
On the Incoercibility of Digital Signatures
Ashley Fraser

Department of Computer Science
University of Surrey

Guildford, UK
a.fraser@surrey.ac.uk

Lydia Garms
Keyless Technologies Limited

London, UK
lydia.garms@keyless.io

Elizabeth A. Quaglia
Information Security Group

Royal Holloway, University of London
Egham, UK

elizabeth.quaglia@rhul.ac.uk

Abstract—We introduce incoercible digital signature schemes,
a variant of a standard digital signature. Incoercible signatures
enable signers, when coerced to produce a signature for a
message chosen by an attacker, to generate fake signatures that
are indistinguishable from real signatures, even if the signer is
compelled to reveal their full history (including their secret signing
keys and any randomness used to produce keys/signatures) to the
attacker. Additionally, we introduce an authenticator that can
detect fake signatures, which ensures that coercion is identified.
We present a formal security model for incoercible signature
schemes that comprises an established definition of unforgeability
and captures new notions of weak receipt-freeness, strong
receipt-freeness and coercion-resistance. We demonstrate that an
incoercible signature scheme can be viewed as a transformation of
any generic signature scheme. Indeed, we present two incoercible
signature scheme constructions that are built from a standard
signature scheme and a sender-deniable encryption scheme. We
prove that our first construction satisfies coercion-resistance,
and our second satisfies strong receipt-freeness. We conclude by
presenting an extension to our security model: we show that our
security model can be extended to the designated verifier signature
scheme setting in an intuitive way as the designated verifier can
assume the role of the authenticator and detect coercion during
the verification process.

Index Terms—digital signatures, incoercibility, receipt-freeness,
coercion-resistance

I. INTRODUCTION

The fundamental security property of a digital signature
scheme is considered to be the property of existential unforge-
ability against an adaptive chosen-message attack [1]. This
captures the property that an attacker, with access only to public
information, cannot output a valid message/signature pair (i.e.,
a forgery). In recognition of the threat posed by attackers
with stronger, potentially coercive, capabilities, several security
notions have been proposed that strengthen the traditional
security model for signature schemes (cf. §I-A). These notions
have predominantly focused on key exposure attacks [2]–[9],
whereby a signer is coerced to reveal (part of) their secret

The work of Ashley Fraser was supported by the EPSRC and the UK
government as part of the Centre for Doctoral Training in Cyber Security at
Royal Holloway, University of London under grant number EP/P009301/1,
and the EPSRC Next Stage Digital Economy Centre in the Decentralised
Digital Economy (DECaDE) at the University of Surrey under grant number
EP/T022485/1.
The work of Lydia Garms was supported by the Innovate UK funded project
AQuaSec, whilst working at Royal Holloway, University of London, and a
research grant from Nomadic Labs and the Tezos Foundation, whilst working
at the IMDEA Software Institute.

key to an attacker. The proposed schemes generally allow
the signer to recover from the attack, most commonly by
updating their secret key. The security of such schemes requires
that the attacker cannot produce a valid signature on behalf
of a signer whose key has been exposed. Other works have
focused on specific techniques that allow a signer to evade
coercion [10], [11]. These works consider an attacker that
requests a signer to produce a signature for a particular message.
The proposed solutions introduce a trusted authority that can
detect coercion, and their security model requires that the
attacker cannot distinguish a signer evading coercion from a
signer who cooperates with the attacker.

In this work, we introduce incoercible signatures, which
follow the approach of [10], [11] in that coercion can be
detected by a trusted authority, the authenticator. Our contribu-
tions distinguish themselves from the existing literature in the
following way. Firstly, we preserve the essence of a standard
signature scheme, i.e., our primitive is fully non–interactive,
during key generation, signing and verification. Secondly, while
previous works modelled signers revealing their secret key,
we allow the attacker to demand the full transcript of the
signer throughout the protocol, thereby including, along with
the secret key, any randomness chosen in key generation and
signing. Thirdly, we recognise the benefits of capturing several
variants of incoercibility and, therefore, our security model
also captures attackers that demand a full transcript only after
having provided instructions to the signers.

A. Existing Work on Incoercibility

The concept of incoercibility first emerged in the context
of electronic voting (e-voting) where it was formalised as a
hierarchy [12] of two security properties: receipt-freeness [13]
and coercion-resistance [14]. Additionally, simulation-based
definitions of incoercibility have been put forth in the generic
multi-party protocol setting [15]–[17], again defined as a hierar-
chy of the receipt-freeness and coercion-resistance properties.

In the digital signatures literature, coercion has been
addressed in several ways. Security models and schemes
have been proposed to protect against (partial) key exposure
attacks, and mechanisms have been introduced to enable the
signer to warn an authority of such attacks, either via direct
communication or by embedding a coercion warning into the
signature. We discuss these approaches in more detail next.

153

2023 IEEE 36th Computer Security Foundations Symposium (CSF)

© 2023, Ashley Fraser. Under license to IEEE.
DOI 10.1109/CSF57540.2023.00018

20
23

 IE
EE

 3
6t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

79
-8

-3
50

3-
21

92
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

75
40

.2
02

3.
00

01
8

a) Key Exposure Attacks: An attacker that can obtain the
secret key of a signer can easily construct valid forgeries on
behalf of the signer. This is known as a key exposure attack
and several solutions that allow recovery from such an attack
exist. The earliest solutions required key distribution [18]–[20],
but the most prevalent solution allows the signer to update their
secret key [2]–[4], [6]–[8]. This approach became prominent
following the introduction of forward secure signatures [2],
which guarantee that an attacker cannot produce valid forgeries
for any time period prior to key update. Subsequent works, for
example [3], [4], [6]–[8], extend this guarantee, providing an
assurance that an attacker cannot produce valid forgeries for
time periods prior to, and following, the key update. However,
many of these solutions provide these guarantees for partial
key exposure only [3], [4], [7], [8]. By contrast, [2], [6],
[8] consider full key exposure attacks. In a departure from
this approach, monotonic signature schemes [9] allow the
signer, in response to a partial key exposure attack, to update
the verification algorithm, rather than the secret signing key.
Monotonic signatures ensure that the attacker cannot produce
valid forgeries after the verification algorithm is updated, but
forgeries created before the algorithm update are valid. In this
work, we consider an attacker that demands a full transcript
from the signer, and require that the attacker cannot distinguish
cooperating and non-cooperating signers. Additionally, our
strongest security definition guarantees that an attacker cannot
produce valid forgeries on behalf of a coerced signer.

b) Communicating Key Exposure: Generally, signature
schemes that are secure against key exposure attacks present a
limited window of time within which the attacker can produce
a valid forgery, e.g., the time period when key exposure occurs
in the case of [3], [4], [6]–[8]. Moreover, the requirement to
update keys/algorithms may alert an attacker to an unsuccessful
key exposure attack. For example, in the case of monotonic
signatures, the attacker can check if their forgery is valid.
If the forgery is invalid, it is clear that the signer updated
their verification algorithm and thus evaded coercion. Similar
arguments hold for other schemes secure against key exposure
attacks. To address this, key evolving signature schemes [8]
introduced a trusted authority with whom the signer can
communicate. The signer is required to update their keys at
regular intervals; if the signer does not contact the authority
before key update occurs, any signatures generated since
the previous key update period become invalid. In this way,
forgeries created by the attacker can be invalidated. Moreover,
the signer can communicate to the authority that the signatures
were coerced. In doing so, the signer can evade coercion and,
if the authority does not publicly invalidate the signatures, the
attacker is not alerted to the unsuccessful coercion. Similarly,
funkspiel schemes [5] introduce a trusted authority with whom
the signer can communicate the compromise of keys. In
our work, we also introduce a trusted authority that can
detect coercion, though we do not require that the signer
communicates with the authority. Rather, we include a ‘coercion
alert’ in the signature that can be recovered only by the trusted
authority.

c) Embedded Secret Signature Schemes: Embedded secret
signatures [10], [11] allow signers to produce signatures that
contain an embedded warning that can be extracted from the
signature only by a trusted authority. In this way, the signer
can evade coercion to sign a message chosen by the attacker,
without detection by the attacker. Incoercible signatures achieve
a similar goal. A key difference, however, is that embedded
secret signature schemes require that the trusted authority
interact with every signer during key generation. By contrast,
incoercible signature schemes are non-interactive. Moreover,
the security model for an embedded secret signature requires
that an attacker cannot determine whether the signer signed
the attacker’s message or not, when provided with the signer’s
secret key. In comparison, our security model for incoercibility
considers an attacker with access to full signer transcripts that
include randomness used during signing and key generation,
in addition to the signer’s secret key.

d) Deniability and Incoercibility: Deniability is a property
that can be useful in the context of coercion within crypto-
graphic protocols. Indeed, if a protocol participant is coerced
to perform a particular action, deniability can be used to allow
the participant to perform a different action (or no action) and
prove that they followed the coercer’s instructions. However,
deniability captures a wider range of attacks. The participant
can, when coerced not to do something, perform the action
and deny it afterwards. In other words, deniability captures the
ability of a participant to repudiate their actions to all but the
intended receiver.

Deniability has been considered widely in the cryptographic
literature (e.g., [21]–[25]). In the context of digital signatures,
deniability, if defined analogously to other cryptographic
primitives, would provide an assurance that the signer can
deny having produced a signature. Therefore, deniability
captures coercive attacks where the attacker instructs the signer
not to sign messages. However, deniability in this context
seems difficult to achieve. Certainly, a message/signature
pair is public, which suggests that a signer cannot deny
producing the signature. Therefore, in this work, we focus
on incoercibility, which captures coercive attacks where the
attacker instructs the signer to sign a message of their choice.
Additionally, we introduce incoercible strong designated verifier
signature schemes, which are not publicly verifiable, capturing
incoercibility as well as the aspects of deniability featured in
strong designated verifier schemes.

B. Our Contributions

The main contribution of this paper is the introduction and
formalisation of incoercible signature schemes. In particular,
we define three notions of incoercibility: weak receipt-freeness,
strong receipt-freeness and coercion-resistance. We demonstrate
the feasibility of our primitive by presenting constructions of
coercion-resistant and strong receipt-free incoercible signature
schemes, and we prove that they satisfy our security model. We
also consider a relevant related primitive: designated verifier
signature schemes. Finally, we motivate the study of incoercible

2154

signatures by describing some applications. We next describe
our contributions in detail.

1) Defining Incoercible Signatures: We introduce the syntax
for an incoercible signature scheme (§II). Incoercibility means
that a signer can sign messages as they desire and, conversely,
need not produce signatures for messages that they do not
want to sign. We define incoercible signatures as a variant of
a standard signature scheme, providing algorithms for key
generation, signing and public verification of a signature.
To realise incoercible signatures, we introduce two new
requirements into our syntax. Firstly, we introduce the ability
to produce ‘fake’ signatures that are indistinguishable from
real signatures. In this way, a coerced signer can produce a
fake signature for a message chosen by the attacker. Formally,
we introduce a new algorithm FakeSign that outputs a fake
signature. Secondly, we introduce a trusted authority, which
we call the authenticator, that can distinguish real signatures
produced by running standard signing algorithm Sign and
signatures that are the output of algorithm FakeSign. In this
paper, we adopt the convention of calling a signature valid
or verifiable if it passes public verification, and, additionally,
call a signature authentic if the designated authenticator deems
the signature to be real, as opposed to fake. In our syntax,
we introduce an algorithm Authenticate that is run by the
authenticator and outputs whether the signature is authentic or
not. Note that, without a trusted authority, fake signatures are
identical to real signatures. However, an authenticator is only
trusted to determine whether a signature is coerced and learns
nothing about the signer’s secrets. Crucially, this means that
the authenticator cannot produce forgeries on behalf of any
signer. We also highlight that, in practice, the authenticator
must be carefully chosen to ensure that the correct authority
is alerted to coercion.

