
δU of PY |X . Therefore, for each P̂Y |X in list P̂Y |X ,
we generate a list of QY |X that maintains our distance
constraints. Afterward we compute the leakage value only
for those QY |X that maintain our utility constraint and
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Algorithm 1 Algorithm for solving the optimization problem
Input: δL, δU , umin

Output: Optimum leakage value, optimum privacy mech-
anism

1: Initialize PY |X to a transition probability matrix
2: new P← PY |X
3: µ← a positive value
4: new leak← a large positive value
5: leak diff← a positive value
6: while leak diff > 0 do
7: current leak← new leak
8: PY |X ← new P
9: (new leak, new P)← OPT P(µ, δL, δU , umin, PY |X )

10: leak diff ← current leak− new leak
11: µ← µ/2
12: end while
13: return current leak, PY |X

Algorithm 2 Algorithm for function OPT P
Input: µ, δL, δU , umin, PY |X
Output: Optimum leakage value, optimum PY |X (for a
specific µ)

1: function OPT P(µ, δL, δU , umin, PY |X )
2: new leak← a large positive value
3: leak diff← a positive value
4: new P← PY |X
5: while leak diff > 0 do
6: current leak← new leak
7: PY |X ← new P
8: Generate list P̂Y |X that are µ away from PY |X
9: (new leak, new P)← OPT Q (list P̂Y |X , δL, δU ,

umin)
10: leak diff← current leak− new leak
11: end while
12: return current leak, PY |X
13: end function

choose that QY |X that maximizes the leakage value. Once
we have all the worst-case leakage values for each P̂Y |X
in list P̂Y |X , we choose the one that minimizes such
maximization of the leakage value as our optimum P̂Y |X .
The details of this step are shown in algorithm 3.

Note that step 8 of algorithm 2 calls for the generation of
a list P̂Y |X that are µ away from PY |X . By this we mean
that for each x ∈ X we generate k probability distributions
P̂Y |X=x, each one at total variation distance µ from PY |X=x

(for this latter task, it is enough to randomly choose two values
yi, yj ∈ Y , and do P̂Y |X=x(yi) = PY |X=x(yi) − µ, and
P̂Y |X=x(yj) = PY |X=x(yj) + µ, while ensuring the values
are non-negative.). Here k is a compile-time constant, chosen
to be lower than or equal to

(|Y|
2

)
.

A similar approach is applied to generate list QY |X of step
3 of algorithm 3. Initially, we produce a subset of length m of

Algorithm 3 Algorithm for function OPT Q

Input: list P̂Y |X , δL, δU , umin

Output: Optimum leakage value, optimum P̂Y |X

1: function OPT Q(list P̂Y |X , δL, δU , umin)
2: for each P̂Y |X in the list P̂Y |X do
3: Generate list QY |X that are within [δL, δU ] dis-

tance of P̂Y |X
4: leak list P← [ ]
5: for each QY |X in list QY |X do
6: leak list Q← [ ]
7: if Utility constraint is maintained then
8: leak Q← L(PY |X , QY |X)
9: Append leak Q to leak list Q

10: end if
11: end for
12: leak max← max(leak list Q)
13: Append leak max to leak list P
14: end for
15: leak min← min(leak list P)
16: min index← leak list P.index(leak min)
17: min P← list P̂Y |X [min index]
18: return leak min, min P
19: end function

QY |X ’s that are exactly at δU distance from a specific P̂Y |X
in the same manner. Afterward, we create another subset of
QY |X ’s that are exactly δU − c distance from the P̂Y |X (c
is a small constant). We keep repeating the process till we
reach δL and combine all the generated subsets to generate the
list QY |X . Similar to k, m is also a compile-time constant.
Properties of the Proposed Metrics

In this subsection, we shall present several properties of
the proposed metrics. We are only analyzing the properties of
those metrics that are defined as averages over the range of
outputs due to the continuous nature of the functions. Such
measures are average subjective leakage, average objective
leakage, and average confidence boost. For ease of explana-
tion, we are assuming that the adversary is allowed to make a
single guess upon observing Y instead of making k guesses.

Property 1. maxQY |X AOL, where QY |X is at distance at
least δL > 0 from PY |X , is always smaller than the min-
entropy leakage (L).

