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Abstract—When formalising cryptographic protocols, privacy-
type properties such as strong flavours of secrecy, anonymity
or unlinkability, are often modelled by indistinguishability
statements. Proving them is notoriously more challenging
than trace properties which benefit from a well-established
tool support today. State-of-the-art techniques often exhibit
significant limitations, e.g., consider only a bounded number
of protocol sessions, or prove diff-equivalence—a fine-grained,
structure-guided notion of indistinguishability that commonly
yields unnecessarily pessimistic analyses.

In this paper, we design, implement and evaluate the first
general framework for proving indistinguishability properties,
for an unbounded number of protocol sessions, going beyond
the scope of diff-equivalence. For that we relax the structural
requirements of ProVerif, a state-of-the-art tool, through a
notion of session decomposition, intuitively allowing a dynamic
restructuration of the proofs. We can then verify in a modular
way various, more realistic models of indistinguishability such
as may-testing equivalence, by exhibiting for each relation a
sufficient condition on ProVerif’s output ensuring that it holds.
We implement our approach into a prototype and showcase
the gain in scope through several case studies.

1. Introduction

Cryptographic protocols are distributed programs en-
forcing the security of sensitive communications between
several heterogeneous entities. Due to their distributed na-
ture and their execution over untrusted networks, they ex-
hibit complex behaviours making their analysis prohibitively
tedious. Security properties of interest commonly include
trace properties such as (weak) secrecy or authentication,
benefiting today from a strong automation support. One may
typically cite the ProVerif [1] and Tamarin [2] tools, that are
able to handle full-fledged industrial protocols such as, TLS
1.3 [3], [4], [5], the 5G standard [6] or Signal [7], [8].

Some classical security notions are however modelled by
more complex (hyper)properties including indistinguishabil-
ity. They take the form of equivalence relations in concurrent
process algebra such as the applied π-calculus [9], and
capture strong privacy-type properties, like anonymity or un-
linkability. Consider for example the prototypical scenario of
a Basic Access Control protocol (BAC): reading devices at
an airport interact with RFID chips of travelers’ e-passports.
We consider a process S(k) = P (k) | R(k), where P and R
(left abstract here for simplicity) are, respectively, processes

modelling a passport and a reader, that have agreed on
an identity-related value k. The unlinkability of identities
across multiple sessions is formalised by a statement:

! new k; !S(k) ≈ ! new k;S(k) (1)

The ! (replication) models an unbounded number of copies
of the subsequent process, new k indicates a fresh value k,
and ≈ is an equivalence relation modelling the indistin-
guishability of two hypothetical scenarios, from the point
of view of an active adversary who controls the network.
Rephrasing, (1) models the impossibility to observe a dif-
ference between situations where all passports are different
(right-hand side), and where some of them may interact
multiple times with readers (left-hand side). In particular,
a tool-assisted proof would have to accommodate for repli-
cated processes of significantly different structures.

Yet, most analysis techniques for such properties are
either limited to a bounded number of copies of S as
in [10], or to diff-equivalence as in ProVerif, Tamarin or
Maude-NPA [11]. Diff-equivalence is a fine-grained relation
relying on strong structural assumptions on the processes to
be proved equivalent, significantly hindering its application
scope. It is typically insufficient to prove unlinkability state-
ments such as (1), except using specialised tools dedicated
to specific types of protocols [12], [13]. Diff-equivalence
based proofs unsuccessfully attempt to statically match each
(duplicated) instance of P and R from the right process,
each with a (fresh) indistinguishable instance from the left
process. Successful proofs require dynamic extensions of
this argument, where this matching is different for each
execution of each instance of P and R. Such data-dependent
arguments are arguably beyond the capabilities of most
protocol analysers for an unbounded number of sessions.

Contributions. We extend ProVerif to support modular
proofs of may-testing and observational equivalences, and
their pre-orders, for an unbounded number of sessions.
1) We introduce a notion of session decomposition, inspired

from symmetry reductions in the bounded case [10].
Used as a substitute to ProVerif’s internal representation
of processes, it weakens the tool’s requirements on their
structure, to express coarser-grained security relations.

2) We then adapt ProVerif’s approach—namely, converting
processes into a set of Horn clauses—to account for
session decompositions. The resulting clauses are sat-
urated by ProVerif’s usual solver, and we exhibit suf-
ficient conditions on the saturated output; each ensures
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one relation (may-testing, observational equivalence, pre-
orders...) on the initial processes. This shows in particular
the modularity of our notion of session decomposition in
that it is not tied to a specific equivalence relation.

3) We propose for each of the above-mentioned conditions
a general, semantic version, as well as a refinement better
suited for automated verification. We then implement the
overall procedure and use it to successfully verify various
examples escaping the current scope of ProVerif.
Proofs have been omitted for the sake of readability and

can be found in our technical report, with implementation
files and benchmarks [14]. All files have also been submitted
as supplementary material.

Related Work. Proofs of equivalence properties in security
protocols roughly follow two trends, commented below.

On the one hand, proofs for a bounded number of
sessions put an emphasis on precision and termination of the
analysis at the cost of not supporting replication [15], [16],
[17]. Among these, the SAT-Equiv tool may notably yield
proofs for an unbounded number of sessions occasionally,
but also imposes syntactic restrictions on processes that
ProVerif is not subject to. We also mention [10], which
inspired our notion of session decomposition: it develops
symmetry-based techniques for trace equivalence that al-
lows them to prove efficiently unlinkability properties. Our
approach is however more widely applicable, due to our sup-
port for unbounded processes, but also through the multiple
security relations we handle. However, by being only based
on sufficient conditions, our prototype is currently unable to
exhibit attack traces, i.e., to disprove equivalence.

On the other hand, for an unbounded number of sessions,
most tools only support indistinguishability notions in the
spirit of diff-equivalence, typically ProVerif [1], Tamarin [2]
or Maude-NPA [11]. Although an extension of ProVerif
partially relaxes the underlying structural requirements [18],
it is subsumed by our current approach in terms of scope.
[18] also yields algorithmically less efficient procedures on
examples where the two approaches overlap: its procedure
can be seen as a static enumeration of all potential session
decompositions, followed by a tentative of proof for each
of them. On the contrary, our native integration of session
decompositions makes our single-proof procedure lighter to
process. Other extensions allow some form of dynamic rea-
soning for protocols with synchronisation [19]. Annotating
processes with synchronisation points thus makes proofs be-
yond diff-equivalence possible; this however requires man-
ual annotations, is limited in scope (synchronisations are
prohibited under replications), and requires synchronisation
assumptions not arising in our framework.

An important related work is Ukano [12], a frontend to
an altered version of ProVerif exhibiting sufficient condi-
tions under which the decision of trace equivalence can be
reduced to a combination of diff-equivalence and trace prop-
erties. These conditions are however only valid for specific
properties of a syntactically restricted class of protocols. In
particular, although Ukano is applicable to most examples
we specifically consider in this paper, our more general

and modular approach significantly broadens the technique’s
scope by not being subject to such restrictions (more details
discussed in Section 7.2). The approach has also been
carried in Tamarin [13] to analyse stateful protocols.

2. Unlinkability As a Motivating Example

We give an overview of our results by outlining a proof
of unlinkability of a simplified BAC e-passport protocol in
our model. This will give an insight of the proof techniques
we develop in the subsequent technical sections.

Modelling. We consider an access control protocol where
a passport P communicates with a reader R, after a prelim-
inary chip reading allowing the reader to retrieve a passport
secret k. Subsequent cryptographic operations are described
by function symbols senc and sdec, verifying the identity
sdec(senc(x, y, z), z) → x. An expression senc(m, r, k)
models the symmetric encryption of a message m using a
key k and randomness r, whereas sdec(u, k) models the
decryption of u with k. A minimal version of the BAC
protocol [20] can then be described as follows, first in
informal Alice-Bob notation:

P → R : n
R → P : senc(n, r, k) received as x
P → R : ok if sdec(x, k) = n

error otherwise

That is, P sends a freshly generated nonce n to R in clear
as a challenge, and awaits as a response an encryption of n
under their shared secret k. Then, the result of the protocol
(ok or error) is output. This protocol is assumed to be
carried out over an untrusted network, compromised by an
adversary that may intercept messages, but also replay, forge
or inject them. The desired unlinkability property is then:

After an arbitrary number of sessions of the pro-
tocol, the adversary cannot infer whether a same
passport took part to several of these sessions.

This security property should hold despite the adversary
being able, e.g., to change the recipient of some messages
and observe the resulting final ok/error message. Formally,
the roles of P and R are represented by processes of the
applied π-calculus, written:

P (k) = new n; out(c, n); in(c, x);
if sdec(x, k) = n then out(c, ok); 0
else out(c, error); 0

R(k) = new r; in(d, y); out(d, senc(y, r, k)); 0

Here the 0 indicates a terminated process. The instruc-
tions in(u, x) and out(u, v) model inputs and outputs on
a communication channel u. The new n formalises the fresh
generation of a name n, unknown to the adversary until
output on the channel c. The formulation of unlinkability
we consider is the equivalence Sleft ≈ Sright , with:

Sleft = ! new k; ! (P (k) | R(k))

Sright = ! new k; (P (k) | R(k))
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where A | B is the parallel composition of A and B, and
!A is the parallel composition of an unbounded number of
copies of A. The right side of the equivalence is a process
modelling a scenario where all sessions involve different
passports, whereas the left side may involve several times
the same passports in different sessions. The equivalence
relation ≈ may then be chosen among several common
choices such as observational equivalence ≈o or may-testing
equivalence ≈m to model adversarial indistinguishability.
Instrumentation. The first step of our approach to prove
Sleft ≈ Sright is to convert processes into instrumented
processes. This internal representation of ProVerif intuitively
interprets parallel processes as indexed sequences of pro-
cesses. E.g., the process Sright is translated into the form:

{{!o1[i]i Pright}} | {{!o2[i]i Rright}}
with Pright and Rright respective translations of P and R.
The multiset notation {{·}} (here, only singletons) indicates
a set of parallel processes with a similar structure. Processes
with a different structure are put in different multisets sepa-
rated by a | operator. This is what we call a session decom-
position in this paper. Inside these multisets, an annotated
replication !oiP can be seen as a collection of copies of P ,
indexed by the variable i, and uniquely identified during the
analysis by the occurrence o. In particular, Pright and Rright

are mostly identical to P and R, except that they have their
private names freshly renamed and indexed by i, e.g. n into
nr[i]. The argument i indicates a dependency, expressing
that nr[i] is a different fresh name for each different copy
of the process (i.e., for each instance of i). This thus makes
the new instruction superfluous. For example:

Rright = inor[i](d, y); out(d, senc(y, rr[i], kr[i])); 0

Again, the occurrence or[i] is used for making reference to
the tagged instruction (here, the input) during the analysis
later. So far, most of this material exists in ProVerif; the
novel ingredient is that, when translating Sleft , we obtain a
session decomposition similar to the previous one, despite
the different initial number of replications:

{{!o3[i,j]i,j Pleft}} | {{!o4[i,j]i,j Rleft}}
The process Sleft can indeed also be seen as a collection of
copies of P and R, albeit for different data dependencies.
This is reflected in this session decomposition by the double
index [i, j], where i indexes to the first replication and j the
second. The indexation of R is therefore this time:

Rleft = inoℓ[i,j](d, y); out(d, senc(y, rℓ[i, j], kℓ[i])); 0

In short, instead of requiring that two equivalent processes
have (syntactically) the same structure, our analysis crite-
rion is based on the components (multisets) of the session
decomposition, regardless of their sizes. Theorem 1 shows
that instrumentation preserves process equivalences.
Translation Into Clauses. Once the session decomposition
is over, the algorithm translates the instrumented processes
into Horn clauses (Section 5):

F1 ∧ · · · ∧ Fn → F

These clauses intuitively model ProVerif’s internal reason-
ing and include atomic formulae of various forms. Some
clauses, already present in the baseline version of ProVerif,
describe for example the adversary’s capabilities, such as:

input(x, y) ∧msg(x, z, y′, z′) ∧ y ̸= y′ → bad

The fact input(x, y) models that the attacker can listen
on the channel x in an execution of Sleft , and y in an
equivalent execution of Sright . The clause represents the
fact that the attacker can distinguish the two executions
(fact bad) when a message was sent on x in Sleft but
on a different channel y′ in Sright (fact msg(x, z, y′, z′)).
Other facts ev(e, e′) indicates that an event e occurs in Sleft ,
and simultaneously e′ occurs in Sright . Also, importantly,
att(u, v) indicates that the adversary is able to compute u
(resp. v) using the knowledge accumulated in Sleft (resp.
Sright ) by intercepting outputs. Finally, we introduce in this
work novel events repl(o) (replication events), indicating
that a replication labelled with the occurrence o is unfolded.
We typically use them to express correspondences between
occurrences (e.g., o3 and o1 in the example), which in turn
helps capturing our notion of session decomposition within
clauses. For example, the following clause describes the
execution of the first output of P in Sleft and Sright

ev(repl(o3[i, j]), repl(o1[i
′])) → att(nl[i, j], nr[i

′])

Rephrasing, when an occurrence of the replication o3[i, j]
is executed in Sleft , while o1[i

′] is executed in Sright , the
adversary learns the corresponding values of n (as they are
publicly output). Note in particular that the premise of the
clause relates events occurring at different structural levels
of processes (i.e., o3 is under two nested replications, unlike
o1), which is not a natural feature of diff-equivalence.

Verification. After generating all clauses, they are saturated
using ProVerif’s internal solver. When none of the saturated
clauses concludes bad, we can directly conclude that diff-
equivalence holds, as in ProVerif. The key novelty of our
approach is that even when some saturated clauses conclude
bad, we may still be able to prove equivalences as follows.

Intuitively, a clause H → bad indicates that there may
be distinguishable executions of Sleft and Sright that satisfy
H . Conversely, the saturation procedure of ProVerif ensures
that if some executions of Sleft and Sright are distinguish-
able then there must exist a saturated clause H → bad
where H is satisfied by these executions (Theorem 2). Thus,
to prove may-testing inclusion ⊑m for example, it suffices
to build a session matching (Section 6.1) mapping the repli-
cation events of any execution of Sleft to the replication
occurrences of Sright , that can falsify (Section 6.2) the
hypotheses H of all saturated clauses H → bad. In our
example, it means for instance mapping instantiations of
repl(o3[i, j]) to adequate instantiations of o1[i′].

In other words, our conditions imply that all executions
of Sleft can be matched by an execution of Sright that
satisfy none of the hypotheses H of the clauses concluding
bad. This thus entails that these two executions are not
distinguishable (Theorem 3). We exhibit similar conditions
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implying observational equivalence ≈o and its pre-order ⊑o

(simulation) [14]. In our implementation, we can let the
prototype prove the “best” (i.e., finest) relations it can. In our
example, the tool automatically shows that Sleft ⊑m Sright

and Sright ⊑o Sleft , which appears to be the optimal result.

3. Model

In this section, we present the process calculus and the
notions of equivalence studied in this paper. Most of it is
standard material from the theory of ProVerif.

3.1. Syntax

We assume a classical term algebra, that is, an infinite
set of variables V , an infinite set of names N = Npub⊎Nprv
representing atomic values (public and private, respectively),
and a finite set of function symbols (with their arity) called a
signature. Specifically, we consider two distinct sets Fd and
Fc representing, respectively, constructor symbols (used to
build messages, e.g., encryption or concatenation) and de-
structor symbols (representing operations on messages that
may fail, e.g., decryption). Functions, names and variables
can be combined to form expressions:

D ::= a atomic value a ∈ N ∪ V
f(D1, . . . , Dk) application f ∈ Fd ∪ Fc

fail failure

An expression is called a term when it does not contain
destructors or the fail symbol, and is then referred by the
grammar tokens M,N . Terms are therefore expressions that
correspond, intuitively, to successful computations. We then
consider processes modelling concurrent programs:

P,Q ::= 0 nil
out(N,M);P output
in(N, x);P input (x ∈ V)
event(M);P event
P | Q parallel composition
!P replication
new n;P restriction (n ∈ N )
let x = D in P else Q assignment

We already discussed most of these constructions during
the motivation example, at the exception of events. Events
are ignored during equivalence proofs, although they can be
used in ProVerif to specify axioms, introduced in [21], that
are trace properties guiding the internal decision procedure.
They are admitted during verification, but those mentioned
and introduced in this paper are (protocol-independent)
properties that have been priorly proved manually.

The assignment instruction let x = D in P else Q
attempts to evaluate D and executes P (x) with the resulting
value x in case of success, or executes a default process Q
in case of failure. Assuming a symbol Equals ∈ Fd with the
rewrite rule Equals(x, x) → ok, assignments can therefore
be used to encode conditionals as in the motivation example.

The notion of evaluation underlying assignments is for-
malised through a set of rewrite rules ℓ → r, such as

the rule sdec(senc(x, y, z), z) → x used in the motivation
example. Formally, we refer to the usual notion of substitu-
tions σ = {M1/x1

, . . . ,Mn /xn
}, i.e., we write Mσ the term

where all syntactic occurrences of xi in M are replaced by
Mi. We naturally extend the application of a substitution
to expressions, processes, etc. ProVerif then operates using
the evaluation of expressions D ⇓ U where U is either a
term M or the constant fail. This evaluation is based on a
standard notion of rewriting system normalising expressions
with a call-by-value strategy (full details in Appendix A).

3.2. Operational Semantics

The semantics of processes characterises their behaviour
when executed in a hostile environment modelling an adver-
sary controlling the communication network. It operates on
configurations P,Φ, which are tuples where P is a multiset
of processes modelling all processes currently executed in
parallel, and Φ is a called a frame, i.e., a substitution:

Φ = {M1/ax1 , . . . ,
Mn /axn}

Intuitively, a frame records the knowledge obtained by the
adversary by spying on outputs sent on the communication
network. An entry Mi/axi indicates in particular that the
adversary can access the value of Mi through the handle
axi, which is a dedicated type of variable. In particular, the
following notion formalises attacker’s computations:

Definition 1 (Recipe). A recipe ξ is an expression without
private names, and with no variables except handles.

For example, a frame Φ = {senc(m,k)/ax1 ,
k /ax2} with

m, k ∈ Nprv indicates that the attacker observed, succes-
sively, senc(m, k) and k. The term m can be thus computed
by the adversary using the recipe ξ = sdec(ax1, ax2); that is,
ξΦ ⇓ m. Note in particular that the decryption key k is not
used directly (as sdec(ax1, k) is not a valid recipe because
it contains the private name k), but by reference through the
handle ax2. The actual semantics is then defined in Figure 1,
as a labelled transition relation α−→ over configurations,
where the label α is called an action:
• in(ξ, ζ) materialises an input fetched from the adversary,

where the input term is computed by the recipe ζ, and the
underlying channel N is public in that it can be computed
by the adversary through recipe ξ;

• out(ξ, ax) materialises an output sent on a channel pub-
licly computable through ξ, and added to the adversary’s
knowledge as a frame entry at handle ax;

• and finally, events make the corresponding term appear
as the transition label, and empty labels are used for
miscellaneous rules without visible behaviours.

For the sake of readability, Figure 1 omits the rule
for internal communications, that models a synchronous,
private, and unobservable communication between an output
and an input. This simplifies some later technical definitions,
while handling such communications does not involve sub-
stantially novel ideas compared to regular communications.
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{{0}},Φ −→ ∅,Φ (NIL)

{{P | Q}},Φ −→ {{P,Q}},Φ (PAR)

{{!P}},Φ −→ {{P, !P}},Φ (REPL)

{{new a;P}},Φ −→ {{P{a′
/a}}},Φ

if a′ ∈ Nprv ∖ names(P, P,Φ)
(RESTR)

{{out(N,M);P}},Φ out(ξ,ax)−−−−−→ {{P}},Φ′

if Φ′ = Φ ∪ {M/ax}, ax /∈ dom(Φ), ξΦ ⇓ N
(OUT)

{{in(N, x);Q}},Φ in(ξ,ζ)−−−−→ {{Q{M/x}}},Φ
if ξ, ζ recipes such that ξΦ ⇓ N and ζΦ ⇓ M

(IN)

{{event(M);P}},Φ M−→ {{P}},Φ (EVENT)

{{let x = D in P else Q}},Φ −→ {{R}},Φ
if R = P{M/x} if D ⇓ M ; R = Q if D ⇓ fail

(LET)

P ∪Q,Φ
α−→ P ′ ∪Q,Φ′ if P,Φ

α−→ P ′,Φ′ (CONT)

Figure 1: Operational Semantics Between Configurations
(simplified: no internal communications)

The proofs of our theorems for the full semantics can be
found in [14].