Our syntax assumes that signers keep a transcript of their
actions, which we denote trans. Informally, trans is a record
of all computations performed, and inputs generated, by the
signer. We include such a transcript in our syntax to model the
fact that a signer may present an attacker with ‘evidence’ (i.e.,
the transcript) to prove that they have followed the attacker’s
instructions. We stress that our syntax includes the transcript
only for the purpose of modelling coercive attacks. It is not
necessary for a signer to keep track of the transcript in order
to sign. In this way, incoercible signatures can be distinguished
from stateful signatures, which require that the signer’s state
is input to the signing algorithm to compute a signature. A
transcript is uniquely defined by a given signature scheme,
and we provide a concrete example of this here. We illustrate
the form of trans in the case of the DSA/ECDSA signature
scheme, whose description is taken from [26].

Example 1 (DSA/ECDSA). DSA (respectively, ECDSA) is
defined relative to a set of public parameters ppSIG = (G, g, q)
where G is a q-order subgroup of Z∗p (resp., E(Zp)) for p a
prime. We denote the generator of G as g. We also assume
that functions G : G→ Zq and H : {0, 1}∗ → Zq are defined
during setup. Then, DSA/ECDSA is defined in Figure 1. The

transcript trans (after key generation and the signing of one
message m) is defined as the tuple ((pkSIG, skSIG), (k, σ,m)).
We note that, with the transcript, it is possible to verify that
pkSIG = gskSIG and recompute the signature σ generated by
the signer.

KGen(ppSIG)

skSIG ← Zq; pkSIG := gskSIG ;

return (pkSIG, skSIG)

Sign(ppSIG, skSIG,m)

k ← Z∗
q ; r := G(gk);

s := (k−1 · (H(m) + skSIG · r)) mod q;

return σ = (r, s)

Vf(ppSIG, pkSIG,m, σ)

if r ̸= G(gH(m)·s−1

· pkr·s−1

SIG) return 0

return 1

Fig. 1: The DSA/ECDSA signature scheme for which we
define the transcript in Example 1.

Additionally, our syntax models the generation of a fake
transcript, denoted transfake. The fake transcript is used by
a signer that attempts to evade coercion by providing a
transcript that will convince an attacker that the signer followed
the attacker’s instructions. As we shall see in Section II-A,
maintaining a real and fake transcript is necessary to ensure
that a signer can evade coercion, the main security goal of
incoercible signatures.

2) A Security Model for Incoercible Signatures: We present
a comprehensive security model for incoercible signatures
(§II-A). Our security model captures standard notions of
correctness and unforgeability for a signature scheme, adapted
to our syntax. We also introduce a further property that
we call completeness, which captures the notion that an
honestly generated signature is authentic. We then define three
further security properties for incoercible signatures: weak
receipt-freeness, strong receipt-freeness and coercion-resistance.
In this way, our security model captures three variants of
incoercibility that are influenced and inspired by the existing
literature [16], [17], [27], [28]. Here we provide an overview
of our incoercibility notions, and present our formal definitions
in Section II-A.

Our incoercibility notions consider signers that fall into one
of the following three categories: 1) Honest signers follow
the protocol and do not interact with the attacker; 2) Corrupt
signers are controlled by the attacker. The attacker can act on
behalf of corrupt signers and is assumed to have the secret
signing key of corrupt signers; 3) Coerced signers are signers
that are provided with instructions by the attacker. The attacker
can request that the signer provide some ‘proof’ that they
followed the attacker’s instructions. Coerced signers may appear
to cooperate with the attacker when they are, in fact, deceiving

3155

the attacker. For incoercible signatures, we are most interested
in this category of signers.

Our security definitions allow an attacker to adaptively
corrupt or coerce signers, meaning that corruption or coercion
can occur at any point after key generation. Furthermore,
we assume that signers can fall into only one of these
categories. That is, corrupt signers cannot be coerced and
coerced signers cannot be corrupt. We omit simultaneous
corruption and coercion from our security model for the
following reasons. Firstly, in the former scenario, an attacker
gains no advantage by coercing a corrupt signer. Secondly,
in the latter scenario, coercion can be trivially detected if
the full transcript of the signer is revealed upon corruption.
Indeed, in [17], it is established that a notion of incoercibility
that allows simultaneous corruption and coercion is, arguably,
too strong a notion and, for most application scenarios, is
unnecessary.

Our notions of incoercibility are grounded in the understand-
ing of incoercibility developed over the years, in particular in
the e-voting literature [14], [27], [28]. We reflect this under-
standing by introducing the properties of indistinguishability
and soundness to our security model, as we describe next.

a) Indistinguishability: We introduce three variants of
indistinguishability that capture the following intuition: an
attacker, who can request transcripts from coerced signers,
cannot distinguish a signer that cooperates with an attacker
and presents a real transcript from a signer that evades
coercion and presents a fake transcript. Our weakest notion of
indistinguishability, which we call IND1, considers an attacker
that interacts with signers only after signing. Building on this,
we define IND2 indistinguishability, which captures an attacker
that can interact with signers throughout the protocol (i.e.,
before and after signing). Finally, our strongest variant, IND3
indistinguishability, captures an attacker that provides the signer
with the randomness used to sign, in addition to the attacker’s
message.

b) Soundness: It is essential that, if a signature is
fake, the authenticator will determine the signature to be
inauthentic. To capture this, we introduce soundness, which
guarantees that a coerced signer can communicate coercion to
the authenticator. It requires that, if a signature is the output
of algorithm FakeSign, the authenticator will determine the
signature to be fake. We also recognise that some attackers
may attempt to act on behalf of signers (for example, by
attempting to produce signatures on behalf of coerced signers).
Consequently, we introduce a second soundness property that
we call strong soundness. Strong soundness is the property
that an attacker cannot output an authentic signature on behalf
of a coerced, but uncooperative, signer. In other words, strong
soundness requires that an adversary, who can request fake
signatures and fake transcripts on behalf of coerced signers,
cannot produce an authentic signature for a coerced signer.

Our indistinguishability and soundness properties can be com-
bined in various ways to capture a spectrum of incoercibility
attackers. In this work, we focus on combining these properties

to achieve three well-established incoercibility notions from the
literature. Following convention in the e-voting literature, we
call our incoercibility properties weak receipt-freeness, strong
receipt-freeness and coercion-resistance, described in more
detail in Section II.

3) Achieving Incoercible Signatures: Suprisingly, we show
that even the strongest notion of incoercibility for digital
signatures (cf. §II-B) can be achieved using existing well-
established cryptographic primitives. Indeed, we present two
conceptually simple incoercible signature scheme constructions
(§III) that rely on a generic standard signature scheme and
a sender-deniable encryption scheme. We prove that our
first construction satisfies coercion-resistance and our second
construction satisfies strong receipt-freeness, providing proof
sketches in Section III and full proofs in the full version of this
paper [29]. By presenting such constructions, we demonstrate
that our notion of coercion-resistance is achievable, and that
our notion of strong receipt-freeness is achievable with some
efficiency savings (when compared to our coercion-resistant
construction). Note that we do not present a construction
for our weak receipt-freeness notion. Of course, our two
constructions satisfy weak receipt-freeness, but we do not
present a construction that satisfies only weak receipt-freeness.
We do this as we aim to achieve the strongest security possible
in our constructions (whilst balancing this with efficiency). We
leave as an open problem whether more efficient constructions
are possible that can satisfy our weakest notion. Looking
forward, in Section IV, we explicit the relation between
incoercibility and deniable encryption, and demonstrate that
weak receipt-freeness implies a variant of deniable encryption.
As a result, we conjecture that the efficiency of weak receipt-
free schemes and deniable encryption are closely related. That
being said, we choose to include weak receipt-freeness in our
security model to provide a complete vision of incoercibility
for the digital signature space.

4) Extending Incoercibility to the Designated Verifier
Setting: We demonstrate that our security notions can be
extended in an intuitive way to the setting of designated
verifier signature schemes (§V). Indeed, designated verifier
signature schemes are well-suited to the notion of incoercibility
because the designated verifier can assume the role of the
authenticator and detect coercion during verification. We
provide a security model for incoercible strong designated
verifier signature schemes that captures notions of correctness,
unforgeability, source hiding and privacy of signer’s identity as
defined in [30]. Additionally, we define incoercibility, which
corresponds to the definitions of weak receipt-freeness, strong
receipt-freeness and coercion-resistance for publicly verifiable
signature schemes. We also present a construction that satisfies
our security model for coercion-resistance. Our construction is
similar to our coercion-resistant construction, except that the
standard publicly verifiable signature scheme is replaced with
a strong designated verifier signature scheme. We present an
overview of our strong designated verifier signature results in
Section V and provide full details of our results in [29].

4156

C. Utility of Incoercible Signatures

In a world where online intimidation is increasingly prevalent,
it seems clear that extending the notion of incoercibility to
the setting of digital signatures is a useful endeavour. Indeed,
in the context of signatures with a designated verifier, it is
straightforward to see that our notion of incoercibility can offer
protection against forced influence or coercion: the coerced
signer can signal the coercion attempt to the verifier, who is
uniquely positioned to verify the signature and discard it.

With respect to standard digital signatures, coercion can
only be detected by the authenticator and not when signatures
are verified, making a successful evasion more challenging.
Nevertheless, incoercible signatures can be of use. Consider,
for instance, a scenario in which members of an organisation
can produce endorsements on behalf of other members. Such
endorsements can be used, for example, to recommend a
particular member for an advertised role within the organisation.
It may be desirable that members publicly endorse other
members; endorsements accompanied with publicly verifiable
signatures can facilitate this. However, it is also possible that
a member may be coerced by another member (the coercer) to
produce an endorsement. To address this, the organisation can
implement a coercion-resistant incoercible signature scheme,
ensuring that the coerced member can indicate coercion to an
authenticator (i.e., the entity who ultimately determines which
members are appointed to advertised roles). The authenticator
can subsequently refuse to appoint the coercer to the role,
without revealing the fact that the endorsing member evaded
the coercion attempt. As such, the use of coercion-resistant
incoercible signatures achieves a balance of public verifiability
and protection from coercive attacks.

Similarly, in reputation systems reviews are provided for
a product and can be accompanied by a publicly verifiable
signature to provide trust in their origins, without relying on
a trusted third party. Moreover, an authenticator can provide
a tally that averages the uncoerced reviews, without revealing
which reviews are included in this tally. In this scenario, a
verifier has access to two sources of information: a set of scores
that may be coerced but do not rely on a trusted third party
and a tally that does not contain coerced reviews (assuming
the authenticator behaves honestly). The verifier can choose
which source to trust.

