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Abstract—We formalize security properties of zero-knowledge
protocols and their proofs in EasyCrypt. Specifically, we focus
on sigma protocols (three-round protocols). Most importantly,
we also cover properties whose security proofs require the use
of rewinding; prior work has focused on properties that do
not need this more advanced technique. On our way we give
generic definitions of the main properties associated with sigma
protocols, both in the computational and information-theoretical
setting. We give generic derivations of soundness, (malicious-
verifier) zero-knowledge, and proof of knowledge from simpler
assumptions with proofs which rely on rewinding. Also, we
address sequential composition of sigma protocols. Finally, we
illustrate the applicability of our results on three zero-knowledge
protocols: Fiat-Shamir (for quadratic residues), Schnorr (for
discrete logarithms), and Blum (for Hamiltonian cycles, NP-
complete).

Index Terms—cryptography, formal methods, EasyCrypt, zero-
knowledge, sigma protocols, rewinding

I. INTRODUCTION

Zero-knowledge (ZK) protocols are cryptographic protocols
that allow a prover to convince a verifier that they possess
certain knowledge, without revealing that knowledge. More
formally, let R be a relation. Then a ZK protocol for the
relation R allows the prover to convince the verifier that the
prover knows a witness w for some given statement s, so that
(s, w) ∈ R, without revealing anything else about w itself. For
example, the prover may prove that a hash s is a hash of some
well-formed data w. (In which case R consists of all pairs (s, w)
with s = hash(w) and w well-formed.) ZK protocols constitute
an important building block in cryptography as they can help
to enforce the honest behaviour from potentially malicious
parties. For example, the proof can provide a guarantee that
the party is authorised to perform certain actions or access
certain sensitive information.

The security of ZK protocols is expressed via properties
of completeness, soundness, zero-knowledge, and proof of
knowledge. Completeness ensures the correct operation of
the protocol if both prover and verifier follow the protocol
honestly. Soundness ensures that for “wrong” statements (i.e.,
with no witness) a prover can convince the verifier with only
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a small probability. Proof of knowledge guarantees that any
prover that successfully convinces the verifier actually knows a
witness (and not only abstractly that it exists). Zero-knowledge
establishes that any cheating verifier cannot learn anything
about the witness when running the protocol. These properties
are typically shown by mathematical pen-and-paper proofs.

Pen-and-paper proofs are, however, inherently error-prone.
Humans will make mistakes both when writing and when
checking the proofs. To ensure high confidence in cryptographic
systems, we use frameworks for computer-aided verification
of cryptographic proofs. One widely used such framework is
the EasyCrypt tool [1]. In EasyCrypt, a cryptographic proof
is represented by a sequence of “games” (simple probabilistic
programs), and the relationships between programs are analyzed
in a probabilistic relational Hoare logic (pRHL). EasyCrypt
has been successfully used to verify a variety of cryptographic
schemes, such as electronic voting [2], digital signatures [3],
differential privacy [4], security of IPsec [5], etc.

Properties related to ZK protocols are challenging to prove
formally. For example, the proofs of the important zero-
knowledge property requires a technique known as rewinding
of adversaries. To the best of our knowledge, until recently
rewinding was unavailable in EasyCrypt and other popular
cryptography-oriented theorem provers. As a result, properties
relying on rewinding were never properly addressed in formal
setting. As we show in the related work section (Sec. I-A),
the existing formalization efforts of sigma protocols mostly
addressed properties which do not depend on rewinding which
include completeness, special soundness, and honest-verifier
zero-knowledge.

Recently the rewinding of programs was formally imple-
mented in EasyCrypt [6].

This motivated us to generically formalize derivations of
(malicious-verifier) zero-knowledge, proof of knowledge, and
soundness in EasyCrypt. We address a specific but very com-
mon subclass of ZK protocols, namely sigma protocols. These
are three-message protocols of a certain specific structure (see
Sec. III-B). Our technical contributions include the following
results:

• We give generic definitions of the main properties associ-
ated with sigma protocols. These include completeness,
soundness, zero-knowledge, special soundness, and proof
of knowledge (a.k.a. extractability). We address com-
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putational and information-theoretical versions of these
properties (see Sec. III).

• We present generic derivations of soundness from ex-
tractability, extractability from special soundness, and
zero-knowledge from “one-shot” simulators (see Sec. IV).

• We prove the sequential compositionality for complete-
ness, soundness, and zero-knowledge of sigma protocols
(see Sec. V).

• We instantiate our results for three ZK protocols: Fiat-
Shamir1 (for quadratic residues) [7], Schnorr (for discrete
logarithms) [8], and Blum (for Hamiltonian cycles, NP-
complete) [9] (see Sec. VI).

Our EasyCrypt formalization is provided as a supplementary
material [10]. There we provide instructions for running the
code (file README.md) as well as instructions about the
structure of the development and how use them for own
developments (file MANUAL.md and README.md files in all
subfolders).

A. Related Work

In [11], Barthe et al. give one of the first machine-checked
formalization of sigma protocols in CertiCrypt. Their main
focus is on a subclass of sigma protocols that is aimed at
proving knowledge of pre-images under group homomorphisms.
This limits the applicability of their results to problems that
exhibit this particular algebraic structure (e.g., this excludes
Blum’s protocol). In their work, the authors give a generic
definition of one run of the sigma protocol (i.e., exchange
of three messages) and formalize some of its properties,
namely, completeness, special soundness, and honest-verifier
zero-knowledge. They formalize the “perfect” variant of these
properties (as compared to statistical and computational) and the
AND/OR compositionality of sigma protocols. The applicability
of their results is illustrated on examples which include Schnorr,
Okamoto, Guillou-Quisquater, and Feige-Fiat-Shamir protocols.
The authors do not address (malicious-verifier) zero-knowledge,
proof of knowledge, soundness, and sequential composition of
sigma protocols.

Another related field is the development of verified crypto-
graphic compilers. In the context of ZK protocols, important ex-
amples of these are the CACE compiler [12] and ZKCrypt [13].

The CACE compiler [12] is a certifying compiler that gen-
erates efficient implementations of zero-knowledge protocols.
The CACE compiler takes abstract specifications of a zero-
knowledge protocol and generates C or Java implementations.
The main compilation steps are certifying in the sense that
they generate an Isabelle proof of special soundness. However,
the zero-knowledge, completeness, and soundness properties
are not addressed.

Almeida et al. present ZKCrypt [13] which is an optimizing
cryptographic compiler for sigma protocols. Similarly to the
work by Barthe et al. [11], the authors consider only the class
of sigma protocols for proving knowledge of pre-images under

1Not to be confused with the Fiat-Shamir transformation from the same
paper that transforms interactive sigma protocol into non-interactive protocols.

group homomorphisms. ZKCrypt implements two compilers:
“verified” and “verifying”. The verified compiler takes an
abstract description of a sigma protocol and generates a
reference implementation. The verifying compiler outputs an
optimized implementation (in C or Java) which is provably
equivalent to the reference implementation. Most importantly,
the proofs returned by the compilers establish that the reference
and optimized implementations satisfy the perfect complete-
ness, special soundness, and honest-verifier zero-knowledge.
The soundness, (malicious-verifier) zero-knowledge, proof of
knowledge, and sequential composition are not addressed.

In [14], Butler et al. used the CryptHOL framework to for-
malize and derive commitment schemes from sigma protocols.
The applicability of their work is illustrated by instantiating the
Schnorr, Chaum-Pedersen, and Okamoto sigma protocols. The
authors derive completeness, special-soundness, and honest-
verifier zero-knowledge. The highlight of their work is a generic
construction of commitment schemes from sigma protocols.
In their work, the authors do not address (malicious-verifier)
zero-knowledge, soundness, proof of knowledge, and sequential
compositionality.

In [15], Almeida et al. give a machine-checked imple-
mentation of a framework that allows users to construct
efficient zero-knowledge protocols from secure multiparty
computation protocols. For their generic constructions, the
authors formalize the security definitions and proofs related
to completeness, soundness, and zero-knowledge of sigma
protocols. The authors do not address special soundness,
proof of knowledge, and sequential compositionality of zero-
knowledge. Their framework is implemented in EasyCrypt
and some definitions are similar to ours, but there are also
important differences.

In their formalization, the authors define the honest prover
as a pure function (i.e., not as EasyCrypt procedure/module)
which takes randomness necessary for its computations as
one of its arguments. This approach can drastically simplify
the proofs, but makes the instantiation harder especially in
cases when prover needs to use other cryptographic primitives
such as commitments (in which case also these primitives
must be modelled as pure functions with explicit randomness).
The most significant overlap with our results is the derivation
of malicious-verifier zero-knowledge from one-shot simulator
which is similar to our result in Sec. IV-A. However, the im-
portant difference is that for this result the authors change their
representation of malicious verifiers and honest provers. Both
the honest prover and the malicious verifier, are now modelled
semantically; in other words, these parties are not represented
as stateful programs (i.e., not as EasyCrypt procedure/module),
but as parameterized mathematical distributions instead. This
approach greatly simplifies proofs (e.g., rewinding in this model
is a trivial re-sampling), but makes it harder (if not impossible)
to combine it with other definitions which rely on the standard
representation of protocol parties as programs (see more on
representation of adversaries in Sec. VII-B). Indeed, in other
parts of their formalization, the authors work with standard
representation which strictly speaking makes their own results
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incompatible with each other.
Also, they establish a security level for zero-knowledge

which equals to 2εN + pN , where ε is a security bound for
one-time simulator, p is the probability of a “bad”-event, and
N is the number of tries performed by the simulator. Thus
their bound becomes linearly worse in the number of tries.
In contrast, we obtain the bound ε+ pN which approaches ε
exponentially quickly in the number of tries.

