
Towards End-to-End Verified TEEs via Verified
Interface Conformance and Certified Compilers

Farzaneh Derakhshan∗, Zichao Zhang†, Amit Vasudevan‡, and Limin Jia§
Carnegie Mellon University, Pittsburgh, USA

Email: ∗fderakhs@andrew.cmu.edu †zichaoz@andrew.cmu.edu ‡amitvasudevan@acm.org §liminjia@cmu.edu

Abstract—Trusted Execution Environments (TEE) are ubiq-
uitous. They form the highest privileged software component
of the platform with full access to the system and associated
devices. However, vulnerabilities have been found in deployed
TEEs allowing an attacker to gain complete control. Despite the
progress made in fully-verified software systems, few deployed
TEEs are fully-verified, due to the high cost of verification.
Instead of aiming for full-functional correctness, this paper
proposes a formal framework and approach that leverages com-
partmentalization at the source level to bring security-relevant
properties verified at the source level down to the binary via
existing certified compilers. The benefit of our approach is the
relative low cost of verification: developers can use existing
automated program verification tools and certified compilers.
Our case studies demonstrate how security properties verified on
two open-source TEEs at the source level can be pushed down
to the compiled code by using an off-the-shelf certified compiler.

Index Terms—Software/Program Verification, Security and
Privacy Protection, Specifying and Verifying and Reasoning
about Programs

I. INTRODUCTION

Trusted Execution Environments (TEE) form the highest

privileged software component. They are used in the vast

majority of embedded platforms and encompass BIOSes,

firmwares, TEE OSes, and hypervisors. The application do-

mains of TEE range from mobile environments, smartphones,

wearables, and low-end IoTs to servers and industrial control

systems [1]–[4]. TEEs are a key security mechanism to protect

the integrity and confidentiality of applications on a majority

of commodity computing platforms [4]–[11] by enabling the

execution of privileged and security-sensitive applications in-

side protected domains isolated from the platform’s operating

system (OS). On some platforms TEEs leverage certain hard-

ware mechanisms for their functionality (e.g., Intel SGX on

x86 and ARM Trustzone [12]). Subversion of a TEE gives the

attacker full control of the entire platform since the TEEs are

the highest privilege operating software. This is exemplified

by the exploits TEEs have faced in recent years [5], [13].

Formal verification of TEEs can remove many of the

vulnerabilities. However, verifying safety critical software

such as TEEs for their functional correctness has not found

Copyright 2023 IEEE. This material is based upon work funded and
supported by the Department of Defense under Contract No. FA8702-15-
D-0002 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center.
DM23-0064

practical widespread use, despite the progress made in pro-

ducing formally verified kernels [14]–[19]. This is due to the

prohibitively high cost of verification in terms of money, time,

and developer expertise. On the other hand there have been

several approaches targeting formally verified TEEs with a

focus on practicality such as XMHF [20], uberXMHF [21],

Security Microvisor [22], and Contiki [23]. These projects

focus on specific security properties in lieu of full-functional

correctness, with the goals of being development friendly and

using automated verification tools at the source level. However,

a significant shortcoming of using source-level verification

tools is the lack of guarantees on the compiled code.

One key observation of this work is that we can leverage

memory compartmentalization and properties of certified com-

pilers (e.g., CompCert [24], [25]) to prove that the guarantees

verified at the source level also hold on the compiled code. We

formalize a programming framework based on prior work [21]

that advocates programming systems like TEEs as a collection

of objects, called überobjects, that access separate memory

locations and conform to a public interface. A concrete no-

tion of überobjects targeting C and x86 assembly was first

introduced as the building block of überSpark, an architecture

for building extensible hypervisors [21] to ensure hypervisor’s

memory integrity at the source level. This paper takes the

abstraction of überobjects one step further and shows formally

that (1) if at the source level, überobjects are shown to respect
their interface (i.e., respect memory separation and the rely-

guarantee conditions of all überobjects), then we can verify

each überobject separately, and the compositional concurrent

multi-core run of them satisfies the same properties; and (2)

certain properties verified at the source level also hold on the

compiled code if a certified compiler with compositional prop-

erties such as CASCompCert [25] is used. These properties

not only include standard assertions at function return points

but also information flow properties between überobjects (i.e.,

compartments do not interfere with each other).

To prove the above results, we formalize a general abstrac-

tion of überobjects as units for memory compartmentaliza-

tion and verified interface conformance. Compared to prior

work [21], our abstraction is liberated from a specific pro-

gramming language and architecture (software and hardware),

with an abstract semantics that models concurrent execution

of überobjects in the context of multiple CPU cores and

interrupts. We believe our approach will allow decomposition

of verification of compiled code into source-level verification

324

2023 IEEE 36th Computer Security Foundations Symposium (CSF)

© 2023, Farzaneh Derakhshan. Under license to IEEE.
DOI 10.1109/CSF57540.2023.00021

20
23

 IE
EE

 3
6t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

79
-8

-3
50

3-
21

92
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

75
40

.2
02

3.
00

02
1

and using verified compilers that can preserve the verified

source-level properties, and thus enabling more practical use

of disparate off-the-shelf formal verification tools to obtain

end-to-end properties on existing commodity TEEs.

We illustrate our approach in practice via two case-studies.

First, we show how our formalism helps translate to binary,

the already verified source-level memory separation properties

on an existing open-source x86 micro-hypervisor TEE by

employing source-level verification [21] and the certified com-

piler CASCompCert [25]. Then, we demonstrate the language

and architecture (software and hardware) independence of our

approach by applying it to analyzing a light-weight open-

source ARM Trustzone TEE for an embedded platform.

This paper makes the following contributions:

• We provide a general model for überobjects as units

of memory compartmentalization and define a locally

verifiable predicate to ensure each compartment respects

its interface.

• We show that our model enjoys compositional verification

at the source level: verifying the local predicate for each

compartment carries over to the concurrent multi-core

executions with interrupts.

• We show that compartmentalization also allows us to

enforce coarse-grained noninterference property easily.

• We prove that certain types of assertions and the nonin-

terference property can be carried over to the binary level

by using a suitable compiler.

• Through case studies, we demonstrate that end-to-end

security guarantees on existing TEEs can be achieved by

building a practical, decoupled, tool-chain that leverages

existing Certified Compilers (e.g., CASCompcert) and

off-the-shelf verification tools (e.g., Frama-C).

The rest of this paper is organized as follows. Sec-

tion II presents background on TEEs, certified compilers, and

überobjects. Section III gives an overview of our framework.

Section IV presents details of our formal model including

syntax and semantics. Section V discusses high-level theorems

and proofs. Section VI presents our case-studies on an existing

open-source x86 micro-hypervisor TEE and an open-source

light-weight ARM TrustZone TEE. Section VII describes re-

lated work and Section VIII presents our conclusions. Detailed

proofs and definitions can be found in the extended TR [26].

II. BACKGROUND

We first review TEE (section II-A). We then present the cen-

tral element of our system: überobjects, extended from prior

work [21] (Section II-B). Next, we review an existing DSL

for analyzing inline assembly in überobjects (section II-C).

Finally, we review certified compilers (Section II-D).

A. Trusted Execution Environments (TEE) security

TEEs aim at securing the execution of Trusted Applications

(TA)s or trustlets that run within the protected TEE frame-

work. TEEs are privileged software entities that typically rely

on a small portion of dedicated hardware capabilities (e.g.,

enclaves, memory protection unit, virtualization) in order to

boot-strap their execution and then setup required memory

protections before running the (rich) guest OS. There have

been TEEs for different platform architectures ranging from

x86 [5], [20], [21], ARM [6], [8], [9], [11] to RISC-V [27],

[28] and low-cost micro-controller units [22], [23].

A majority of existing TEEs and TA’s software code-base is

written in C and Assembly. The TEE programming language

requirement is driven by having to: (a) interface with the OS

kernel and device driver components which are mostly written

in C for the majority of popular OSes, and (b) have low-level

access to system resources including CPU critical registers,

memory units, bus bridges, and devices.

TEEs are generally assumed to be more secure than modern

OSes due to the memory and privilege separation enforced

via a combination of hardware and software mechanisms and

their smaller software Trusted Computing Base (TCB), which

is several orders of magnitude smaller than standard OS.

However, TEEs and TA’s have faced many exploits over the

past years ranging from privilege escalation, buffer overflows,

input validation errors, and integer overflows [5], [13]. This

necessitates the formal verification of security properties on

TEE and TA code-bases to achieve high assurance on the

security posture provided by them.

B. überobject: a framework for compartmentalization

An überobject is a programming compartment (or module)

with exclusive access to a memory region and other system re-

sources (e.g., CPU control registers, devices). An überobject’s

public interface consists of a collection of public API decla-

rations, pubAPIs, which can be called by other überobjects to

access the guarded memory (and other resources) and can be

restricted to a specific calling convention (e.g., based on their

integrity labels). A distinguished public API, init, sets up the

überobject in a known-good initial state (e.g., initializes the

überobject when it is loaded on a CPU core for the first time.)

Each überobject has a set of internal functions not accessible

from other modules. An überobject can also include Assembly

functions, discussed further in Section II-C.

Contracts An überobject is accompanied by a behavior con-

tract of its public interface in the form of pre- and post-

conditions. The interface guarantees that if the precondition is

satisfied upon invoking a public method, then the postcondition

is guaranteed to hold upon return of that method.

Sequential vs. concurrent An überobject may be concurrent

or sequential. The public methods of a concurrent überobject

can be invoked in parallel on multiple CPU cores. In contrast,

at most one core can invoke the methods of a sequential

überobject at a time. In a concurrent execution with multiple

cores, sequential überobjects enforce data race freedom via

per-überobject locks. Data race freedom, which forbids two

threads from accessing a location simultaneously when at least

one of the accesses is a write, is an essential property for

preserving the behaviors of source-level programs throughout

the compilation process (required by CASCompCert [25]),

and cannot be guaranteed in the presence of concurrent

überobjects. In this paper, to enforce data race freedom, while

325

still supporting shared-memory concurrency, we consider se-

quential überobjects guarding a single resource.

Resources The formalism of this paper models system re-

sources that überobjects have exclusive access to as shared

memory locations (heap). This includes the set of special

control registers (e.g., interrupt control register and interrupt

descriptor table register). Only the assembly functions in an

überobject with exclusive access to a specified control register

may read from/write to it. Our current model does not handle

accesses to a device; though extending it to include devices

will be straightforward since accessing a device transpires via

a memory-mapped IO, a special case of shared memory.

C. CASM: analyzing assembly

For verification purposes, assembly code in überobject

is written using CASM, a DSL using C functions to en-

code assembly instruction semantics (introduced in [21]).

We call these functions CASM functions. For exam-

ple, for the x86 instruction mov cr3 involving regis-

ter eax there is a corresponding CASM pseudo-function

called ci_movl_eax_cr3. Each CASM instruction pseudo-

function is defined in a hardware model (written in C) and

models the corresponding CPU instruction (e.g., access to

memory and to registers). During verification, each CASM

instruction is replaced by the C source code from the hardware

model. The resulting C-only program is verified for required

properties (e.g., they respect their specifications and the spec-

ification of the other functions they interact with). CASM

functions are also verified to respect the C application binary

interface (ABI) and stack frames (e.g., not clobber callers

registers or stack frames). During compilation, each CASM

instruction is replaced by the corresponding Assembly code.

D. Certified compilers

A common goal of certified compilers is to preserve the

behaviors of source-level programs throughout the compilation

process, ensuring that the behaviors of a target-level execution

are a refinement of the source-level execution. Originally, cer-

tified compilers, e.g., CompCert [29], only considered whole

program compilation in which a closed program written in

a single source language is compiled to a target language.