In these scenarios, the authenticator need not publicly
reveal the coercion attempt. Indeed, in the first scenario, the
authenticator could fabricate a reason for not appointing the
coercer to the role. Along with the designated verifier setting,
this is crucial to the utility of incoercible signatures. As with
other incoercible primitives, e.g., deniable encryption, the user
of an incoercible signature must consider the non-cryptographic
consequences of evading coercion. In some scenarios, the
actions of the verifier may indicate an unsuccessful coercion
attempt to the coercer. For example, if a coercer requests the
transfer of funds, the sender can indicate coercion to the entity
that will perform the transfer by producing an incoercible
signature for the transfer request. The entity will be alerted to

the coercion attack and will not transfer the funds. However,
if the coercer does not receive the funds, they will be alerted
to the fact that the sender evaded the coercion attempt. In
this scenario it is more difficult for the verifier to provide a
convincing reason not to send the funds, and so incoercible
signatures are not suitable.

Incoercible signatures can also be used within larger pro-
tocols for which receipt-freeness and coercion-resistance are
desirable properties. One example of such a protocol is e-voting.
Briefly, registered voters could sign an encrypted vote with an
incoercible signature. Voter ballots (i.e., their encrypted vote
and incoercible signature) can be submitted to a trusted election
official for tallying. In the role of authenticator, the election
official can check whether the signature is coerced and can
discard any ballots that signal coercion. In this way, the election
official can exclude ballots from the result without revealing
any coercion attempts. Furthermore, ballots, including coerced
ballots, can be posted to a public bulletin board. Using an
incoercible signature means that anyone can verify signatures
attached to ballots, thus checking that all ballots are submitted
by registered voters.

II. INCOERCIBLE SIGNATURES

In this section, we introduce the syntax and security
model for an incoercible signature scheme. Recall from the
introduction that incoercible signatures are a variant of a
standard signature scheme, providing standard algorithms for
key generation, signing and public verification of a signature.
Additionally, incoercible signatures are equipped with an algo-
rithm FakeSign that allows signers to generate fake signatures
and algorithm Authenticate that is run by the authenticator and
outputs whether the signature is authentic (i.e. a real signature
that is the output of algorithm Sign) or not.

Our syntax assumes that signers maintain a transcript of
their actions, which we denote trans. We define the transcript
to contain all secrets and randomness generated by the signer
during key generation and signing (cf. Example 1). We also
introduce a fake transcript transfake into our syntax. Formally,
we define the syntax for an incoercible signature scheme in
Definition 1.

Definition 1 (Incoercible Signature Scheme). Let trans de-
note the transcript of a signer that contains all secrets
and randomness generated by the signer during key gener-
ation and signing. Then, an incoercible signature scheme
INC-SIG is a tuple of probabilistic polynomial time (PPT) al-
gorithms (Setup,AKGen,SKGen,FakeTrans,Sign,FakeSign,
Verify,Authenticate) such that:

Setup(1λ) On input of security parameter 1λ, Setup outputs
public parameters pp.

AKGen(pp) On input of public parameters pp, AKGen
outputs an authenticator key pair (pkA, skA) where
pkA is the authenticator’s public key and skA is the
authenticator’s private key.

SKGen(pp, pkA) On input of public parameters pp and
authenticator public key pkA, SKGen outputs a signer

5157

key pair (pkS , skS) where pkS is the signer’s public
key and skS is the signer’s private key, and an initial
transcript trans.

FakeTrans(pp, pkA, trans, transfake) On input of public pa-
rameters pp, authenticator public key pkA, a transcript
trans and a fake transcript transfake, FakeTrans out-
puts an updated fake transcript transfake. We write that
transfake ← FakeTrans(pp, pkA, trans,⊥) generates
an initial fake transcript.

Sign(pp, skS , pkA,m, trans) On input of public parameters
pp, signer secret key skS , authenticator public key
pkA, message m and transcript trans, Sign outputs a
signature σ and an updated transcript trans.

FakeSign(pp, skS , pkA,m, trans, transfake) On input of pub-
lic parameters pp, signer secret key skS , authenticator
public key pkA, message m, a transcript trans and a
fake transcript transfake, FakeSign outputs a signature
σ and an updated fake transcript transfake.

Verify(pp, pkS ,m, σ) On input of public parameters pp,
signer public key pkS , message m and signature σ,
Verify outputs 1 if σ verifies, and 0 otherwise.

Authenticate(pp, pkS , skA,m, σ) On input of public pa-
rameters pp, signer public key pkS , authentica-
tor secret key skA, message m and signature σ,
Authenticate outputs 1 if σ is authentic, and 0
otherwise.

We require that an incoercible signature scheme satisfies
correctness, which, as for standard signature schemes, requires
that honestly generated signatures verify. Additionally, an
incoercible signature scheme must satisfy completeness, the
property that honestly generated signatures are authentic.

Definition 2 (Correctness). An incoercible signature scheme
INC-SIG satisfies correctness if, for any message m ∈ {0, 1}∗,
there exists a negligible function negl such that

Pr

[
pp←Setup(1λ);
(pkA,skA)←AKGen(pp);
(pkS ,skS ,trans)←SKGen(pp,pkA);
(σ,trans)←Sign(pp,skS ,pkA,m,trans)

: Verify(pp,pkS ,m,σ)=1

]
≥ 1− negl(λ).

Definition 3 (Completeness). An incoercible signature scheme
INC-SIG satisfies completeness if, for any message m ∈ {0, 1}∗,
there exists a negligible function negl such that

Pr

[
pp←Setup(1λ);
(pkA,skA)←AKGen(pp);
(pkS ,skS ,trans)←SKGen(pp,pkA);
(σ,trans)←Sign(pp,skS ,pkA,m,trans)

: Authenticate(pp,pkS ,skA,
m,σ)=1

]
≥ 1− negl(λ).

A. Security Model

We present a security model for our syntax capturing a
standard definition of existential unforgeability against a chosen
message attack (EUF-CMA) [1], adapted to the setting of
incoercible signature schemes. In our EUF-CMA experiment,
we require that an adversary cannot output a valid signature
on behalf of a signer, where the signature is not the output

of the signing oracle, even if the adversary has access to the
authenticator’s key pair.

Definition 4 (Unforgeability). An incoercible signature scheme
INC-SIG satisfies existential unforgeability against a chosen
message attack (EUF-CMA) if there exists a negligible function
negl such that

Pr

Query←∅;
pp←Setup(1λ);
(pkA,skA)←AKGen(pp);
(pkS ,skS ,trans)←SKGen(pp,pkA);

(m∗,σ∗)←ASIGN(·)(pp,pkS ,pkA,skA)

:
Verify(pp,pkS ,m∗,σ∗)
=1
∧ m∗ /∈Query≤negl(λ)

≤ negl(λ)

where oracle SIGN(m), on input message m, updates
set Query to include message m, computes (σ, trans) ←
Sign(pp, skS , pkA,m, trans) and outputs σ.

We now present definitions of security properties that are
intended to capture the fact that a signer, when coerced to
sign a message by an attacker, can evade coercion, even if
the signer is compelled to reveal their entire transcript to
the attacker. In particular, we define two variants of receipt-
freeness: weak and strong receipt-freeness. We complete our
security model with a definition of coercion-resistance for
incoercible signature schemes. Our definitions capture adaptive
corruption and coercion strategies. We define the oracles for
our experiments in Figure 2 and our experiments in Figure 3.

Our formal security definitions rely on a number of oracles.
We write X(y1,...,yn)(z1, . . . , zn) to denote oracle X that has
access to parameters and lists y1, . . . , yn and takes as input
z1, . . . , zn. Oracle ADDU models key generation and the
creation of an initial fake transcript for signers, outputting
the signer’s public key to the adversary. Oracle SIGN outputs
an honestly generated signature and updates the fake transcript
of the signer. We define oracle SIGN to take as input any
signer (recall from the introduction that signers can be honest,
coerced or corrupt) that has been previously input to oracle
ADDU. Accordingly, our security model captures the fact that
coerced signers, in addition to following instructions provided
by the attacker, may produce honestly generated signatures
for messages of their choosing. The adversary may call oracle
CRPT to adaptively corrupt a signer, on the condition that the
signer is not coerced, and obtain the secret key and transcript
of the signer. Oracles CRCSIG, COERCE, FAKECOERCE and
FAKESIGN adaptively coerce signers that are not previously
corrupt and perform further functions on behalf of coerced
signers. More specifically, oracle CRCSIG, depending on a bit
b chosen in the security experiment, returns a real or fake
signature for a message provided by the adversary. Similarly,
oracle STCRCSIG returns a real or fake signature, and, allows
the adversary to provide the randomness used to sign the
message as input to the oracle. Oracle COERCE returns a real or
fake transcript, depending on the bit b. Oracle FAKECOERCE
reveals the fake transcript of a coerced signer. Finally, coerced
signers can be input to FAKESIGN to obtain fake signatures.
In our oracles and the corresponding experiments, we write
pkS to be the vector of signer public keys and pkS[id] as

6158

the public key pkS of signer id. We define the secret keys,
transcripts and fake transcripts of signers analogously.

1) Weak Receipt-Freeness: Broadly, weak receipt-freeness
captures an attacker that coerces a signer to sign messages
and, afterwards, demands evidence of the signer’s cooperation.
In our syntax, evidence refers to the signer’s transcript. We
do not consider that a weak receipt-freeness attacker may
attempt to generate signatures on behalf of a coerced signer.
Therefore, we require only a basic soundness requirement. Our
definition of weak receipt-freeness captures two properties:
IND1 indistinguishability and soundness.

IND1 indistinguishability defines an adversary that can
request signatures from a coerced signer via oracle CRCSIG.
Depending on a bit b chosen in the experiment, CRCSIG
models a coerced signer that runs algorithm Sign or FakeSign
to produce a signature. At the end of the experiment, the
adversary can request transcripts of coerced signers via oracle
COERCE, which returns a real or fake transcript, depending
on the bit b. Additionally, the adversary can corrupt signers
and request honestly generated signatures on behalf of any
signer via oracles CRPT and SIGN respectively. We say that an
incoercible signature scheme satisfies the indistinguishability
requirement if the adversary can guess b with probability only
negligibly more than 1/2.

Soundness is a basic requirement requiring that, if a sig-
nature is the output of algorithm FakeSign, then algorithm
Authenticate will output 1 with negligible probability.

Definition 5 (Weak Receipt-Freeness). An incoercible signature
scheme INC-SIG satisfies weak receipt-freeness if the following
conditions hold.
• Indistinguishability (IND1): for any PPT adversary A =
(A1,A2), there exists a negligible function negl such that∣∣∣Pr[ExpIND1,0

A,INC-SIG(λ) = 1
]
−

Pr
[
ExpIND1,1
A,INC-SIG(λ) = 1

]∣∣∣ ≤ negl(λ).

• Soundness: for any message m ∈ {0, 1}∗, there exists a
negligible function negl such that

Pr
[
ExpsoundINC-SIG(λ) = 1

]
≤ negl(λ).

where ExpIND1,b
A,INC-SIG(λ) for b ∈ {0, 1} and ExpsoundINC-SIG(λ) are

the experiments defined in Figure 3.

2) Strong Receipt-Freeness: A strong receipt-freeness at-
tacker can interact with signers throughout the protocol.
Crucially, this means that a strong receipt-freeness attacker
can demand the transcripts of coerced signers at any point.
As such, our definition of strong receipt-freeness must capture
IND2 indistinguishability. Additionally, strong receipt-freeness
requires soundness, as defined for weak receipt-freeness, as we
assume that attacker does not attempt to generate signatures
on behalf of a coerced signer.