Proof. We know that x∗
1(y) indicates the value of x ∈ Xp

that maximizes PXp|Y and x∗
2(y) represents x ∈ Xp that

maximizes QXp|Y . When δL > 0, x∗
1(y) and x∗

2(y) will
refer to different values. As x∗

1(y) always maximizes PXp|Y ,
PXp|Y (x

∗
1(y)|y) is always higher than PXp|Y (x

∗
2(y)|y). There-

fore, maximum of average objective leakage will be lower than
the min-entropy leakage.

Property 2. maxQY |X ACB, where QY |X is at a distance
between 0 and δU from PY |X (that is, when δL = 0), is always
larger than or equal to the min-entropy leakage (L).
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Proof. From the definitions of both average confidence boost
(shown in (13)) and min-entropy leakage (shown in (5)), we
get the following:

ACB(PXp|Y , QXp|Y )− L(PXp|Y )

= log2

∑
y PY (y)QXp|Y (x

∗
2(y)|y)∑

y PY (y)PXp|Y (x
∗
1(y)|y)

When δL = 0, the search space for QXp|Y always in-
cludes PXp|Y . Additionally, x∗

2(y) always maximizes QXp|Y .
This leads to maxQXp|Y

∑
y PY (y)QXp|Y (x

∗
2(y)|y) ≥∑

y PY (y)PXp|Y (x
∗
1(y)|y), thus the difference between ACB

and L is always positive.
Property 3. maxQY |X ASL, where QY |X is at a distance
between 0 and δU from PY |X (that is, when δL = 0), is always
larger than or equal to the min-entropy leakage (L).

Proof. From the definitions of both average subjective leakage
(shown in (19)) and min-entropy leakage (shown in (5)), we
get the following:

ASL(QXp|Y )− L(PXp|Y ) = log2

∑
y QY (y)QXp|Y (x

∗
2(y)|y)∑

y PY (y)PXp|Y (x
∗
1(y)|y)

= log2

∑
y maxx∈Xp QXY (x, y)∑
y maxx∈Xp PXY (x, y)

Now, since the search space for QXY always in-
cludes PXY (recall that δL = 0), it becomes clear that
maxQXY

maxx∈Xp
QXY (x, y) is at least as large as the value

of maxx∈Xp
PXY (x, y), leading to a positive difference be-

tween ASL and L.
VIII. SIMULATION RESULTS

We shall begin the section by analyzing a real-world dataset
to check if our proved properties hold. Afterward, we shall
compute the worst-case leakage values with the optimized
privacy mechanism that results from the optimization problem.
Dataset Description

The Iris Dataset of UCI Machine Learning Repository [38]
is used as a real-world example dataset to further extend
the analysis of the proposed metrics. The dataset includes
150 instances of three different iris classes: Iris-setosa, Iris-
versicolor, and Iris-virginica. For each sample, four features
were also measured: the length and width of the sepals
and petals (in centimeters). For our analysis, we have se-
lected the “Species” parameter as our private feature (Xp)
and “PetalWidthCm” as the utility feature (Xu). The rest
of the features (SepalLengthCm, SepalWidthCm, and Petal-
LengthCm) are treated as X . Observe that, in the dataset
each species has 50 samples, and consequently, we have
H∞(Xp) = − log2(50/150) = 1.585.
Convergence of Average Metrics

For this subsection, we are analyzing the convergence of
our proposed metrics, such as the convergence of average
subjective leakage to min-entropy leakage. Consequently, we
need to generate Y from X by noise addition. Sharma et
al. [39] discussed an optimal noise addition mechanism. This

noise addition mechanism minimizes the mutual information
between the private variable (Xp) and the disclosed variable
(Y ). The algorithm has two privacy parameters. The first
parameter indicates when to add noise to X to increase privacy
(referred to as γ), and the second parameter, β, indicates the
utility loss upon the addition of noise. For our experiment, we
have used γ = 0.25 and β = 1.52.

Observe that, throughout the paper; we have employed
Bayesian inference to infer Xp from Y . Such inference re-
quires the data to be divided into discrete bins. Thus, we have
divided each feature of Y into three separate bins. We were
interested in discretizing each of the features into equal-sized
bins based on the quantile values. Accordingly, we performed
quantile cut for each feature of Y . We performed the same
operation on X as well. As both X and Y consist of three
possible features, and each feature has three possible values,
we have 27(33) possible values of both X and Y . Therefore,
we have PY |X as a 27 × 27 matrix. Note that we divided
each feature of Y into three bins to keep the shape of the
matrix PY |X tractable as the paper is focused on analyzing
the performance of the proposed matrix rather than dealing
with a large matrix. The analysis is similar when the shape of
the matrix of interest is large.