Definition 2 (Trace). A trace T of a configuration C0 is a
sequence of transitions of Figure 1 starting from C0, written
T : C0

α1−→ · · · αn−−→ Cn. We may write C0
α1···αn=====⇒ Cn when

intermediary processes are not relevant. Note that in the
work α1 · · ·αn, empty αi, i.e., transitions without labels, are
implicitly omitted. By extension, we may consider traces of
a process P by interpreting P as the configuration {{P}}, ∅.

3.3. Security Properties

We now define the notions of process equivalence con-
sidered in this paper. They are typically used to model
strong flavours of privacy-type properties of cryptographic
protocols expressed in our process algebra. They are intu-
itively built over a notion of static indistinguishability that,
intuitively, formalises that the adversary cannot compute a
test that tells two given histories of observables apart. In the
following, we implicitly assume that the signature includes a
symbol binary symbol Equals defined by Equals(x, x) → ok
that allows the adversary to run equality tests to violate in-
distinguishability. This static notion is then lifted to dynamic
behaviours through the operational semantics. For that we
consider a relation over words actions: we write

α1 · · ·αn ≡ β1 · · ·βp

if the two words α1 · · ·αn and β1 · · ·βp become identical
after removing all event actions from them. Not considering
event actions in the definition of equivalences models that
they are rather annotations from the modeller than observ-
ables of the attacker. They are, instead, convenient to express
axioms, that take in this paper the form of trace properties.

Definition 3 (Observational equivalence). Observational
pre-order (or simulation) ⊑o is defined as the largest relation

R over configurations such that C R C′ implies, if we write
C = P,Φ and C′ = P ′,Φ′:
1) for all recipes ξ, ξΦ ⇓ fail iff ξΦ′ ⇓ fail;
2) if C α−→ C1 then there exists C′

1 such that C′ w
=⇒ C′

1,
α ≡ w, and C1 R C′

1.
Observational equivalence ≈o is defined as the largest sym-
metric relation R that satisfies properties 1, 2.

The usual definition of observational equivalence is
context-based but often harder to handle in proofs. The
above definition is a standard, more operational but equiv-
alent characterisation called bisimilarity [9]. The following,
coarser notion of equivalence, may testing, and corresponds
to the indistinguishability of sets of traces. It intuitively
states for any trace of either process, and for any computa-
tion the adversary may additionally do, an indistinguishable
sequence of actions can be taken in the other process.

Definition 4 (May testing). May testing inclusion between
configurations, denoted C ⊑m C′, holds when for all traces
C w

=⇒ (P,Φ) and for all sets of recipes S, there exists a
trace C′ w′

=⇒ (P ′,Φ′) such that w ≡ w′ and for all ξ ∈ S,
ξΦ ⇓ fail iff ξΦ′ ⇓ fail. May testing equivalence, denoted
≈m, is defined as ⊑m ∩ ⊒m.

4. Instrumentation

From this section, we describe our approach to prove
equivalence properties and their respective pre-orders. For
the sake of readability, the presentation focuses on may-
testing but verifying the other relations involves analogues
techniques (details in [14]). Recalling the motivation exam-
ple, the first step of our procedure is to convert processes
into instrumented ones that record some data dependencies,
and more importantly, compute session decompositions to
materialise the internal symmetries of processes.

4.1. Instrumented Processes

We introduce the set Xλ of session variables, used to
index replicated data, and are instantiated into session iden-
tifiers. Names are thus now represented by name patterns

n = n[a1, . . . , ak]

where each ai is called an argument pattern, that is either
a term (representing a prior input), or a session variable or
identifier (representing a replication in scope). Public names
a are implicitly interpreted as name patterns a[]. We define
below the grammar of such instrumented processes.

P,Q ::= 0 inn(N, x);P

P | Q {{!n1

ã1
P1; . . . ; !

nk

ãk
Pk}}

event(M);P let x = D in P else Q
out(N,M);P

with n, n1, . . . , nk names, ã1, . . . , ãk sets of argument pat-
terns. The major addition compared to regular processes is
the session decomposition {{!n1

ã1
P1; . . . ; !

nk

ãk
Pk}}. Intuitively,
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it gathers processes P1, . . . , Pk of same structure, whose
replicated copies will be indexed by the session variables in
ã1, . . . , ãk, recalling the motivating example. This notation
extends to non-replicated processes Pi with ãi = ∅.

The task of proving the equivalence of two processes P
and Q rephrases, intuitively, to matching the observables (in-
puts and outputs) of P with those of Q. This is done mostly
syntactically in ProVerif while, for session decompositions:

P = {{!n1

ã1
P1; . . . ; !

nk

ãk
Pk}} Q = {{!m1

b̃1
Q1; . . . ; !

mℓ

b̃ℓ
Qℓ}}

our approach may match any observable from a replicated
copy of Pi with an equivalent one from a copy of Qj .
Roughly, the current procedure of ProVerif can only handle,
in comparison, the case k = ℓ and may only match Pi with
Qi. ProVerif also has a requirement that P and Q have the
same structure, that we also extend to our context. In the
above case, this (recursively) means that all Pi, Qj have
the same structure, and that there are the same number of
sessions on each side (non replicated processes, i.e., ãi = ∅,
counting for 1, and replicated processes, i.e., ãi ̸= ∅, for
+∞). In the following definition, we refer in particular as
#ãi ∈ {1,+∞} to the corresponding number of sessions,
also using the natural extension of addition to N ∪ {+∞}.

Definition 5 (Control-flow equivalence). Control flow equiv-
alence ≈cf is the smallest relation on instrumented pro-
cesses such that:
• {{!n̄1

ã1
P1, . . . , !

n̄k

ãk
Pk}} ≈cf {{!m̄1

b̃1
Q1, . . . , !

m̄l

b̃l
Ql}} if for all

i, j, Pi ≈cf Qj and
∑k

i=1 #ãi =
∑l

j=1 #b̃j ;
• let any instructions α[P1, . . . , Pn] and β[Q1, . . . , Qn] of

the same type (nil, input, output, event, parallel, let; thus
n ∈ J0, 2K). If for all i ∈ J1, nK, Pi ≈cf Qi, then α ≈cf β.

4.2. From Processes to Instrumented Processes

We now detail how to transform a regular process into an
instrumented one. Up to alpha renaming, we assume without
loss of generality that processes bind names and variables
at most once (by in or new instructions). Most of the
instrumentation process intuitively consists of tagging inputs
and replications by fresh occurrences to identify them, and
to record the tags in scope in the replication’s arguments.
Such a procedure already exists in ProVerif as detailed
in [21], and we only sketch it here, with a particular focus on
the new material (session matchings). The full description
can be found in Appendix A. The transformation takes the
form of a ternary relation between processes P ⇓ã Q,
where P is a process, Q is an instrumented process and
ã is a sequence of argument patterns intuitively recording
the data dependencies in scope. Typically, replications are
instrumented as follows:

!P ⇓ã {{!o[ã,i]{i} P ′}}

where, for some fresh occurrence o and session variable
i ∈ Xλ, P ⇓ã·i P ′ with · being append operation for
sequences. This means that i serves as a fresh placeholder
for indexing the various copies of P . It is added to the record

ã for the next steps of the instrumentation ⇓ã·i, and to the
dependencies of the fresh occurrence label o. The tagging
is similar for inputs:

in(N, x);P ⇓ã ino[ã|λ](N, x);P ′

with some fresh o and if we have P ⇓ã·x P ′, and ã|λ refers
to the sequence ã with input terms removed, thus keeping
only session variables/identifier. Only inputs and replications
(i.e., the sources of unboundedness) need to be tagged with
occurrences, meaning that ⇓ã is extended to most other
process constructions (inputs, outputs, events, let ) in the
natural way, without modification. The only exception is
the parallel operator which, in the same way as replication,
has to produce a session matching:

P | Q ⇓ã {{!o[ã]∅ P ′}} | {{!o
′[ã]

∅ Q′}}

with some fresh o, o′ and if we have P ⇓ã P ′, Q ⇓ã Q′.
This session matching is “blank” at the moment, that is,
it does not record any potential structural symmetries be-
tween P and Q. Computing symmetries is managed by the
second part of the transformation, taking the form of three
factorisation rules⇝ that normalise the structure of session
decompositions. We recall the intuition that P | Q models
two arbitrary parallel processes P and Q, while {{!n̄ãP, !m̄b̃ Q}}
carries additional information about structural symmetries
(i.e., P ≈cf Q). These factorisation rules intuitively merge
parallel processes into multisets when structural symmetries
are identified. All rules are to be understood up to asso-
ciativity and commutativity of the parallel operator, and are
applied to any subprocesses of the instrumented process:

{{!n̄ã (P | Q)}} ∪ S ⇝ {{!n̄ãP}} | {{!n̄ãQ}} | S
{{!n̄ã {{!

n̄i

ãi
Pi}}ni=1}} ∪ S ⇝ {{!n̄i

ã∪ãi
Pi}}ni=1 | S

{{!n̄ãP}} ∪ S | {{!m̄
b̃
Q}} ∪ S′ ⇝ {{!n̄ãP, !m̄b̃ Q}} ∪ S ∪ S′

if P ≈cf Q

The first two rules present replication and parallel oper-
ators under a compact normalised form that facilitates the
search for structural symmetries, using only the occurrences
with the most dependencies (i.e., the deepest one) in case of
nested replications. Note however that these two operations
technically break priorly established symmetries, which is
why they replace the multiset union (∪) by a regular par-
allel composition (|). On the contrary, the last rule exhibits
symmetries by merging session decompositions whose base
processes P,Q are control-flow equivalent.