To handle more realistic situations, several work has general-

ized the results of CompCert to more modular settings [24],

[25], [30], [31]. Compositional CompCert introduces a linking

semantics to allow composition of different modules, each

potentially written in a different language. Each source module

is compiled separately, with potentially different compilers,

to a corresponding target module. The target modules are

linked with the same linking semantics. A local structured

simulation is introduced based on a rely-guarantee condition

that maps source-level memories to target-level memories

to prove compiler correctness. CASCompCert uses a similar

approach to address concurrency by providing a linking se-

mantics that allows concurrent execution of multiple threads.

The correctness proofs of both Compositional CompCert and

CASCompCert assume that the source modules satisfy some

C Verifiers for sequential C programs
(Frama-C)

Verified C compiler
(compositional Compcert)

CASM assembly code
generator

CASM functionsC functions

assembly code

uberobject memory separation principles

uberobject invariant CASM model

uberobject APIs
Annotated C functions

uberobject APIs
Annotated CASM functions

A1

A2

A3

Fig. 1: Framework overview

properties. For example, CASCompCert, among a few other

assumptions, requires that individual modules do not leak their

stack pointers and that each source execution is data-race free.

III. FORMAL FRAMEWORK OVERVIEW

We now present an overview of the formal framework and

development flow that we propose to push verified guarantees

at the source level to the compiled code. We illustrate the

high-level development flow in Fig. 1.

Prior work has shown that the verification results using

a sequential verifier on überobjects comprising hypervisor

source-code carry over to an execution environment where a

sequential hypervisor supports a multi-core unverified guest

OS [21]. The aforementioned work postulates that using a

certified compiler results could be pushed down to compiled

code, but does not include details or proofs. One contribution

of this paper is to demonstrate via a formal framework and

associated proofs that we can indeed achieve end-to-end secu-

rity guarantees, in a more general setting with interrupts and

multiple CPU cores running verified überobjects, by leveraging

results of certified compilers (e.g., CASCompCert [25]).

We illustrate the high-level development flow advocated by

our formal framework in Fig. 1. The three main components

in development flow are represented in rectangle boxes: a

verification tool for C (for example, Frama-C), a certified

C compiler, and an assembly code generator. Similar to

prior work [21], we envision safety-critical applications that

developers aim to analyze using our formal framework and

development flow follow a set of programming idioms outlined

in Section II-B and Section II-C.

To analyze relevant properties, which we call überobject

invariants (e.g., DMA protection is always turned on), the

programs are annotated with directives that the analysis tool

needs. For example, to use Frama-C’s WP plugin, one needs

to add specifications and assertions. The programming idioms

dictated by our formal framework also are translated to anno-

tations for the C analysis tool to check. These are illustrated

as the gray boxes on top of Fig. 1. The dashed lines indicate

that these are manually translated into the annotations in the

program. Our high-level goal is to show that the überobject

326

properties ϕ′ (which is the low-level equivalent of the high-

level invariant ϕ) hold on the concurrent execution of the

compiled assembly code, even though ϕ is checked using a se-

quential C analysis tool on source code. Specifically, we show

that (1) our principled shared memory accesses or separation

of memory accesses can ease the verification process and that

(2) there is a set of assumptions (requirements) we have to

place on these tools for the reasoning to be sound.

Compiler requirements A contribution of our work is to

provide an abstract criterion for compilers, independent of a

specific source and target languages, that ensures compiling

each compartment separately preserves key source level prop-

erties, i.e., memory separation and überobjects’ specifications,

in any concurrent execution at the target (binary) level. For

instance, a low-level requirement is that compilers preserve

exclusive access to the specified control registers by not using

them in the compilation process, e.g., via Application Binary

Interfaces (ABI) requirements. We show that CASCompCert,

in particular, satisfies the required criterion.

Tool compatibility requirements We further identify three

categories of tool assumptions, denoted Ai, in Fig. 1. A1: we

assume that the DSL semantics accurately reflect the assembly

semantics. A2: We assume that the C verifier’s logic is sound,

i.e., it only verifies correct predicates. A3: We assume that

the C semantics used by the C analysis tool and the certified

C compiler agree. We also assume the certified C compiler’s

semantics for assembly is accurate.

Next we discuss how to discharge these assumptions and

why they can be satisfied in practice. However, the details on

discharging them are out of the scope of this paper. Assump-

tion A1 can be formally discharged by proving a simulation

between CASM and Assembly. Given the small number of in-

structions used in implementing TEEs, testing-based validation

suffices as argued in prior work [21]. Formal C-verifiers satisfy

assumption A2 by either providing a formal proof of their

soundness, e.g. Verifiable C [32], or by proving a soundness

result for some parts and describing the circumstances that

may threaten soundness, e.g., Frama-C. Assumption A3 can

be discharged when working with CompCert C compiler and

C verification tools such as Verifiable C and Frama-C. The

program logic in Verifiable C uses the same semantics as

CompCert, and Frama-C agrees on the semantics of programs

written in a subset of C, called Clight.

IV. MODEL SYNTAX AND SEMANTICS

We describe the high-level schema of a system of

überobjects and their memory state, and introduce syntax and

semantics governing their multi-core concurrent execution.

A. Model syntax

überobject syntax The syntactic constructions for defining a

überobject are summarized in Fig. 2. A system of überobjects

U maps a unique identifier to a überobject, which is a tuple

consisting of (1) a language, lang, with which überobject is

implemented, (2) a lock, ulock, that ensures überobject can

only run on one core at any time, (3) an exclusive region of

uberobjects U ::= · | uid �→ üobj, U
uber object üobj ::= (lang, ulock,M, init,−−−−→

pubAPI,
−−−−→
casmfd,

−→
fd)

public API decl pubAPI ::= f(# »x:τ) : τ ′ = lockUobj;
gcmd; unlockUobj

CASM fun decl casmfd ::= f(# »x:τ) : τ = gcasm
internal fun decls fd ::= f(# »x:τ) : τ ′ = gcmd
language param lang ::= (syntax,−→, func)

Fig. 2: Syntax for überobjects

the heap M owned by überobject, (4) a public Application

Programming Interface, init, that sets up the initial state of

the überobject, (5) a set of public Application Programming

Interfaces, pubAPI, (6) a set of CASM functions, casmfd, and

(7) a set of internal function declarations, fd. A public API

holds a lock on the memory when it is initialized and releases

it only after it returns to avoid a data race.

Instead of modeling the detailed semantics of the source

language (e.g., C for most TEE) or the target language (e.g.,

x86 assembly), we assume each überobject takes in as a

parameter, the language (lang) that it is implemented in, which

we discuss in detail in Section IV-B.

Generalized commands, gcmd, consist of commands in

agreement with the syntax of the language in which the

überobject is implemented (lang). CASM commands, gcasm,

are assembly code for the target hardware architecture (e.g.,

x86) written in CASM DSL as explained in II-C. For example,

in an überobject uid with uid.lang = C, the functions declared

in uid.
−−−−→
pubAPI, and uid.

−→
fd are implemented using commands

in the C language, while the functions in uid.
−−−−→
casmfd are

implemented by CASM commands.

Memory model The layout of the memory for U , with

m distinct überobjects is illustrated in Fig. 3. The heap is

compartmentalized into m separate memory locations uidi.M
for i ≤ m. Each heap compartment uidi.M is a set of

addresses defined as uidi.M ∈ P(Addr), such that for all

i �= j ≤ m, uidi.M ∩ uidj .M = ∅.

We summarize the syntax for defining memory below. As

illustrated in Fig. 3, our state model also includes the regions

preserved for the stack frames, i.e., freelists [33], defined

similar to their counterparts in CASCompcert [25].

Exclusive heap M ∈ P(Addr)
Freelist stream F ::= F,F
Freelist F ∈ Pω(Addr)
Memory state σ ∈ Addr ↪→ val

A freelist can be infinitely large and is used by the thread to

allocate its local stack locations as needed. Since termination

guarantee is out of scope for this paper, we assume that

shared heap

Stack frames preserved
for each thread on a core

Allocated
memory

Fig. 3: Memory model

327

we have a stream of such infinite freelists F available upon

request. The stream of freelists F , is a coinductive definition

and consists of freelists of the type F ∈ Pω(Addr), i.e., infinite

sets of memory addresses. We assume that all freelists F in

the stream F are mutually disjoint from each other and from

the heap locations. We define memory state σ as a mapping

from the heap and the allocated parts of the stack to values.

Runtime constructs Our runtime construct consists of multi-

ple CPU cores with the following syntax.

thread pool T ::= · | tid �→ 〈uid,mainf, lang, F, ρ, a〉, T
single core state k ::= 〈cid, T 〉
multi core state K ::= 〈F ;σ;�k; cid〉
Each CPU core k is a tuple of a unique core identifier cid
and a list of threads T for executing external function calls. A

single thread, uniquely identified with tid, consists of (1) the

main function mainf that initializes the thread and can either

be a publicAPI or a CASM function, (2) language of the thread

lang; if mainf is a CASM function then lang is CASM and

otherwise it is the language of uid, (3) the freelist F allocated

to the thread, (4) the current internal core state ρ of the thread

storing key control flow state, (5) the instance, a, that satisfied

the precondition mainf when the thread was initialized (more

details later). Each multicore state K consists of a stream of

freelists F , a mapping from addresses to values, σ, a list of

CPU cores, and the active (running) core cid. The active core

cid in a multicore state can switch non-deterministically.

The interface specification For each überobject uid ∈
dom(U) and every function f ∈ uid.

−−−−→
casmfd ∪ uid.

−−−−→
pubAPI,

we fix an interface {P (x)}uid.f{Q(x)} and collect it in the

set ΔU . P (x) and Q(x) are pre- and post-condition of the

function f , respectively. We also refer to them as uid.f.pre(x)
and uid.f.post(x). These pre- and postconditions are the

behavior contracts of the interface. The memory footprint of

the interface for the überobject uid is specified by (uid.M).
In line with function specifications in verifiable-C separation

logic [34], we define the precondition uid.f.pre(x) to be

parametric in x of type A and has a type A → Prop. A

universally quantified version of it, ∀x : A.uid.f.pre(x), is

a first-order predicate defined over a global memory state σ,

which is a pair of heap and stack as discussed in Section II-B.

The heap includes other resources, e.g., control registers. We

write σ � uid.f.pre(a) to specify that the memory σ satisfies

uid.f.pre(x) when x is instantiated with the instance a. We

assume that the predicate is only defined over the heap owned

by uid, i.e. σ�(uid.M). The same holds for uid.f.post(x).
Moreover, for the sake of simplicity, we assume that A has a

simple base type, e.g. a list of integers or a string.
For example, we can enforce the specifications of the public

API function foo owned by an überobject uid:
foo := l1 = ∗l0; where uid.M = {l0, l1} and
uid.pre.foo(x) := l0 ↪→ x and uid.post.foo(x) := l1 ↪→ x

The function foo copies the contents of location l0 to l1. The

specification states that for any instance a if the pre-condition

holds for a when calling foo, i.e. l0 ↪→ a, then the post-

condition holds for a when foo returns, i.e. l1 ↪→ a.

B. Local syntax and semantics

The language parameter, lang, of an überobject dictates

the syntax of its public API and internal functions, and the

semantics by which those functions evaluate. The syntax,

denoted by syntax, defines a grammar for commands, gcmd,

and describes the internal states, ρ, that manage the local

control flow inside a function and the internal call stack, e.g.,

control continuations.

A pair of a memory state, σ, and an internal state, ρ,

describes the program state. The semantics −→ defines a local

transition migrating a program state of the form σ, ρ with

respect to a given freelist F : F � σ, ρ −→δ
ι σ′, ρ′. The label δ

indicates the footprint (read and write set) of this step; when δ
is empty we omit it. The label ι specifies the type of internal

step: abt stands for a step that results in an abort, ret stands

for function return, and τ stands for effectless internal steps.

We distinguish between the internal and external calls:

a general command defining a function in its public APIs

(
−−−−−→
pubAPI), or internal functions (

−→
fd) can make (a) an internal

call to the functions defined in fd of the same überobject, (b)

an external call to the CASM functions declared in
−−−−→
casmfd of

the same überobject, or (c) an external call to a public API of

another überobject. A CASM command defining a function in−−−−→
casmfd may make an internal call to the functions defined in

casmfd of the same überobject, or an external call to a public

API of another überobject. An überobject makes internal steps

with internal calls. When an external call is made, it cannot

take internal steps until the external call returns.