In [16], Sidorenco et al. also perform a formal analysis
of MPC-in-the-head zero-knowledge protocols in EasyCrypt.
The authors provide a machine-checked security proof of a
zero-knowledge protocol which follows the MPC-in-the-head
paradigm. Their mechanization specifically studies the ZKBoo
protocol [17]. They prove completeness, soundness, and honest-
verifier zero-knowledge. Similarly to the work by Almeida et al.
the work by Sidorenco et al. introduces basic zero-knowledge
definitions of completeness and special soundness which are
similar to ours. They do not address soundness, (malicious-
verifier) zero-knowledge, proof of knowledge, and sequential
composition of sigma protocols.

All these results focus on definitions and proofs that can
be formalised without rewinding of adversaries (except [15]
where adversaries are modelled as distributions). We believe
the rewinding-related properties to be the current frontier in
the mechanization of ZK proofs. In this work we set out to
overcome this hurdle.

II. PRELIMINARIES

A. EasyCrypt

EasyCrypt is an interactive framework for verifying the
security of cryptographic protocols in the computational model.
In EasyCrypt security goals and cryptographic assumptions are
modelled as probabilistic programs (a.k.a. games) with abstract
(unspecified) adversarial code. EasyCrypt supports common
patterns of reasoning from the game-based approach, which
decomposes proofs into a sequence of steps that are usually
easier to understand and to check [18].

The results in this paper build on the formalization of
rewinding from [6]. To facilitate reading, in this paper we
used the same style of presentation and set of syntactical
conventions as [6]. To our readers who are not familiar with
EasyCrypt we suggest to read a short EasyCrypt introduction
in [6, Section 2]. More information on EasyCrypt can be found
in the EasyCrypt tutorial [18].

To readers who are familiar with EasyCrypt we only give
a brief overview of our syntactical conventions: we write ←
for <-, $← for <$, ∧ for /\, ∨ for \/, ≤ for <=, ≥ for >=,
∀ for forall, ∃ for exists, m for &m, GA for glob A,
Gm
A for (glob A){m}, λx. x for fun x => x, × for *.

Furthermore, in Pr-expressions, in abuse of notation, we allow
sequences of statements instead of a single procedure call. It is
to be understood that this is shorthand for defining an auxiliary
wrapper procedure containing those statements.

B. Rewinding

Rewinding refers to the proof technique in which we take a
given (usually unknown) adversary (in EasyCrypt modelled as
an abstract module) A, and convert it into an adversary B that
in some form includes the following steps:

1) Remember the initial state of A.
2) Run A.
3) Restore the original initial state of A.
4) Run A again.
5) Combine the results from the runs and/or repeat this until

it yields a desired outcome.
In [6], the authors explain that while the above steps seem
simple there are numerous challenges in trying to express them
in EasyCrypt. The authors develop an approach to rewindability
in the form of a generic library (it did not require to extend
EasyCrypt itself or the underlying logic). In a nutshell, the
authors argue that a module A is rewindable iff:

1) There exists an injective mapping f from GA to some
parameter type sbits. Intuitively, sbits is the type of
bitstrings.

2) The module A must have a terminating side-effect free
procedure getState, so that whenever A.getState
is called from the state g: GA, the result of the call must
be equal to (f g).

3) The module A must have a terminating procedure
setState, so that whenever it is invoked with argument
x: sbits, so that x = f g for some g: GA then A
must be set into a state g.

To express the above conditions formally, the authors define a
module type Rew for rewindable modules:

module type Rew = {
proc getState(): sbits
proc setState(s: sbits): unit

}.

In our presentation, we use Rewindable A as a shorthand
which indicates that A satisfies the rewindability condition
explained above. The fully formal EasyCrypt definition of
rewindability can be found in [6].

C. Running Example: The Fiat-Shamir Protocol

For the clarity of presentation we instantiate our formal
definitions using the Fiat-Shamir zero-knowledge protocol as
a running example [7]. (Not to be confused with the well-
known Fiat-Shamir transformation from the same paper.) The
language of Fiat-Shamir protocol consists of quadratic residues.
An element s ∈ Z/nZ is a quadratic residue if there exists w
so that s = w2 and s is invertible.2 In Fiat-Shamir protocol the
prover tries to convince a verifier that a statement is quadratic
residue and it knows the witness.

Let us give an informal protocol description. The protocol
starts by the prover generating a random invertible ring element
r and sending its square a = r2 to the verifier. The verifier
receives the commitment a and replies with a random bit b

2In this section the multipication must be understood as a ring multiplication.

33



as a challenge. The prover replies with z = wbr. Finally, the
verifier accepts if z2 = sba and a is invertible.

In the following sections we use this protocol as a concrete
running example for which we derive completeness, special
soundness, soundness, proof of knowledge, zero-knowledge,
and sequential compositionality.

In Sec. VI, we comment on our formalisation of other
protocols.

III. GENERIC DEFINITIONS

In this section we formalize main definitions which are
associated with sigma protocols. In cryptography, there are
three types of definitions, namely, perfect, statistical, and
computational. Let us describe these definitions in broader
sense. In perfect definitions the adversarial party usually has
unlimited computational capabilities and the probability of
successful attack must be zero. In statistical definitions the
adversarial party is still unlimited, but the probability of
successful attack could be non-zero but small. In computational
definitions the adversary is computationally limited and we
also allow a non-zero probability of a successful attack. In
this paper we mainly present statistical definitions, but in
our formalization we also address computational and perfect
variations.

In our formalization we define an EasyCrypt theory which
encompasses definitions of types, operators, modules, and
modules types from this section. Later the EasyCrypt cloning
mechanism can be used to instantiate these definitions for
a specific protocol (see Sec. VII-A). The lemmas in this
section must be understood as definitions of properties of
sigma protocols (i.e., proof obligations for concrete instances).

A. Basics

From an abstract point of view, every sigma protocol
is designed to work with a specific formal NP-language.
The language is induced by a relation between statements
and witnesses. More specifically, a language is a subset of
statements for which there exists a witness which satisfies the
relation.
type statement, witness.

type relation = statement → witness → bool.

op in_language (R:relation)(s:statement): bool
= ∃ (w: witness), R s w.

Informally, in sigma protocols the prover tries to convince the
verifier that it knows a witness which validates the statement
(i.e., satisfies the relation of a language).

It is important to note that in some cases the proofs of
properties of sigma protocols such as completeness, soundness,
and zero-knowledge could require relations of different strength.
Therefore, in our library when the user instantiates their
protocol we ask them to provide the relation per property.
op completeness_relation: relation.
op soundness_relation: relation.
op zk_relation: relation.

In the following sections, we formally describe the main
properties associated with sigma protocols. We start by only
expressing these properties relative to a single run, i.e. three
messages. To achieve reasonable security guarantees most
sigma protocols are executed multiple times. Therefore, we
show that the one run execution properties can be lifted to
multiple runs generically (see Sec. V).

1) Fiat-Shamir Basics: In our formalization we express Fiat-
Shamir in terms of an abstract ring Z/nZ whose elements have
type zmod. The standard library of EasyCrypt has a theory
ZModRing with an formalization of properties of zmod.

To increase readability we will use type synonyms qr_stat,
qr_wit, qr_com, and qr_resp for the statement, witness,
and the response, respectively. All these types are synonyms
of zmod.

The Fiat-Shamir language consists of statements which are
quadratic residues in zmod. On the formal side we need
to define relations for completeness, soundness, and zero-
knowledge. All three relations are the same and they ensure
that statement is a square of the witness and also that the
statement is invertible:
op fs_relation (s: qr_stat)(w: qr_wit)

= s = w ··· w ∧ invertible s.
op completeness_relation = fs_relation
op zk_relation = fs_relation.
op soundness_relation = fs_relation.

B. Completeness

The sigma protocol consists of a honest prover and a honest
verifier. In our library, we give generic module types for both
parties:
module type HonestProver = {
proc commitment(s: statement,

w: witness): commitment
proc response(ch: challenge): response }.

module type HonestVerifier = {
proc challenge(s: statement,

c: commitment): challenge
proc verify(r: response): bool }.

In the code above commitment, response, and
challenge are abstract types of the return values of the
respective procedures. Similar to statement and witness,
these types are protocol specific and must be provided during
protocol instantiation (see Sec. VII-A).

In terms of sigma protocols, the commitment procedure
produces the first message, challenge produces the second
message, and response the third. Finally, given the response
the verify procedure decides whether the verifier accepts.

We implement the following module Completeness that
encodes exactly this exchange of messages and returns whether
the verifier accepts:
module Completeness(P: HonestProver,

V: HonestVerifier) = {
proc run(s: statement, w: witness): bool = {
var c, ch, r, acc;
c <@ P.commitment(s,w);
ch <@ V.challenge(s,c);

44



r <@ P.response(ch);
acc <@ V.verify(r);
return acc;

}}.

It is important to understand that the sigma protocol is defined
by the implementation of honest prover (which we denote by
HP) and the honest verifier (which we denote by HV).