Definition 6 (Instrumentation). Given a process P , we
write JP Ki to refer to an instrumentation of P , i.e., an
instrumented process such that P ⇓∅⇝∗ JP Ki ̸⇝.

Example 1. We already illustrated in the motivation exam-
ple how our notion of session decomposition helped treating
more processes as control-flow equivalent in comparison
with the usual approach of ProVerif. One step further,
two processes whose syntax are significantly different, e.g.,
(!P ) | Q | (! new n; !R) and !S, have instrumentations that
may effectively be control-flow equivalent, when those of
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P,Q,R and S are. Note that the our results do not require
the relation ⇝ to be confluent.

4.3. Instrumented Semantics

On single processes. We now adapt the operational se-
mantics to instrumented processes. We give an intuition for
a sample of important rules here, while the full definition
can be found in Appendix A, since most of it is not novel
compared to ProVerif’s theory. Intuitively, it is a decision-
oriented version of the operational semantics: in addition to
the explicit replication labels, the attacker’s operations are
also represented explicitly, facilitating their encoding into
Horn clauses for decisional purposes. As such, the semantics
operates on instrumented configurations P,A,Λ, where P
is a multiset of instrumented processes, A is a set of terms
representing the attacker’s knowledge and Λ is a set of name
patterns tracking unfolded replications. For example:

P,A,Λ −→i P,A ∪ {M},Λ (I-APP)

provided f(M1, . . . ,Mn) ⇓ M , for some M1, . . . ,Mn ∈ A
and f/n ∈ Fc ∪ Fd. This rule application thus evidences
that M is computable by the adversary, and adds it to the
knowledge base A. The adversary may also introduce its
own (fresh) constants in computations, which take the form
of name patterns b0[λ], with b0 a fixed (but fresh) name and
λ a session identifier:

P,A,Λ −→i P,A ∪ {b0[λ]},Λ if b0[λ] ̸∈ A (I-GEN)

Some terms M,N ∈ A may then later be used by, e.g.:

{{out(N,M);P}},A,Λ −→i {{P}},A ∪ {M},Λ (I-OUT)

One other important rule is the one handling both replication
and parallel composition, spawning a copy of a process with
a fresh occurrence:

{{{{!oãP}} ∪ S}},A,Λ
repl(oσ)−−−−−→i

{{Pσ, {{!oãP}} ∪ S}},A,Λ ∪ {oσ}
(I-REPL)

if dom(σ) = ã, img(σ) ⊆ N, and oσ ̸∈ Λ. Intuitively, Pσ is
an instance of one of the instrumented processes contained
in the session decomposition {{!oãP}} ∪ S where σ indicates
how the session variables are instantiated. In case of a non-
replicated process, i.e., when ã = ∅, the condition oσ ̸∈ Λ
notably prevents it from being replicated more than once
(since σ = id when ã = ∅). Finally, we also mention the rule
for inputs, that notably triggers a precise event pre(o,M):

{{ino(N, x);Q}},A,Λ
pre(o,M)−−−−−−→i {{Q{M/x}}},A,Λ (I-IN)

Some internal axioms of ProVerif make references to such
precise events to guide, and thus improve the precision of,
the decision procedure. They are, in this paper, manually-
proved trace properties that are protocol-independent. We
use in particular a set of so-called precise axioms, described
and implemented in [22], [21]. They formalise, intuitively,

injectivity properties following from the freshness of oc-
currences, here o. For example, one such axiom [22] in-
tuitively states that if a same trace T contains two events
ev = pre(o,M) and ev ′ = pre(o,M ′), then M = M ′.

We then define a notion of instrumented traces. It comes
with a weaker variant that executes replicated inputs right
after they are unfolded; this intuitively does not induce a loss
of generality when constructing equivalence proofs, while
giving more information to guide the analysis.

Definition 7 (Instrumented trace). A sequence of transitions
C0

ℓ1−→i . . .
ℓn−→i Cn is called an instrumented trace. We also

write C ℓ−→wi C′ (weak transition) when:

• either C ℓ−→i C′ using any rule except I-REPL, or I-REPL
if the replicated process does not start with an input;

• or ℓ = ℓ1 · ℓ2 and C ℓ1−→i C′′ ℓ2−→i C′ where C ℓ1−→i C′′ is
derived by rule I-REPL and C′′ ℓ2−→i C′ is the application
of the rule I-IN on the process replicated in C ℓ1−→i C′′.

We write wtrace(C) the set of −→wi-traces of C, and
wrtrace(C) its more permissive variant where the last tran-
sition of the trace may be an arbitrary −→i transition.

Considering a special event repl i (intuitively modelling a
replication followed by an input), we define the satisfaction
of events by instrumented traces as follows:

Definition 8 (Event satisfaction). Let C0 be an instrumented
configuration. Let T : C0

ℓ1−→i . . .
ℓn−→i Cn be a trace in

wrtrace(C0). We define the satisfaction of an event ev in T ,
denoted T ⊢ ev , to hold when there is j such that ev = ℓj ,

or ev = repl i(o,M) and Cj−2
repl(o)·pre(o′,M)−−−−−−−−−−−→wi Cj . The

relation ⊢ is naturally extended to conjunction of events.
In particular, repl(o) and repl i(o,M) are called repli-

cation events, while the former is more specifically called a
strict replication event. Given such events ev , we say that
o is the replication occurrence of ev , denoted orepl(ev).

On biprocesses. In fact, to prove equivalence, ProVerif
operates internally on biprocesses, that intuitively describe
the joint execution of two processes to be proved equivalent.
Their semantics is intuitively a straightforward extension
of the instrumented semantics ensuring that the two paired
processes follow the same execution flow. Formally:

Definition 9 (Biconfiguration). A biconfiguration is a tu-
ple C2 = P2,A2,Λ2 where P2 is a multiset of pairs
of instrumented processes, A2 is a set of pairs of terms
and Λ2 is a set of pairs of pattern names. We say that
C2 is well-formed when for all (P,Q) ∈ P2, we have
P ≈cf Q, and initial when it additionally verifies: Λ2 = ∅,
A2 = {(a[], a[]) | a ∈ Npub} and all occurrence names in
P2 appear at most once.

The main difference with ProVerif’s analogue is that
our more permissive notion of control-flow equivalence
≈cf , through the modelling of session decompositions as
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unordered multisets, makes the well-formedness condition
much less restrictive. We define the projection functions:

proji(P2) = {{Pi | (P0, P1) ∈ P2}}

and, analogously, proji(A2), proji(Λ
2), proji(C2). The se-

mantics is then given by a transition relation ℓ−→i2 , where ℓ is
a pair of (possibly empty) events of the instrumented seman-
tics, resulting in bitraces. Typically, similarly to Rule I-APP,
adding a new term in the adversary’s knowledge base A is
done concurrently in the two projection processes:

P2,A2,Λ2 −→i2 P2,A2 ∪ {(M,M ′)},Λ2 (I2-APP)

if (M1,M
′
1), . . . , (Mn,M

′
n) ∈ A2, f/n ∈ Fc ∪ Fd and

f(M1, . . . ,Mn) ⇓ M and f(M ′
1, . . . ,M

′
n) ⇓ M ′. Note

in particular that the pair (M,M ′) can only be added
when the two underlying computations f(M1, . . . ,Mn) and
f(M ′

1, . . . ,M
′
n) succeed: the verification procedure, through

the notion of convergence defined in the next section, will
consider this bitrace distinguishable when a such a pair of
computations succeeds on one side but not on the other. The
other rules are also straightforward to define, e.g., the output
rule simply executes the instruction on both sides:

{{(out(N,M);P, out(N ′,M ′);P ′)}},A2,Λ2

−→i2 {{(P, P ′)}},A2 ∪ {(M,M ′)},Λ2 (I2-OUT)

if (N,N ′) ∈ A2. The full semantics operates similarly
(Appendix A, Figure 4). The definitions of wtrace2(C2) and
wrtrace2(C2) are analogue to their single-process variant,
and so is the notion of event satisfaction T 2 ⊢2 (ev , ev ′).

4.4. Convergence Equivalence

Proofs in ProVerif then rely on a syntactic notion of
convergence of bitraces to establish security properties [23],
that we adapt to our setting. As mentioned before, we focus
on the criterion for may-testing equivalence, as it illustrates
most of the technical developments of our contribution.
Analogous criteria for observational equivalence and its pre-
order are also detailed in [14]. Simply, a biconfiguration C is
convergent if for every (instrumented) transition executable
from proji(C), the same transition can be applied at the same
position in proj1−i(C). Formally:

Definition 10 (Convergence). A (well-formed) biconfigura-
tion C2 = P2,A2,Λ2 converges, denoted C2↓↑, when:
1) The same communications can be done on the two sides.

If (P, P ′) ∈ P2, both starting with an input or an output
on respective channels N and N ′, then for all (L,L′) ∈
A2, N = L iff N ′ = L′ .

2) The knowledge bases are statically indistinguishable.
If (M1,M

′
1), . . . , (Mn,M

′
n) ∈ A2, f/n ∈ Fd then

f(M1, . . . ,Mn) ⇓ fail iff f(M ′
1, . . . ,M

′
n) ⇓ fail .

3) The two sides make identical branchings.
If (P, P ′) ∈ P2, both starting with evaluations of respec-
tively D and D′ then D ⇓ fail iff D′ ⇓ fail.

By extension, we say that a bitrace is convergent if all of
its intermediary biconfigurations are convergent.

We then propose a sound condition for may-testing,
based on convergent bitraces, proved in [14], while the
rest of the paper describes how we verify this condition in
practice, using ProVerif’s internal machinery among others.

Definition 11. A well-formed biconfiguration C2 is may-
testing convergent, denoted π⊑m

(C2), when for all T ∈
wtrace(proj0(C2)), there exists a convergent bitrace T 2 ∈
wtrace2(C2) such that proj0(T

2) = T .

Theorem 1 (Equivalence and convergence). Let P0, P1 be
two processes and C2 be an initial biconfiguration such that
projj(C2) = JPjKi, for j = 0, 1. If π⊑m

(C2) then P0 ⊑m P1.