The final element of lang, the set func includes 4 functions

for initializing the internal state (initCore) and governing

transitions related to external calls and returns. (extCall,

extRet, and halt). The function extCall is called when an

external call is made, extRet is called when an external call

returns, and halt is called when the current thread is ready

to return to its caller. The semantics of a language specifies

the behavior of these four functions as follows:

F � initCore(f #»v) = ρ initializes a core given a public

API of an überobject or a CASM function f on arguments #»v
consulting the declarations in the überobject that owns them.

F � extCall(ρ) = 〈f #»v , ρ′〉 returns a pair 〈f #»v , ρ′〉 when ρ
calls an external function f with arguments #»v and puts ρ to

a waiting state ρ′.
F � extRet(ρ, v) = ρ′ updates ρ, waiting for the return of

an external call, to a new state ρ′, with a return value v.

F � halt(σ, ρ) = 〈v, ρ′〉 returns ρ′ and a return value v iff

(F � σ, ρ −→ret σ, ρ
′) with the global memory state σ.

C. Operational semantics

The concurrent multicore semantic rules are of the form

〈F ;σ;�k; cid〉 =⇒δ
ι 〈F ′;σ′;�k′; cid′〉. The δ is inherited from

the underlying local internal steps and refers to read/write

footprints of the step. The label ι is still used to specify the

type of multicore step. For instance, load stands for loading

a configuration and call stands for an external call, and ret

stands for return. Selected rules are summarized in Fig. 4.

328

CMD

T = tid �→ (uid,mainf, sl, F, ρ, a), T1 F �sl σ, ρ −→δ
τ σ′, ρ′

T ′ = tid �→ (uid,mainf, sl, F, ρ′, a), T1 dom(δ) ⊆ uid.M ∪ F

〈F ;σ; 〈cid, T 〉, �k1; cid〉 =⇒δ
τ 〈F ;σ′; (cid, T ′), �k1; cid〉

SWITCH

cid′ ∈ dom(�k)

〈F ;σ;�k; cid〉 =⇒emp
τ 〈F ;σ;�k; cid′〉

LOAD

∀i ≤ n. uidi ∈ dom(U) ∀i �= j ≤ n.uidi �= uidj

Fi � uidi.lang.initCore(uidi.init) = ρi
σ0 � uidi.init.pre(ai) F0 ::= F1 · · ·Fn :: F
Ti = tid1 �→ (uidi, init, uidi.lang, Fi, ρi, ai)

�k = 〈cid1, T1〉, . . . , 〈cidn, Tn〉
cid ∈ dom(�k) ∀uid ∈ U .closed(uid.M, σ)

(uid1.init|| . . . ||uidn.init)σ0 =⇒load 〈F ;σ;�k; cid〉

UBER-OBJECT-CALL

F = F1::F ′ T = tid �→ (uid,mainf , sl, F, ρ, a), T1

F � sl.extCall(ρ) = 〈uid′.f #»v , ρ1〉 σ � uid′.f.pre(b)
F1 � ρ′ = uid′.lang .initCore(uid′.f #»v) fresh(tid′)

uid′ �∈ active(�k1) T ′ = tid′ �→ (uid′, uid′.f, uid′.sl, F1, ρ
′, b),

tid �→ (uid,mainf , sl, F, ρ1, a), T1

〈F ;σ; 〈cid, T 〉, �k1; cid〉 =⇒emp
call 〈F ′;σ; 〈cid, T ′〉, �k1; cid〉

UBER-OBJECT-RET

T = tid′ �→ (uid′,mainf ′, sl′, F ′, ρ′, a′),
tid �→ (uid,mainf , sl, F, ρ, a), T1

F ′ � sl′.halt(σ, ρ′) = 〈v, ρ1〉
σ � mainf ′.post(a′) F � sl′.extRet(ρ, v) = ρ′′

T ′ = tid �→ (uid,mainf , sl, F, ρ′′, a), T1

〈F ;σ; 〈cid, T 〉, �k1; cid〉 =⇒emp
ret 〈F ;σ; 〈cid, T ′〉, �k1; cid〉

WAIT
�k = 〈cid, T 〉, �k1 T = tid �→ (uid,mainf, sl, F, ρ, a), T1

F � sl.extCall(ρ) = 〈uid′.f #»v , ρ1〉 = uid′ ∈ active(�k1)

〈F ;σ;�k; cid〉 =⇒emp
wait 〈F ;σ;�k; cid〉

INTERRUPT

F = F1::F ′ uid′ := uidcidInt

F1 � uid′.lang .initCore(uid′.init) = ρ′

fresh(tid′) T ′ = tid′ �→ (uid′, uid′.init, uid′.sl, F1, ρ
′,), T

uid′ �∈ active(�k1)

〈F ;σ; 〈cid, T 〉, �k1; cid〉 =⇒emp
intStart 〈F ′;σ; 〈cidint, T

′〉, �k1; cid〉

INTERRUPT-RET

uid′ := uidcidInt T = tid′ �→ (uid′,mainf ′, sl′, F ′, κ′,),
tid �→ (uid,mainf , sl, F, κ, a), T1

F ′ � sl′.halt(σ, ρ′) = 〈v, ρ1〉
σ � mainf ′.post T ′ = tid �→ (uid,mainf , sl, F, ρ, a), T1

〈F ;σ; 〈cidint, T 〉, �k1; cid〉 =⇒emp
intEnd 〈F ;σ; 〈cid, T ′〉, �k1; cidint〉

Fig. 4: Abstract semantics

The execution of a program on a system with n distinct

cores and an initial global state memory σ0, starts with a con-
figuration, C, of the form (uid1.init|| . . . ||uidn.init)σ0

, where

σ0 assigns initial values to the heap locations. A configuration

is well-defined iff for all i ≤ n, uidi ∈ dom(U) and for

all i �= j ≤ n, uidi �= uidj . A well-defined configuration

describes a system of überobjects ready to initialize n distinct

überobjects on the cores by calling their init functions.

The rule LOAD takes care of this initialization: It (1)

initializes the internal core state ρi for each uidi, using the

corresponding initCore function; (2) starts a new thread on

each core; (3) assigns n disjoint freelists from F to each

thread; (4) checks that σ0 satisfies the precondition of each

überobject uidi’s main public API, uidi.init.pre(x), for an

instance ai instantiating x. We continue running these threads

until they return (via one of the rules); at that point, we need

to ensure that the post-condition of the thread holds for the

exact same instance ai. Thus, we carry this instance ai in the

thread to use it when checking the post-conditions.

Moreover, the load rule requires each heap compartment

to be closed, i.e., closed(uid.M, σ0), formally defined in

Section V-B, states that any pointer stored in an address in the

domain of uid.M has to point to another location in uid.M .

In other words, a heap compartment cannot store a pointer

to another heap compartment or a stack frame. This property

implies an instance of respecting borders on the heap (see

Section IV-A): a function cannot find a pointer on its memory

that points to a location not accessible to it.

The LOAD rule chooses a core identifier cid ∈ dom(�k) as

the active core. The active core cid can be switched to any

other cid′ ∈ dom(�k) any time using the SWITCH rule, allowing

us to model a preemptive concurrent dynamics.

The rest of the semantic rules, except the last two handling

interrupts, are defined based on the internal state of the top

thread on the stack of the running core. For example, the CMD

rule is fired when the top thread on the stack of the running

core wants to take a local (τ) step. The rule ensures that the

multicore state also steps accordingly. CMD asserts that the

read/write footprint of the internal core state only touches the

memory locations the thread has exclusive access to.

If the top thread on the stack of the running core calls a

public API, the rule UBER-OBJECT-CALL (1) identifies the

callee and the arguments passed to it using the function

extCall, (2) updates the current internal core state to wait

for its callee to return, and (3) spawns a new thread on top

of the core’s stack, initializes its internal core state using the

function initCore, and assigns a fresh freelist to it. It also

checks that the call respects the specifications by ensuring that

σ satisfies the pre-condition of the callee for some b.
To avoid complications of implementing locks in our se-

mantics, we simulate them by adding an extra condition on

UBER-OBJECT-CALL that allows initialization of a public API

of uid′ as a callee if uid′ does not appear anywhere on the

stack of any of the cores in �k1, i.e. uid′ �∈ active(�k1) . If this

criterion is not met, then the überobject has already had the

lock on a different core, and thus the caller’s thread needs to

wait using the WAIT rule until the lock is released. Note that

the implementation of locks may result in livelock, e.g., two

überobjects may mutually wait for each other.

When the top thread on the stack of the active core halts:

If there is at least one other thread on the stack waiting for its

result, the rule UBER-OBJECT-RET uses the function extRet

329

to update the internal core ρ based on the return value v. It

also ensures that the post-condition of mainf′ holds for the

argument a′. By construction we know that a′ is the same

argument that satisfied the precondition of mainf′. If there is

no other thread waiting on the core, we terminate the core.

Interrupts Interrupts are modelded as an interrupt handler

überobject for each core. For the core cid, we appoint the

interrupt handler überobject uidcidInt. As a überobject, uidcidInt

has its own assigned memory location, which consists of

the core’s interrupt description table and its interrupt flag,

describing whether interrupts are allowed for the core or not.

uidcidInt has two distinct public APIs: init, and setCtx. Other

überobjects may call the public API function setCtx of uidcidInt

interrupt handler to change the interrupt flag of the core.

The function init (which takes no arguments) checks

whether interrupts are available for the core, and if so it calls

a public API of an überobject corresponding to the interrupt

service routine. Our preemptive model allows init to take

control of the core at any point in time, assigning the highest

priority to the interrupts. As a result, the init public API needs

to have an always true pre-condition to ensure that it can

always be initialized: uidcidInt.init.pre = true.
The INTERRUPT rule models the preemptive semantics.

To enforce the locks of überobjects, we require the extra

premise uid′ �∈ active(�k1). Thus, in our model, an interrupt

cannot get interrupted. When the interrupt handler termi-

nates, INTERRUPT-RET hands back the core to the orig-

inal interrupted thread asserting the post-condition of the

interrupt handler’s init public API. This rule is similar to

other return rules, except that we do not update the inter-

nal state of the interrupted thread after the return. As a

result we need to distinguish this specific return from others

such as UBER-OBJECT-RET. We assign a subscript, int, to

the core cid, i.e., cidint, when the interrupt handler of the

core initializes (INTERRUPT), and remove it after it returns

(INTERRUPT-RET).

V. METATHEORY

We show how our abstract compartmentalization yields

good properties. Before delving into the technical details, we

first presenting a high-level road map of our formal results.

A. Overview of formal results

Source-level composition of compartments [Section V-B]
We prove a source-level modular verification property: proper-

ties verified of each überobject in isolation hold on concurrent

executions of the whole system. To do so, we formalize the

property of respecting the interface (i.e., respecting memory

footprint boundaries and specified pre- and post-conditions) as

a verifiable predicate and prove that if each überobject respects

the interface in isolation, any concurrent run of the whole

system respects the interface. In particular, in any concurrent

run, when a public API or CASM function returns, the global

memory state satisfies the function’s post-condition.

The proof technique is via rely-guarantee reasoning. We

define an invariant called the core invariant [Def. 5] on

multicore states and prove that if each überobject respects the

interface in isolation and the initial multicore (prompted by

the LOAD rule) satisfies the invariant, then each concurrent

step of the multicore in the abstract semantics preserves the

invariant [Thm. 1]. The core invariant ensures that a multicore

state can always progress according to the abstract semantics

[Thm. 2]. The design of our abstract semantics ensures that

the progress property is enough for lifting the local properties

of überobjects to any concurrent execution. As a corollary

of the progress theorem [Cor. 3], in any concurrent run, the

caller satisfies the pre-conditions of the callee (e.g., via the

fifth premise of the UBER-OBJECT-CALL rule), and the callee

satisfies its post-condition upon return (e.g., via the fourth

premise of the UBER-OBJECT-RET rule). Moreover, we prove

that any concurrent execution is data race free, i.e., no two

threads access a location concurrently when at least one of

the accesses is a write [Thm. 4].