The honest verifier of a sigma protocol must choose its
challenge uniformly at random from some finite set. Also, the
verification procedure can usually be defined as a predicate
(pure function) on the statements and transcripts (the transcript
is a triple of commitment, challenge, and response). Therefore,
we give a “skeleton” implementation of a honest verifier
which can be instantiated by providing protocol specific
challenge_set and verify_transcript operators:

type transcript = commitment× challenge× response.

module HV: HonestVerifier = {
var s, c, ch;
proc challenge(s: statement, c: commitment) = {

(HV.s, HV.c) ← (s,c); % global state vars
ch $← duniform challenge_set;
return ch;

}
proc verify(r: response): bool = {

return verify_transcript s (c, ch, r);
}}.

Intuitively, the sigma protocol induced by the honest prover HP
and honest verifier HV is complete iff for any valid statement s
the probability of success in Completeness(HP,HV) game
is close to one. The completeness_error is a protocol
specific error term which determines the probability of failure
of Completeness.

lemma completeness: ∀ (s: statement)(w: witness) m,
completeness_relation s w
⇒ Pr[r ← Completeness(HP,HV).run(s,w) @m: r]
≥ 1 - completeness_error s.

(This “lemma” must be understood as a definition of complete-
ness as a property.)

1) Fiat-Shamir Completeness: In this section, we formally
define the Fiat-Shamir protocol by implementing an honest
prover and an honest verifier.

We start by implementing the honest prover. In the commit-
ment phase the prover samples an invertible group element r
uniformly at random and returns its square as the commitment.
The value r and the witness w are stored in the prover’s internal
variables HP.r and HP.w, respectively:

module HP: HonestProver = {
var r, w: zmod
proc commitment(s: qr_stat, w: qr_wit): qr_com = {

HP.w ← w;
r $← zmod_distr;
return r ··· r;

}
proc response(b: bool): qr_resp = {

return (if b then r ··· w else r);
}}.

To instantiate the implementation of the honest verifier we need
to define the set of challenges and the verification function. In
the Fiat-Shamir protocol the verifier’s challenge is just a bit,
hence, the challenge set consists of values false and true:

op challenge_set = [false; true].

The verification function starts by checking that the statement
and the prover’s commitment are invertible and then checks
that in case when challenge bit is false the square of the
response value equals to the commitment (c) value, otherwise
the square of the response must equal to the product of the
commitment and the statement.

op verify_transcript (s:qr_stat)(t:transcript)
= let (c, ch, r) = (t.1, t.2, t.3) in

invertible s ∧ invertible c
∧ (if ch then c ··· s else c) = r ··· r.

At this stage the Fiat-Shamir protocol is fully defined by the
implemented honest prover HP and instantiated honest verifier
HV.

In our formalization we prove that the protocol has “perfect”
completeness, i.e., the completeness error is zero. With the
help of SMT solvers, EasyCrypt is able to derive completeness
almost entirely automatically.

C. Soundness

Soundness is an important property of sigma protocols which
says that if the statement is false (not in the language of the
sigma protocol) then cheating prover cannot convince an honest
verifier that it is true, except with some small probability.

The module type MaliciousProver defines the interface
of cheating provers. Note that the main difference from
HonestProver is that the commitment procedure of the
cheating prover only receives the statement (since in the context
of the soundness property the witness for the provided statement
does not exist).

module type MaliciousProver = {
proc commitment(s: statement): commitment
proc response(ch: challenge): response }.

Similarly to the module Completeness we implement
a module Soundness which encodes one run of a sigma
protocol in the context of a cheating prover.

module Soundness(P: MaliciousProver,
V: HonestVerifier) = {

proc run(s: statement): bool = {
var c, ch, r, acc;
c <@ P.commitment(s);
ch <@ V.challenge(s,c);
r <@ P.response(ch);
acc <@ V.verify(r);
return acc;

}}.

The sigma protocol is statistically sound iff for any cheating
prover P and a statement s which is not in the language
induced by soundness_relation the probability that the
honest verifier accepts in the Soundness game is bounded
from above by some small soundness_error s. Here,
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soundness_error is a protocol specific function that is
allowed to depend on the statement s.

lemma soundness:
∀ (s: statement) (P <: MaliciousProver) m,
!(in_language soundness_relation s) ⇒

Pr[r ← Soundness(P,HV).run(s) @m: r]
≤ soundness_error s.

(This “lemma” must be understood as a definition of statistical
soundness as a property.) The perfect soundness would be sim-
ilar to the statistical soundness with soundness_error s
being defined as zero. However, we are not aware of any
interesting sigma protocols which achieve perfect soundness.

In the case of computational soundness, the soundness-error
depends on the computational power of the malicious prover
P. That is, the right-hand-side becomes a protocol-specific
term that depends on the success of P in a different game (the
“reduction”).

1) Fiat-Shamir Soundness: The Fiat-Shamir protocol is
statistically sound with soundness-error equal to ½. In our
formalization we derive this from extractability by using the
generally derived lemma (see Sec. IV-C and Sec. IV-C1).

D. Special Soundness

For some sigma protocols the easiest way to prove soundness
is to derive it from another property known as “special
soundness”.

The main idea of special soundness is that if for the
same statement we have two valid transcripts for the same
commitment but with different challenges, then it should be
possible to efficiently extract the witness from these transcripts.
Recall that the transcript is a triple of commitment, challenge,
and response.

The function valid_transcript_pair s t1 t2

checks whether transcripts satisfy the condition stated above:

op valid_transcript_pair
(s: statement) (t1 t2: transcript): bool

= t1.1 = t2.1
∧ t1.2 6= t2.2
∧ verify_transcript s t1

∧ verify_transcript s t2.

op special_soundness_extract
(s: statement) (t1 t2: transcript): witness.

The function special_soundness_extract is protocol
specific and must be instantiated by the user.

The most intuitive variant is the perfect special soundness. It
states that the function special_soundness_extract
must be able to construct a valid witness from any valid
transcript pair.

lemma perfect_special_soundness:
∀ (s: statement) (t1 t2: transcript),
valid_transcript_pair s t1 t2 ⇒

soundness_relation s
(special_soundness_extract s t1 t2).

For the computational case, we also additionally need to define
a module type for special soundness adversaries:

module type SpecialSoundnessAdversary = {
proc attack(s: statement):

transcript× transcript }.

Intuitively, computational special soundness states that
for any computationally limited adversary it must be
hard to derive a pair of valid transcripts for which the
special_soundness_extract function fails to provide
a valid witness. In EasyCrypt, we express this as an event
whose probability is bounded from above by a small number
special_soundness_error A s, where A is a special
soundness adversary and s is a statement.
lemma computational_special_soundness: ∀ s m,
Pr[r ← A.attack(s) @m:
valid_transcript_pair s r.1 r.2
∧ !(soundness_relation s

(special_soundness_extract s r))]
≤ special_soundness_error A s.

Unfortunately, in EasyCrypt one cannot define
operators to depend on the modules (such as
special_soundness_error above). As a result
of this restriction the user must manually replace
soundness_error A s with the error term in the
above lemma.

We do not define statistical special soundness because it
would be equivalent to perfect special soundness.3

1) Fiat-Shamir Special Soundness: The Fiat-Shamir protocol
has perfect special soundness. Let us define the extraction
function:
op special_soundness_extract
(s:qr_stat) (t1 t2:transcript): qr_wit =
let (c1,ch1,r1) = t1 in
let (c2,ch2,r2) = t2 in

if ch1 then r1 ··· (inv r2) else (inv r1) ··· r2.

The main idea is as follows. Let t1 := (c1,ch1,r1)
and t2 := (c2,ch2,r2) be a pair of valid transcripts
with respect to the function valid_transcript_pair
(i.e., c1 = c2 , ch1 6= ch2 , and both t1 and t2

pass the honest verification). Also, w.l.o.g. assume that
ch1 = true and ch2 = false. In this case we
know that c1 ··· s = r1 ··· r1 and c1 = r2 ··· r2 be-
cause the transcripts pass the verification. Therefore,
s = (r1 ··· (inv r2)) ··· (r1 ··· (inv r2)), i.e., the
statement is a square and a witness is r1 ··· (inv r2).

In EasyCrypt, for the given definition of
special_soundness_extract, the perfect special
soundness is derived almost entirely automatically by using
the built-in support for SMT solvers.

E. Proof of Knowledge

Proof of knowledge, also known as extractable proof systems,
guarantee that there exists an extractor which can compute a

3If we do not have perfect special soundness, then there exists a valid
transcript pair on which the deterministic extraction algorithm does not extract
successfully. Therefore there exists a (possibly unbounded) algorithm that
searches for such a transcript pair and outputs it. This algorithm succeeds
with probability 1, so the scheme does not have statistical special soundness
(for any soundness error < 1).
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witness from a rewindable malicious prover. The extractor is
parameterized by the prover and has access to its rewinding
interface (see Sec. II-B).

module type Extractor(P: RewMaliciousProver) = {
proc extract(s: statement): witness }.

Here, RewMaliciousProver is a module type for
rewindable cheating provers which must implement both
MaliciousProver and the rewindability interface.

The success of the extractor depends on the probability with
which the prover manages to convince the honest verifier in
the Soundness(P,HV) game.

In the general case, statistical extractability assumes that
there exists an efficient Extractor so that:

lemma extractability:
∀ s m (P <: RewMaliciousProver),
Rewindable P
⇒ let sound_prob =

Pr[r ← Soundness(P,HV).run(s) @m: r] in
Pr[r ← Extractor(P).extract(s) @m:

soundness_relation s r]
≥ extraction_success sound_prob s.

We assume that prover is rewindable (i.e., the Rewindable P
premise, see Sec. II-B for details).

The function extraction_success specifies a lower
bound on the success probability of the Extractor.
Extractor and extraction_success are protocol-
specific and must be provided by a user.