Our IND2 experiment is similar to IND1 with one key
difference: in our IND2 indistinguishability experiment, the ad-
versary can query oracle COERCE throughout the experiment.

This models the fact that the attacker, rather than requesting
transcripts of a coerced signer at the end of a protocol run,
may demand the transcripts at any point. With respect to all
other oracles queries, the IND2 indistinguishability adversary is
identical to the IND1 indistinguishability adversary. We require
that the adversary cannot determine whether the coerced signers
are cooperating or evading coercion. Formally, as in our IND1
indistinguishability experiment, this means that the adversary
can guess the bit b with probability only negligibly more than
1/2.

Definition 6 (Strong Receipt-Freeness). An incoercible sig-
nature scheme INC-SIG satisfies strong receipt-freeness if the
following conditions hold.

• Indistinguishability (IND2): for any PPT adversary A,
there exists a negligible function negl such that

∣∣∣Pr[ExpIND2,0
A,INC-SIG(λ) = 1

]
− Pr

[
ExpIND2,1
A,INC-SIG(λ) = 1

]∣∣∣ ≤ negl(λ).

• Soundness: for any message m ∈ {0, 1}∗, there exists a
negligible function negl such that

Pr
[
ExpsoundINC-SIG(λ) = 1

]
≤ negl(λ).

where ExpIND2,b
A,INC-SIG(λ) for b ∈ {0, 1} and ExpsoundINC-SIG(λ) are

the experiments defined in Figure 3.

3) Coercion-Resistance: A coercion-resistance attacker con-
trols coerced signers and can interact with signers throughout
the protocol. Consequently, a coercion-resistant attacker can
demand the transcripts of coerced signers at any point, and can
attempt to produce signatures on their behalf. Our coercion-
resistance definition captures IND3 indistinguishability and
strong soundness.

Our IND3 experiment is identical to IND2 with the following
exception. Rather than providing the adversary with access to
oracle CRCSIG, the adversary can query oracle STCRCSIG,
which allows the adversary to provide the randomness used to
sign the message in addition to the message itself.

Strong soundness is defined with respect to an adversary
that can request fake signatures and fake transcripts on behalf
of coerced signers via oracles FAKESIGN and FAKECOERCE
respectively. The adversary can also query oracle CRPT to
corrupt signers, obtaining their transcripts and secret keys.
Moreover, the adversary can request honestly generated sig-
natures for any signer by calling oracle SIGN. For strong
soundness, we require that the adversary cannot output an
authentic signature on behalf of a coerced signer, where the
signature is not the output of the signing oracle.

Definition 7 (Coercion-Resistance). An incoercible signature
scheme INC-SIG satisfies coercion-resistance if the following
conditions hold.

7159

ADDU(pp,pkA,pkS,skS,L,trans,transfake)(id)

if id ∈ L return ⊥
L← L ∪ {id}
(pkS[id], skS[id], trans[id])← SKGen(pp, pkA)

transfake[id]← FakeTrans(pp, pkA, trans[id],⊥)
return pkS[id]

COERCE(L,corL,crcL,trans,transfake)(id)

if id /∈ L \ corL return ⊥
crcL← crcL ∪ {id}
if b = 0 return trans[id]

if b = 1 return transfake[id]

CRPT(skS,L,corL,crcL,trans)(id)

if id /∈ L \ crcL return ⊥
corL← corL ∪ {id}
return skS[id], trans[id]

FAKECOERCE(L,corL,crcL,transfake)(id)

if id /∈ L \ corL return ⊥
crcL← crcL ∪ {id}
return transfake[id]

SIGN(pp,pkA,skS,L,Query,trans,transfake)
(id,m)

if id /∈ L return ⊥
(σ, trans)← Sign(pp, skS[id], pkA,m, trans[id])

transfake[id]← FakeTrans(pp, pkA, trans[id], transfake[id])

Query ← Query ∪ {(id,m)}
return σ

CRCSIG(pp,pkA,skS,L,corL,crcL,trans,transfake)(id,m)

if id /∈ L \ corL return ⊥
crcL← crcL ∪ {id}
if b = 0 (σ, trans[id])← Sign(pp, skS[id], pkA,m, trans[id])

if b = 1 (σ, transfake[id])← FakeSign(pp, skS[id], pkA,m, trans[id], transfake[id])

return σ

FAKESIGN(pp,pkA,skS,L,corL,crcL,trans,transfake)(id,m, r)

if id /∈ L \ corL return ⊥
crcL← crcL ∪ {id}
(σ, transfake[id])← FakeSign(pp, skS[id], pkA,m,

trans[id], transfake[id]; r)

return σ

STCRCSIG(pp,pkA,skS,L,corL,crcL,trans,transfake)(id,m, r)

if id /∈ L \ corL return ⊥
crcL← crcL ∪ {id}
if b = 0 (σ, trans[id])← Sign(pp, skS[id], pkA,m, trans[id]; r)

if b = 1 (σ, transfake[id])← FakeSign(pp, skS[id], pkA,m, trans[id], transfake[id]; r)

return σ

Fig. 2: Oracles used in the security experiments defined in Figure 3.

ExpIND1,b
A,INC-SIG(λ)

pkS, skS, trans, transfake ← ()

L, crcL, corL,Query ← ∅
pp← Setup(1λ)

(pkA, skA)← AKGen(pp)

st← AADDU,CRPT,SIGN,CRCSIG
1 (pp, pkA)

b′ ← ACOERCE
2 (st)

return b′

ExpIND2,b
A,INC-SIG(λ)

pkS, skS, trans, transfake ← ()

L, crcL, corL,Query ← ∅
pp← Setup(1λ)

(pkA, skA)← AKGen(pp)

b′ ← AADDU,CRPT,COERCE,SIGN,CRCSIG(pp, pkA)

return b′

ExpIND3,b
A,INC-SIG(λ)

pkS, skS, trans, transfake ← ()

L, crcL, corL,Query ← ∅
pp← Setup(1λ)

(pkA, skA)← AKGen(pp)

b′ ← AADDU,CRPT,COERCE,SIGN,STCRCSIG(pp, pkA)

return b′

ExpsoundINC-SIG(λ)
pp← Setup(1λ)

(pkA, skA)← AKGen(pp)

(pkS , skS , trans)← SKGen(pp, pkA)

transfake ← FakeTrans(pp, pkA, trans,⊥)
(σ, transfake)← FakeSign(pp, skS , pkA,m, trans, transfake)

b← Authenticate(pp, pkS , skA,m, σ)

return b

Expst-soundA,INC-SIG(λ)
pkS, skS, trans, transfake ← ()

L, crcL, corL,Query ← ∅
pp← Setup(1λ)

(pkA, skA)← AKGen(pp)

(id∗,m∗, σ∗)← AADDU,CRPT,FAKECOERCE,SIGN,FAKESIGN(pp, pkA)

if id∗ ∈ crcL ∧ (id∗,m∗) /∈ Query ∧ Authenticate(pp,pkS[id
∗], skA,m

∗, σ∗) = 1

return 1

else return 0

Fig. 3: Experiments for weak receipt-freeness, strong receipt-freeness and coercion-resistance where the adversary has access to
oracles defined in Figure 2.

• Indistinguishability (IND3): for any PPT adversary A,
there exists a negligible function negl such that∣∣∣Pr[ExpIND3,0

A,INC-SIG(λ) = 1
]

− Pr
[
ExpIND3,1
A,INC-SIG(λ) = 1

]∣∣∣ ≤ negl(λ).

• Strong soundness: for any PPT adversary A, there exists
a negligible function negl such that

Pr
[
Expst-soundA,INC-SIG(λ) = 1

]
≤ negl(λ).

where ExpIND3,b
A,INC-SIG(λ) for b ∈ {0, 1} and Expst-soundA,INC-SIG(λ) are

the experiments defined in Figure 3.

B. On Coercion of Signers During Key Generation

Our security model for incoercible signatures incorporates a
hierarchy of incoercibility properties that are influenced and
inspired by the existing literature [16], [17], [27], [28]. In
particular, it captures the weakest variant of incoercibility that
is described in the literature. We now show that our notion of
coercion-resistance is the strongest possible form of attainable
incoercibility for digital signatures.

8160

Recall that coercion-resistance captures an attacker that can
view the transcript of a coerced signer at any point after key
generation and act on their behalf thereafter. We assume that
key generation is always performed honestly, regardless of
whether the signer is corrupt, coerced, or honest. We now
demonstrate the following result: a definition of incoercibility
in which the adversary can coerce and interact with signers
during key generation is not satisfiable in the public-key setting.
We consider a natural extension to coercion-resistance, that
we call strong coercion-resistance, in which the attacker can
interact with the signer during key generation. In such a model,
we require a new algorithm FakeSKGen, defined as follows.

FakeSKGen(pp, pkA, r) On input of public parameters pp,
authenticator public key pkA and randomness r
provided by the attacker, FakeSKGen outputs a signer
key pair (pkS , skS), where pkS is the signer’s public
key and skS is the signer’s private key, and the fake
transcript transfake.

We also require modifications to the ADDU oracle for both the
IND3 indistinguishability and strong soundness experiments,
which we detail in Figure 4. More specifically, algorithm
FakeSKGen allows a signer to generate their own key pair,
potentially by deviating from the honest key generation
algorithm. In the indistinguishability experiment, oracle ADDU
returns the output of real key generation algorithm SKGen or
the output of algorithm FakeSKGen, depending on a bit b
chosen in the experiment. In the strong soundness experiment,
oracle ADDU returns the output of algorithm FakeSKGen for
coerced signers. With the above modifications, our strong
coercion-resistance definition captures an attacker that interacts
with signers during key generation. We obtain the result in
Lemma 1.

Lemma 1. No construction for an incoercible signature scheme
can satisfy strong coercion-resistance.

Informally, this result holds because an adversary in the
strong coercion-resistance experiments can always succeed.
In particular, if the adversary can choose the randomness
used in key generation, then they can use this randomness
to generate their own public and secret key from honest key
generation. The public key of the signer must match the public
key held by the adversary, otherwise the adversary can break
indistinguishability. Moreover, due to completeness, the attacker
can use this key pair to construct authentic signatures in the
strong soundness experiment. We now present a proof of
Lemma 1.

Proof. First, we show that, if the public key output by
SKGen(pp, pkA; r) and FakeSKGen(pp, pkA, r) are different
with non–negligible probability ϵ, we can build an adversary A
that wins in the indistinguishability game with non–negligible
probability ϵ. A runs SKGen(pp, pkA; r) and then simply
guesses b = 0 if they receive the same public key and b = 1
if they do not receive the same public key.

Using the above, we now show that we can build an
adversary A′ that wins in the strong soundness game. Firstly,

A selects some randomness r identically to in SKGen. They
compute (pk∗, sk∗, trans) ← SKGen(pp, pkA; r). For any
id∗, they input (id∗, r) to the ADDU oracle. They abort
if the ADDU oracle outputs a different public key to pk∗,
which occurs with negligible probability. Otherwise, they
compute (σ∗, trans) ← Sign(pp, sk∗, pkA,m

∗, trans) for any
message m∗. Finally, they output (id∗,m∗, σ∗). Clearly,
id∗ ∈ crcL and the signing oracle has not been used. As
the key generation and signing were performed honestly,
Authenticate(pp, pk∗, skA,m

∗, σ∗) = 0 with negligible prob-
ability due to completeness. As pk∗ is identical to pkS[id

∗],
the adversary A′ wins with non–negligible probability.