Recall that we are considering an adversary who approx-
imates the privacy mechanism based on their collection of
(Xp, Xu, X, Y ) tuples. We adopted the method of Chatzikoko-
lakis et al. [13] for such an approximation. Specifically, we
have taken X and Y at their face value, and utilized the num-
ber of observation for approximating the privacy mechanism.
Additionally, we have varied the number of collected tuples to
simulate an adversary with different QY |X . Figure 2 shows the
box-plot of the variation of the proposed leakage measures for
varying number of samples. The blue line indicates the median
value for that specific instantiation. The details of the box-plot
can be found in Table III.

For explanation, let us consider Figure 2a first. Note that
PY |X is fixed here, and QY |X is approximated by the adver-
sary upon collecting a fixed number of (Xp, Xu, X, Y ) tuples.
If the adversary can collect a higher number of (Xp, Xu, X, Y )
tuples, then their approximated privacy mechanism (QY |X )
will be closer to the original privacy mechanism (PY |X ).
Moreover, recall that average subjective leakage is defined as
the maximum over QXp|Y . As the adversary lacks perfect
knowledge of the privacy mechanism, maximization over
QXp|Y depends on the approximated privacy mechanism
QY |X , and the distance between PY |X and QY |X . When
the adversary has access to a smaller number of samples,
the distance between these two privacy mechanisms will be
higher. A higher distance will result in a larger search space
for QXp|Y , and consequently, maxQXp|Y QXp|Y (x

∗
2(y)|y) will

be higher. Once we increase the number of samples, the
distance starts to get lower, and correspondingly, we get a
smaller search space for QXp|Y . As the search space of QXp|Y
gets smaller, maxQXp|Y QXp|Y (x

∗
2(y)|y) becomes smaller and

consequently results in a lower value of average subjective
leakage. Finally, when the adversary gets access to all the
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Number of Samples AOL ACB ASL

Median (1st quartile,
3rd quartile) Median (1st quartile,

3rd quartile) Median (1st quartile,
3rd quartile)

25 0.884 (0.769, 1.032) 2.639 (2.575, 2.746) 2.829 (2.531, 3.136)
50 1.486 (1.429, 1.614) 2.634 (2.572, 2.708) 2.693 (2.433, 3.080)
75 1.602 (1.564, 1.652) 2.409 (2.357, 2.465) 2.682 (2.373, 2.980)

100 1.962 (1.938, 2.000) 2.193 (2.153, 2.241) 2.578 (2.396, 2.818)
125 2.070 (2.053, 2.090) 2.165 (2.131, 2.215) 2.432 (2.281, 2.620)
150 2.105 (2.105, 2.105) 2.105 (2.105, 2.105) 2.105 (2.105, 2.105)

TABLE III: Median value and quartile tuples of proposed leakage measures on Iris dataset (Min-entropy leakage = 2.105)

(a) Average subjective leakage (b) Average confidence boost (c) Average objective leakage

Fig. 2: Box-plot of variation of leakage metrics with varying number of samples for the Iris dataset. The blue line indicates
the variation of median values.

samples, QXp|Y becomes equal to PXp|Y , and thus the average
subjective leakage also converges to min-entropy leakage.
Such a variation is represented by the blue line of Figure 2a.
Observe that such variation is also consistent with our property
3 where we have proved that maxQY |X ASL is always larger
than the min-entropy leakage. Using the same reasoning, we
can explain both Figures 2b and 2c, which are compatible with
property 2, and property 1, respectively. Moreover, from Table
III, we can see that when the adversary does not have all of
the (Xp, Xu, X, Y ) tuples, the first quartile of both ASL and
ACB is higher than the min-entropy leakage. Certainly, none
of the observed values of either ASL and ACB falls below the
min-entropy leakage, making the observation consistent with
the leakage properties. A similar observation holds for AOL as
well, where none of the observed values of AOL goes beyond
the min-entropy leakage.
Optimized Worst-case Leakage Values

In this subsection, we shall initially discuss how we can
estimate both δL and δU and how the proposed leakage
measures are related to these values. Recall that δL indicates
the lower bound between PY |X=x and QY |X=x (∀x), whereas
the upper bound is represented by δU . The adversary usually
approximates the privacy mechanism based on their collection
of (Xp, Xu, X, Y ) tuples. The system designer does not know
exactly how many original (Xp, Xu, X, Y ) tuples can be
collected by the adversary. Therefore, the best way would be
to assume a range of values for such a collection of tuples.
The smallest value of the range will result in an estimate of
the upper bound (i.e., δU ), and the largest value will result in
the estimation of the lower bound (i.e., δL).