In the case of computational extractability, the extraction
success depends on the computational power of the malicious
prover P. That is, the right-hand-side becomes a protocol-
specific term that depends on the success of P in some different
game (the “reduction”).

1) Fiat-Shamir Proof of Knowledge: The Fiat-Shamir proto-
col is a statistical proof of knowledge and in our formalization
we derive this from the special soundness by using the generic
lemma (see Sec. IV-B and Sec. IV-B1).

F. Zero-Knowledge

Zero-knowledge is a property of sigma protocols which
ensures security guarantees for honest provers. This is achieved
by expressing that malicious verifiers cannot get any “new
information” about the witness of a statement from the
communication with the honest prover that they would not be
able to compute by themselves without that communication.

We model this by requiring that anything the malicious
verifier learns (w.l.o.g., what it outputs) can be simulated by a
“simulator” that knows everything the verifier knows, except for
the witness. The simulation is successful if no “distinguisher”
can tell the verifier’s and the simulator’s outputs apart (even
when the distinguisher knows the witness).

Formally, the above is expressed by using two different
games and a distinguisher. The first game, ZKReal, imple-
ments the interaction between the honest prover and a malicious
verifier. The main difference between a malicious verifier and
an honest verifier is that after receiving the response from the

prover, a malicious verifier computes a “summary”4 of the
entire interaction instead of outputting a success bit. Next, that
summary is sent to the distinguisher together with the witness.
The distinguisher outputs a bit which indicates whether the
distinguisher thinks it was given a summary produced by the
first or the second game (see below).

The second game, ZKIdeal, is parameterized by a simula-
tor, a malicious verifier, and a distinguisher. In this game,
the simulator is trying to produce a summary which the
distinguisher would not be able to tell apart from the ZKReal
case. It is important to note that the simulator must produce
its summary without seeing the witness while the distinguisher
gets the simulator’s summary and the witness of the statement,
same as in the ZKReal game. The simulator can internally run
and rewind the malicious verifier. It does not interact with the
prover. The simulator is protocol-specific and must be specified
as part of the security proof.

In EasyCrypt we define Distinguisher and
Simulator module types as follows:
module type Simulator(V: RewMaliciousVerifier) = {
proc simulate(s: statement) : summary }.

module type Distinguisher = {
proc guess(s: statement,

w: witness, sum: summary) : bool }.

Next, we give definitions of the aforementioned games:
module ZKReal(P: HonestProver,

V: RewMaliciousVerifier,
D: Distinguisher) = {

proc run(s: statement, w: witness) = {
var c, ch, r, sum, guess;
c <@ P.commitment(s, w);
ch <@ V.challenge(s, c);
r <@ P.response(ch);
sum <@ V.summitup(r);
guess <@ D.guess(s, w, sum);
return guess;

}}.

module ZKIdeal(S: Simulator,
V: RewMaliciousVerifier,
D: Distinguisher) = {

proc run(s: statement, w: witness) = {
var sum, guess;
sum <@ S(V).simulate(s);
guess <@ D.guess(s, w, sum);
return guess;

}}.

The sigma protocol has statistical zero-knowledge iff there
exists an efficient simulator Sim such that for any state-
ment s witnessed by w, any rewindable malicious ver-
ifier V, and any distinguisher D, the absolute differ-
ence between success probabilities of ZKReal(HP,V,D)
and ZKIdeal(Sim,V,D) is bounded from above by
zk_function s. Here, zk_function is a protocol spe-
cific and depends on the statement s.
lemma zero_knowledge: ∀ s w m

4Our development is parameterized with a datatype summary which is
supposed to hold the information about the protocol-run produced by the
verifier.
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(V <: RewMaliciousVerifier) (D <: Distinguisher),
zk_relation s w ⇒

|Pr[r ← ZKReal(HP,V,D).run(s,w)@m: r]
- Pr[r ← ZKIdeal(Sim,V,D).run(s,w)@m: r]|

≤ zk_function s.

In case of perfect zero-knowledge the success probabilities
of ZKReal and ZKIdeal must be equal,5 and in case
of computational zero-knowledge the right-hand-side of the
inequality can additionally depend on V.

In the case of computational zero-knowledge, the right-hand-
side of the inequality depends on the computational power of
the malicious verifier V and distinguisher D.

It is also possible to have another variant of statistical zero-
knowledge where the verifier is computationally bounded, but
the distinguisher is computationally unbounded. This is encoded
exactly like computational ZK, except that the right hand side
of the inequality depends only on the malicious verifier V but
not the distinguisher D.

1) Fiat-Shamir Zero-Knowledge: The Fiat-Shamir protocol
has statistical zero-knowledge and in our formalization we
derive this by using the “one-shot” simulators and our generic
lemmas (see Sec. IV-A and Sec. IV-A1).

IV. GENERIC DERIVATIONS

In the previous section we introduced security properties
associated with sigma protocols. For some protocols it can be
challenging to prove properties like soundness, zero-knowledge,
and extractability directly. Therefore, one often derives these
properties from simpler ones using generic derivations. We
formalize three of the most important such derivations. More
specifically, in Sec. IV-A we derive zero-knowledge from the
existence of a “one-shot” simulator, in Sec. IV-B we derive
extractability from special soundness, and in Sec. IV-C we
derive soundness from extractability.

In these derivations, we use assumptions that all procedures
associated to provers and verifiers are terminating (lossless in
EasyCrypt parlance) and their module variables are disjoint
which guarantees that prover cannot directly write to variables
of verifier and vice versa (see more on variable disjointness
in Sec. VII-B).

A. Zero-Knowledge from One-Shot Simulation

In Sec. III-F, we introduced the zero-knowledge property
in which a distinguisher compares the protocol-summary
generated by the malicious verifier to the summary produced
by a simulator.

In practice, to prove zero-knowledge, one usually starts by
defining a “one-shot simulator” which produces a simulated
summary but may abort with some relatively high probability
(e.g., ½). Conditioned on not aborting (the “success”-event)
that simulator’s output must be indistinguishable from the real
protocol interaction. Later, the actual zero-knowledge simulator

5In the literature, we also find a different weaker definition of perfect zero-
knowledge (e.g., [19, Definition 4.3.1]). This definition in fact simply states the
existence of a one-shot simulator with zero distinguishing probability. So this
definition is also covered by our work using the definitions from Sec. III-F.

runs and rewinds the one-shot simulator until the “success”-
event happens. In this section, we generically address this
transformation. In the end, a user must only implement a “one-
shot simulator”, prove its indistinguishability conditioned on a
“success”-event, and establish a lower bound of the “success”-
event. Then the zero-knowledge property of its iterated version
is implied automatically by our lemmas.

A one-shot simulator is a module parameterized by a rewind-
able malicious verifier. It has a run procedure which takes
the statement and returns a pair of a boolean and a protocol-
summary. The boolean indicates whether the “success”-event
mentioned above happened:
module type Simulator1(V:RewMaliciousVerifier) = {
proc run(s: statement): bool× summary }.

For the rest of this section, we fix a rewindable malicious
verifier V, a distinguisher D, and a one-shot simulator Sim1.
Our derivation works for any V, D, and Sim1. Also, Sim1
will typically depend on the protocol and will be specified
explicitly by the user. Depending on the variant of ZK we are
analyzing (i.e., perfect, statistical or computational), we then
consider over unlimited or computationally bounded V, Sim1,
and D.

For the sake of readability, we introduce an abbreviation
sim1_dist_prob which denotes the probability that both
the “success”-event happens and the distinguisher outputs
true:
abbrev sim1_dist_prob(s, w, m): real =
Pr[(success, sum) ← Sim1(V).run(s);
guess ← D.guess(s, w, sum) @m: success ∧ guess].

The main property associated with Sim1 is that the
probability sim1_dist_prob(s,w,m) conditioned on the
“success”-event of Sim1 is at most ε away from the probability
that the distinguisher outputs true in the ZKReal(HP,V,D)
game. Here, ε is a protocol specific real number. The condi-
tional probability is expressed as a ratio.
op ε : real.

axiom sim1_dist_prob_prop: ∀ s w m, zk_relation s w
⇒ |Pr[r ← ZKReal(HP, V, D).run(s, w) @m: r]

- (sim1_dist_prob(s, w, m)
/ Pr[(success, _) ← Sim1(V).run(s) @m:

success])| ≤ ε.

This “axiom” must be understood as a property of Sim1 which
must be proved by the user. Now we generically implement a
simulator SimN which wraps the one-shot simulator and runs
it until the “success”-event occurs, but at most N times, where
N is a parameter.6

module SimN(Sim1: Simulator1)
(V: RewMaliciousVerifier): Simulator = {

proc run(s:statement,w:witness) = {
var c ← 0;
var success ← false;
var summary;
while (c < N ∧ !success){

6It is also possible not to enforce an upper bound. Then simulator would
have finite expected runtime, but no a priori bound on the worst-case runtime.
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(summary, success) <@ Sim1(V).run(s);
c ← c + 1; }

return (summary,success);
}}.

Note that Sim1 in SimN.run may modify its state when
executed. This means that in the second iteration of the loop
Sim1 might run on an invalid initial state (and no guarantees
can be made). To avoid this we would need to rewind Sim1.
To support this, the user would need to prove the technical
condition Rewindable Sim1 (see Sec. II-B). While possible
in principle, this approach would lead to additional boilerplate.
Instead we found it more convenient to simply request user
to ensure the following property which guarantees that Sim1
itself rewinds its state when it is not successful7:
axiom sim1_rew: ∀ m s,
Pr[(succ, _) ← Sim1(V).run(s) @m:

!succ ⇒ Gfin
Sim1(V )

= Gm
Sim1(V )

] = 1.