We note that, if the signer obtains a secret input from the
authenticator during key generation, the attacker is unable to
choose all of the randomness for key generation. Consequently,
the result in Lemma 1 can be overcome. This was indeed the
approach taken by [10]. In this paper, we choose to focus on
a non-interactive setting and therefore avoid the requirement
of some secret input from the authenticator, which might be
difficult to implement in practice.

III. CONSTRUCTIONS

In this section, we provide two constructions of incoercible
signature schemes. Our constructions employ a standard
signature scheme SIG = (SIG.Setup,SIG.KGen,SIG.Sign,
SIG.Vf), which satisfies standard notions of correctness and
unforgeability (EUF-CMA), and a sender-deniable encryp-
tion scheme DEN = (DEN.Setup,DEN.KGen,DEN.Enc,
DEN.Dec,DEN.Exp), which, throughout this work, we refer
to as a deniable encryption scheme for brevity. A deniable
encryption scheme is a standard public-key encryption scheme,
equipped with an additional algorithm DEN.Exp that, for
a ciphertext c that encrypts message m and is output by
encryption algorithm DEN.Enc, generates randomness such
that c appears to encrypt an alternative message m′. We require
that the deniable encryption scheme satisfies correctness and
indistinguishability under chosen plaintext attacks (IND-CPA),
as in a traditional encryption scheme, and indistinguishability
of explanations (IND-EXP), which ensures that the randomness
output by algorithm DEN.Exp is indistinguishable from the
real randomness used by algorithm DEN.Enc. We recall the
syntax and security models for these building blocks in [29].

A. A Coercion-Resistant Construction

We introduce a construction that we call CR.SIG that
satisfies our strongest form of incoercibility: coercion-resistance.
We present CR.SIG in Figure 5: it relies on a standard
signature scheme SIG and a deniable encryption scheme
DEN. Additionally, our construction uses two hash functions
H1 : {0, 1}∗ → {0, 1}∗, H2 : {0, 1}∗ → M, where M is
the message space of the signature scheme SIG. The first is
assumed to model a random oracle, whereas the second is
required to be collision resistant.

Our construction works as follows. The authenticator gener-
ates a key pair for a deniable encryption scheme. During key
generation, in addition to generating a key pair for signature

9161

(a) ADDU(pp,pkA,pkS,skS,L,corL,crcL,trans,transfake)(id, r)

if id ∈ L return ⊥
L← L ∪ {id}
if r =⊥

(pkS[id], skS[id], trans[id])← SKGen(pp, pkA)

transfake[id]← FakeTrans(pp, pkA, trans[id],⊥)
if r ̸=⊥

crcL← crcL ∪ {id}
if b = 0 (pkS[id], skS[id], trans[id])← SKGen(pp, pkA; r)

if b = 1

(pkS[id], skS[id], transfake[id])← FakeSKGen(pp, pkA, r)

transfake[id]← FakeTrans(pp, pkA, trans[id],⊥)
return pkS[id]

(b) ADDU(pp,pkA,pkS,skS,L,corL,crcL,trans,transfake)(id, r)

if id ∈ L return ⊥
L← L ∪ {id}
if r ̸=⊥

crcL← crcL ∪ {id}
(pkS[id], skS[id], transfake[id])← FakeSKGen(pp, pkA, r)

else

(pkS[id], skS[id], trans[id])← SKGen(pp, pkA)

transfake[id]← FakeTrans(pp, pkA, trans[id],⊥)
return pkS[id]

Fig. 4: The modified ADDU oracles for the (a) indistinguishability and (b) strong soundness experiments.

scheme SIG, a signer generates a random string s and deniably
encrypts this under the authenticator’s public key. The signer’s
secret key consists of a secret key for SIG and a string s. The
corresponding public key consists of the public key for SIG and
the ciphertext that encrypts s. A signature consists of a deniable
encryption of s, as well as a standard signature that signs
both the message and the deniable encryption ciphertext. The
authenticator can detect coercion by decrypting the ciphertexts
contained in the public key and the signature, and comparing
the two, via the Authenticate algorithm. The signer creates
a fake transcript that indicates s′, rather than s, is contained
in the signer’s secret key. In this way, by security of the
deniable encryption scheme, the attacker cannot distinguish
a real and a fake transcript. Moreover, the coercive attacker
cannot forge an authentic signature without knowledge of s,
and our construction achieves strong soundness.

Our coercion-resistance construction satisfies correctness,
completeness, unforgeability and coercion-resistance, as defined
in Section II. We obtain the formal result in Theorem 1, which
we prove in [29]. Here, we provide a proof sketch of the result.

Theorem 1. Let SIG and DEN be a secure signature scheme
and deniable encryption scheme respectively, as defined in
[29], and the hash functions H1 and H2 be modelled as a
random oracle model and collision resistant respectively. Then,
CR.SIG is a secure construction of a coercion-resistant inco-
ercible signature scheme. That is, CR.SIG safisfies correctness,
completeness, unforgeability and coercion-resistance.

Proof sketch. Trivially, correctness and completeness of
CR.SIG follow from correctness of the building blocks used in
our construction. Unforgeability follows from the EUF-CMA
security of SIG and the fact that hash function H2 is collision
resistant. Indeed, our proof of unforgeability demonstrates that,
if we assume that CR.SIG does not satisfy unforgeability and
H2 is collision resistant, then it is possible to construct an
adversary that succeeds in breaking the EUF-CMA security of
SIG. Then, by contradiction, the result holds.

To prove IND3 indistinguishability, we proceed through a

series of game hops that we show are indistinguishable to
the adversary. In the final game, the view of the adversary
is identical for b = 0 and b = 1. In Game 1, the experiment
only generates a fake transcript once a signer is added to
the list of coerced signers. As this change is superficial, i.e.,
the fake transcript is only required for coerced signers, this
game hop is indistinguishable to the adversary. In Game 2,
we use the real secret s in the fake transcript, rather than the
fake secret s′. In Game 3, we also include the real encryption
randomness in the fake transcript, instead of using DEN.Exp
to produce fake randomness. The hops from Game 1 to Game
2 and Game 2 to Game 3 require a hybrid argument such that
the reduction operates in k1 steps, where k1 is the number of
queries made by the adversary to oracle ADDU. Ultimately, the
hop from Game 1 to 2 is indistinguishable due to the IND-CPA
security of the deniable encryption scheme and the hop from
Game 2 to 3 is indistinguishable due to the IND-EXP security
of the deniable encryption scheme. Finally, in Game 3, the
fake transcript is identical to the real transcript. Moreover, all
signatures generated during the experiment are the output of the
real signing algorithm. Therefore, the inputs to the adversary
are independent of b and indistinguishability holds.

Finally, we prove that CR.SIG satisfies strong soundness in
the random oracle model. We show that, if there exists an
adversary that succeeds in the strong soundness experiment,
then it is possible to construct an adversary that breaks the
IND-CPA property of deniable encryption scheme DEN, if it
is assumed that hash function H1 is a random oracle. This
is because, to win, the adversary must output a signer id∗

alongside an encryption of H1(m
∗||s), where s is the secret

key of the signer id∗. Therefore, they must have input (m∗||s)
to the H1 random oracle. In our reduction we show that if
they can do so we can break the IND-CPA security of the
deniable encryption scheme DEN. Then, the result holds by
contradiction.

B. A Strong Receipt-Free Construction
We present a strong receipt-free incoercible signature scheme

construction (RF.SIG) in Figure 6 that uses a standard signature

10162

CR.Setup(1λ)

ppDEN ← DEN.Setup(1λ),

ppSIG ← SIG.Setup(1λ),

return pp = (ppDEN, ppSIG)

CR.AKGen(pp)

parse pp as (ppDEN, ppSIG)

(pkA, skA)← DEN.KGen(ppDEN)

return (pkA, skA)

CR.SKGen(pp, pkA)

parse pp as (ppDEN, ppSIG)

(pkSIG, skSIG)← SIG.KGen(ppSIG; rSIG)

// where rSIG is the randomness sampled in the

// SIG key generation algorithm

s← {0, 1}λ

c← DEN.Enc(ppDEN, pkA, s; rc)

// where rc is the randomness sampled in the

// DEN encryption algorithm

s← {0, 1}λ

(pkS , skS)← ((pkSIG, c), (skSIG, s))

trans := {(rSIG, pkSIG, skSIG, s, rc, c)}
return ((pkS , skS), trans)

CR.Sign(pp, skS , pkA,m, trans)

parse pp as (ppDEN, ppSIG), skS as (skSIG, s)

σ1 ← DEN.Enc(ppDEN, pkA,H1(m||s); rσ1)

σ2 ← SIG.Sign(ppSIG, skSIG,H2(m||σ1); rσ2)

trans← trans ∪ {(m, rσ1 , σ1, rσ2 , σ2)}
return ((σ1, σ2), trans)

CR.FakeSign(pp, skS , pkA,m, trans, transfake)

parse pp as (ppDEN, ppSIG), skS as (skSIG, s)

parse transfake as {(rSIG, pkSIG, skSIG, s′, r′c, c), . . . }
σ1 ← DEN.Enc(ppDEN, pkA,H1(m||s′); rσ1),

σ2 ← SIG.Sign(ppSIG, skSIG,H2(m||σ1); rσ2)

transfake ← transfake ∪ {(m, rσ1 , σ1, rσ2 , σ2)}
return (σ = (σ1, σ2), transfake)

CR.Authenticate(pp, pkS , skA,m, σ)

parse pp as (ppDEN, ppSIG), pkS as (pkSIG, c), σ as (σ1, σ2)

if SIG.Vf(ppSIG, pkS ,H2(m||σ1), σ2) = 0 return 0

H ′ ← DEN.Dec(ppDEN, skA, σ1)

sk′ ← DEN.Dec(ppDEN, skA, c),

if H ′ = H1(m||sk′) return 1 else return 0

CR.Verify(pp, pkS ,m, σ)

parse pp as (ppDEN, ppSIG), pkS as (pkSIG, c), σ as (σ1, σ2)

if SIG.Vf(ppSIG, pkSIG,H2(m||σ1), σ2) = 0 return 0

else return 1

CR.FakeTrans(pp, pkA, trans,⊥)
parse pp as (ppDEN, ppSIG)

parse trans as {(rSIG, pkSIG, skSIG, s, rc, c)}
s′ ← {0, 1}λ

r′c ← DEN.Exp(ppDEN, pkA, c, s
′)

return transfake := {(rSIG, pkSIG, skSIG, s′, r′c, c)}

CR.FakeTrans(pp, pkA, trans, transfake)

parse pp as (ppDEN, ppSIG)

parse trans as
{(rSIG, pkSIG, skSIG, s, rc, c), . . . , (m, rσ1 , σ1, rσ2 , σ2), . . . }
parse transfake as {(rSIG, pkSIG, skSIG, s′, r′c, c), . . . }
For each new entry (m, rσ1 , σ1, rσ2 , σ2) from CR.Sign

r′σ1
← DEN.Exp(ppDEN, pkA, σ1,H1(m||s′))

transfake ← transfake ∪ {(m, r′σ1
, σ1, rσ2 , σ2)}

return transfake

Fig. 5: Our coercion-resistant construction CR.SIG.

scheme SIG and a deniable encryption scheme DEN as building
blocks. We also use a collision resistant hash function H :
{0, 1}∗ →M, whereM is the message space of the signature
scheme SIG.