Source-level secure flow of information [Section V-C] We

then show one application of our modular verification, by

defining an interface to ensure a noninterference property

for our concurrent system. We prove the noninterference

result for our system by assigning an integrity label to each

memory compartment and imposing an Information flow call-

ing convention on überobjects [Def. 6]. Our noninterference

theorem states that given two configurations that agree on

the values stored in their high-integrity memory compartments

and the implementation of überobjects with exclusive access

to those compartments, any concurrent execution of the first

configuration can be simulated by a concurrent execution of

the second one such that the values stored in the high integrity

parts of the memory continue to be the same [Thm. 5].

From source to target level property preservation [Sec-
tion V-D] Next, we outline the properties required by a

compiler to preserve the properties verified at the source-level

to the target level. We show that CASCompCert satisfies these

properties and can be used for our case studies, which are

implemented in Clight and CASM language.

A compiler abstractly consists of a memory transformation

function and a code transformation function. We require the

memory transformation function of a compiler to be well-

defined in the sense that it preserves the disjointedness of

the heap compartments from source to target [Def. 7]. A

target-level system of überobjects [Def. 8] is obtained by

compiling the source überobjects using a compiler with a

well-defined memory transformation function. Next, we define

interface-preserving property of a compiler that ensures that if

a source-level überobject respects its interface then its target-

level counterpart also respects the interface [Def. 9]. We show

that if each überobject is compiled in isolation by an interface

preserving compiler, then the concurrent execution of the

target-level system of überobjects enjoys the same properties,

i.e., preservation, progress, and data race freedom, as the

source-level system of überobjects [Cor. 6]. Finally, we review

the definition of sequential compiler correctness introduced by

Jiang et al. [25] [Def. 10], and use it to prove that correct

sequential compilers are interface preserving [Thm. 7].

330

σ′

σrest
uid . M

F

σ
(A) another core steps

R(σ′ , σ′ ′ , uid . M, F, false)assume

σ′ rest
uid . M

F

σ′ rest
uid . M

F

σ′

(B) internal step

assert

σ′ rest
uid . M

F

σ′ ′

δ
τ δ

G(δ, σ′ ′ , F,uid . M)

σ′ rest

uid . M

F

σ′

assume

σ′ ′ rest
uid . M

F

σ′ ′

assert σ′ ⊨ f′ . pre(b) R(σ′ , σ′ ′ ,uid . M, F, false)

σ′ ′ ⊨ f′ . post(b)

σ′ rest
uid . M

F

σ′

assume

σ′ ′ rest
uid . M

F

assert σ′ ⊨ f′ . pre(b)

σ′ ′ ⊨ f′ . post(b)

R(σ′ , σ′ ′ ,uid . M, F, true)

σ′ ′

(C) external call to a publicAPI () with instance b uid′ . f′

(D) external call to a CASM func.() with instance buid . f′

Fig. 5: Respecting the interface

B. Source level composition of compartments

To apply the rely-guarantee reasoning principle of concur-

rent systems [35], [36], we first formally define the rely and

guarantee conditions of each überobject, which we refer to as

the local requirements of each überobject.

Local predicates for respecting the interface We begin by

defining a few auxiliary predicates on the system configura-

tions. To aid the explanation, we show 4 pairs of memory states

in Fig. 5. For each, uid.M and F represent the local heap and

freelist of uid, respectively. The gray σrest is the memory of

other überobjects. The hashed rectangle illustrates portions of

the heap that changes across the pair. The crossed dashed line

states that there is no pointer on uid.M pointing to F .

We define the function isCasm(f) to return true when

f is a CASM function and false otherwise. A memory

region M is closed w.r.t. σ, closed(M,σ), iff it does

not store a pointer to any other region in σ than itself:

∀l, l′:Addr . if l∈M and l′ =σ(l), then l′ ∈M.

Next, we define a rely condition of a thread stating what

portions of two memory states σ and σ′ are allowed to store

different values. Fig. 5.A illustrates a scenario where the thread

tid belonging to uid temporarily pauses execution when the

memory state is σ, allowing other programs to execute, and

resumes when σ′ is the memory state. The rely condition,

written R(σ, σ′,M, F,modified), is what tid assumes others

can modify while it is paused. Here, M ⊆ dom(σ) is a portion

of the heap (in this scenario, it is uid’s local heap uid.M)

and F ⊆ dom(σ) is the stack (freelist). The condition holds

iff σ′ extends σ but keeps M closed. If the boolean variable

modified is false, then σ and σ′ have to agree on the value

stored both on the heap with addresses in M and the stack

F ; otherwise, σ and σ′ only need to agree on the values

stored in addresses on the stack. If the thread is paused by

an external call to another überobject Public API or by a core

switch, we set modified to be false and the rely condition

ensures that neither the thread’s exclusive heap compartment

nor its stack will be touched by the time the thread is resumed

(Scenarios A and C of Fig. 5). If the thread is paused by a call

to a CASM function of the same object which has access to

the same heap compartment, we set modified to be true and

the rely condition only ensures that the thread’s stack will be

untouched (Fig. 5.D). Formally: R(σ, σ′,M, F,modified) iff
closed(M,σ′) ∧ dom(σ)� dom(σ′) ∧ ∀l∈S, σ(l)=σ′(l)
where S=F when modified= true; S=M ∪F otherwise.

We next define guarantee condition of a thread when it

evaluates its own code. The guarantee condition G(δ, σ, F,M)
holds iff M is closed with respect to σ and the footprint δ only

touches the memory regions in F and M , i.e., closed(M,σ)∧
dom(δ) ⊆ F ∪M. Fig. 5.B illustrates that each internal step

of a thread must satisfy the guarantee condition.

We use our rely and guarantee conditions to define what it

means for a thread (belonging to überobject uid) running on a

CPU core to respect the specifications of its postcondition Q
and its callees’ preconditions in the presence of other threads

and CPU cores. It is written (〈ρ, σ〉{Q})F,uid,sl, where ρ is the

internal state of the current thread, σ is the current memory

state, Q is the postcondition of the current thread, F is the set

of stack locations of the current thread, and sl is the language

that the function the current thread is executing is written in.

Definition 1 (Respecting the specs). (〈ρ, σ〉{Q})F,uid,sl iff for
all σ′ with R(σ, σ′, uid.M, F, false),

1) if F � ρ, σ′ −→δ
τ ρ′, σ′′ then (〈ρ′, σ′′〉{Q})F,uid,sl, and

2) if F � sl.halt(ρ, σ′) = 〈v, ρ′〉 then σ′ � Q, and
3) if F � sl.extCall(ρ)= 〈f ′ #»v :τ, ρ1〉, then for

all b s.t. σ′ � f ′.pre(b) and for all σ′′ s.t.
R(σ′, σ′′, uid.M, F, isCasm(f ′)) and all return
values v, if σ′′ � f ′.post(b) then (〈ρ′, σ′′〉{Q})F,uid,sl

where F � sl.extRet(ρ1, v)= ρ′.

Def. 1 assumes R(σ, σ′, uid.M, F, false), the rely condi-

tion, to hold: we can rely on the other cores to keep our version

of global state memory σ intact with respect to the locations

F and uid.M (Fig. 5.A). Condition 1) states that any step

the thread takes results in a new configuration that respects

the same specifications. Condition 2) states that right before

the thread halts, the global state memory satisfies its post-

condition. Condition 3) says, in the case of an external call,

the global state memory satisfies the precondition of the callee.

Moreover, the callee may alter the global memory state, but the

caller can assume that its callee only extends the global state

memory according to the agreed-upon boundaries. Scenarios

C and D of Fig. 5 illustrate this condition.

Note that Def. 1 does not dictate functions to return and

allows them to abort, since aborted programs also satisfy

the invariants while it executes. This aligns with the vision

of our formalization: to allow coexistence of compartments

where some terminate normally and others abort, as long

as they preserve each other’s specifications (pre- and post-

331

conditions) in a concurrent run. By verifying the specifications

of a function using tools like Frama-C and Verifiable-C, we

can ensure the function being respectful with the specs.

Next we define a coinductive property to state that the

current thread does not leak references as it executes, written

RM(F, uid, (ρ, σ), sl), where the arguments have their usual

meaning. For all σ′ with R(σ, σ′, uid, F, false)

1) if F � (ρ, σ′) −→δ
τ (ρ′, σ′′), then G(δ, σ′′, F, uid.M)

and RM(F, uid.M, (ρ′, σ′′), sl), and

2) if F � sl.halt(ρ, σ) = 〈v, ρ′〉 then the return value v is

not a pointer, and

3) if F � 〈f ′ #»v , ρ1〉 = sl.extCall(ρ) then (a) none of

the arguments #»v are a pointer, and (b) for all σ′′ with

R(σ′, σ′′, uid.M, F, isCasm(f ′)) and any return value v′

that is not a pointer, we have RM(F, uid.M, (ρ′, σ′′), sl)
where F � sl.extRet(ρ1, v′) = ρ′.

Condition 1) says any step the thread takes asserts the

guarantee condition: it does not leak any references and only

changes its own heap and stack (Fig. 5.B). Moreover, the step

results in a new configuration that has the same property.

Condition 2) says if the thread halts, its return value is not

a pointer. Condition 3) says, in the case of an external call,

the thread does not leak any pointers to the callee. Moreover,

the caller can assume that its callee only extends the global

memory according to the agreed-upon boundaries (Fig. 5.C,D).

The state after the return continues to have the same property.

We define respecting the boundary to mean that when a

function f #»v is initialized, its execution does not leak any

references. We write it as MemClose(sl, uid, f #»v , σ, F), where

f is a public API or CASM function belonging to uid,

implemented in sl, and assigned the freelist F .

Definition 2 (Respecting the boundary). We write
MemClose(sl, uid, f #»v , σ, F) iff for any internal core
state ρ if F � sl.initCore(f #»v) = ρ and closed(uid.M, σ)
then RM(F, uid.M, (ρ, σ), sl).

With Def. 1 and Def. 2, we define what it means for

a publicAPI or CASM function declared in an überobject

uid∈U to respect the interface as follows.

Definition 3 (Respecting the interface). A function f defined
as a public API or CASM function in an überobject uid ∈ U
and implemented with language sl, respects the interface, iff
for all global memory states σ, all non-pointer arguments #»v ,
and any fresh freelist F ,

• it respects the specifications, i.e., ∀ a. if σ �
f.pre(a), then (〈ρ, σ〉{f.post(a)}){F,uid,sl} for F �
sl.initCore(f #»v) = ρ and

• it respects the memory boundaries, i.e.
memClose(sl, uid.M, f #»v , σ, F).

An überobject respects the interface iff all its public APIs

and CASM functions respect the interface. A set of überobjects

U respects the interface, if all uid ∈ U respect the interface.

Next, we define what it means for a system of überobjects

U to be valid with respect to a global memory state σ. This

property matches the conditions required by the premises of

the LOAD rule in Fig. 4. We will use it to form well-defined

configurations that can be successfully initialized by LOAD.

Definition 4 (Valid system of überobjects). We call a system
of überobjects U valid w.r.t a global memory state σ iff the pre-
condition of every überobject uid ∈ U is satisfiable, and its ex-
clusive memory region is closed w.r.t. σ, i.e., ∀uid ∈ dom(U),
and for some a, σ � uid.init.pre(a) and closed(uid.M, σ).

Global properties for respecting the interface Next, we

define an invariant on the threads of a multicore state. It states

that for each core: (a) the thread on top of the stack respects

the specifications and boundaries, and (b) a thread, tid, sitting

in the stack waiting for an element on top of it to halt will

respect the specifications and boundaries, assuming that its top

thread, t(tid), asserts the rely condition when it returns.