Here, fin denotes the final memory after the termination of a
program.

The third and final property associated with Sim1 is
existence of σ which is a lower bound on the “success”-event:
op σ : real.

axiom succ_event_prob: ∀ m s,
Pr[(succ, _) ← Sim1(V).run(s) @m: succ] ≥ σ.

The main result of this section states that SimN(Sim1) is
a simulator whose success probability in the ZKIdeal game
is ε+ 2(1− σ)N -close to the success probability of V in the
ZKReal game, where σ is the lower bound on the probability
of the “success”-event of Sim1, and N is a number of iterations
performed by SimN:
lemma statistical_zk: ∀ s w m,
zk_relation s w
⇒ |Pr[r ← ZKReal(HP, V, D).run(s, w) @m: r]

- Pr[r ← ZKIdeal(SimN(Sim1),
V, D).run(s, w) @m: r]|

≤ ε + 2 ··· (1 - σ)N.

1) Fiat-Shamir Zero-Knowledge: In this section, we show
how to derive zero-knowledge from a one-shot simulator for the
Fiat-Shamir protocol. The main idea behind one-shot simulators
is to “guess” the challenge of the verifier and then prepare a
“special” commitment such that the simulator is able to correctly
respond to the guessed challenge (and only that challenge) even
without knowing the witness. The simulator aborts when it
guessed incorrectly (i.e., “success”-event is the correct guess
of the simulator).

In the Fiat-Shamir the challenge is a bit, so the one-shot
simulator tries to guess the challenge by uniformly sampling
a bit b. If it sampled false, the one-time simulator outputs
r ··· r as the commitment, where r is a uniformly sampled
invertible element. If the sampled bit b is true, the one-time
simulator additionally multiplies r ··· r with the inverse of the
statement (i.e., r ··· r ··· (inv s)). For both challenges, the

7This does not remove the need for rewindability because to prove
sim1_rew, Sim1 will need to rewind V.

corresponding response r is valid from the honest verifier’s
point of view. Thus, r is sent to the verifier. However, if the
challenge given by verifier was not the same as the bit guessed
by the simulator then the simulator rewinds the verifier back
to its initial state.

module Sim1(V: RewMaliciousVerifier) = {
proc run(s: qr_prob): bool× adv_summary = {
var r, z, b’, b, result, vstate, r, rr, bb;
r $← zmod_dist;
b $← duniform [false; true];
c ← if b then r ··· r ··· (inv s) else r ··· r;
vstate <@ V.getState();
b’ <@ V.challenge(s, c);
result <@ V.summitup(r);
if (b 6= b’)

V.setState(vstate);
return (b = b’, result);

}}.

Now, to conclude the proof of the zero-knowledge property
for Fiat-Shamir protocol, we are only left with three proof
obligations. The first one is that in case when the “success”-
event does not happen (i.e., b 6= b’), the state of Sim1(V)
does not change. For Sim1 this is easily shown by using
the probabilistic Hoare logic and the assumption that V is
rewindable.

The second proof obligation (i.e., succ_event_prob
property) is to find σ which is a lower bound on the “success”-
event (i.e., b = b’). Observe that in Sim1 the values b and
b’ are not independent since the commitment c depends on
b and b’ is computed based on c. However, in the proof we
can lose this dependency by observing that the values r ··· r
and r ··· r ··· (inv s) are distributed equally. As a result, we
can show that “success”-event occurs with probability exactly
equal to ½.

For the third proof obligation we need to define ε and prove
the lemma sim1_dist_prob_prop described in Sec. IV-A
which is enough to conclude statistical zero-knowledge for Fiat-
Shamir by application of our statistical_zk result. It
turns out that for Fiat-Shamir protocol the ε is zero and we
can derive the following formula:

|Pr[r ← ZKReal(HP, V, D).run(s, w) @m: r]
- sim1_dist_prob(s, w, m)
/ Pr[(succ, _) ← Sim1(V).run(s) @m: succ]| = 0.

The main observation here is that conditioned on the “success”-
event the protocol summaries in one-time simulator and in the
ZKReal are distributed equally.

B. Extractability from Special Soundness

The goal of this section is for protocols with special
soundness to implement a generic knowledge-extraction module
which is parameterized by a rewindable malicious prover P and
then relate the lower bound of the extractor’s success with the
success probability of P in the Soundness(P,HV) game.

Intuitively, the goal is to show that if a malicious prover P is
“too successful” in winning the Soundness(P,HV) game,
then it knows the witness. More precisely, there is a generic
extractor that will be able to compute a witness from P with
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sufficiently high probability (assuming that P is rewindable)
after the success probability in the Soundness(P,HV)
reaches a “cut-off” point, called the “knowledge error”.

In [6], the authors use EasyCrypt to derive the security of a
coin-toss protocol from the following generic lemma:

lemma rew_with_init: ∀ m M i,
Pr[r0 ← B.init(i); s ← A.getState();

r1 ← A.run(r0); A.setState(s);
r2 ← A.run(r0) @m: M (r0, r1) ∧ M (r0, r2)]

≥ Pr[r0 ← B.init(i); r ← A.run(r0) @m:
M (r0, r)]2.

The lemma states that the probability of success (according to
some predicate M) in two sequential runs of A.run is lower-
bounded by the square of the probability of success in a single
run. Note that this even holds in the presence of an initialization
B.init that is called once. The presence of B.init is what
makes the lemma technically non-trivial.

This property is also important for sigma protocols: One can
instantiate B.init, A.run, and the predicate M so that the
“initialize-then-single-run” case will exactly correspond to the
Soundness(P,HV) game. More specifically, B.init must
be instantiated as the prover’s commitment phase and A.run
as the remaining message-exchanges between P and the honest
verifier (i.e., challenge, response, and verify). With that in mind
if we examine the success event of the left-hand-side of the
rew_with_init inequality, we will see that its success event
corresponds to two transcripts passing the verification. In cases
when transcripts have distinct challenges these transcripts are
“valid” from the perspective of the special soundness extractor
(see Sec. III-D) and we can attempt to extract a witness using
the special_soundness_extract function. Recall that
honest verifier samples challenges uniformly at random and
therefore the probability of having distinct challenges at the
transcripts is always high (exponential in the bit-length of the
challenge). Based on the description above, we implement
a generic extractor parameterized by a rewindable malicious
prover:

module Extractor(P: RewMaliciousProver) = {
proc extract(s: statement): witness = {

var i, c1, c2, r1, r2, pstate;
i <@ P.commitment(s);
pstate <@ P.getState();
c1

$← duniform challenge_set;
r1 <@ P.response(c1);
P.setState(pstate);
c2

$← duniform challenge_set;
r2 <@ P.response(c2);
return special_soundness_extract s

(i, c1, r1) (i, c2, r2);
}}.

What remains is to analyze the probability of successful ex-
traction by Extractor(P). In our EasyCrypt formalization
we show that the lower bound for the success probability
of Extractor(P) depends on the size of the challenge
set and the success probability of P in the soundness game.
We do derivations for both computational and perfect special
soundness. For the simplicity of presentation, we only present
the latter result here:

lemma statistical_extractability: ∀ m s,
(∀(t1 t2: transcript),

valid_transcript_pair s t1 t2

⇒ soundness_relation s
(special_soundness_extract s t1 t2))

⇒ Pr[r ← Extractor(P).extract(s) @m:
soundness_relation s r]

≥ (Pr[r ← Soundness(P, HV).run(s) @m: r]2

- 1 / (size challenge_set)
··· Pr[r ← Soundness(P, HV).run(s) @m: r]).

1) Fiat-Shamir Proof of Knowledge: In Sec. III-D1 we
explained that the Fiat-Shamir protocol has perfect spe-
cial soundness. Therefore, we get the lower bound on ex-
tractability of the protocol automatically by applying the
statistical_extractability lemma. More specifi-
cally, since the challenge for Fiat-Shamir is a boolean then for
any malicious prover P, the statement s which is not in the
language of soundness relation, and the initial state m we have:
Pr[r ← Extractor(P).extract(s) @m:

soundness_relation s r]
≥ Pr[r ← Soundness(P, HV).run(s) @m: r]2

- 1/2 ··· Pr[r ← Soundness(P, HV).run(s) @m: r].

Note that this is larger than zero whenever the success
probability in the soundness game is larger than ½. So the
knowledge-error is ½.

C. Soundness from Extractability
In the previous section we explained how to generically

derive extractability from special soundness. The probability
of a successful witness extraction by Extractor module
is lower-bounded by a function of the success probability of
the malicious prover in the Soundness game. However, for
statements which are not in the language, the witness extraction
probability is zero by definition. These observations can be
used to generically derive an upper bound for the soundness
of a sigma protocol from its extractability.

To state our theorem we first need to specify the relationship
between success probabilities of extractor and soundness
games. We do so by fixing a function f such that there
exists an ε , so that for any f x ≤ 0, the value x is less
than or equal to ε . This function depends on the bounds
obtained when proving extractability and must be speci-
fied by the user. For example, if we derive extractability
via perfect special soundness (see Sec. IV-B) f would be
λ x. x2 - x/(size challenge_set). The main re-
sult of this section is the following lemma:
lemma statistical_soundness_generic: ∀ m s f ε,
! in_language soundness_relation s
⇒ let sound_prob

= Pr[r ← Soundness(P,HV).run(s)@m: r] in
⇒ Pr[r ← Extractor(P).extract(s)@m:

soundness_relation s r]
≥ f sound_prob

⇒ (∀ (x : real), f x ≤ 0 ⇒ x ≤ ε)
⇒ sound_prob ≤ ε.