We briefly note the key differences between our constructions.
During key generation, a signer only generates a key pair for
signature scheme SIG, and no longer generates a random string
s. To sign a message, the signer now generates an encryption
of a bit that denotes whether the signer is being coerced,
i.e., the signer encrypts 1 to indicate a genuine signature
and 0 to indicate coercion. Signing then proceeds as in our
coercion-resistant construction. The authenticator can decrypt
this bit (and consequently detect coercion) via the Authenticate
algorithm. By using deniable encryption, our construction
ensures that, when a signer is coerced, they can produce fake
randomness such that they appear to have encrypted a different
bit.

Our strong receipt-freeness construction RF.SIG does not
satisfy coercion-resistance. In fact, if the attacker can obtain
a coerced signer’s transcript and provide a message and
randomness to the signer, the coerced signer cannot output a
fake transcript that will convince the attacker that the signer
cooperated. Hence, RF.SIG cannot satisfy the IND3 indistin-
guishability requirement of coercion-resistance. Moreover, the
fake transcript of a coerced signer contains the real secret
key of the signer, which a coercive attacker can use to create
valid and authentic forgeries on behalf of the signer. As such,
RF.SIG cannot satisfy the strong soundness property that is
necessary for coercion-resistance.

We show that our strong receipt-free construction satisfies
correctness, completeness, unforgeability and strong receipt-
freeness, as defined in Section II. In fact, we obtain Theorem 2,

which we prove formally in [29], and for which we provide a
proof sketch here.

Theorem 2. Let SIG and DEN be a secure signature scheme
and deniable encryption scheme respectively, as defined in [29],
and the hash function H be collision resistant. Then, RF.SIG
is a secure construction of a strong receipt-free incoercible
signature scheme. That is, RF.SIG satisfies correctness, com-
pleteness, unforgeability and strong receipt-freeness.

Proof sketch. Correctness, completeness and soundness (re-
quired for strong receipt-freeness) of RF.SIG follow trivially
from correctness of the signature scheme SIG and the deniable
encryption scheme DEN. The proof of unforgeability is very
similar to the unforgeability proof of our coercion-resistant
construction. That is, it follows from the EUF-CMA security
of SIG and the fact that hash function H is collision resistant.

This leaves us to show that our construction satisfies
the IND2 indistinguishability requirement of strong receipt-
freeness. Indistinguishability holds as a result of the IND-CPA
and IND-EXP properties of the deniable encryption scheme.
To prove indistinguishability, we proceed through a series of
game hops, demonstrating that the hops are indistinguishable
to the adversary. In our first game hop, if b = 1, we change
oracle CRCSIG to encrypt 1 rather than 0 when generating the
fake signature. In our second game hop, if b = 1, we attach
the real randomness used to encrypt to the fake transcript,
rather than the randomness generated via algorithm DEN.Exp.
These hops are indistinguishable if the deniable encryption
scheme satisfies IND-CPA and IND-EXP security respectively.
Through these game hops we arrive at a game in which the
view of the adversary is identical for b = 0 and b = 1. In
particular, regardless of bit b, the adversary views a signature

11163

RF.Setup(1λ)

ppDEN ← DEN.Setup(1λ)

ppSIG ← SIG.Setup(1λ)

return pp = (ppDEN, ppSIG)

RF.AKGen(pp)

parse pp as (ppDEN, ppSIG)

(pkA, skA)← DEN.KGen(ppDEN)

return (pkA, skA)

RF.SKGen(pp, pkA)

parse pp as (ppDEN, ppSIG)

(pkS , skS)← SIG.KGen(ppSIG; rSIG)

trans := {(rSIG, pkS , skS)}
return ((pkS , skS), trans)

RF.Sign(pp, skS , pkA,m, trans)

parse pp as (ppDEN, ppSIG)

σ1 ← DEN.Enc(ppDEN, pkA, 1; rσ1)

σ2 ← SIG.Sign(ppSIG, skS ,H(m||σ1); rσ2)

trans← trans ∪ {(m, rσ1 , σ1, rσ2 , σ2)}
return (σ = (σ1, σ2), trans)

RF.Verify(pp, pkS ,m, σ)

parse pp as (ppDEN, ppSIG), σ as (σ1, σ2)

if SIG.Vf(ppSIG, pkS ,H(m||σ1), σ2) = 0 return 0

return 1

RF.Authenticate(pp, pkS , skA,m, σ)

parse pp as (ppDEN, ppSIG), σ as (σ1, σ2)

if SIG.Vf(ppSIG, pkS ,H(m||σ1), σ2) = 0 return 0

t← DEN.Dec(ppDEN, skA, σ1)

if t = 1 return 1 else return 0

RF.FakeSign(pp, skS , pkA,m, trans, transfake)

parse pp as (ppDEN, ppSIG)

σ1 ← DEN.Enc(ppDEN, pkA, 0; rσ1)

σ2 ← SIG.Sign(ppSIG, skS ,H(m||σ1); rσ2)

r′σ1
← DEN.Exp(ppDEN, pkA, σ1, 1)

transfake ← transfake ∪ {(m, r′σ1
, σ1, rσ2 , σ2)}

return (σ = (σ1, σ2), transfake)

RF.FakeTrans(pp, pkA, trans,⊥)
return transfake := trans = {(rSIG, pkS , skS)}

RF.FakeTrans(pp, pkA, trans, transfake)

parse pp as (ppDEN, ppSIG)

parse trans as {(rSIG, pkS , skS), . . . , (m, rσ1 , σ1, rσ2 , σ2), . . . }
For each new entry (m, rσ1 , σ1, rσ2 , σ2)from RF.Sign

transfake ← transfake ∪ {(m, rσ1 , σ1, rσ2 , σ2)}
return transfake

Fig. 6: Our strong receipt-free construction RF.SIG.

that contains an encryption of a bit 1 and views a transcript
that contains the real encryption randomness.

C. Efficiency of RF.SIG and CR.SIG

The efficiency of our constructions is determined by the
efficiency of the sender-deniable encryption scheme. Since
deniable encryption was first introduced in [22], several
deniable encryption constructions have been presented in
the literature, for example, [21], [23]–[25], [31]–[33]. Many
constructions have improved upon the efficiency of Canetti et
al.’s constructions [22]. Specifically, [25] proposes an efficient
construction of deniable encryption based on indistinguishable
obfuscation, and, more recently, an efficient construction has
been proposed in the quantum setting [33]. We are hopeful
that further advancement in this space can lead to even more
efficient incoercible signature schemes.

RF.SIG and CR.SIG use deniable encryption in distinct
ways, which leads to efficiency differences. We now provide a
brief efficiency comparison of our constructions. With respect
to authenticator key generation and public verification, the
efficiency of both constructions is identical. Certainly, the
efficiency corresponds to the key generation for the deniable
encryption scheme and public verification of the underlying
signature scheme, respectively. However, our coercion-resistant
construction requires additional computation for signer key
generation, signing and authentication. In our strong receipt-free
construction, the efficiency of the signer’s key generation maps
directly to the efficiency of key generation for the underlying
signature scheme. Our coercion-resistant construction addition-
ally requires the computation of a deniable encryption of a
string that is included in the signer’s public key. Furthermore,
during signing, both constructions require the computation of
a single deniable encryption and a signature. However, our
strong receipt-free construction only requires an encryption of
a single bit, but our coercion-resistant construction requires
the encryption of a string. Finally, to authenticate, our strong
receipt-free construction requires the decryption of a single

bit, whereas our coercion-resistant construction requires the
decryption of two ciphertexts that each encrypt a string.
Therefore, it is clear that our strong receipt-free construction
is more efficient, though this comes at the cost of a weaker
notion of security.

D. Related Constructions

Our incoercible signature scheme constructions are closely
related to the constructions of embedded secret signature
scheme constructions presented in [10], [11]. Here, we present
a brief comparison of these constructions.

In [10], an embedded secret signature scheme construction is
presented that is similar to our coercion-resistant construction,
and provides identical efficiency in terms of the sizes of
signatures and computation during signing, verification and
authentication. Indeed, the construction in [10] and both our
receipt-free and coercion-resistant constructions use deniable
encryption and require that a secret is shared between the
authenticator and signer. Nevertheless, our constructions can
be distinguished with respect to how the secret is transmitted.
The construction in [10] assumes that the authenticator and
signer can privately share a secret during key generation. We do
not require such an assumption and, indeed, our syntax models
key generation as non-interactive. Instead, our constructions
allow the signer to generate a secret during key generation
(coercion-resistant construction) or simply encrypt a bit during
signing (receipt-free construction).

Furthermore, our contributions differ from those in [10]
with respect to the security models. Overall, our security
model has a similar approach to that of embedded secret
signature schemes [10]. In fact, embedded secret signatures
must satisfy an indistinguishability requirement and a soundness
requirement. However, we distinguish our security model in
the following ways. Firstly, our security model captures a
spectrum of incoercibility notions that reflects the understanding
of incoercibility established in the literature. Secondly, our
indistinguishability notions are stronger. More specifically,

12164

the security model in [10] captures an indistinguishability
experiment similar to our IND1 indistinguishability property.
However, the attacker is assumed to only access a real or fake
secret key of a coerced signer, rather than a full transcript.
By contrast, in our security model, the adversary is given
the signer’s full transcript. Finally, we highlight that the
notion of soundness introduced in [10], called embedded secret
unforgeability, ensures that an attacker with a fake secret key
cannot output a signature without an embedded warning. Our
notion of coercion-resistance captures a similar soundness
property, in addition to a stronger indistinguishability property.

We note that, in [11], a very efficient construction for an
embedded secret signature scheme is also given. In fact, this
construction is more efficient than both our strong receipt-
free and coercion-resistant constructions. However, it does not
come with an accompanying security model, and, in fact, does
not consider an attacker that demands a signer’s secret key.
Our constructions, on the other hand, are accompanied with
rigorous proofs under suitable security definitions.

IV. ON INCOERCIBILITY AND DENIABILITY

Deniability is closely linked to coercion. In fact, both our
strong receipt-free and coercion-resistant constructions make
use of deniable encryption. This raises the question: how
are deniable encryption and incoercible signatures related?
In this section, we answer the question by showing that given a
weak receipt-free incoercible signature scheme we can build a
partial deniable encryption scheme. First, we provide a formal
definition for a partial deniable encryption scheme. This is a
deniable encryption scheme that only encrypts a single bit, i.e.,
the message space is {0, 1}, and can only explain one of two
messages, e.g., the message m = 0. That is, given a ciphertext
c, DEN.Exp can only generate randomness such that c appears
to encrypt 0, regardless of the message it encrypts. We then
show that a secure partial deniable encryption construction
can be built from a weak receipt-free incoercible signature
scheme. Therefore, we formally show that any construction of
a weak receipt-free incoercible signature scheme will either
make use of partial deniable encryption as a building block,
or (if more efficient than a construction using partial deniable
encryption) lead to efficiency improvements for partial deniable
encryption. We leave as an open question whether partial
deniable encryption schemes can be built more efficiently than
standard deniable encryption schemes, leading to efficiency
improvements for weak receipt-free constructions.