Definition 5 (The core invariant). A multicore state
〈F , σ,�k, cid〉 satisfies the core invariant I, iff for each
〈cid, T 〉 ∈�k, where T = tid �→ (uid,mainf , sl, F, ρ, a), T ′,
we have top(σ, tid �→ (uid,mainf , sl, F, ρ, a)) and for
any tid′ �→ (uid′,mainf ′, sl′, F ′, ρ′, a′)∈T ′ we have
waiting(T, σ, tid �→ (uid′,mainf ′, sl′, F ′, ρ′, a′)).

(a) top(σ, tid �→(uid,mainf , sl, F, ρ, a)) if and
only if (〈ρ, σ〉{mainf .post(a)})F,uid,sl and
RM(F, uid.M, (ρ, σ), sl).

(b) waiting(T, σ, tid �→ (uid,mainf , sl, F, ρ, a)) iff for
all σ′ with R(σ, σ′, uid.M, F, isCasm(t(tid).mainf))
and all return values v (that is not a pointer), we
have if σ′ � t(tid).mainf .post(b), then top(σ′, tid �→
(uid,mainf , sl, F, ρ′, a)), where ρ′ = sl.extRet(ρ, v),
and t(tid) is the thread on top of tid in T , and b is the
instance of the thread tid, i.e., b = t(tid).a.

We prove that when all functions respect the interface, the

core invariant is preserved in any concurrent execution. Then,

we use this result to show that under the conditions ensuring

that a configuration initializes successfully, the core can always

progress by taking a step other than SWITCH.

Theorem 1 (Preservation of the invariant). If a system of
überobjects U respects the interface, then every step of the
abstract semantics (Fig. 4) preserves the core invariant.

Proof. The proof is by case analysis on the rules of Fig. 4.

See the extended TR for the complete proof.

Theorem 2 (Progress). If a system of überobjects U respects
the interface and is valid w.r.t. a global memory state σ, then
we can successfully initialize the well-defined configuration
(uid1.init|| . . . ||uidn.init)σ, and every core in the composi-
tional concurrent run of the configuration enjoys progress, i.e.
every core can either take a step other than SWITCH or it
terminates (with TERM, DONE, or ABORT).

Proof. We prove that the core resulting from a load of such

configuration satisfies the core invariant, and the core invariant

is enough to ensure progress. See the extended TR.

332

The progress property is a strong result; using it, we can

guarantee that in any concurrent execution, if a public API or

CASM function is ready to return, the global memory state

satisfies the function’s post-condition.

Corollary 3 (Preservation of the specs globally). Consider a
system of überobjects U that respects the interface and is valid
w.r.t. a global memory state σ. In any concurrent execution of
a well-defined configuration (uid1.init|| . . . ||uidn.init)σ, if a
thread on a core is ready to halt, then we can establish the
post condition of the main function running on the thread.

Finally, we establish data race freedom: in any concurrent

execution, no two threads access a location concurrently when

at least one of the accesses is a write.

Theorem 4 (Data race freedom). Every well-defined configu-
ration is data race free.

This property is a consequence of our memory compart-

mentalization and holding locks on each compartment.

C. Source-level secure flow of information

We take results from Section V-B one step further and prove

a standard noninterference property. We show that by assigning

an integrity label to each heap compartment and establishing

a calling convention, we can ensure that the data stored in the

low-integrity regions do not influence those with higher (or

incomparable) integrity labels.

We define a security lattice Ψ := 〈L,�〉, where L is a set

of integrity labels, denoted by ξ, and � is a partial order on

L. ξ � ξ′ if ξ′ has lower or equal integrity as ξ. We assume

there is a map from uid to its integrity label, an element in

L. We sometimes use uid to denote the integrity label of uid,

e.g., we write ξ � uid to mean that uid has a lower or equal

integrity than ξ. We enforce the following information flow

policy on external calls and returns, which can be enforced

statically by locally type checking each compartment:

Definition 6 (IF calling conventions). Function f with in-
tegrity level ξ can externally call an f ′ of lower or equal
integrity ξ′, i.e., ξ � ξ′, and freely pass arguments to it. f can
only get back a return value from f ′ if ξ = ξ′.

An überobject adheres to the IF calling convention iff all

its public APIs and CASM functions adhere to the IF calling

convention. A set of überobjects U adheres to the IF calling

convention, iff all uid ∈ U adhere to the IF calling convention.

Our noninterference result states that if two configurations

agree upon the high-integrity initial überobjects and the high-

integrity memory locations, if one configuration can reach a

state, the other one can simulate the execution and the resulting

memory states still agree on the high integrity memory loca-

tions. To simplify the noninterference statement, we assume

that all überobjects terminate and do not abort. The termination

assumption is necessary for establishing the simulation. In

a non-terminating setting, a low-integrity überobject in the

second configuration may be trapped in an internal loop and

cannot take the step required for completing the simulation.

We can eliminate the assumption by proving termination.

The majority of the überobject’s functions that implement

a TEE are short-running services without unbounded loops

or recursion. The programmer can verify their termination

either manually or using automated tools, e.g., the termination

checker provided by Frama-C.

Theorem 5 (Noninterference). Consider an interface-
respecting system of überobjects U that adheres to the IF
calling convention, and is valid w.r.t. initial global memory
states σ0 and σ′

0. For any integrity level ξ ∈Ψ, consider
two well-defined configurations (uid1.init|| . . . ||uidn.init)σ0 , and
(uid′

1.init|| . . . ||uid′
n.init)σ′

0
, s.t. ∀uid∈U .∀l∈ uid.M . if uid � ξ,

then σ0(l) = σ′
0(l), and ∀i ≤ n, with uidi � ξ or uid′i � ξ,

we have uidi = uid′i. If one configuration reaches a state
with global memory σ, then the other one can simulate
the execution and reach a state with global memory σ′ s.t.
∀uid ∈ U . ∀l ∈ uid.M . if uid � ξ, then σ(l) = σ′(l).

D. From source to target level property preservation

Our ultimate goal is to bring the source-level properties:

preserving the specs and coarse-grained noninterference intro-

duced in Sections V-B and V-C to the target level. The idea

is that we may use a different compiler for each überobject,

but we identify a set of requirements that each has to satisfy.

We show that these requirements are enough to preserve the

property of respecting the interface for each compartment,

i.e., if a public API or CASM function of an überobject

respects the interface at the source level, its compiled version

also respects the interface. Then we use the same abstract

semantics of Fig. 4 to compose the compiled compartments

for concurrent execution and use the same set of theorems

we used for the source level to establish the properties, e.g.,

progress, of the concurrent compositional run at the target

level. The requirements that we identify are orthogonal to the

functional correctness requirement of compilers; we are only

interested in establishing the spec-preservation and coarse-

grained noninterference of the compiled components.

An interface-preserving compiler A compiler is a pair of

functions, CT and MT, transforming code and memories

from the source to the target level, respectively. The function

MT:Addrs ↪→ Addr t (partially) maps source-level memory

addresses (Addrs) to addresses at the target level (Addr t).
Aligned with the prior work on certified compositional

compilers, we require MT to map all locations on the source-

level heap to a location on the target-level heap. We also

require this mapping to be injective on the heap locations.

This requirement allows us to map each compartment on

the heap to a corresponding compartment MT(uid.M) and

preserve the disjointness of the heap compartments. We call

this property well-definedness of memory transformations and

formalize it below. We require that different compilers used

for each compartment agree on their memory mapping MT.

We fix this common memory transformation MT for the rest

of this section. We refer to source and target level heaps as

heaps and heapt, respectively.

333

Definition 7 (Well-defined memory transformation). A mem-
ory transformation MT : Addrs ↪→ Addr t is well-defined iff

1) it is total on heaps, i.e., its domain includes the source-
level heap locations, heaps ⊆ dom(MT),

2) restriction of MT to heaps, i.e. MT�heaps , is injective.
Where MT�heaps :heaps ↪→ Addr t is the same as MT
but with a restricted domain.

3) each source-level heap location is mapped to a target-
level heap location, i.e., MT(heaps) = heapt. where
MT(heaps) is the set of all locations l ∈ Addr t with
l′ = MT(l) for some l ∈ Addrs.

For each überobject uid ∈ U in the source level, we define

a corresponding überobject uidt in the target-level. uidt owns

the exclusive memory location MT(uid.M): the mapping of

uid’s exclusive memory to the target level. It has the same

set of function declarations with their code being translated to

the target language via the code transformation mapping CT.

For example, for a public API f(# »x:τ) : τ ′ = gcmd declared

in uid, we add f(# »x:τ) : τ ′ = CT(gcmd) to the public API

declarations of uidt. The CASM functions are translated to

the assembly language by an identity code transformation on

their original assembly implementation.
The definition of the interface for public APIs and CASM

functions remains intact in the compilation process. At the

target level, a function’s specifications (i.e., its pre- and post-

conditions) are defined over the target heap (rather than the

source heap). To build the target level specifications, we substi-

tute any occurrence of source heap locations in the source level

specifications with its corresponding target heap location. For

example, the source-level interface {P (x)}uid.f{Q(x)} maps

to the target-level interface {Pt(x)}uidt.ft{Qt(x)}, where

Pt = [MT(uid.M)/uid.M]P . We use Δt for the set of target-

level specifications derived from Δ.

Definition 8 (Target-level system of überobjects). Given a
source-level system of überobjects U , we build a target-level
system Ut, such that uid �→ üobj ∈ U iff uidt �→ üobj′ ∈ Ut.
Where for üobj as (sl, ulock,M, init ,

−−−−−→
pubAPI ,

−−−−→
casmfd ,

−→
fd),

üobj′ is (tl, ulock,MT(M), init t,
−−−−−→
pubAPIt,

−−−−−→
casmfd t,

−→
fd t). sl is

the source-level language of uid and tl is the target language.

Each target-level überobject inherits its integrity level and

lock from its source-level counterpart. Recall that the lock is

a conceptual lock, modeled by the WAIT rule in the semantics.

The rest of the target-level überobject definitions are carried

over from the source level similarly. We use a subscript t on

the target-level entities to distinguish them from their source-

level counterparts. A configuration in the target-level runs

concurrently using the same semantic rules in Fig. 4. With the

minor exception that in the last premise of the CASM-CALL,

we put the language of the new thread to ASM instead of CASM.
We now define the notion: an interface-preserving compiler.

Definition 9 (Interface-preserving compiler). A compiler is
interface-preserving iff if U respects the interface Δ, then
Ut respects the interface Δt and moreover every control-
flow transfer due to external calls and returns across different

F �sl σs, ρs
δ−−−−→
τ

∗
σ′
s, ρ

′
s

G(δ, σ′
s, F, uid.M)

and σ′
s � fs.posts(a)

≥ ≥ iff

F �tl σt, ρt
δt−−−−→
τ

∗
σ′
t, ρ

′
t

G(MT(δ), σ′
t, Ft, uidt.MT(M))

and σ′
t � ft.postt(a)

Fig. 6: Module local simulation (the halt case)

überobjects at the target level has a corresponding external
call or return at the source level.

The second condition ensures that if each uid ∈ U satisfies

the Information flow calling convention, then uidt ∈ U satisfies

the information flow calling convention too. It is straight-

forward that the system of überobjects each compiled with

an interface-preserving compiler preserves the global spec-

preservation and noninterference properties. We can apply

the same theorems proved in Section V-B to the target-level

system of überobjects as they also preserve the interface.

Corollary 6. Assume that each uid ∈ U is compiled with
an interface-preserving compiler. If each uid ∈ U respects
the interface, then every target-level configuration enjoys the
global spec-preservation and the coarse-grained noninterfer-
ence properties.

Next, we show that the sequential compiler correctness from

CASCompCert [25] implies that the compiler is interface-

preserving as long as the target language is deterministic.