The upper bound on the soundness of sigma proto-
cols with perfect special soundness is a simple corol-
lary from statistical_soundness_generic and
statistical_extractability:
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lemma statistical_soundness: ∀ m s,
(∀(t1 t2: transcript),

valid_transcript_pair s t1 t2

⇒ soundness_relation s
(special_soundness_extract s t1 t2))

⇒ ! in_language soundness_relation s
⇒ Pr[r ← Soundness(P,HV).run(s)@m: r]

≤ 1/size challenge_set.

1) Fiat-Shamir Soundness: In Sec. IV-B1 we automatically
derived extractability from special soundness. Similarly, we
now can apply statistical_soundness and get an upper
bound on the soundness-error of Fiat-Shamir. More specifically,
for any malicious prover P and statement s (not in the language
of soundness_relation) the soundness-error is below ½:

Pr[r ← Soundness(P, HV).run(s) @m: r] ≤ 1/2.

V. SEQUENTIAL COMPOSITION

In previous sections we introduced properties associated with
one run of sigma protocols. In practice one run of the sigma
protocol usually does not provide sufficient security guarantees.
For example, in our running example (Fiat-Shamir protocol),
the soundness-error could be bounded from above by ½ which
means that even in case when statement is not in the language,
a cheating prover can succeed half of the time.

To solve this, a standard approach is sequential repetition
of the protocol. If we have a sigma protocol (P, V ) with
soundness-error δ, then the probability that the prover succeeds
n times in a row is δn. So, given a sigma protocol, we get
a better proof system (Pn, V n) by repeating it n times.8 But
then, we need to ask the question: Does (Pn, V n) still have
completeness? Still zero-knowledge?

The answer is fortunately yes (completeness and zero-
knowledge degrade linearly), and in this section we prove
this.

Since (Pn, V n) is not a sigma protocol (it exchanges more
than three messages), we cannot directly apply the definitions
of completeness, soundness, and zero-knowledge from the
previous section to it. (There is no problem in principle, it is
just that the games are specifically formulated for protocols
with three messages.) One solution would be to generalize the
definitions so that they can apply to protocols that send an
arbitrary number of messages. At a first glance, this seems
trivial, but encoding such protocols is slightly awkward: All
messages would need to have the same type, and we have to
somehow encode when the protocol stops, and we might have
to ask what happens when one participant stops before the
other does, etc. To avoid this, we choose a slightly simpler
approach: Instead of trying to define (Pn, V n) generically
and apply generic definitions to it, we directly hardcode the
sequential repetition into our definitions. For example, iterated
completeness would be a definition that is parameterized by
(P, V ), and that runs (P, V ) exactly n times and then checks
whether all runs were successful. This leads to somewhat less

8We consider only sequential repetition. Parallel repetition is considerably
more complex and out of the scope of this work.

general definitions but makes the presentation more concise,
and is sufficient for our use-case of sequential repetition of
sigma protocols.

In the following we address security bounds of sequential
composition for completeness, soundness, and zero-knowledge.
We leave proof of knowledge for the future work as it is more
complicated to approach formally.

A. Iterated Completeness

We start by defining a module CompletenessAmp which
iterates the Completeness module n times, where n is a
parameter. The resulting bit indicates whether or not all runs
were successful.

module CompletenessAmp(P: HonestProver,
V: HonestVerifier) = {

proc run(s: statement, w: witness, n: int) = {
var accept, i;
i ← 0;
accept ← true;
while (i < n ∧ accept) {

accept <@ Completeness(P, V).run(s, w);
i ← i + 1; }

return accept;
}}.

The iterated completeness states that if success probability
of one run of Completeness is bounded from below by δ ,
then n runs are bounded from below by δ n :

lemma completeness_seq: ∀ m s w δ n,
completeness_relation s w
⇒ 1 ≤ n
⇒ (∀ n,

Pr[r ← Completeness(P,V).run(s,w)@n: r]
≥ δ)

⇒ Pr[r ← CompletenessAmp(P,V).run(s,w,n)@m: r]
≥ δn.

This result indicates that the success probability of having n
successful runs degrades exponentially quickly. This suggests
that sigma protocols will have “reasonable” levels of iterated
completeness only if the one-run bound (i.e. δ) is close to one.
Note that this does not mean that completeness-error grows
exponentially quickly. Indeed, if the completeness-error is ε
(i.e., δ=1-ε), then the completeness-error for iterated case is
1-δ n ≤ n ··· ε , so the error grows only linearly.

1) Fiat-Shamir Iterated Completeness: Previously we
explained that for Fiat-Shamir the completeness-error
is zero. Therefore, as an immediate consequence of
completeness_seq result we get that the completeness-
error of iterated Fiat-Shamir is zero as well.

B. Iterated Soundness

In this section we argue that if we iterate the Soundness
game then the probability of not “catching” a cheating prover
on a non-successful run decreases exponentially.

Similar to the iterated completeness we first define the
SoundnessAmp game which iterates the Soundness mod-
ule n times.

module SoundnessAmp(P: MaliciousProver,
V: HonestVerifier) = {
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proc run(s: statement, n: int) = {
var accept, i;
i ← 0;
accept ← true;
while (i < n ∧ accept) {

accept <@ Soundness(P,V).run(s);
i ← i + 1; }

return accept;
}}.

It is important to note that the state of cheating prover
could be different during every iteration because EasyCrypt
allows procedures to keep state between activations. Thus the
malicious prover is one program sending 2n messages, not an
n-fold repetition of the same program. In contrast, the honest
verifier does the same thing in each iteration by definition (see
definition of HV in Sec. III-B).

The statement of iterated soundness states that if the success
probability of one run of the soundness game by cheating
prover P and honest verifier HV (the “soundness-error”) is
bounded from above by δ , then iterating it n times improves
this upper bound to δ n :
lemma soundness_seq: ∀ m s δ n,
! in_language soundness_relation s
⇒ 1 ≤ n
⇒ (∀ n, Pr[r ← Soundness(P,HV).run(s)@n: r] ≤ δ)
⇒ Pr[r ← SoundnessAmp(P,HV).run(s,n)@m: r] ≤ δn.

1) Fiat-Shamir Iterated Soundness: Recall that we proved
that for one-run case the soundness-error of Fiat-Shamir is
upper-bounded by 1

2 . Hence, as an immediate consequence of
soundness_seq, the upper bound for the soundness-error
of iterated Fiat-Shamir is exponentially better, namely, ( 12 )

n.

C. Iterated Zero-Knowledge

Similarly to the case of completeness and soundness the goal
of iterated zero-knowledge is to show that if the distinguishing
probability for one round is small, it is also small in the case
of multiple runs. In other words, we need to show that zero-
knowledge composes sequentially.

We start by introducing a module ZKRealAmp which
iterates one run of the “real” protocol n times. Note that instead
of iterating the ZKReal module which has the distinguisher
at the end, we first iterate the protocol n times and only then
run the distinguisher who gets the summary prepared by the
verifier after all n iterations (w.l.o.g., the return values of
V.summitup in prior rounds are ignored). The main idea
is that the verifier tries to accumulate as much information
throughout the runs as possible and only then present that
summary to a distinguisher:
module ZKRealAmp(P: HonestProver,

V: MaliciousVerifier,
D: Distinguisher) = {

proc run(s: statement, w: witness) = {
var c, ch, r, summary, guess, i;
i ← 0;
while (i < n) {

c <@ P.commitment(s, w);
ch <@ V.challenge(s, c);
r <@ P.response(ch);
summary <@ V.summitup(r);
i ← i + 1; }

guess <@ D.guess(s, w, summary);
return guess;

}}.

In the ideal setting, both in the one run and in the iterated
case, the game simply consists of a simulator that outputs the
final output of the verifier; no interaction is happening. Thus,
we can reuse the module ZKIdeal for the iterated case.

However, the concrete simulator Sim from the one run case
will not properly simulate the multi-run case. Thus, we need
to construct a new simulator SimAmp(Sim) for the iterated
case from Sim. The following module SimAmp encodes this
transformation:

module SimAmp(S: Simulator,
V: MaliciousVerifier) = {

proc simulate(s: statement) = {
var summary, i;
i ← 0;
while (i < n) {

summary <@ S(V).simulate(s);
i ← i + 1; }

return summary;
}}.

Note that the security definition of zero-knowledge does not
require us to use this specific SimAmp, as long as we construct
a simulator that simulates well. However, it is the most natural
way of constructing the simulator of the multi-run case; it just
repeats the simulator of the single-run case.9

We are now ready to introduce our main ZK iteration result.
Let Sim, V and D be a simulator, malicious verifier, and a
distinguisher, respectively. Let Di(D) denote a distinguisher
which executes S(V).simulate(s) exactly i times and
then calls D.guess and returns its result. (Here i is a global
variable that belongs to Di.10 For brevity, we omit the formal
definition of Di here.)