Let us discuss the effect of δL first. If δL = 0, then it is
possible for the adversary to have access to all the original

(Xp, Xu, X, Y ) tuples that were used to design the privacy
mechanism and thus, have complete knowledge of the privacy
mechanism. As a result, both PY |X and QY |X refer to the
same privacy mechanism [32]. In that case, we shall have the
worst-case value of average objective leakage, which is min-
entropy leakage (see Property 1). Additionally, both average
subjective leakage and average confidence boost will be the
same as the min-entropy leakage. However, in most practical
circumstances, an adversary lacks this advantage which results
in δL > 0, and accordingly, AOL will be maximized when
QY |X will be at exactly δL distance from PY |X .

Now let us analyze the effect of δU . For a fixed value of δL,
a higher value of δU will result in a larger search space for
QXp|Y . A larger search space will result in a higher value
for maxQXp|Y QXp|Y (x

∗
2(y)|y). As both average subjective

leakage and average confidence boost utilize QXp|Y (x
∗
2(y)|y)

in their definition, such a maximization will result in a higher
value for both ASL and ACB.

Straightaway, we shall repeat the simulation where we let
the adversary gather several input-output pairs, and based on
the collection of (Xp, Xu, X, Y ) tuples; they have the approx-
imated privacy mechanism QY |X . We have varied the number
of collected tuples from 25 to 150. Of course, the system
designer does not know how many samples the adversary gets.
Hence, we assumed that the privacy system PY |X is designed
considering an adversary that can have anywhere between
25 and all of 150 (Xp, Xu, X, Y ) tuples. The upper bound
on the number of tuples implies that δL = 0. For finding
an estimate of δU , we initially generated Y using the noise
addition mechanism of Sharma et al. [39], and let the adversary
have access to random 25 (Xp, Xu, X, Y ) tuples. By repeating
the process several times, we found an estimate of δU = 0.75.
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Number of Samples worst-case ASL worst-case ACB
25 2.310 2.207
50 2.277 2.170
75 2.234 2.143
100 2.177 2.110
125 2.172 2.107
150 2.105 2.105

TABLE IV: Median of optimized worst-case metric values

Finally, we have solved the optimization problem, using
δL = 0 and δU = 0.75, to achieve optimum PY |X . We
compared the worst-case leakage values, obtained from the
optimum PY |X , to the worst-case leakage values achieved by
minimizing the mutual information between Xp and Y . The
details of the median of the optimized worst-case leakage val-
ues are given in Table IV, and Figure 3 shows the comparative
plot. Note that we have not solved the optimization problem
when L(Xp, Y ) = AOL, as we have δL = 0 meaning AOL
will be maximized when PY |X = QY |X .

IX. RELATED WORK

Information-theoretic measures, specifically Shannon en-
tropy and mutual information based information leakage mea-
sures, have been studied extensively in former years [3]–[6].
Shannon entropy measures the average amount of information
that a message contains, and mutual information between two
random variables quantifies the amount of information gained
about one variable by observing the other. Concisely, mutual
information measures the correlation between two variables.
Authors in [40] discussed how an attacker’s belief change by
observing the execution of a program whereas Hamadou et al.
[41] unified the notion of belief and leakage for an adversary.
In [40], the authors introduced a metric where an adversary
observes the execution of a program and consequently updates
their initial belief about the private variable. The authors did
not consider the case where an adversary approximates the
privacy mechanism. Authors in [41] nevertheless introduced
the metrics to represent the belief of the attacker when they had
different (and potentially wrong) initial beliefs regarding the
distribution of the secret and consequently presented several
properties to measure the accuracy and belief of the adversary.
In the current paper, we assumed the approximation of the
privacy mechanism. Moreover, we have also formulated an
optimization problem that results in a privacy mechanism
that minimizes the worst-case leakage. Such an optimization
problem was not formulated in both [40] and [41]. Another
prominent measure of information leakage is min-entropy
leakage [8]–[10]. The definition of min-entropy leakage cap-
tures the reduction in uncertainty of guessing a secret once
some information correlated with the secret is disclosed. Min-
entropy is a specific case of Rényi entropy [15] with α =∞.
Authors in [33] introduced g-leakage, a generalization of min-
entropy leakage. The authors in [42] provided several axioms
for information leakage. The notion of black-box estimation of
leakage was introduced in [43]. In [44], the authors estimated
the g-leakage via machine learning approaches and evaluated
the performance of their approach via various experiments
using k-nearest neighbors and neural network.