Review of CASCompCert’s [25] definitions We provide a

high-level description of CASCompCert’s definitions (Defini-

tions 2 and 3 [25]) and adapt them to our syntax. Now we fix

the target language of all compartments to be x86-assembly

to match that of CASCompcert’s.

Jiang et al. [25] define their sequential compiler correctness

to prove that compositional and concurrent program compila-

tion preserves the semantics of whole programs. The definition

is based on a module-local simulation that is compositional

and preserves read and write footprints, and uses an invariant

Inv(σ, σt) on global memory states σ and σt. The invariant

Inv(σ, σt) states that the source and target-level memory states

agree on the values stored in their corresponding addresses:

Inv(σ, σt) iff for all addresses l, lt if l ∈ dom(σ) and

MT(l) = lt then lt ∈ dom(σt). Moreover, if σ(l) = v and v
is not a memory address, then σt(lt) = v, and if σ(l) = l′,
with l′ being an address, then MT(l′) = σt(lt). As long as

this invariant holds and no function stores a stack pointer on a

heap at both source and target levels, well-definedness of MT
implies that for a first-order specification P defined over heap

locations and its target-level counterpart Pt, we have σ � P
iff σt � Pt. An adaptation of CASCompCert’s sequential

compiler correctness in our notation is as follows:

Definition 10 (Sequential compiler correctness). A sequential
compiler 〈CT,MT〉 from the source language sl to target lan-
guage tl is correct, if successful initialization of each function
f #»v to core ρ implies the successful initialization of its target
level counterpart ft

#»v t to core ρt. Moreover, for any global
memory states σ : heaps ↪→ val and σt : heapt ↪→ val that
are closed w.r.t. the heap locations, and satisfy the invariant

334

#1 Respecting the specs (Def. 1)

a function satisfies its pre- and post-conditions

#2 Respecting the boundary (Def. 2)

[a.] each function has its own local stack.

[b.] no pointer to a stack location is stored on the heap.

[c.] no pointer is sent via arguments/return values of

an external call.

[d.] a pubAPI or CASM function writes/reads from its

stack and the assigned heap.

[e.] no pointer to an unallocated location on the heap.

Fig. 7: Requirements for überobject interface respecting

Inv(σ, σt) on global memory states, there is a module-local
simulation from 〈ρ, σ〉 to 〈ρt, σt〉, i.e. 〈ρ, σ〉 ≤ 〈ρt, σt〉.

The module-local simulation 〈ρ, σ〉 ≤ 〈ρt, σt〉 (illustrated

in Fig. 6) is defined inductively based on the structure of the

source-level internal core state ρ and an index on the number

of local computation steps. The main idea of its definition is

as follows: if the internal core state at the source level (ρ)

calls an external function or halts, satisfying its guarantees

while relying on others to handle its heap properly, then the

target-level core (ρt) eventually, after none or some τ -steps,

can take a corresponding action, i.e., calling the same external

function or halt. The target internal core state assumes a similar

rely condition stating that others will handle its memory state

safely and asserts similar guarantees. The formulation of the

module-local simulation ensures that at the point where both

source and target internal core states halt or call an external

function, the invariant on their global memory state holds and

their footprints on the heap match.

CASCompCert: an interface-preserving compiler Our goal

is to prove that if a function declared in the source überobject

respects the interface and the sequential compiler is correct,

then the compiled target überobject also respects the interface.

The main step in the proof is to form a backward module-local

simulation from the target to the source-level states. We need

to show that if the target level takes a step and shall rely

on some properties to assert the required guarantees, then the

source level core (has already done or) will eventually take

a similar step with an equivalent rely-guarantee conditions.

In our setting, where we assume that the target language

is deterministic, the backward simulation can be deduced

from a forward simulation from the source to the target-level

states [37]. We also show that the rely-guarantee conditions

on the source and target are equivalent since the simulation

establishes the invariant Inv(σ, σt) on global memory states.

Theorem 7. Correct sequential compilers as defined in [25],
are interface-preserving.

A corollary of Thm. 7 is that if the überobjects are written in

C language, we can compile our public APIs with the sequen-

tially correct compiler implemented in CAScompCert, and the

CASM functions with the identity compiler, to preserve the

coarse and fine-grained noninterference.

VI. CASE STUDIES

In this section we present two case studies that show

instances of verified TEEs on two different hardware archi-

tectures/platforms (x86 and ARM), where properties proved

on the source can carry over to the binary. These case studies

demonstrate the generality of our formal framework.

A. uberXMHF TEE

Our first case-study is uberXMHF (üXMHF), an open-

source, microhypervisor TEE for the x86 32-bit hardware

virtualized platform verified for its guest memory separa-

tion properties at the source level [21]. We first give an

overview of üXMHF; then we discuss an example source-

level property of guest memory separation; finally, we discuss

how the assumptions required by our framework are satisfied

by the verification conditions used in verifying the memory

separation properties of üXMHF, which allows us to bring

source-level properties to the compiled binary code.

1) Overview: üXMHF uses hardware virtualization and

runs a Ubuntu 12.04 32-bit multicore guest OS with the

micro-hypervisor executing at the highest privilege level. It

has been used to develop a wide variety of security ap-

plications [38]–[45]. üXMHF is built using the überobject

abstraction (see Section II-B) which consists of: (a) a set of

verified micro-hypervisor core logic üobjects and (b) a set of

verified micro-hypervisor extensions. Together, these verified

üobjects set up an execution environment for an untrusted OS

that is separated from the hypervisor via hardware virtual-

ization. üXMHF has been verified for the security property

of guest memory separation which means that the guest OS

cannot directly access hypervisor memory regions [21]. During

verification, üXMHF Assembly language code is replaced by a

C99 hardware model and together with all the verified üobjects

are analyzed via Frama-C to enforce the aforementioned guest

memory separation property (not full functional correctness).

2) Page-table setup and memory separation: Fig. 8 shows

a code snippet of a verified üobj that sets up the unverified

guest OS memory separation page tables. Text in green

are Frama-C ACSL requires-assign-ensure clauses, asserting

which variables can be written to (assign) and what constraints

these variables must satisfy. Together, lines 4-10 specifies

that micro-hypervisor memory regions are inaccessible to the

guest OS by asserting page table entries’ permissions bit are

set correctly. Then loop invariant (lines 17-21) defines data

structure invariants: the page table is always populated and the

memory protection flags are always set (support function in

line 30 obtains the memory protection of the memory address

which is aliased into a ghost variable g_flags in line 28

for verification) such that the untrusted guest cannot access

hypervisor protected memory regions.

3) Discharging interface respecting requirements: Fig. 7

summarizes the requirements of respecting the interface re-

quired by our überobject architecture on the source code

(Def. 3). Requirement #1 is satisfied by üXMHF because pre-

and post- conditions of every function (such as the one shown

in Fig. 8) are checked by deductive verification via Frama-C’s

335

1 //@ghost uint64_t gflags[PAE_PTRS_PER_PDPT *
PAE_PTRS_PER_PDT * PAE_PTRS_PER_PT];

2 /*@
3 ...
4 assigns gp_vhslabmempgtbl_lvl1t[0..(PAE_PTRS_PER_PDPT *

PAE_PTRS_PER_PDT * PAE_PTRS_PER_PT)-1];
5 assigns gflags[0..(PAE_PTRS_PER_PDPT * PAE_PTRS_PER_PDT

* PAE_PTRS_PER_PT)-1];
6 ...
7 ensures (\forall uint32_t x;
8 0 <=x< (PAE_PTRS_PER_PDPT * PAE_PTRS_PER_PDT *

PAE_PTRS_PER_PT) ==>
9 gp_vhslabmempgtbl_lvl1t[x] ==

10 (((x*PAGE_SIZE_4K)&0x7FFFFFFFFFFFF000ULL)|gflags[x]))
11 @*/
12 void gp_s2_setupmpgtblv(void){
13 uint32_t i, spatype=0, slabid =

XMHFGEEC_SLAB_GEEC_PRIME;
14 uint64_t flags=0;
15
16 //pt setup
17 /*@ loop invariant a5: 0 <= i <= (PAE_PTRS_PER_PDPT *

PAE_PTRS_PER_PDT * PAE_PTRS_PER_PT);
18 loop assigns gflags[0..(PAE_PTRS_PER_PDPT *

PAE_PTRS_PER_PDT * PAE_PTRS_PER_PT)], spatype,
flags, i, gp_vhslabmempgtbl_lvl1t[0..(
PAE_PTRS_PER_PDPT * PAE_PTRS_PER_PDT *
PAE_PTRS_PER_PT)];

19 loop invariant a6: \forall integer x; 0 <= x < i ==> ((
uint64_t)gp_vhslabmempgtbl_lvl1t[x]) == (((
uint64_t)(x * PAGE_SIZE_4K) & 0x7FFFFFFFFFFFF000ULL
) | (uint64_t)(gflags[x]));

20 loop variant (PAE_PTRS_PER_PDPT * PAE_PTRS_PER_PDT *
PAE_PTRS_PER_PT) - i;

21 @*/
22 for(i=0; i < (PAE_PTRS_PER_PDPT * PAE_PTRS_PER_PDT *

PAE_PTRS_PER_PT); ++i){
23 spatype = gp_s2_setupmpgtbl_getspatype(slabid,
24 (uint32_t)(i * PAGE_SIZE_4K));
25
26 flags = gp_s2_setupmpgtblv_getflags(slabid,
27 (uint32_t)(i * PAGE_SIZE_4K), spatype);
28 //@ghost gflags[i] = flags;
29
30 gp_vhslabmempgtbl_lvl1t[i] =
31 pae_make_pte((i*PAGE_SIZE_4K), flags);
32 }
33 }

Fig. 8: Verified üobj page-table setup.

WP plugin and value analysis. #2[a.] is satisfied via Frama-C’s

value analysis checks for memory separation of üobjects and

function local stack in combination with the property described

previously in §VI-A2 that guarantees page tables are correctly

initialized. Further, assertions on the source ensures memory

reads and writes are within üobj’s local memory and that

no pointer to a stack location is stored on the heap (#2[b.]).

When a verified üobj writes to the stack (e.g., via Assembly

language), a corresponding hardware model callback function

is invoked during verification which contains an assertion

in the body of that function to check whether the stack-

pointer register has a valid address (within the prescribed stack

frame; #2[d.]). We will show example assertions for #2[d.]

in the next case study. Frama-C’s AST analysis is used to

ensure that function formal arguments cannot be pointer types

(#2[c.]). Finally, #2[e.] is satisfied by üXMHF since neither

dynamic memory allocation nor function pointers exists in

the source. This is verified via Frama-C’s Abstract Syntax

Tree (AST) analysis. Moreover, Frama-C’s value analysis on

üXMHF proves the absence of invalid pointer dereferencing.

1 void main(void){
2 ...
3 g_sframe_index ++
4 hwm_cpu_gprs_r13 = (unsigned int)(&

g_sframe[g_sframe_index].return_addr);
5 casm_init_secure_monitor();
6 g_sframe_index --
7 //@assert (hwm_cpu_gprs_CPSR & __MON_MOD) ==

__MON_MOD;
8 ...
9

10 }
11
12 void casm_init_secure_monitor(){
13 _impl_hwm_mem_read_write_check =

casm_read_write_check
14 ...
15 __casm_stmfd_r0_r4();
16 //@assert (hwm_cpu_gprs_r13 >=

&g_sframe[g_sframe_index].local_params[0])
&& hwm_cpu_gprs_r13 <=
&g_sframe[g_sframe_index].return_addr

17 ...
18 }

Fig. 9: Secure-world hardware memory separation setup.

B. Trustzone TEE

Our second case-study is a light-weight open-source Trust-

zone TEE [46] (hereon referred to as TZSMC) running on

the ARM 32-bit platform on the Freescale iMX53 embedded

board [47]. Verifying the guest memory separation property

of TZSMC follows the same process as that of üXMHF.

The main difference is that instead of x86, we work with

ARM and TrustZone. Thus, we show an example of verifying

requirement #2.[d] in the context of ARM architecture.