5. Clause Generation

We first present the clauses we use to describe instru-
mented processes, and their properties are stated in the next
section. We use the notations for clauses (ev, att...) as in
Section 2. We assume a (standard) set of clauses CA(C2)
modelling the attacker’s capabilities, as in [18], [21], and
formalised in Appendix B. Given an initial biconfiguration
C2 = ({{(P,Q)}},A2, ∅), the overall set of clauses charac-
terising C2 is then defined as:

CP(C2) = [[|P,Q|]]⊤□ ∪ CA(C2)

where the algorithm [[|P,Q|]]Hr is partly detailed below
(we give a sample of cases novel to this work, and the
full definition is in Appendix B). In this notation, H is a
conjunction of facts and disequalities (with ⊤ being the true
value) and r is either a pair of terms or a □ (indicating
an absence of value). Intuitively, H collects conditions that
need to be satisfied for P and Q to be executed, and
r = (o1, o2) indicates that P and Q have been spawned with
occurrence replications o1 and o2 respectively. In particular,
it should be recorded in H that o1 and o2 should be matched
together during an equivalence proof. This is done through
the facts F!i(r, x, x

′) and F!(r) whose values are ⊤ when
r = □ and otherwise when r = (o1, o2):

F!i(r, x, x
′) = ev(repl i(o1, x), repl i(o2, x

′))
F!(r) = ev(repl(o1), repl(o2))

[[|S, S′|]]Hr =
⋃

!
o1
ã1

P1∈S

⋃
!
o2
ã2

P2∈S′ [[|P1, P2|]]H(o1, o2)

[[|ino(N, x);P, ino
′
(N ′, x′);P ′|]]Hr =

[[|P, P ′|]]H1□ ∪ {H ∧ F!(r) → input(N,N ′)}
with H1 = H ∧msg(N, x,N ′, x′) ∧ F!i(r, x, x

′) ∧
ev(pre(o, x), pre(o′, x′))

[[|out(N,M);P, out(N ′,M ′);P ′|]]Hr =
[[|P, P ′|]](H ∧ F!(r))□
∪{H ∧ F!(r) → msg(N,M,N ′,M ′)}

Furthermore, given a bitrace T , we define the set of Horn
clauses Ce(T ) = {→ ev(ev , ev ′) | T ⊢2 (ev , ev ′)} repre-
senting all the events emitted in T .

191



Example 2. For our running example, we translate the
two instrumented processes {{!o3[i,j]i,j Pleft}} | {{!o4[i,j]i,j Rleft}}
and {{!o1[i]i Pright}} | {{!o2[i]i Rright}}. Let us look more
closely at the passport components, i.e. the translation
[[|{{!o3[i,j]i,j Pleft}}, {{!o1[i]i Pright}}|]]⊤□.

Recall that by instrumentation, Pleft and Pright are the
processes P (kℓ[i]) and P (kr[i

′]) where the inputs have been
associated with the occurrences o′ℓ[i, j] and o′r[i

′], and the
name n has been replaced by nℓ[i, j] and nr[i

′] respec-
tively. The translation [[|{{!o3[i,j]i,j Pleft}}, {{!o1[i

′]
i′ Pright}}|]]⊤□

will then record the replication occurrences o3[i, j] and
o1[i

′]. As the first actions in the processes Pleft and Pright

are outputs, it results:

F! → msg(c, nℓ[i, j], c, nr[i
′])

with F! = ev(repl(o3[i, j]), repl(o1[i
′])) being propagated

in the hypotheses of the remaining clauses. When trans-
lating the second actions, i.e., the inputs ino

′
ℓ[i,j](c, x) and

ino
′
r[i

′](c, x′), only the precise event is added in the hypothe-
sis and not the occurrence fact F!i as such fact is only added
when translating the first actions after a session matching.
This yields the following hypothesis H to be propagated:

F! ∧msg(c, x, c, x′) ∧ ev(pre(o′ℓ[i, j], x), pre(o
′
r[i

′], x′))

Finally, as in ProVerif, going through the conditional branch,
we compute the success and failure conditions before trans-
lating the final output actions, yielding the following clauses:

Hσ1σ2 → msg(c, ok, c, ok)
Hσ1 ∧ ∀z′.x′ ̸= senc(z′, kr[i

′]) → msg(c, ok, c, error)
Hσ2 ∧ ∀z.x ̸= senc(z, kℓ[i]) → msg(c, error, c, ok)
H ∧ ∀z′.x′ ̸= senc(z′, kr[i

′]) ∧ ∀z.x ̸= senc(z, kℓ[i, j])
→ msg(c, error, c, error)

with σ1 = {senc(z,kℓ[i])/x} and σ2 = {senc(z′,kr[i
′])/x′}.

As mentioned, we also consider the clauses CA(C2) de-
scribing the attacker capabilities. They include in particular:

→ att(c, c) → att(ok, ok) → att(error, error)
msg(x, y, x′, y′) ∧ att(x, x′) → att(y, y′)
att(x, y) ∧ att(x, y′) ∧ y ̸= y′ → bad

The first three clauses represents the fact that the attacker
knows the initial constants. The fourth clause indicates that
if the attacker knows a channel, it can learn the messages
sent over it. Finally, the fifth clause models the fact that
by deducing twice the same messages on the left side
but different messages on the right side, the attacker can
distinguish the two traces, i.e. the bitrace is not convergent.
In our example, it translates the fact that a bitrace satisfying
the conditional in the passport on one side side but failing
it on the other side will lead to a non-convergent bitrace.

Soundness. We aim to use the saturation procedure of
ProVerif [21] that applies axioms when saturating the set
of Horn clauses. We reuse in particular their notions of
derivation of a fact from a set of clauses C, which is
intuitively a tree whose nodes are labelled by Horn clauses

from C and their edges are labelled by ground facts that
are instances of the Horn clauses labeling the nodes. As we
consider a more general semantics and a larger set of clauses
than in [21], we need show that non-convergent bitraces lead
to bad being derivable in the initial set of Horn clauses.

Theorem 2. Let C2 be an initial biconfiguration. For all
T 2 ∈ wrtrace2(C2), if T 2 does not converge then there exists
a derivation of bad from CP(C2) ∪ Ce(T

2).

As previously mentioned, we reused the saturation pro-
cedure of ProVerif [21], and can rely on its correctness: the
derivability of bad is preserved through saturation.

Proposition 1 ([21, Theorem 4]). Let C2 be an initial
biconfiguration. For all T 2 ∈ wrtrace2(C2), if there exists a
derivation of bad from CP(C2) ∪ Ce(T

2) then there exists
a derivation of bad from saturate(CP(C2)) ∪ Ce(T

2).

Though we usually denote the hypotheses of a clause as
H , when denoting them as H ∧ ϕ, we implicitly consider
the hypotheses to be split into a conjunction H of facts and
a conjunction ϕ of term disequalities. In that case, given
a substitution σ, we denote by σ |= ϕ the traditional first
order logic satisfaction relation on term disequalities. By
combining Theorem 2 and Proposition 1, we thus obtain
the cornerstone property of our procedure.

Corollary 1. Let C2 be an initial biconfiguration. If T 2 ∈
wrtrace2(C2) does not converge then there exists H ∧ ϕ →
bad in saturate(CP(C2)) and a substitution σ such that σ |=
ϕ and for all ev(ev, ev′) ∈ H , T 2 ⊢2 (ev, ev′)σ.

Example 3. If C2
BAC is an initial biconfiguration corre-

sponding to the processes of the running example, the set
saturate(CP(C2

BAC)) contains two clauses deriving bad:
C1 = ev(repl(o3[i1, j1]), repl(o1[i])) ∧

ev(repl i(o4[i2, j2], nl[i1, j1]), repl i(o2[i], nr[i])) ∧
H1

pre ∧ i1 ̸= i2 → bad
C2 = ev(repl(o3[i, j]), repl(o1[i1])) ∧

ev(repl i(o4[i, j
′], nl[i, j]), repl i(o2[i2], nr[i1])) ∧

H2
pre ∧ i1 ̸= i2 → bad

The first clause corresponds to the case where on Sright , the
nonce nr[i] of the reader was sent to the correct passport, as
indicated by repl i(o2[i], nr[i]), thus ok will be output. On
the left side however, repl i(o4[i2, j2], nl[i1, j1]) and i1 ̸=
i2 indicate that the nonce nl[i1, j1] generated by a reader
having the key kl[i1] was sent to a passport with the key
kl[i2]. Since i1 ̸= i2, the keys are different hence error will
be output. The second clause is the dual of the first one, i.e.,
the test will succeed on Sleft but fail on Sright . Here, H1

pre

and H2
pre contains the precise events (omitted). The sets of

initial and saturated clauses can be displayed by running our
implementation [14] on the file running_example.pv

6. Semantics Conditions for Equivalence

Relying on the characterisation of Corollary 1, we
now state the conditions implying may-testing. Recall that
in [14], we present extended conditions which additionally
allow to imply observational equivalence and its preorder.
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6.1. Session Matching

In this section, we introduce notions that allow us to
reason over how sessions can be matched. For example,
when a biconfiguration reaches a pair of session decompo-
sitions (S, S′), any process !

o[ã]

b̃
P from S can potentially be

matched with a process !o
′[ã′]

b̃′
P ′ from S′. All these potential

matchings can be pre-computed statically as follows:

Definition 12 (Potential matching). Let P,Q two processes
such that P ≈cf Q. We define the set pm(P,Q), called the
set of potential matching of P and Q:
• pm(S, S′) =

⋃
!oãP∈S,!o

′
ã′ P

′∈S′{(o, o′)} ∪ pm(P, P ′)

• pm(α[P1, . . . , Pn], β[Q1, . . . , Qn]) =
⋃n

i=1 pm(Pi, Qi)
with α, β two instructions of same nature (nil, input,
output, event, let, parallel). Note that, thus, 0 ≤ n ≤ 2.

Given a biconfiguration C2 = ({{(P,Q)}},A2, ∅), we denote
by pm(C2) the set pm(P,Q).

We can also syntactically determine on the initial pro-
cesses how many session identifiers an occurrence o must
take as arguments, denoted arλC(o), that is when !

o[ã]

b̃
P in

C2, arλC(o) is the number of session identifiers in ã.