Authors in [45] introduced a single-shot measure of in-
formation leakage, known as maximal leakage. Additionally,
in [7], they have also introduced various one-shot measures
such as maximal realizable leakage, local differential privacy,
maximal correlation, and maximal cost leakage. The authors
in [46] and [47] showed that machine learning models are vul-
nerable to membership inference attacks. In [48], the authors
measured the information leakage regarding the presence of
an individual in a training dataset using conditional mutual
information. Fisher information estimates the amount of in-
formation obtained about a parameter by observing a random
variable whose characteristics depend on the said parameter.
Hannun et al. [49] adopted Fisher information for defining in-
formation leakage, and later proposed a method to quantify the
information leakage of the training data in a machine learning
model. The authors in [50], [51] analyzed Fisher information
as a privacy leakage measure to develop an optimum privacy-
preserving policy. Various game-theoretic settings have been
proposed to simulate the interactions between a utility provider
and an adversary in the context of both information flow and
differential privacy [52], [53], [54].

Differential privacy, introduced in [22], was formulated
around two neighboring databases, namely two databases
differing in a single entry. The tradeoff between utility and
privacy, for a differentially private mechanism, has been
studied extensively [55]–[60]. In a recent work, Desfontaines
et al. [61] provided an extensive analysis on the variants
of differential privacy. They divided the various notions of
differential privacy into seven categories, depending on the
aspect of the original definition that is being modified. The
authors in [62] performed a similar extensive analysis of
information leakage metrics.

The work of Chatzikokolakis et al. [13] is closely related
to our framework. In the paper, the authors have forgone
the assumption that the exact probabilities of the information
disclosure mechanism are known and estimated the mutual
information based on the collection of samples. Afterward,
they provided an estimation of the channel capacity using the
estimated mutual information. Several relevant works were
performed in [11] and [12]. In both papers, the authors
considered a database that comprises both private and public
features, and the mechanism releases a distorted version of
the public features. Thereafter, the authors devised a mecha-
nism that minimizes the privacy-utility tradeoff. The authors
utilized f -information as the measure of privacy in [11]
and applied χ2-information as a privacy measure in [12].
Note that both f -information and χ2-information require that
the joint distribution between public and disclosed variables
are completely known. The authors, however, assumed that
such assumptions might not hold in various applications and
consequently provided an estimation of the privacy measures.
Finally, they provided a bound on the error of the difference
between the privacy measures, computed under exact and
approximated mechanisms.
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(a) Average subjective leakage comparison (b) Average confidence boost comparison

Fig. 3: Plot of comparison of worst-case median leakage metrics with a varying number of samples for Iris dataset. The blue
line shows the variation of the median value when the noise addition mechanism minimizes the mutual information between
Xp and Y . The red line shows the variation of median values of the resultant worst-case leakage of the optimization problem.

X. CONCLUSION AND FUTURE WORK

The traditional metrics of information leakage implicitly
assume that the stochastic mechanism correlating the secret
with the disclosed variable is known to the adversary. This
assumption does not hold up in practice as most platforms do
not publicly reveal their mechanisms for privatizing sensitive
data. Therefore, the adversary can only approximate the true
information disclosure mechanism. The conventional informa-
tion leakage measures fail to compute the information leakage
in these situations correctly. This paper introduces various
information leakage measures to correctly compute the leakage
when an adversary lacks complete statistical information about
the true joint distribution of private, utility, and disclosed
variables. These measures capture the various facets of the
information leakage that result from the imperfect knowledge
of the distribution. Furthermore, we have also considered
distinct adversary characteristics and formulated optimization
problems for each of these diverse adversaries. The solution
to these optimization problems results in an optimized infor-
mation disclosure mechanism that will minimize the worst-
case maximization of any of the proposed metrics. Finally,
we have simulated a case study where we observed that both
the average subjective leakage and average confidence boost
metric decrease monotonically with an increasing number of
samples, whereas the average objective leakage increases grad-
ually. These metrics converge to min-entropy leakage when
the adversary is given access to all the samples. Furthermore,
we have also solved the formulated optimization problems
to achieve the optimized worst-case leakage values of our
proposed metrics, and shown that such optimization, makes
significant differences to the the worst-case leakages.
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