1) Overview of TZSMC: TZSMC employs ARM Trustzone

secure-world partitioning to run a simple 32-bit guest OS

with the TZSMC components executing at the higest privilege

level [46]. TZSMC runs on the Freescale iMX53 embedded

board which houses an ARM Cortex-A7 processor with Trust-

zone hardware secure memory compartmentalization. TZSMC

can run secure world service call routines corresponding to

secure functionality (e.g., key management, password manage-

ment etc.) and provides these as APIs to the untrusted guest OS

via a Secure Monitor Call (SMC) CPU instruction. TZSMC

is not formally verified in its original incarnation. However,

for our case study we developed a verified version of TZSMC

using an ARM C99 hardware model that we wrote and the

Frama-C verification framework.

2) Secure-world memory separation: TZSMC initially

boots up in ARM secure world and does the required setup

before establishing Trustzone hardware memory separation for

the guest OS. This setup involves switching to the Trustzone

monitor mode and then switching to the non-secure world

using a control register, prior to transferring control to the

guest OS. Fig. 9 shows a code snippet of our verified TZSMC

implementation main function that invokes a supporting func-

tion to initialize the monitor mode and switches to non-secure

world before executing the guest OS. As seen from the figure

our verification consists of hardware modeling statements

and ACSL assertions (line 7) that allow us to ensure that

the monitor mode is set after the function call and before

transferring control to the guest.

336

3) Discharging interface respecting requirements: Fig. 7

summarizes the assumptions required by our formalism on

the source code (Def. 3). Requirement #1 is satisfied by

TZSMC because all assertions (such as the one shown in

Fig. 9) are checked by abstract interpretation via Frama-C’s

value analysis. Requirement #2 is satisfied via a combination

of strategies. Assumptions #2[c.] and #2[e.] are satisfied via

Frama-C’s AST analysis and value analysis in a similar fashion

to that described previously in §VI-A3. To satisfy assumptions

#2[a.], #2[b.], and #2[d.], we model a function call stack and

automatically generate code (highlighted in Fig. 9) for verifica-

tion. Our hardware modeling also aids in ensuring correct stack

frame preservation (via verification variables g_sframe and

g_sframe_index) during execution and across function

calls (lines 3, 4, 6, and 16). Before a function call we have

a function stack prologue (lines 3-4) that prescribes space

for the current function call stack and set the address for

the stack-pointer register in our hardware model. For every

CASM instruction inside the CASM function, we check that

the memory reads and writes are restricted to the current call

stack and global variables and that no stack location is stored

on the heap; this is achieved via the assertions inside the

callback function in line 13 (more in the TR). Furthermore,

after each CASM instruction, an additional assertion is placed

to check if the stack-pointer register has a valid address within

the prescribed stack frame (assertion in line 16).

VII. RELATED WORK

We discuss closely related work in (1) verified OSes,

kernels, and TEEs, which share the goal of producing high

assurance mission critical software; (2) assembly analysis and

verification tools, which share the goal of analyzing assembly

code; and (3) certified compilers, which help us preserve

source semantic to bring the verified guarantees to assembly.

Verified OSes, Kernels, TEEs SeL4 [16] is one of the first

fully-verified functionally correct kernels. Initially, the guaran-

tees only hold on the C implementation and the correctness of

inline assembly and the compiler are assumed. A later paper

showed that the guarantees can be proven for the compiled

SeL4 via compiler validation [48]. Similar to ours, the bi-

simulation relation generated for compiler validation is used

to show property preservation. We assume the existence of

a certified compiler and formally show that specific kind of

security properties can be shown to hold on the compiled code

by leveraging properties of the certified compiler. We could

swap out the certified compiler in our tool chain by a compiler

validation step [49], [50], as long as the bi-simulation relation

automatically extracted during the compiler validation process

could also bring the properties that we care about down to the

compiled code. Many fully-verified kernels directly model and

reason about assembly [15], [51]–[55], cutting out the need for

a trusted compiler, which we discuss later in this section.

While most of the above mentioned projects aim for proving

functional correctness, we only aim for memory separation

and a number of security-related assertions. Beyond functional

correctness, information flow properties have also been proven

for SeL4, CertiKOS, and a separation kernel for ARMv7 [52],

[54], [56]. Our goal is similar to theirs: proving noninterfer-

ence between different domains/partitions/compartments and

low-level timing leaks are out of scope.
Our überobjects architecture extends überSpark [21], where

the notion of überobjects is first introduced as the building

blocks of the überSpark framework with the goal of verifying

memory integrity of the überSpark hypervisor [20]. They

design several system and programming invariants specifically

for überSpark architecture and überobject’s C and CASM

functions. The invariants are defined to ensure that each

überobject can only access its own memory and are ver-

ified using Frama-C for each überobject in the überSpark

implementation. They further prove that the invariants, with

their compositional nature, hold throughout the sequential

execution of a überSpark hypervisor. While this prior work on

überSpark speculated that the properties can be shown to hold

on compiled code via certified compilers, no formal treatment

was given there. This work has the following specific formal

contributions with regard to this prior work [21].
First, we provide a more general model for überobjects

as units of memory compartmentalization and formalize re-

specting the interface by each überobject as a verifiable local

predicate. Our model liberates the überobject definition from

a specific programming language and architecture (software

and hardware) and allows it to serve as a generic abstraction

for memory separation in a concurrent setting.
Second, we introduce a detailed abstract semantics in the

style of the linking semantics of compositional CompCert [31]

and CASCompCert [25]. Our semantics supports concurrency

and is particularly designed to model and reason about inter-

rupt handling, allow the execution in the context of multiple

CPU cores, and can be connected to certified compilers. In

contrast, the semantics from prior work do not provide in-

struction level semantics; it only describes steps concerning the

concurrent operations required to run a multi-core unverified

guest OS. It supports neither interrupt-handler nor concurrent

execution on multiple CPU cores.
Third, we additionally ensure information flow security

between different compartments by assigning an integrity level

to each überobject and enforcing a calling convention on them.
Finally, we establish a condition of individual compil-

ers, i.e., the interface-preserving property, which ensures the

source-level properties, such as respecting the interface and

noninterference, also hold on the target level. Our model

permits each source compartment to be compiled separately

by its own compiler. Prior work [21] does not reason about

linking multi-module source programs and composing com-

piled compartments at the target level.

Assembly analysis and verification One common approach

for projects that verify properties of mixtures of C and

assembly or prove the assembly code correct is to rely on

a formal model of the assembly. The assembly model is either

encoded in a theorem prover [52], [54], or in a hoare-style

verification framework like Bedrock [57], BoogiePL [51] or

Vale [58], [59], where verification conditions are discharged

337

automatically by an SMT solver like Z3 [60]. Our tool chain

allows developers to directly interact with the C-level analysis

tools, not assembly-level or another high-level language like

F*, C#, or Dafny [61]. Lifting assembly model to a DSL

enables the use of the same C verification tool for analyzing in-

line assembly, which is similar to the approach that TINA [62]

took. Our model is minimal, compared to a realistic model for

x86 [63], as our design is driven by the case studies and our

needs to mainly check for memory separation.

TINA [62] and RUSTINA [64] lift assembly to an inter-

mediary representation for analysis. RUSTINA specializes in

looking for inconsistencies of interfaces of inline assembly

(e.g., register clobbering). We could leverage the TINA tool

chain for checking the properties that we care about, instead

of using our own DSL. However, our CASM DSL allows

reasoning about hardware and machine specific registers such

as control registers, widely used in low-level system software

such as TEEs. Further, our DSL is much lighter-weight than

TINA and integrates with existing C verification tools to

enable proving properties over hardware and device states.

Certified compilers To establish properties on compiled code,

we assume bi-simulation is set up between the source and

the target by a certified compiler. As we aim to deal with

assembly and forms of concurrency, CASCompCert [25] is a

convenient target to show for property preservation. Similar to

CASCompcert we introduce an abstract semantics to compose

individual überobjects; we also use the semantics for linking

both source-level and target-level überobjects. Our semantics,

similar to CASCompCert, is concurrent but also supports inter-

rupts and captures pre- and post-conditions of each function in

the concurrent execution. We require a few assumptions on our

source-level modules too. In contrast to [25], data race freedom

of the source execution is not an assumption in our setting

but a corollary of our compartmentalized memory model and

the assumptions on each individual uberobject. Moreover, as

discussed in Section VI, our source-level assumptions are

discarded in our case study via off-the-shelf verification tools.

Other certified compilers such as full-abstraction, or those

that preserve classes of security properties [65]–[67], could be

used to preserve our properties. Our approach targets TEEs

using hardware architectures such as x86 and ARM hardware

isolation primitives [12], [68], that ensure runtime preservation

of the separation in the presence of attackers.

Compartmentalization As pointed out by prior work, com-

partmentalized systems have the benefit of being able to

preserve security properties in the presence of attackers [69]–

[71]. We additionally show that the compartmentalization

makes reasoning about concurrency much easier, which is a

challenging feature to support and is still lacking in many

of the existing verified systems. We postulate that if we only

compile some compartments to the target level and allow a for-

eign target-level implementation for the other compartments,

we can still prove the spec-preservation and noninterference

for the system, as long as the foreign compartments respect

the interface.

VIII. CONCLUSION

We define a formal model of compartmentalization for

implementing TEEs. We show that compartmentalization al-

lows us to achieve compositional verification results at the

source level and enables us to leverage certified compilers to

preserve the guarantees at the target level. We demonstrate

via two case studies that security properties verified using our

compartmentalization model at the source level on two existing

open-source TEEs running on x86 and ARM platforms, hold

at the binary level if the code is compiled by CASCompCert.

Acknowledgement. Many thanks to the anonymous reviewers

and shepherd for their constructive feedback.

REFERENCES

[1] A. Fitzek, F. Achleitner, J. Winter, and D. Hein, “The andix research
os-arm trustzone meets industrial control systems security,” in Proc. of
INDIN, 2015, pp. 88–93.

[2] Z. Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vTZ:
Virtualizing ARM TrustZone,” in USENIX Security, 2017, pp. 541–556.

[3] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik,
“Assured: Architecture for secure software update of realistic embedded
devices,” IEEE TCAD, vol. 37, no. 11, pp. 2290–2300, 2018.

[4] P. Sparks, “The route to a trillion devices,” https://community.
arm.com/arm-community-blogs/b/internet-of-things-blog/posts/
white-paper-the-route-to-a-trillion-devices, 2017.

[5] S. Fei, Z. Yan, W. Ding, and H. Xie, “Security vulnerabilities of SGX
and countermeasures: A survey,” ACM Comput. Surv., vol. 54, no. 6, jul
2021.

[6] Qualcomm Technologies, Inc., “Snapdragon mobile platform -
snapdragon security,” 2019. [Online]. Available: https://www.qualcomm.
com/snapdragon/security

[7] Nvidia, “Trusted Little Kernel (TLK) for Tegra: FOSS Edition,” 2015.
[Online]. Available: http://nv-tegra.nvidia.com/gitweb/?p=3rdparty/ote
partner/tlk.git;a=blob plain;f=documentation/Tegra BSP for Android
TLK FOSS Reference.pdf

[8] Linaro Limited, “OP-TEE,” 2019. [Online]. Available: https://github.
com/OP-TEE/

[9] Huawei Technologies CO., LTD., “EMUI 8.0 Security Technical White
Paper,” 2017. [Online]. Available: https://consumer-img.huawei.com/
content/dam/huawei-cbg-site/en/mkt/legal/privacy-policy/EMUI%208.
0%20Security%20Technology%20White%20Paper.pdf

[10] Trustonic, “Mobile device security is hard - Trustonic makes it
easy,” 2019. [Online]. Available: https://www.trustonic.com/solutions/
trustonic-secured-platforms-tsp/

[11] Android, “Trusty TEE,” 2019. [Online]. Available: https://source.
android.com/security/trusty/

[12] L. ARM, “Arm security technology-building a secure system using
trustzone technology,” PRD-GENC-C. ARM Ltd. Apr.(cit. on p.), Tech.
Rep, Tech. Rep., 2009.