Example 4. Coming back to our running example, we have
pm(C2

BAC) = {(o3, o1); (o4, o2)}, arλC(o1) = arλC(o2) = 1
and arλC(o3) = arλC(o4) = 2.

To further reason on the replication occurrences in the
initial biconfiguration C2, we define the partial order relation
o ≺C2 o′ to hold when o′ is in the scope of o in the processes
of C2, that is when !oãP occurs in C2 and !o

′

ã′Q occurs in P .
We denote ⪯C2 the reflexive closure of ≺C2 . We naturally
extend these notions to replication patterns, i.e. o[ã] ≺C2

o′[ã′] when o ≺C2 o′ and ã is a prefix of ã′.
We show the relation between the set pm(C2) and the

order ≺C2 on bitraces in the following lemma. It typically
shows that all replication bievents satisfied by a bitrace have
potentially matched occurrences.

Lemma 1 (Consistency). Let C2 be an initial biconfigura-
tion. For all T 2 ∈ wrtrace2(C2), if T 2 ⊢2 (ev0, ev1) and
T 2 ⊢2 (ev2, ev3) with orepl(ev i) = oi[ãi] for i = 0 . . . 3:
• (o0, o1), (o2, o3) ∈ pm(C2)
• o0[ã0] ≺C2 o2[ã2] if and only if o1[ã1] ≺C2 o3[ã3]

We now arrive to the main tool for matching sessions.
Recall that to prove may-testing, we need to show that
for all traces T in proj0(C2), we can find a correspond-
ing convergent bitrace T 2 of C2 with proj0(T

2) = T .
In particular, for every replication event satisfied by T ,
e.g. T ⊢ ev = repl(o[ã]), there must be a corresponding
ev ′ = repl(o′[ã′]) such that T 2 ⊢2 (ev , ev ′). Intuitively,
a session matching is a function that associates each such
event ev with a corresponding occurrence o′[ã′]. However,
ã′ may not only contain session identifiers but also terms
corresponding to previous inputs. To avoid reasoning on the
messages input in proj1(T

2), we strip ã′ from these input
terms, i.e. ã′|λ, to only preserve the session identifiers. In
such a case, we say that o′[ã′|λ] is a pure replication pattern.

Definition 13 (Session matching). We consider an initial
biconfiguration C2 = ({{(P,Q)}},A2, ∅). A session match-
ing is a partial function ρ from ground replication events,
to pure replication patterns such that
• ρ(ev) = o′[ã′] with orepl(ev) = o[ã] implies (o, o′) ∈
pm(C2), arλC2(o′) = |ã′|;

• orepl(ev) ⪯C2 orepl(ev ′) if and only if ρ(ev) ⪯C2 ρ(ev ′)

Example 5. Coming back to our running example, consider
a trace T ∈ proj0(C2

BAC) that executes a single passive
session between the passport and the reader in Sleft , the
trace T would satisfy three events: ev1 = repl(o3[1, 1])
(unfolding of Pleft ), ev2 = repl(o4[1, 1]) (unfolding of
Rleft ), and ev3 = repl i(o4[1, 1], nl[1, 1]) (unfolding of Rleft

with nl[1, 1] the message input by Rleft and sent by Pleft ).
A session matching from Pleft to Pright could be the

function ρ such that ρ(ev1) = o1[1] and ρ(ev2) = ρ(ev3) =
o2[1] which would also correspond to a single session be-
tween the passport and the reader in Sright .

6.2. Falsifying conditions

To satisfy our may-testing predicate (Definition 11), we
need to find for all traces T a convergent bitrace T 2 such
that proj0(T

2) = T . Due to Corollary 1, we know that
a non-convergent bitrace T 2 yields a clause H → bad
in saturate(CP(C2)) such that all events of H are satis-
fied by T 2. Therefore, by showing that we can build a
bitrace T 2 that falsifies all hypotheses of the clauses of
saturate(CP(C2)) deriving bad, we will ensure that T 2 con-
verges. We thus define such sufficient falsifying conditions.

Given a formula ϕ and a set of variables x̃, we denote by
ϕ|x̃ the formula where all variables of ϕ not in x̃ are replaced
by fresh names; thus only keeping variables from x̃. Since
formulas in clauses are only composed of disequalities, we
have that for all substitutions σ, σ |= ϕ implies σ |= ϕ|x̃.

Definition 14 (Falsifying condition). Let C = (ϕ ∧ H ∧∧n
i=1 Fi → bad) be a clause such that the Fis are replica-

tion events and H contains any other facts. The falsifying
condition of C, denoted falsify(C), is (Ω, ϕ′) where:
• Ω is the function [proj0(Fi) 7→ yi]

n
i=1 where the yis are

fresh distinct variables
• ϕ′ = ∀x̃1 \ x̃0.(¬ϕ|x̃1|λ ∨

∨n
i=1 yi ̸= oi[ãi|λ])

where orepl(proj1(Fi)) = oi[ãi] for i = 1 . . . n and x̃j =
vars(projj(H)) ∪

⋃n
i=1 vars(projj(Fi)) for j = 0, 1

Intuitively, when falsify(C) = (Ω, ϕ), the function Ω can
be seen as a session matching on open terms, i.e. that contain
variables. The formula ϕ represents sufficient conditions for
the hypotheses of the biclause C to be falsified. Therefore,
any session matching that is an instantiation of Ω and that
verifies ϕ will falsify the hypotheses of C.

Example 6. Consider the clauses C1 and C2 from Exam-
ple 3. We have falsify(C1) = (Ω1, ϕ1) where:
• Ω1(repl(o3[i1, j1])) = y1
• Ω1(repl i(o4[i2, j2], n

′[i1, j1])) = y2
• ϕ1 = ∀i.(y1 ̸= o1[i] ∨ y2 ̸= o2[i])
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and falsify(C2) = (Ω2, ϕ2) where
• Ω2(repl(o3[i, j])) = y1
• Ω2(repl i(o4[i, j

′], n′[i, j])) = y2
• ϕ2 = ∀i1, i2.(y1 ̸= o1[i1] ∨ y2 ̸= o2[i2] ∨ i1 = i2)

Using Corollary 1, we show that a bitrace with a cor-
responding session matching that falsifies the hypotheses of
all clauses deriving bad is necessary convergent.

Definition 15 (Falsification). Let C2 be an initial biconfig-
uration. Let T ∈ wrtrace(proj0(C2)). Let C = H → bad
be a clause with falsify(C) = (Ω, ϕ). Let ρ be a session
matching of C2.

We define T, ρ ⊢s falsify(C) to hold when for all
substitutions σ, if T ⊢ proj0(Hσ) and for all ev ∈ dom(Ω),
evσ ∈ dom(ρ) and Ω(ev)σ = ρ(evσ) then σ |= ϕ.

Lemma 2 (Convergence criterion). Let C2 be an initial
biconfiguration and Cbad

sat the clauses of saturate(CP(C2))
deriving bad. Let ρ be a session matching of C2, and
T 2 ∈ wrtrace2(C2). If
• T 2 ⊢2 (ev , ev ′) and orepl(ev ′) = o[ã] implies ev ∈
dom(ρ) and ρ(ev) = o[ã|λ]

• for all C ∈ Cbad
sat , proj0(T

2), ρ ⊢s falsify(C)

then T 2 converges.

Lemma 2 is the core lemma that allows us to prove
may-testing equivalence (as well as the other equivalences).

Theorem 3 (May-testing). Let C2 be an initial biconfigu-
ration and Cbad

sat the clauses of saturate(CP(C2)) deriving
bad. If for all T ∈ wtrace(proj0(C2)), there exists a session
matching of C such that:
• {ev replication event | T ⊢ ev} ⊆ dom(ρ)
• for all C ∈ Cbad

sat , T, ρ ⊢s falsify(C)

then π⊑m
(C) holds.

7. Practical Verification of Equivalences

7.1. Skolemisation

To prove may-testing by relying on Theorem 3, we need
to generate session matchings falsifying the hypotheses of
all biclauses deriving bad. Although these session match-
ings may concretely depend on the considered traces, such
dependencies are tedious to capture in practice. We therefore
implement a stronger but simpler condition where, given a
biclause C and its falsifying condition falsify(C) = (Ω, ϕ),
we build one session matching satisfying falsify(C) for any
instantiation of dom(Ω). In fact, if we denote dom(Ω) =
{ev i}ni=1 with yi = Ω(ev i), the satisfiability of falsify(C)
can intuitively be interpreted as a first-order formula:

∀ev1. . . . ,∀evn.∃y1. . . . ,∃yn.ϕ

Building on this intuition, we will get rid of existential
quantifiers via a Skolemisation process formalised below.
To that end, we consider an additional set of name Ns that
will be used as Skolem functions.

Definition 16 (Skolemisation). Let C2 be an initial bicon-
figuration. Let C = (H ∧ ϕ → bad) be a biclause. Assume
that falsify(C) = (Ω, ϕ′). We say that a substitution σ is
a Skolemisation of falsify(C) when dom(σ) = img(Ω),
ϕ|vars0(C) |= ϕ′σ and for all ev, ev′ ∈ dom(Ω),
• if orepl(ev) = o[ã] then

Ω(ev)σ = o′[s1[ã1], . . . , sk[ãk]]

with (o, o′) ∈ pm(C2), k = arλC2(o′), s1, . . . , sk ∈ Ns and
ã1, . . . , ãk only contain subterms of ev

• orepl(ev) ⪯C2 orepl(ev′) iff Ω(ev)σ ⪯C2 Ω(ev′)σ

Note that given a biclause deriving bad, there are finitely
many potential Skolemisations of falsify(C) (modulo renam-
ing of the names from Ns). Our implementation typically
consists of finding Skolemisation substitutions for all clauses
in Cbad

sat that satisfy the conditions of Theorem 4.

Example 7. Coming back to Example 6, we can consider
the following Skolemisation substitutions σ1 and σ2 of
falsify(C1) and falsify(C2) respectively:
• σ1 = {y1 7→ o1[s1[i1, j1]]; y2 7→ o2[s2[i2, j2, i1, j1]]}
• σ2 = {y1 7→ o1[s3[i, j]]; y2 7→ o2[s3[i, j]]}
where s1, s2, s3, s4 ∈ Ns. Notice that |= ϕ1σ1 and |= ϕ2σ2.