A. Partial Deniable Encryption

We adapt the definition of public-key sender-deniable en-
cryption [22], [25] such that the message space is {0, 1}
and the explanation algorithm no longer takes as input a
message, because the only message that can be explained is 0.
Additionally, we modify definitions of correctness, IND-CPA
and IND-EXP to the partial deniability setting. In particular,
the IND-CPA experiment does not require that the adversary
output two messages because the only possible messages are

0 and 1. In the IND-EXP experiment, as only the message 0
can be explained, the adversary does not output a message.

Definition 8 (Partial Deniable Encryption Scheme). A
partial deniable encryption scheme (PDEN) is a tuple
of PPT algorithms (PDEN.Setup,PDEN.KGen,PDEN.Enc,
PDEN.Dec,PDEN.Exp) such that:

PDEN.Setup(1λ) On input of security parameter 1λ,
PDEN.Setup outputs public parameters ppPDEN.

PDEN.KGen(ppPDEN) On input of public parameters
ppPDEN, PDEN.KGen outputs a key pair
(pkPDEN, skPDEN) where pkPDEN is the public
encryption key and skPDEN is the private decryption
key.

PDEN.Enc(ppPDEN, pkPDEN,m)On input of public param-
eters ppPDEN, public key pkPDEN and message m ∈
{0, 1}, PDEN.Enc outputs a ciphertext c.

PDEN.Dec(ppPDEN, skPDEN, c) On input of public param-
eters ppPDEN, private key skPDEN and ciphertext c,
PDEN.Dec outputs a message m.

PDEN.Exp(ppPDEN, pkPDEN, c)On input of public parame-
ters ppPDEN, public key pkPDEN, and ciphertext c,
PDEN.Exp outputs a string u.

Definition 9 (Correctness). A partial deniable encryption
scheme PDEN satisfies correctness if, for any message m ∈
{0, 1}, there exists a negligible function negl such that

Pr

[
ppPDEN←PDEN.Setup(1λ);
(pkPDEN,skPDEN)←PDEN.KGen(ppPDEN);
c←PDEN.Enc(ppPDEN,pkPDEN,m)

: PDEN.Dec(ppPDEN,
skPDEN,c)=m

]
≥ 1− negl(λ).

Definition 10 (IND-CPA). A partial deniable encryption
scheme PDEN satisfies indistinguishability under a chosen
plaintext attack (IND-CPA) if, for any PPT adversary A, there
exists a negligible function negl such that∣∣∣Pr[ExpIND-CPA,0

A,PDEN (λ) = 1
]
− Pr

[
ExpIND-CPA,1
A,PDEN (λ) = 1

]∣∣∣
≤ negl(λ)

where ExpIND-CPA,b
A,PDEN (λ) is the experiment defined in Figure 7

for b ∈ {0, 1}.

Definition 11 (IND-EXP). A partial deniable encryption
scheme PDEN satisfies indistinguishability of explanation
(IND-EXP) if, for any PPT adversary A, there exists a
negligible function negl such that∣∣∣Pr[ExpIND-EXP,0

A,PDEN (λ) = 1
]
− Pr

[
ExpIND-EXP,1
A,PDEN (λ) = 1

]∣∣∣
≤ negl(λ)

where ExpIND-EXP,b
A,PDEN (λ) is the experiment defined in Figure 7

for b ∈ {0, 1}.

13165

ExpIND-CPA,b
A,PDEN (λ)

ppPDEN ← PDEN.Setup(1λ)

(pkPDEN, skPDEN)← PDEN.KGen(ppPDEN)

c← PDEN.Enc(ppPDEN, pkPDEN, b)

b′ ← A(ppPDEN, pkPDEN, c)

return b′

ExpIND-EXP,b
A,PDEN (λ)

ppPDEN ← PDEN.Setup(1λ)

(pkPDEN, skPDEN)← PDEN.KGen(ppPDEN)

c← PDEN.Enc(ppPDEN, pkPDEN, 0;u0);

u1 ← PDEN.Exp(ppPDEN, pkPDEN, c);

b′ ← A(ppPDEN, pkPDEN, c, ub)

return b′

Fig. 7: Experiments for indistinguishability under a chosen
plaintext attack and indistinguishability of explanation for a
partial deniable encryption scheme.

B. Constructing a Partial Deniable Encryption Scheme

We show that given an incoercible signature scheme INC-SIG
that satisfies weak receipt-freeness, we can build a secure partial
deniable encryption scheme PDEN. That is, we show that
PDEN (Figure 8) satisfies correctness, IND-CPA and IND-EXP
security, as defined in section IV-A, if INC-SIG is a weak
receipt-free incoercible signature scheme.

Intuitively, our result holds because a “real” signature can
be used in an encryption of 0, and a “fake” signature can be
used in an encryption of 1. The authenticator can differentiate
between such signatures and so decrypt the ciphertext. Then,
when explaining a ciphertext that encrypts 0 (resp., 1) and
hence contains a real (resp., fake) signature, the real (resp.,
fake) transcript can be output. Only a partial decryption scheme
can be built from incoercible signatures because an incoercible
signature does not allow a transcript to be generated such that
a ciphertext encrypting 0 and containing a real signature can be
explained for message m = 1, as if it contains a fake signature.

a) Correctness.: We first show that for m = 0,
decryption will always return 0. The ciphertext
c that encrypts 0 is distributed as follows: (pkS ,
skS , trans) ← INC-SIG.SKGen(ppPDEN, pkPDEN; r);
(σ, trans) ← INC-SIG.Sign(ppPDEN, skS , pkPDEN,
0; r′); c ← trans. By completeness of INC-SIG,
INC-SIG.Authenticate(ppPDEN, pkS , skPDEN, 0, σ) = 0
with at most negligible probability negl(λ). Therefore, the
ciphertext decrypts to 0 with probability at least 1− negl(λ).

We next show that for m = 1, decryption will always
return 1. The ciphertext c that encrypts 1 is distributed
as follows: (pkS , skS , trans) ← INC-SIG.SKGen(ppPDEN,
pkPDEN; r); transfake ← FakeTrans(ppPDEN, pkPDEN, trans,
⊥); σ, transfake) ← INC-SIG.FakeSign(ppPDEN, skS , pkPDEN,
0, trans, transfake); c ← transfake. By soundness of INC-SIG,
INC-SIG.Authenticate(ppPDEN, pkS , skPDEN, 0, σ) = 1 with at
most negligible probability negl(λ). Therefore, the ciphertext

decrypts to 1 with probability at least 1− negl(λ).
b) IND-CPA security.: Let A be an adversary in the

ExpIND-CPA,b
A,PDEN (λ) experiment that is successful with non-

negligible probability. We show that we can construct an
adversary A′ = (A′1,A′2) that succeeds in the ExpIND1,b

A′,INC-SIG(λ)
experiment with non-negligible probability. We present A′
in Figure 9. It is clear that inputs to A are distributed
identically to the ExpIND-CPA,b

A,PDEN (λ) experiment for the bit b
chosen in the IND1 indistinguishability experiment. When
b = 0, trans is distributed identically to the encryption of
0 for the partial deniable encryption scheme PDEN. When
b = 1, trans is distributed identically to the encryption of 1
in the partial deniable encryption scheme PDEN. Therefore,
if A successfully guesses b in the IND-CPA experiment then
A′ will successfully guess b in the IND1 indistinguishability
experiment.

c) IND-EXP security.: Indistinguishability of explanation
is perfectly satisfied by the PDEN construction. When 0 is
encrypted, r, r′ is the only randomness chosen and is output in
the ciphertext. PDEN.Exp returns this randomness, and inputs
to the adversary are independent of b in the IND-EXP security
experiment.

V. INCOERCIBLE STRONG DESIGNATED VERIFIER
SIGNATURES

Designated verifier signature schemes [34] allow for signing
with respect to a designated verifier. Only the designated verifier
is able to verify that the signer generated the signature, and this
conviction cannot be transferred to others. This is because the
designated verifier is able to simulate signatures with respect
to a signer due to the source hiding requirement [35] for
such signatures, meaning that all signatures could have been
authored by the designated verifier.

In this setting, if the designated verifier can be trusted not
to simulate a signature, then that signature must have been
authored by the signer. To ensure that signatures cannot be
attributed to their signer, even when the designated verifier is
trusted not to simulate signatures, this definition was strength-
ened in strong designated verifier signature schemes [30], [34],
[36]. This primitive has the additional requirement that, to all
but the designated verifier, a given signature could have been
produced by any signer.

As the designated verifier’s secret key is necessary to
verify signatures, this setting seems well-suited to explore
incoerciblity. Indeed, the designated verifier can now take on the
role of the authenticator and detect coercion during verification.
As signatures are not publicly verifiable, the attacker is not able
to detect coercion evasion by verifying signatures. We therefore
provide a security model for incoercible strong designated
verifier signature schemes and a construction that provably
satisfies coercion-resistance.

A. Security Model

Strong designated verifier signature schemes (SDVS) were
informally discussed in [34] and the first formal definitions were
provided in [36]. In [30], state-of-the-art security definitions

14166

PDEN.Setup(1λ)

ppPDEN ← INC-SIG.Setup(1λ)
return ppPDEN

PDEN.KGen(ppPDEN)

(pkPDEN, skPDEN)← INC-SIG.AKGen(ppPDEN)

return (pkPDEN, skPDEN)

PDEN.Dec(ppPDEN, skPDEN, c)

parse c as {r, pkS , skS , 0, r′, σ}
if INC-SIG.Authenticate(ppPDEN, pkS , skPDEN, 0, σ) = 1

return 0

else return 1

PDEN.Enc(ppPDEN, pkPDEN,m)

(pkS , skS , trans)← INC-SIG.SKGen(ppPDEN, pkPDEN; r)

if m = 0

(σ, trans)← INC-SIG.Sign(ppPDEN, skS , pkPDEN, 0, trans; r
′)

c← trans

if m = 1

transfake ← FakeTrans(ppPDEN, pkPDEN, trans,⊥)
(σ, transfake)← INC-SIG.FakeSign(ppPDEN, skS , pkPDEN, 0, trans, transfake)

c← transfake

return c

PDEN.Exp(ppPDEN, pkPDEN, c)

parse c as {r, pkS , skS , 0, r′, σ}
return (r, r′)

Fig. 8: A partial deniable encryption scheme from a weak receipt-free incoercible signature scheme.

A′ADDU,CRPT,SIGN,CRCSIG
1 (pp, pkA)

choose any id

pkS ← ADDU(id)

σ ← CRCSIG(id, 0)

A′COERCE
2 (st)

trans← COERCE(id)

b′ ← A(pp, pkA, trans)
return b′

Fig. 9: Adversary A′ that breaks the IND1 indistinguishability
of weak receipt-free incoercible signature scheme INC-SIG
given an adversary that can break the IND-CPA security of
partial deniable encryption scheme PDEN.

for SDVS were provided, based on the model for designated
verifier signature schemes given in [35]. We detail the security
model for a strong designated verifier signature scheme in full
in [29].