[13] D. Cerdeira, N. Santos, P. Fonseca, and S. Pinto, “SoK: Understanding
the prevailing security vulnerabilities in TrustZone-assisted TEE sys-
tems,” in IEEE S&P, May 2020.

[14] C. DeLozier, R. Eisenberg, S. Nagarakatte, P.-M. Osera, M. M. Martin,
and S. Zdancewic, “Ironclad C++: A library-augmented type-safe subset
of C++,” in Proc. of OOPSLA, 2013.

[15] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang,
and B. Zill, “Ironclad apps: End-to-End security via automated Full-
System verification,” in OSDI-USENIX, 2014.

[16] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin,
D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell,
H. Tuch, and S. Winwood, “sel4: Formal verification of an os kernel,”
in ACM SOSP, 2009.

[17] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser, “Comprehensive formal verification of an OS
microkernel,” ACM Transactions on Computer Systems, vol. 32, no. 1,
pp. 2:1–2:70, Feb. 2014.

[18] R. Gu, J. Koenig, T. Ramananandro, Z. Shao, X. N. Wu, S.-C. Weng,
H. Zhang, and Y. Guo, “Deep specifications and certified abstraction
layers,” in Proc. of POPL, 2015.

338

[19] G. C. Hunt and J. R. Larus, “Singularity: Rethinking the software stack,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 2, pp. 37–49, Apr. 2007.

[20] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta,
“Design, implementation and verification of an eXtensible and Modular
Hypervisor Framework,” in IEEE S&P, 2013.

[21] A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta, “überspark:
Enforcing verifiable object abstractions for automated compositional
security analysis of a hypervisor,” in USENIX Security, 2016.

[22] M. Ammar, B. Crispo, B. Jacobs, D. Hughes, and W. Daniels, “Suv—the
security microvisor: A formally-verified software-based security archi-
tecture for the internet of things,” IEEE Transactions on Dependable
and Secure Computing, vol. 16, no. 5, pp. 885–901, 2019.

[23] T. Vörtler, B. Höckner, P. Hofstedt, and T. Klotz, “Formal verification
of software for the contiki operating system considering interrupts,” in
IEEE DDECS, 2015, pp. 295–298.

[24] Y. Song, M. Cho, D. Kim, Y. Kim, J. Kang, and C.-K. Hur, “Compcertm:
Compcert with c-assembly linking and lightweight modular verification,”
Proc. ACM Program. Lang., vol. 4, no. POPL, December 2019.

[25] H. Jiang, H. Liang, S. Xiao, J. Zha, and X. Feng, “Towards certified
separate compilation for concurrent programs,” in Proc of PLDI, 2019.

[26] F. Derakhshan, Z. Zhang, A. Vasudevan, and L. Jia, “Technical report:
Towards end-to-end verified TEEs via interface conformance and certi-
fied compilers,” Carnegie Mellon University, Tech. Rep., Jan. 2023.

[27] “Keystone – an open framework for architecting tees,” 2022. [Online].
Available: https://keystone-enclave.org/

[28] RISC-V, “RISC-V Open Source Supervisor Binary Inter-
face (OpenSBI),” 2022. [Online]. Available: https://github.com/
riscv-software-src/opensbi

[29] X. Leroy, “Formal certification of a compiler back-end or: programming
a compiler with a proof assistant,” in Proc. of POPL, 2006, pp. 42–54.

[30] J. Kang, Y. Kim, C.-K. Hur, D. Dreyer, and V. Vafeiadis, “Lightweight
verification of separate compilation,” in Proc. of POPL, 2016.

[31] G. Stewart, L. Beringer, S. Cuellar, and A. W. Appel, “Compositional
compcert,” in Proc. of POPL, 2015, pp. 275–287.

[32] L. Beringer and A. W. Appel, “Abstraction and subsumption in modular
verification of C programs,” in Proc. of FM, 2019.

[33] “The memory management glossary.” [Online]. Available: https:
//www.memorymanagement.org/glossary/f.html#free.list

[34] Q. Cao, L. Beringer, S. Gruetter, J. Dodds, and A. W. Appel, “Vst-floyd:
A separation logic tool to verify correctness of C programs,” Journal of
Automated Reasoning, vol. 61, no. 1, pp. 367–422, 2018.

[35] C. B. Jones., “Specification and design of (parallel) programst,” in IFIP
Congress, 1983, pp. 321–332.

[36] V. Vafeiadis, “Modular fine-grained concurrency verification,” University
of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-TR-726,
Jul. 2008. [Online]. Available: https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-726.pdf

[37] X. Leroy, “A formally verified compiler back-end,” Journal of Automated
Reasoning, vol. 43, no. 4, pp. 363–446, 2009.

[38] S. Echeverrı́a, G. Lewis, C. Mazzotta, C. Grabowski, K. O’Meara,
A. Vasudevan, M. Novakouski, M. McCormack, and V. Sekar, “KalKi:
a software-defined IoT security platform,” in Proc. of WF-IoT, 2020.

[39] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig, “Lockdown:
Towards a safe and practical architecture for security applications on
commodity platforms,” in Proc of TRUST. Springer, 2012, pp. 34–54.

[40] A. Vasudevan, N. Qu, and A. Perrig, “XTRec: Secure real-time execution
trace recording on commodity platforms,” in Proc. of HICSS-44. IEEE,
2011, pp. 1–10.

[41] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig,
“TrustVisor: Efficient TCB reduction and attestation,” in IEEE S&P,
2010, pp. 143–158.

[42] Z. Zhou, M. Yu, and V. D. Gligor, “Dancing with giants: Wimpy kernels
for on-demand isolated I/O,” in IEEE S&P, 2014, pp. 308–323.

[43] Z. Zhou, J. Han, Y.-H. Lin, A. Perrig, and V. Gligor, “KISS:“key it
simple and secure” corporate key management,” in Proc. of TRUST.
Springer, 2013, pp. 1–18.

[44] M. McCormack, A. Vasudevan, G. Liu, S. Echeverrı́a, K. O’Meara,
G. A. Lewis, and V. Sekar, “Towards an architecture for trusted edge
iot security gateways,” in USENIX, HotEdge, 2020.

[45] S. Echeverrı́a, G. A. Lewis, C. Mazzotta, K. O’Meara, K. Williams,
M. Novakouski, A. Vasudevan, M. McCormack, and V. Sekar, “KalKi++:
A scalable and extensible iot security platform,” in Proc. of WF-IoT.
IEEE, 2021, pp. 368–373.

[46] Dongli Zhang, “Trustzone secure and normal world transition tee,” 2022.
[Online]. Available: https://github.com/finallyjustice/imx53qsb-code/
tree/master/trustzone-smc

[47] “i.mx53 quick start board,” 2022. [Online].
Available: https://www.nxp.com/design/development-boards/
i-mx-evaluation-and-development-boards/i-mx53-quick-start-board:
IMX53QSB

[48] T. A. L. Sewell, M. O. Myreen, and G. Klein, “Translation validation
for a verified os kernel,” in Proc. of PLDI, 2013.

[49] G. C. Necula, “Translation validation for an optimizing compiler,” in
Proc. of PLDI, 2000.

[50] J.-B. Tristan, P. Govereau, and G. Morrisett, “Evaluating value-graph
translation validation for LLVM,” in Proc. of PLDI, 2011.

[51] J. Yang and C. Hawblitzel, “Safe to the last instruction: Automated
verification of a type-safe operating system,” in Proc. of PLDI, 2010.

[52] D. Costanzo, Z. Shao, and R. Gu, “End-to-end verification of
information-flow security for C and assembly programs,” in Proc. of
PLDI, 2016.

[53] R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjöberg, and D. Costanzo,
“CertiKOS: An extensible architecture for building certified concurrent
OS kernels,” in Proc. of USENIX OSDI, Nov. 2016.

[54] M. Dam, R. Guanciale, N. Khakpour, H. Nemati, and O. Schwarz,
“Formal verification of information flow security for a simple arm-based
separation kernel,” in Proc. of ACM CCS, 2013, pp. 223–234.

[55] H. Mai, E. Pek, H. Xue, S. T. King, and P. Madhusudan, “Verifying
security invariants in ExpressOS,” in Proc. of ASPLOS, 2013.

[56] T. Murray, D. Matichuk, M. Brassil, P. Gammie, T. Bourke, S. Seefried,
C. Lewis, X. Gao, and G. Klein, “Sel4: From general purpose to a proof
of information flow enforcement,” in IEEE S&P, 2013, pp. 415–429.

[57] A. Chlipala, “The bedrock structured programming system: Combining
generative metaprogramming and Hoare logic in an extensible program
verifier,” in Proc. of ICFP, 2013.

[58] A. Fromherz, N. Giannarakis, C. Hawblitzel, B. Parno, A. Rastogi, and
N. Swamy, “A verified, efficient embedding of a verifiable assembly
language,” Proc. of POPL, vol. 3, Jan. 2019.

[59] B. Bond, C. Hawblitzel, M. Kapritsos, K. R. M. Leino, J. R. Lorch,
B. Parno, A. Rane, S. Setty, and L. Thompson, “Vale: Verifying high-
performance cryptographic assembly code,” in USENIX Security, 2017.

[60] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proc. of
TACAS, 2008, pp. 337–340.

[61] K. R. M. Leino, “Dafny: An automatic program verifier for functional
correctness,” in Proc. of LPAR, 2010, pp. 348–370.

[62] F. Recoules, S. Bardin, R. Bonichon, L. Mounier, and M.-L. Potet, “Get
rid of inline assembly through verification-oriented lifting,” in Proc. of
ASE, 2019.

[63] S. Dasgupta, D. Park, T. Kasampalis, V. S. Adve, and G. Roşu, “A com-
plete formal semantics of x86-64 user-level instruction set architecture,”
in Proc. of PLDI, 2019, pp. 1133–1148.

[64] F. Recoules, S. Bardin, R. Bonichon, M. Lemerre, L. Mounier, and M.-
L. Potet, “Interface compliance of inline assembly: Automatically check,
patch and refine,” in Proc. of ICSE, 2021.

[65] M. Patrignani and D. Garg, “Robustly safe compilation, an efficient form
of secure compilation,” ACM Trans. Program. Lang. Syst., vol. 43, no. 1,
feb 2021.

[66] C. Abate, R. Blanco, c. Ciobâcă, A. Durier, D. Garg, C. Hriţcu,
M. Patrignani, E. Tanter, and J. Thibault, “An extended account of
trace-relating compiler correctness and secure compilation,” ACM Trans.
Program. Lang. Syst., vol. 43, no. 4, nov 2021.

[67] M. Patrignani and D. Garg, “Secure compilation and hyperproperty
preservation,” in Proc. of CSF, 2017, pp. 392–404.

[68] VMware, “Software and hardware techniques for x86
virtualization,” Tech. Rep., 2022. [Online]. Avail-
able: https://www.vmware.com/content/dam/digitalmarketing/vmware/
en/pdf/techpaper/software hardware\ tech\ x86\ virt.pdf

[69] A. El-Korashy, S. Tsampas, M. Patrignani, D. Devriese, D. Garg, and
F. Piessens, “Capableptrs: Securely compiling partial programs using the
pointers-as-capabilities principle,” in Proc. of CSF, 2021.

[70] C. Abate, A. Azevedo de Amorim, R. Blanco, A. N. Evans, G. Fachini,
C. Hritcu, T. Laurent, B. C. Pierce, M. Stronati, and A. Tolmach, “When
good components go bad: Formally secure compilation despite dynamic
compromise,” in Proc. of CCS, 2018.

[71] R. Sinha, M. Costa, A. Lal, N. P. Lopes, S. Rajamani, S. A. Seshia, and
K. Vaswani, “A design and verification methodology for secure isolated
regions,” in Proc. of PLDI, 2016.

339