Our theorems also relies on a simplification function of
Horn clauses used in the saturation procedure of ProVerif
(see [21, Section 3.2.5]) that, given a clause C, either C ↓
returns a set of simpler clauses or ⊥. The details of this
function are out of the scope of this paper and we only use
its following property: for all clauses C = (H → bad), if
C ↓ = ⊥ then for all traces T of the initial configuration,
for all substitutions σ, T ̸⊢ Hσ. That is, no trace can satisfy
the hypotheses of the clause.

Theorem 4 (May-testing). Let C2 be an initial biconfigu-
ration and Cbad

sat the clauses of saturate(CP(C2)) deriving
bad. For all clauses C ∈ Cbad

sat , we assume a Skolemisation
substitution σC of falsify(C). We also assume that for all
C = (H → bad), C ′ = (H ′ → bad) ∈ Cbad

sat with
falsify(C) = (Ω, ϕ), falsify(C ′) = (Ω′, ϕ′), and Hall =
proj0(H) ∧ proj0(H

′), the following conditions hold for all
ev ∈ dom(Ω), for all ev ′ ∈ dom(Ω′):
1) Let us write (t, t′) = (orepl(ev), orepl(ev ′)) when ev or

ev ′ is a strict replication event, and (t, t′) = (ev , ev ′)
otherwise. If α = mgu(t, t′) then

(Hall ∧ Ω(ev)σC ̸= Ω(ev)σC′ → bad)α↓ = ⊥
2) If α = mgu(Ω(ev)σC ,Ω(ev

′)σC′) then

(Hall ∧ orepl(ev)|λ ̸= orepl(ev ′)|λ → bad)α↓ = ⊥

Then π⊑m
(C2) holds.

The first condition of the theorem intuitively verifies
that a concrete event cannot be associated to two differ-
ent replication patterns (otherwise the session matching
we build would not be a function). The second condition
verifies that the session matching we build is injective on
the replication occurrences (as required by the second bullet
point in Definition 13).
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7.2. Experiments

Building on Theorem 4, we implemented a prototype for
verifying may-testing. The source code is available in [14].
Note that our prototype also implements the extended proce-
dure that can additionally prove observational preorder and
observational equivalence. Table 1 displays the benchmarks
we performed on several protocols from the literature.

First, we included a couple of toy examples showcasing
the may-testing, observational preorder and observational
equivalence, as well as the lighter structural restrictions
required by our approach compared to the baseline approach
of ProVerif. We also verified the protocols included in
ProVerif’s distribution as sanity checks to ensure that our
new algorithm does not induce a drop in expressivity and
performance for previously provable protocols.

Second, our experiments include protocols such as
BAC [20] (various properties not limited to the mini-
mal model of our motivation example), Hash-Lock [24],
LAK [25], PACE [26], [27], Helios [28], Feldhofer [29].
Most of these models were taken from the Ukano tool that
we compare against [12].

Finally, we also show that our approach surpasses Ukano
on, e.g., unlinkability proofs in a simplified standard TLS
handshake. Indeed, Ukano requires that:
1) the protocol must be a two-party protocol between an

initiator I and a responder R;
2) the processes of the initiator and responder cannot use

the full range of ProVerif syntax, e.g., else-branches can
only be null or restricted outputs of constants;

3) equivalences are syntactically restricted to be of the form:

!new k; (!Pi |!PR) ≈ !new k; (Pi | PR)

4) the protocol must admit an appropriate idealisation func-
tion and must satisfy two sufficient conditions called
well-authentication and frame opacity.

These conditions prevent Ukano to handle TLS. Indeed, a
TLS handshake starts with a negotiation phase where the
server and the client must agree on the TLS protocol version,
the Diffie-Hellman (DH) groups and other cryptographic
algorithms. During this phase, the server may send an
HelloRetryRequest depending on the DH groups and key
shares the client sent. Such requests subsequently affect
the control flow of the protocol, which cannot be modelled
with the restriction on else-branches discussed in Item 2.
Besides, even if one considered a simpler version of TLS
where Server and Client would have already agreed on the
handshake parameters, the conditions 1 and 3 combined
limit the security guarantees. In TLS, the identity of the
client is typically its long term public key. In the above
equivalence statements, k would thus play the role of the
private key associated to the public key of the client. Thus,
Ukano could only prove unlinkability of TLS without re-
vealing the public keys of the clients (as outputting them in
PI or PR would trivially break unlinkability). Our approach
can typically handle such models using a third outputting
process in parallel. In fact, our experiment showed that

Protocol Properties Our Proofs Time U PV

ProVerif distribution
EKE WeakSec. ✓≈o 2s - ✓≈o

BAC (prv. ch) Unlink. ✗ ✗ ✗
NSPK StrongSec. ✓≈o 1s - ✓≈o

Prv. Auth. Anon. ✓≈o 1s ✗ ✓≈o

WMF StrongSec. ✓≈o 1s - ✓≈o

Ukano distribution
BAC+AA+PA Anon. ✓⊑m ∩ ⊒o 1s ✓≈m ✗
BAC+AA+PA Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗

Feldhofer Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗
Hash Lock Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗

LAK Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗
PACE Unlink. ✓⊑m ∩ ⊒o 3m20s ✓≈m ✗

Simplified TLS
Basic Unlink. ✓⊑m ∩ ⊒o 2s ✗ ✗

With HRR Unlink. ✓⊑m ∩ ⊒o 1m48s - ✗
With HRR, PSK Unlink. ✗ - ✗

Other models
Running example Unlink. ✓⊑m ∩ ⊒o 1s ✓≈m ✗

Helios Vote Prv. ✓≈o 1s - ✓≈o

Toy Simu 1,2 ✓⊑o ∩ ⊒o 1s - ✗
Toy Flow 1 ✓⊑o ∩ ⊒o 1s - ✗

Table 1: Benchmarks
✓R: proof of the relation R -: syntactically not in the scope of the tool
✗: in the scope but the tool fails to prove
U: Results using Ukano PV: Results using ProVerif Vanilla

on our simplified TLS models, even when considering no
negotiation phase and no public key revealed, Ukano still
fails to prove the two conditions discussed in Item 4.

Limitations. To go beyond our simplified TLS models,
we also tried to apply our prototype on the ProVerif models
of [5] which also proves unlinkability and anonymity of TLS
clients. Their model describes in extensive details the proto-
col and consider some TLS extensions such as ECH and Pre-
Shared Keys. Their proof is based on diff-equivalence but
relies heavily on complex restrictions and manual reasoning
that is, in our opinion, out of reach of standard ProVerif
users. As such, with our prototype, we aimed to provide a
fully automatic proof of client unlinkability that do not rely
on such complex reasoning. However, our procedure showed
a theoretical limitation as the TLS-ECH model in [5] relies
on global states such as tables to encode the Pre-Shared
Keys. Although we do not prevent the use of tables, as
soon as the protocol need to desynchronise their access, our
procedure fails to show equivalence. Such problems also
occur when the protocol relies on desynchronised private
channels (e.g., BAC with a private channel to distribute the
key between reader and passport). In practice, the TLS-ECH
model in [5] also raised issues by its size (several thousand
lines of code) and our prototype could not complete the ver-
ification even after 48H of computation. There was already a
bottleneck in the instrumentation and the clause generation.

8. Conclusion

We introduced new techniques to automatically ver-
ify process equivalences. As state-of-the-art tools for un-
bounded number of sessions are limited to the verification
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of diff-equivalence, our work is the first that is able to prove
coarser-grained equivalences such as similarity and may-
testing equivalence on syntactically unrestricted processes.
We provided semantically sound conditions for proving
these equivalences based on the set of saturated Horn clauses
generated by ProVerif. We show how we satisfy these con-
ditions in practice and implemented an extension of the tool.

Our work opens several directions for future work but,
beyond those already discussed in the experimental section,
one seems to be particularly interesting. One key hurdle (no-
tably still pending even in the released version of ProVerif)
is the handling of trace restrictions in equivalence proofs.
In the context of may-testing, this would mean proving:

For all traces T0 of P verifying φ0, there exists
an equivalent trace T1 of Q verifying φ1.

where φ0, φ1 are user specified trace properties. Such double
restrictions are naturally incompatible with refinement-based
proofs as in ProVerif, i.e., that rely on a fine-grained relation
such as diff-equivalence to prove coarser ones. One possible
direction would be to investigate whether an approach like
ours directly targetting a coarser-grained, trace-based equiv-
alence such as may-testing may circumvent such issues.
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Appendix A.
Term Algebra and Instrumentation

First we give the full definition of the evaluation of
expressions:

Definition 17 (Evaluation of expressions). We assume, for
each destructor g, an ordered list of rewrite rules

def(g) = [g(Ui,1, . . . , Ui,n) → Ui]
k
i=1

where Ui,j , Uj are either terms or the constant fail. We say
that the expression D evaluates to U (U being either a term
or the constant fail), denoted D ⇓ U , by:
• if D ∈ V ∪ N ∪ {fail} then D ⇓ D;
• if D = f(D1, . . . , Dn) and D1 ⇓ V1, . . . , Dn ⇓ Vn:

– if f ∈ Fc and fail ∈ {V1, . . . , Vn} then D ⇓ fail;
– otherwise if f ∈ Fc then D ⇓ f(V1, . . . , Vn);
– otherwise f ∈ Fd and we let D′ = g(V1, . . . , Vn). Then

either D′ cannot be rewritten by any rule of def(g) and
D ⇓ fail, or otherwise D ⇓ V where D′ → V by the
first rule of def(g) applicable to D′.

Figures 2, 3, and 4 respectively describe the instrumen-
tation, and the instrumented semantics on (bi)configurations.

Appendix B.
Clause Generation

We detail below the complete set of clauses used for the
decision of equivalences. First of all, we display the clauses
describing the adversary’s capabilities. They are mostly
adapted from [18], [21]. We consider the set of public names
A0 in the initial biconfiguration C = ({{(P,Q)}},A0, ∅).