If there exists a δ which is an upper bound for the
distinguishing probability with respect to Sim, V, D and
honest prover HP, then the difference between ZKIdeal
experiment played by SimAmp(Sim) and the real amplified
game ZKRealAmp played by P, V, and D is upper-bounded
by nδ. The most important aspect of this result is that the
security degrades linearly with the number of performed runs
of the protocol.

lemma zk_seq: ∀ m δ,
(∀ n, |Pr[r ← ZKIdeal(Sim,V,Di(D)).run(s,w)@n: r]

- Pr[r ← ZKReal(HP,V,Di(D)).run(s,w)@n: r]|
≤ δ)

⇒ |Pr[r ← ZKIdeal(SimAmp(Sim),V,D).run(s,w)@m: r]
- Pr[r ← ZKRealAmp(HP,V,D).run(s,w)@m: r]|
≤ δ ··· n.

9This construction makes use of the fact that the verifier’s state is part of
the simulator’s state. The iterated simulator needs to “feed” the state from the
previous iteration to the internally simulated verifier. However, in the present
setting, this is automatic because the iterated simulator just keeps the state
between iterations of the loop. This is why we do not see any explicit state
passing between the iterations of the loop in SimAmp.

10The variable i does not appear explicitly in the code below. This is
because the arbitrary initial value of i is implicitly present in the memory n.
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The proof of this result is not as simple as the amplification of
soundness and completeness. In fact, to get a linear bound, we
used a proof based on hybrid argument. It is fortunate that the
standard library of EasyCrypt contains a generic formalization
of this technique.

1) Fiat-Shamir Iterated Zero-Knowledge: Recall that for
single-run case we showed that the zero-knowledge-error of
Fiat-Shamir is upper-bounded by 2(1− p)N , where N is the
number of iterations performed by the simulator. Hence, as an
immediate consequence of zk_seq lemma, the upper bound
for the zero-knowledge-error of iterated Fiat-Shamir is only
linearly worse, namely, 2n(1 − p)N , where n is the number
of sequential runs of Fiat-Shamir.

VI. MORE INSTANCES AND CASE STUDIES

Throughout this paper we instantiated our definitions
and lemmas with the Fiat-Shamir protocol (Sec. II-C). We
proved directly completeness (Sec. III-B1), special soundness
(Sec. III-D), and one-shot simulator properties (Sec. IV-A1).
Due to the algebraic nature of the Fiat-Shamir protocol the
built-in support for SMT solvers greatly simplified these
proofs. Most importantly, iterated completeness, (iterated)
soundness, (iterated) zero-knowledge, and proof of knowledge
were implied automatically by our generic results.

Due to the lack of space we are unable to present Schnorr
and Blum protocols in the paper. However, in our formalization
we successfully instantiated both protocols.

In the Schnorr protocol the prover tries to convince a verifier
that it knows a discrete logarithm of element of a cyclic group.
For the Schnorr protocol we proved perfect completeness
manually and derived perfect iterated completeness automat-
ically. We also manually proved perfect special soundness
and automatically derived statistical proof of knowledge. It
is interesting that the soundness property is meaningless
for Schnorr protocols because all statements have witnesses.
Another important aspect of Schnorr protocol is that the
challenge space is exponentially big. As a result, no efficient
construction of a simulator is known and, hence, the protocol
is not (malicious-verifier) zero-knowledge.

The language of the Blum protocol is NP-complete and con-
sists of Hamiltonian graphs. More specifically, the statements
are graphs and witnesses are Hamiltonian cycles. For the Blum
protocol we manually proved completeness, special soundness,
and conditional success probability of a one-shot simulator.
Then we used our library to automatically derive perfect iterated
completeness from completeness, computational soundness
from extractability, statistical (iterated) zero-knowledge from
the one-shot simulator, and computational proof of knowledge
from special soundness.

We believe that any sigma protocol can be instantiated in our
framework. However, our framework is most useful when users
can take advantage of generic derivations to automate their
proofs. For example, we believe that with reasonably small
effort one should be able to instantiate other well-known ZK
protocols like Okamoto, Chaum-Pedersen, Guillou-Quisquater,
Feige-Fiat-Shamir, etc. At the same time, not all generic

derivations of our framework will be applicable, e.g., to the 3-
coloring ZK protocol [20]. The main restriction is in derivations
of extractability and soundness. More specifically, in the
extractability derivation from special soundness, we rely on the
existence of a function special_soundness_extract
which must be able to extract a witness from two valid
transcripts. However, in the 3-coloring sigma protocol the
extraction needs n successful transcripts. Similar restriction
applies to our derivation of soundness from extractability since
it uses an extractor which produces two transcripts. However,
the described restrictions could be overcome by adding an
extra parameter which would indicate the smallest number of
valid transcripts necessary for witness extraction (extractability
and soundness derivations also would need to be updated).
Alternatively, direct proofs could be given for those properties,
while still using our definitions of soundness etc. And one
the zero-knowledge side, our generic results would still be
applicable in this case.

VII. FORMALIZATION

In this section we present aspects related to the formalization
effort. In Sec. VII-A, we discuss the modular structure of
the formalization and give tips on how to instantiate sigma
protocols in our framework. In Sec. VII-B we discuss subtle
and challenging aspects which we encountered during our
formalization effort.

A. Framework Structure

In EasyCrypt, theories can be used to group together related
definitions. So-called abstract theories can have parameters
in the form of declared but undefined operators, types, and
axioms. Later, the theory can be “cloned” and the operators and
types instantiated with concrete values for which the axioms
are provable. Regular (non-abstract) theories just group results
and definitions.

In our work we use this mechanism to arrange our generic
results modularly, within the constraints of the EasyCrypt theory
system. Our generic results are distributed over several files.
(GenericBasics.eca, GenericCompleteness.eca,
GenericSoundness.eca, GenericZeroKnowl-
edge.eca, GenericExtractability.eca,
GenericSpecialSoundness.eca; .eca is the
suffix for abstract theory files.) This keeps the sizes of the
individual files down and makes them easier to read. However,
these individual abstract theories are not intended to be
cloned directly by a user of our library; they depend on each
other and if one clones them individually, one ends up with
duplicated theories where EasyCrypt does not recognize,
e.g., that the same type in different copies of the theory is
the same. Instead, we include the content of all files in one
abstract theory GenericSigmaProtocol.eca. The user
is supposed to clone that theory and, when cloning, instantiate
the various types and constants specific to the sigma protocol
under consideration. For example, Fiat-Shamir is instantiated
as follows:

1313



clone include GenericSigmaProtocol with
type statement ← qr_stat,
type commitment ← qr_com,
type witness ← qr_wit,
type response ← qr_resp,
type challenge ← bool,
op challenge_set ← [false; true],
op verify_transcript ← verify_transcript,
op soundness_relation ← fs_relation,
op completeness_relation ← fs_relation,
op zk_relation ← fs_relation

proof*. (* ... proof obligations ... *)

(Here we use the same relation fs_relation for all
soundness, completeness, and ZK. We are free to use different
ones, however.)

The material exported by cloning GenericSigma-
Protocol is again structured in subtheories, some of them
abstract because they need additional parameters. These theories
are directly accessible after the clone include command
above. Where possible, modules and module types (e.g.,
HonestProver) are on the toplevel, lemmas proven are
in the subtheories.

• StatisticalCompleteness, PerfectCom-
pleteness. Contain the proofs for sequential
composition of statistical and perfect completeness,
respectively (see Sec. V-A).

• StatisticalSoundness (abstract). Contains proof
of sequential amplification of statistical soundness
(see Sec. V-B). Needs to be cloned; soundness_error
has to be instantiated with the soundness error of a single
repetition.

• ZeroKnowledge (abstract). Contains subtheories:
SequentialComposition for the sequential compo-
sition theorem (see Sec. V-C). OneShotSimulator
(abstract) for constructing simulators from one-shot simula-
tors (see Sec. IV-A), with subtheories Computational
and Statistical. ZeroKnowledge needs to be
cloned and instantiated with op n as the number of repeti-
tion in the sequential repetition.11 OneShotSimulator
needs to be cloned and instantiated with op N as the
number of repetitions of the one-shot simulator.

• Extractability. Contains the proof that extractability
implies soundness (statistical case, Sec. IV-C).

• SpecialSoundness (abstract). Contains subtheo-
ries Computational and Perfect, with proofs
that statistical and perfect special soundness im-
ply extractability and soundness. (See Sec. IV-B)
SpecialSoundness needs to be cloned with
op special_soundness_extract as the function
that extract a witness from two transcripts.

B. Formalization Aspects

Initialization: One important design decision that arose in
the formalization was how the initial state of the various ad-

11It would be logical to have n as a parameter to Sequential-
Composition but technical reasons made this impossible. See the comments
in the source code.

versarial algorithms (e.g., malicious verifier, malicious prover)
is instantiated. We identified several options:
(a) Adversarial algorithms get a special procedure called

init() whose task is to initialize their state.
(b) Adversarial algorithms get no initialization procedure.
(c) Any of the two options above, and the adversary addition-

ally gets an all-quantified auxiliary input as an argument.
Different choices have different subtle consequences on the
details of the formal proofs.

Cryptographically, giving an additional all-quantified argu-
ment (known as auxiliary input) gives us a definition called
non-uniform zero-knowledge. In contrast, without auxiliary
input, we get uniform zero-knowledge. It is known that to get
sequential composition of zero-knowledge proofs, we need to
use non-uniform zero-knowledge [21]. So which of the above
design options lead to a non-uniform definition? Obviously,
option (c) has an auxiliary input. However, options (a) and (b)
also have one, this is just implicit in the way how EasyCrypt
works: Unless we explicitly enforce procedures that do not look
at their initial state, all procedures can access the content of their
global variables in the initial memory m. And all our theorems
are of the form “∀ m, . . .”, which means that the adversary
effectively gets an auxiliary input implicitly. We believe that it
is important to stress this point explicitly because EasyCrypt’s
handling of global variables makes it easy to overlook this
implicit dependency.