We base our syntax and security model for incoercible
strong designated verifier schemes on [30]. Unlike standard
signatures, our syntax does not need the Authenticate algorithm
because the designated verifier can detect coercion during
verification. This is because a secret key is now required to
verify a signature and so the attacker cannot detect that a
signer has evaded coercion. Incoercible SDVS must satisfy
correctness, unforgeability, source hiding, privacy of signer’s
identity, as in standard SDVS [30]. Additionally, they must
satisfy incoercibility, whether weak/ strong receipt-freeness or
coercion-resistance. These requirements are defined similarly to
those for the publicly verifiable schemes, adapted to the strong
designated verifier setting. We provide a full security model
for incoercible SDVS that captures these properties in [29].

a) Relation Between Incoercibility and Non–
Delegatability: In [37] the non–delegatability requirement
was introduced for SDVS. This ensures a signer cannot
delegate their signing rights to another entity. Intuitively, this
requires that if an adversary produces a valid signature for
signer S and designated verifier V , then it must know either
the secret key for S or for V . Although non-delegatability
and coercion–resistance seem related at first glance, they
address different attack models. Coercion-resistance ensures

that coerced signatures are detected, without the attacker
discovering that the signer evaded coercion. Non-delegatability
prevents a signer that is happy to delegate their signing rights
from doing so without revealing their signing key. In both
cases delegation is prevented. For coercion-resistance the
signer does not wish to delegate their signing rights but is
being bribed or blackmailed, whereas for non–delegatability
they do wish to delegate their signing rights but not reveal
their secret key.

b) Relation to Deniability.: In Section I-A we discuss how
strong designated verifier signature schemes satisfy elements
of deniability. Indeed, in an SDVS, if a signer is being coerced
by an attacker not to sign a message of their choice, the signer
can simply sign the message anyway and claim that it was
authored by a different signer or by the designated verifier.
Our incoercible strong designated verifier signature schemes
inherit this deniability property, as well as provide resistance
to the coercive attacks captured by incoercibility, whereby an
attacker instructs a signer to sign a message of their choice.

B. A Coercion-Resistant Construction

We provide a construction that satisfies our coercion-
resistance security definition for incoercible strong designated
verifier schemes. The full construction and security proofs are
given in [29] and we provide an intuition here.

Our construction makes use of a strong designated verifier
signature scheme SDVS and a deniable encryption scheme
DEN as building blocks. The idea behind the construction is
similar to that used in the public verification setting, but with
the strong designated verifier signature scheme SDVS replacing
the standard signature scheme SIG. The SDVS building block
ensures the properties necessary for a strong designated
verifier signature scheme still hold. Coercion-resistance is
provided using a similar argument as for the publicly verifiable
construction. We note that the SDVS scheme must satisfy strong
unforgeability [38], to ensure that our construction satisfies the
privacy of signer’s identity requirement.

15167

VI. CONCLUSION

We introduced and defined incoercible signatures, and
presented an accompanying security model. Our security model
captures a strong notion of incoercibility, coercion-resistance,
and we contributed an incoercible signature scheme construc-
tion that provably satisfies coercion-resistance. Additionally,
our security model captures strong and weak receipt-freeness.
Though these are weaker notions of security than coercion-
resistance, they may be sufficient in some application scenarios.
For example, strong receipt-freeness is sufficient if it can
be assumed that the attacker will not attempt to produce
signatures on behalf of coerced signers. Moreover, our strong
receipt-freeness construction is more efficient than our coercion-
resistant construction, demonstrating that efficiency/security
trade-offs are possible. We comment that even more efficient
weak receipt-free constructions may be possible, and leave this
as an open problem.

In this work, we show that our syntax and security model
can be extended in an intuitive way to the designated verifier
signature scheme setting. We also present a construction that
satisfies our security model in this setting. An interesting area
of future research is to consider incoercibility in the context
of other signing and anonymity protocols, for example, group
and ring signatures.

REFERENCES

[1] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM Journal on
Computing, vol. 17, no. 2, pp. 281–308, 1988.

[2] M. Bellare and S. K. Miner, “A forward-secure digital signature scheme,”
in CRYPTO’99 (M. Wiener, ed.), (Berlin, Heidelberg), pp. 431–448,
Springer Berlin Heidelberg, 1999.

[3] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Key-insulated public key
cryptosystems,” in EUROCRYPT’02 (L. R. Knudsen, ed.), (Berlin,
Heidelberg), pp. 65–82, Springer Berlin Heidelberg, 2002.

[4] Y. Dodis, J. Katz, S. Xu, and M. Yung, “Strong key-insulated signature
schemes,” in PKC’03 (Y. G. Desmedt, ed.), (Berlin, Heidelberg), pp. 130–
144, Springer Berlin Heidelberg, 2002.

[5] J. Håstad, J. Jonsson, A. Juels, and M. Yung, “Funkspiel schemes: an
alternative to conventional tamper resistance,” in CCS’00, pp. 125–133,
Association for Computing Machinery, 2000.

[6] G. Itkis, “Cryptographic tamper evidence,” in CCS’03, CCS ’03, (New
York, NY, USA), pp. 355–364, Association for Computing Machinery,
2003.

[7] G. Itkis and L. Reyzin, “Sibir: Signer-base intrusion-resilient signatures,”
in CRYPTO’02 (A. Boldyreva and D. Micciancio, eds.), (Cham), pp. 499–
514, Springer International Publishing, 2002.

[8] G. Itkis and P. Xie, “Generalized key-evolving signature schemes or how
to foil an armed adversary,” in ACNS’03 (J. Zhou, M. Yung, and Y. Han,
eds.), (Berlin, Heidelberg), pp. 151–168, Springer Berlin Heidelberg,
2003.

[9] D. Naccache, D. Pointcheval, and C. Tymen, “Monotone signatures,” in
Financial Cryptography (P. Syverson, ed.), (Berlin, Heidelberg), pp. 305–
318, 2002.

[10] K. Durnoga, J. Pomykała, and T. Trabszys, “Digital signature with
secretly embedded warning,” Control and Cybernetics, vol. 42, no. 4,
pp. 805–824, 2013.

[11] M. Kutyłowski and P. Kubiak, “Lightweight digital signature with secretly
embedded warning,” Control and Cybernetics, vol. 42, no. 4, pp. 825–827,
2013.

[12] S. Delaune, S. Kremer, and M. Ryan, “Verifying privacy-type properties
of electronic voting protocols,” Journal of Computer Security, vol. 17,
no. 4, pp. 435–487, 2009.

[13] J. Benaloh and D. Tuinstra, “Receipt-free secret-ballot elections (extended
abstract),” in STOC’94, STOC ’94, pp. 544–553, Association for
Computing Machinery, 1994.

[14] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant electronic
elections,” in WPES’05, pp. 61–70, 2005.

[15] J. Alwen, R. Ostrovsky, H.-S. Zhou, and V. Zikas, “Incoercible multi-
party computation and universally composable receipt-free voting,” in
CRYPTO’15, pp. 763–780, 2015.

[16] R. Canetti and R. Gennaro, “Incoercible multi-party computation,” in
FOCS’96, pp. 504–513, IEEE, 1996.

[17] D. Unruh and J. Müller-Quade, “Universally composable incoercibility,”
in CRYPTO’10 (T. Rabin, ed.), (Berlin, Heidelberg), pp. 411–428,
Springer Berlin Heidelberg, 2010.

[18] Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” in CRYPTO’89
(G. Brassard, ed.), (New York, NY), pp. 307–315, Springer New York,
1990.

[19] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung,
“Proactive public key and signature systems,” in CCS’97, pp. 100–110,
Association for Computing Machinery, 1997.

[20] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks,” in
PODC’91, pp. 51–59, Association for Computing Machinery, 1991.

[21] R. Bendlin, J. B. Nielsen, P. S. Nordholt, and C. Orlandi, “Lower and
upper bounds for deniable public-key encryption,” in ASIACRYPT’11
(D. H. Lee and X. Wang, eds.), pp. 125–142, Springer Berlin Heidelberg,
2011.

[22] R. Canetti, C. Dwork, M. Naor, and R. Ostrovsky, “Deniable encryption,”
in CRYPTO’97 (B. S. Kaliski, ed.), (Berlin, Heidelberg), pp. 90–104,
Springer Berlin Heidelberg, 1997.

[23] R. Canetti, S. Park, and O. Poburinnaya, “Fully deniable interactive
encryption,” in Advances in Cryptology – CRYPTO’20 (D. Micciancio
and T. Ristenpart, eds.), (Cham), pp. 807–835, 2020.

[24] A. O’Neill, C. Peikert, and B. Waters, “Bi-deniable public-key encryption,”
in Advances in Cryptology – CRYPTO’11 (P. Rogaway, ed.), (Berlin,
Heidelberg), pp. 525–542, 2011.

[25] A. Sahai and B. Waters, “How to use indistinguishability obfuscation:
deniable encryption, and more,” in STOC’14, pp. 475–484, 2014.

[26] J. Katz and Y. Lindell, Introduction to modern cryptography. CRC press,
2014.

[27] P. Chaidos, V. Cortier, G. Fuchsbauer, and D. Galindo, “Beleniosrf:
a non-interactive receipt-free electronic voting scheme,” in CCS’16–
ACM SIGSAC Conference on Computer and Communications Security,
pp. 1614–1625, 2016.

[28] A. Kiayias, T. Zacharias, and B. Zhang, “End-to-end verifiable elections
in the standard model,” in EUROCRYPT’15–International Conference on
the Theory and Applications of Cryptographic Techniques, pp. 468–498,
2015.

[29] A. Fraser, L. Garms, and E. A. Quaglia, “On the incoercibility of digital
signatures.” Cryptology ePrint Archive, Paper 2023/054, 2023. https:
//eprint.iacr.org/2023/054.

[30] F. Laguillaumie and D. Vergnaud, “Designated verifier signatures:
Anonymity and efficient construction from any bilinear map,” in SCN’04,
pp. 105–119, Springer, 2004.

[31] M. Dürmuth and D. M. Freeman, “Deniable encryption with negligible
detection probability: An interactive construction,” in Advances in Cryp-
tology – EUROCRYPT 2011 (K. G. Paterson, ed.), (Berlin, Heidelberg),
pp. 610–626, Springer Berlin Heidelberg, 2011.

[32] S. Agrawal, S. Goldwasser, and S. Mossel, “Deniable fully homomorphic
encryption from learning with errors,” in CRYPTO’21, pp. 641–670, 2021.

[33] A. Coladangelo, S. Goldwasser, and U. Vazirani, “Deniable encryption
in a quantum world,” in STOC’22, pp. 1378–1391, 2022.

[34] M. Jakobsson, K. Sako, and R. Impagliazzo, “Designated verifier proofs
and their applications,” in EUROCRYPT’96, pp. 143–154, Springer, 1996.

[35] R. Steinfeld, H. Wang, and J. Pieprzyk, “Efficient extension of standard
schnorr/rsa signatures into universal designated-verifier signatures,” in
PKC’04, pp. 86–100, Springer, 2004.

[36] S. Saeednia, S. Kremer, and O. Markowitch, “An efficient strong
designated verifier signature scheme,” in ICISC’03, pp. 40–54, Springer,
2003.

[37] H. Lipmaa, G. Wang, and F. Bao, “Designated verifier signature schemes:
attacks, new security notions and a new construction,” in International
Colloquium on Automata, Languages, and Programming, pp. 459–471,
2005.

[38] H. Tian, Z. Jiang, Y. Liu, and B. Wei, “A systematic method to design
strong designated verifier signature without random oracles,” Cluster
computing, vol. 16, no. 4, pp. 817–827, 2013.

16168