For each a ∈ A0, att(a[], a[]) (RInit)
att(b0[i], b0[i]) (RGen)
att(fail, fail) (RFail)
For each h, for all h(U1, . . . , Um) → U || ϕ in def(h),

for all h(U ′
1, . . . , U

′
m) → U ′ || ϕ′ in def(h),∧m

i=1 att(Ui, U
′
i) ∧ ϕ ∧ ϕ′ → att(U,U ′) (Rf)

msg(x, y, x′, y′) ∧ att(x, x′) → att(y, y′) (Rl)
att(x, x′) ∧ att(y, y′) → msg(x, y, x′, y′) (Rs)
att(x, x′) → input(x, x′) (RIn)
input(x, y) ∧msg(x, z, y′, z′) ∧ y ̸= y′ → bad (RIBad1)
input(y, x) ∧msg(y′, z, x, z′) ∧ y ̸= y′ → bad (RIBad2)
att(x, fail) → bad (RBad1)
att(fail, x) → bad (RBad2)

We will denote CA(C) = {(RInit), (RGen), (RFail), (Rf),
(Rl), (Rs), (RIn), (RIBad1), (RIBad2), (RBad1), (RBad2)}.

We then give the definition of the clause generation
[[|P,Q|]]Hr in Figure 5. We recall in particular the notation
from Section 5:

• F!i(r, x, x
′) = ⊤ when r = □ and otherwise:

F!i(r, x, x
′) = ev(repl i(proj0(r), x), repl i(proj1(r), x

′))

• F!(r) = ⊤ when r = □ and otherwise:

F!(r) = ev(repl(proj0(r)), repl(proj1(r)))

We define an evaluation on open terms, i.e. terms with
variables, that we use in the generation of Horn clauses. We
support in particular a ProVerif feature where, if ℓ → r is
a rewriting rule defining one behaviour of the destructor g,
the user may write

ℓ → r || ϕ ∈ def(g)

to mean that the rewriting rule may only be applied under the
condition ϕ. We omit the details of specification formalism
for ϕ here as it is irrelevant for our contributions.

U ⇓2 (U, ∅,⊤) if U is a may-fail term

g(D1, . . . , Dn) ⇓2 (V σu, σ
′σu, ϕ

′σu ∧ ϕσu)
if (D1, . . . , Dn) ⇓2 ((U1, . . . , Un), σ

′, ϕ′),
g(V1, . . . , Vn) → V || ϕ ∈ def(g) and
σu is the most general unifier of (U1, V1), . . . , (Un, Vn)

(D1, . . . , Dn) ⇓2 ((U1σn, . . . , Un−1σn, Un), σσn, ϕσn ∧ ϕn)

if (D1, . . . , Dn−1) ⇓2 ((U1, . . . , Un−1), σ, ϕ)
and Dnσ ⇓2 (Un, σn, ϕn)
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0 ⇓ã 0
out(N,M);P ⇓ã out(N,M);P ′ if P ⇓ã P

′

in(N, x);P ⇓ã ino[ã|λ](N, x);P ′ if P ⇓ã·x P ′ and o ∈ Nin fresh
event(M);P ⇓ã event(M);P ′ if P ⇓ã P

′

new n;P ⇓ã P ′ if P{n
′[ã]/n} ⇓ã P

′ n′ fresh name pattern
let x = D in P else Q ⇓ã let x = D in P ′ else Q′ if P ⇓ã P

′ and Q ⇓ã Q
′

P | Q ⇓ã {{!o[ã]∅ P ′}} | {{!o
′[ã]

∅ Q′}} if P ⇓ã P
′, Q ⇓ã Q

′, and o, o′ ∈ N are fresh

!P ⇓ã {{!o[ã,i]{i} P ′}} if P ⇓ã·i P
′, and o ∈ N , i ∈ Xλ fresh

Figure 2: Transformation into Instrumented Processes

{{0}},A,Λ −→i ∅,A,Λ (I-NIL)

{{P | Q}},A,Λ −→i {{P,Q}},A,Λ (I-PAR)

{{{{!oãP}} ∪ S}},A,Λ
repl(oσ)−−−−−→i {{Pσ, {{!oãP}} ∪ S}},A,Λ ∪ {oσ} if dom(σ) = ã, img(σ) ⊆ N, oσ ̸∈ Λ (I-REPL)

{{let x = D in P else Q}},A,Λ −→i {{R}},A,Λ with R = {{P{M/x}}} if D ⇓ M and R = Q if D ⇓ fail (I-LET)

{{out(N,M);P}},A,Λ −→i {{P}},A ∪ {M},Λ if N ∈ A (I-OUT)

{{ino(N, x);Q}},A,Λ
pre(o,M)−−−−−−→i {{Q{M/x}}},A,Λ if N,M ∈ A (I-IN)

{{event(M);P}},A,Λ
M−→i {{P}},A,Λ (I-EVENT)

∅,A,Λ −→i ∅,A ∪ {M},Λ if M1, . . . ,Mn ∈ A, f/n ∈ Fc ∪ Fd and f(M1, . . . ,Mn) ⇓ M (I-APP)

∅,A,Λ −→i ∅,A ∪ {b0[λ]},Λ with b0 a fixed name not appearing in P or Q, and b0[λ] ̸∈ A, λ session identifier (I-GEN)

P ∪Q,A,Λ
α−→i P ′ ∪Q,A′,Λ′ if P,A,Λ

α−→i P ′,A′,Λ′ (I-CONT)

Figure 3: Instrumented Semantics on Configurations

{{(0, 0)}},A2,Λ2 −→i2 ∅,A2,Λ2 (I2-NIL)

{{(P | Q,P ′ | Q′)}},A2,Λ2 −→i2 {{(P, P ′), (Q,Q′)}},A2,Λ2 (I2-PAR)

{{({{!oãP}} ∪ S, {{!o′ã′P ′}} ∪ S′)}},A2,Λ2 (repl(oσ),repl(o′σ′))−−−−−−−−−−−−−→i2 (I2-REPL)

{{(Pσ, P ′σ′), ({{!oãP}} ∪ S, {{!o′ã′P ′}} ∪ S′)}},A2,Λ2 ∪ {(oσ, o′σ′)}
if dom(σ) = ã, dom(σ′) = ã′, img(σ) ∪ img(σ′) ⊆ N, oσ ̸∈ proj0(Λ

2), o′σ′ ̸∈ proj1(Λ
2)

{{(let x = D in P else Q, let x′ = D′ in P ′ else Q′)}},A2,Λ2 −→i2 {{(R,R′)}},A2,Λ2 (I2-LET)
with (R,R′) = (P{M/x}, P ′{M

′
/x′}) if D ⇓ M and D′ ⇓ M ′, and (R,R′) = (Q,Q′) if D ⇓ fail and D′ ⇓ fail

{{(out(N,M);P, out(N ′,M ′);P ′)}},A2,Λ2 −→i2 {{(P, P ′)}},A2,Λ2 ∪ {(M,M ′)} if (N,N ′) ∈ A2 (I2-OUT)

{{(ino(N, x);Q, ino
′
(N ′, x′);Q′)}},A2,Λ2 (pre(o,M),pre(o′,M ′))−−−−−−−−−−−−−−→i2 {{(Q{M/x}, Q′{M ′

/x′})}},A2,Λ2

if (N,N ′), (M,M ′) ∈ A2 (I2-IN)

{{(event(M);Q, event(M ′);Q′)}},A2,Λ2 (M,M ′)−−−−−→i2 {{(Q,Q′)}},A2,Λ2 (I2-EVENT)

∅,A2,Λ2 −→i2 ∅,A2 ∪ {(M,M ′)},Λ2 (I2-APP)
if (M1,M

′
1), . . . , (Mn,M

′
n) ∈ A, f/n ∈ Fc ∪ Fd and f(M1, . . . ,Mn) ⇓ M and f(M ′

1, . . . ,M
′
n) ⇓ M ′

∅,A2,Λ2 −→i2 ∅,A2 ∪ {(b0[λ], b0[λ])},Λ2 if (b0[λ], b0[λ]) ̸∈ A2 (I2-GEN)

P2 ∪Q2,A2,Λ2 α−→i2 P2′ ∪Q2,A2′,Λ2′ if P2,A2,Λ2 −→i2 P2′,A2′,Λ2′ (I2-CONT)

Figure 4: Instrumented Semantics on (Well-Formed) Biconfigurations
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[[|0, 0|]]Hr = ∅
[[|S, S′|]]Hr =

⋃
!
o1
ã1

P1∈S

⋃
!
o2
ã2

P2∈S′

[[|P1, P2|]]Hdiff[o1, o2]

[[|P | Q,P ′ | Q′|]]Hr = [[|P, P ′|]]H□ ∪ [[|Q,Q′|]]H□
[[|ino(N, x);P, ino

′
(N ′, x′);P ′|]]Hr = [[|P, P ′|]]H1□ ∪ {H ∧ F!(r) → input(N,N ′)}

with H1 = H ∧msg(N, x,N ′, x′) ∧ F!i(r, x, x
′) ∧ ev(pre(o, x), pre(o′, x′))

[[|out(N,M);P, out(N ′,M ′);P ′|]]Hr = [[|P, P ′|]](H ∧ F!(r))□ ∪ {H ∧ F!(r) → msg(N,M,N ′,M ′)}
[[|event(ev);P, event(ev′);P ′|]]Hr = [[|P, P ′|]](H ∧ F!(r) ∧ ev(ev, ev′))□

[[|let x = D in P else Q, let x′ = D′ in P ′ else Q′|]]Hr =⋃
{[[|Pσσ′, P ′σσ′|]](Hσ ∧ F!(r)σ ∧ ϕ)□ |

(D,D′) ⇓2 ((M,M ′), σ, ϕ) ∧ σ′ = {M/x,
M ′

/x′}}
∪
⋃

{[[|Qσ,Q′σ|]](Hσ ∧ F!(r)σ ∧ ϕ)□ |
(D,D′) ⇓2 ((fail, fail), σ, ϕ)}

∪ {Hσ ∧ F!(r)σ ∧ ϕ → bad | (D,D′) ⇓2 ((fail,M), σ, ϕ)}
∪ {Hσ ∧ F!(r)σ ∧ ϕ → bad | (D,D′) ⇓2 ((M, fail), σ, ϕ)}

Figure 5: Translation of Processes Into Clauses
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