In the formal setting it is easier to work with games without
explicit state initialization. For example, in our development
we defined the Soundness(P,HV) game which encodes
the three message exchange between the malicious prover
P and the honest verifier HV. Later, we defined the module
SoundnessAmp which sequentially iterates the Soundness
game n times. Then we proved that n-time sequential compo-
sition of sigma protocols exponentially reduces the soundness-
error to δn. The proof is based on the premise that for any
initial state the soundness-error for the Soundness game is
below δ . However, if we add state initialization to the malicious
prover in the Soundness game, then it is meaningless to
keep SoundnessAmp defined as an n-time iteration of the
Soundness game (it would mean that the malicious prover
forgets everything between iterations). Instead, we will need to
add an explicit initialization of the malicious prover before the
while-loop and the body of the while-loop must implement the
three message exchange. This means that the proof of amplified
soundness (similar to lemma soundness_seq) will become
more complicated due to the fact that we split the prover into
an iterated and a non-iterated part (e.g., we will need to use
“averaging” technique and Jensen’s inequality).

In our formalization we used the (b) approach as it results in
simpler proofs. However, we recognize that in some situations
an explicit initialization of adversaries is necessary. To make
our results relevant for these situations, we provide generic
lemmas for removing/adding init-procedures in security claims.
We proved generic lemmas which state that for any algorithm
A, if there exists an ε which is an upper/lower bound for the
probability of the “initialize-then-single-run” program then
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there exists a memory n (initial state) so that running A on n
(without explicit initialization) results in the success-probability
also bounded from above/below by ε. For example, the result
for lower-bound looks as follows:

lemma exists_mem_init_run_res m M ε: 0 ≤ ε
⇒ ε < Pr[ A.init(); r ← A.run1() @m : M r ]
⇒ ∃ n, ε < Pr[ r ← A.run1() @n : M r].

The above lemma is generic and is not limited to the zero-
knowledge setting. The proof of the lemma uses advanced
techniques like probabilistic reflection and averaging which
were previously studied in [6]. We also prove the analogous
results for indistinguishability case (which is then also used in
the derivation of an upper-bound for sequential composition
of zero-knowledge).

Disjointness of Module-Variables: In the cryptographic
setting, when we have a definition such as zero-knowledge,
and we say “there is a simulator S such that for all verifiers
V and all distinguishers D, . . . ”, we usually implicitly mean
that those three algorithms S, V,D have disjoint state. That is,
we expect that they do not access each other’s variables unless
we would explicitly specify that they do so. When, e.g., the
simulator runs a simulated V internally, we then can think of
that V as a copy of the original V inside the simulator. The
simulator still has no access to the variables of the “original”
V . In the case of the simulator and the verifier, this distinction
is of lesser importance because in the games making up the
definition of zero-knowledge, S and V never run in the same
game, so they cannot influence each other anyway. However,
the distinguisher and the verifier, for example, run at the same
time. So it can make a difference whether they can read/write
each other’s variables or not. The implicit assumption in the
cryptographic setting is again that they do not. And if the
distinguisher D needs, e.g., to simulate internally a copy of
the verifier V (e.g., in the sequential composition proof), it
is understood that this is a completely separate instance of V
whose variables are part of the state of D.

Translating this to the EasyCrypt setting, the obvious
solution would be to restrict the global variables of the various
algorithms analogously. That is, we quantify over S{-V,-D},
D{-S,-V}, V{-S,-D}, which EasyCrypt understands to
mean that their global variables are disjoint. Doing so, however,
we encountered a problem that has no counterpart in the
cryptographic pen-and-paper proofs: In the sequential com-
position proof for zero-knowledge, we needed to construct a
distinguisher D that internally simulates a copy of V . However,
EasyCrypt has no support for “copying” a module. Instead,
if D wants to depend on the behavior of V , D has to access
the module V directly, and this access can modify the state of
V .12 In order to be able to prove sequential composition, we
thus needed to relax the condition on the variables of D and

12We can, if we want, undo this modification using the setState
and getState procedures (see Sec. II-B). While this will make sure
that semantically D does not change the state of V , it does not change
which variables EasyCrypt thinks that D accesses because that is determined
syntactically.

V , and allow the distinguisher and verifier to have common
global variables. (I.e., declaring D{-S}, V{-S}.)

Since this departs from what the cryptographer expects, it
is important to check whether this changes the meaning of the
zero-knowledge definition. Fortunately, in the specific case of
zero-knowledge, it does not, because the distinguisher runs
after the verifier has already been terminated, so their code
does not “get into each other’s way”. Also, the goal of the
verifier is to output as much information as possible about
what it learned, so we can assume without loss of generality
that the verifier tells everything to the distinguisher anyway. So
the fact that the distinguisher can read the verifier’s state does
not give any information to the distinguisher that it should not
have.

So in the present situation, all is fine if we relax the
disjointness conditions. However, in other contexts (maybe
some proof where a distinguishing entity runs concurrently
with an adversary such as in the Universal Composability
framework [22]), it might not be possibly to allow different
modules to share state for technical reasons. We believe that
it would be a very useful feature if EasyCrypt would allow
us to “copy” modules to facilitate proofs where one program
simulates another.

Representation of Adversaries: A further design choice we
encountered was in the representation of adversarial entities
(e.g., malicious provers or verifiers, simulators, distinguish-
ers, . . . ). The standard approach in EasyCrypt is to model
them as all-quantified modules. That is, they can be arbitrary
programs, potentially accessing global variables to maintain
state between invocations.

An alternative representation would be to represent them
simply as probabilistic functions. That is, an adversary would
be a map from the input to the output distribution and has no
side-effects. (Type input → output distr).

The latter representation seems to have some advantages
at a first glance. For example, when proving how to get a
simulator from a one-shot simulator (cf. Sec. IV-A), if the
one-shot simulator was modeled as a probabilistic function, it
would be much easier to prove lemma statistical_zk:
We would not need to consider challenges like the effect of
the one-shot simulator on the global state and reset it, and we
could directly reason about probability distributions. This is
the approach that [15] takes.

However, this approach would make it hard, if not impossible,
to combine it with other formalizations or other parts of the
same formalization where adversaries are modeled as programs.
For example, we would need to write the one-shot simulator as
a probabilistic function. That means that the malicious verifier
(on which the one-shot simulator depends) needs to be written
as a probabilistic function, too.13

And if the malicious verifier is constructed, e.g., by reduction
from some other adversary in the analysis of a bigger protocol
that uses the zero-knowledge protocol, then that reduction

13Note that converting a probabilistic function into a program is easy (simply
write a program that samples from the resulting distrbution) but the other
direction is not immediately possible in EasyCrypt.
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would also have to be written as a probabilistic function. In
the end, one might have to switch completely to modeling
all entities as probabilistic functions. This would mean that
we lose all EasyCrypt support for reasoning about programs,
including all tactics for pRHL. Since this is EasyCrypt’s main
strength, this would seem to be an unacceptable limitation.

In [6], authors use EasyCrypt to prove a lemma called prob-
abilistic reflection which establishes existence of probabilistic
functions which capture the denotational semantics of program
modules in EasyCrypt. Therefore, we could instead try to
use the probabilistic reflection to convert adversaries that are
represented as programs into probabilistic functions. In some
cases, this might be possible (but hard), but we believe that
this should not be the task of the user of our library, but must
already be done inside our formalization. Indeed, a large part of
our work was in applying probabilistic reflection in the proofs
(e.g., zero-knowledge, extractability, sequential composition)
which relied on standard facts from probability theory (e.g.,
averaging, Jensen’s inequality, conditional probabilities, etc.).

However, it is important to understand that probabilistic
reflection only shows the existence of a distribution describing
a given module. There is no mechanism to define that
probabilistic function (essentially because EasyCrypt does not
support constants that depend on modules). That means that,
e.g., if we have a one-shot simulator as a program, transform
it via probabilistic reflection, and then transform it into a full
simulator via rewinding, we might only get the existence of
a full simulator, but be unable to define this simulator (e.g.,
assign a name for it). This might block further attempts to
use the simulator in other reductions (e.g., when plugging the
simulator into a cryptographic assumption that is formulated as
a game involving an adversary module). It is unclear whether
this difficulty can be circumvented in all cases; we think that in
some situations the conversion might turn out to be impossible,
at least without extensions to EasyCrypt’s logic itself.

In light of these problems, we decided not to use the easy
way out, and chose to consistently model all adversarial entities
as modules and not as probabilistic functions.

Rewinding: In sigma protocols, the proofs of extractability
and zero-knowledge rely on rewindability of adversaries. In
our formalization, we decided to use development of rewinding
presented in [6] (see Sec. II-B). In their work, authors
axiomatize rewindability and develop a library of properties
which illustrate that their definitions are well-behaved. However,
all their properties only cover cases where an adversary is being
rewound at most once.

At the same time, in sigma protocols adversaries are being
rewound multiple times. For example, in zero-knowledge the
one-shot simulator rewinds a malicious verifier once. Next, for
the zero-knowledge property derivation, the one-shot simulator
is packaged into multiple-shot simulator SimN which runs and
rewinds one-shot simulator N-times (where N is a parameter).
Finally, for the sequentially composed zero-knowledge we run
multiple-shot simulator SimN another n-times. In this way,
in our framework we are using rewindable adversaries in a
lot more complicated environment and, therefore, prove that

rewindability performs well under iteration and composition.
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