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Abstract—A crucial module of the widely applied machine
learning (ML) model is the model training phase, which involves
large-scale training data, often including sensitive private data.
ML models trained on these sensitive data suffer from significant
privacy concerns since ML models can intentionally or unin-
tendedly leak information about training data. Adversaries can
exploit this information to perform privacy attacks, including
model extraction, membership inference, and model inversion.
While a model extraction attack steals and replicates a trained
model functionality, and membership inference infers the data
sample’s inclusiveness to the training set, a model inversion
attack has the goal of inferring the training data sample’s
sensitive attribute value or reconstructing the training sample
(i.e., image/audio/text). Distinct and inconsistent characteristics
of model inversion attack make this attack even more challenging
and consequential, opening up model inversion attack as a
more prominent and increasingly expanding research paradigm.
Thereby, to flourish research in this relatively underexplored
model inversion domain, we conduct the first-ever systematic
literature review of the model inversion attack landscape. We
characterize model inversion attacks and provide a compre-
hensive taxonomy based on different dimensions. We illustrate
foundational perspectives emphasizing methodologies and key
principles of the existing attacks and defense techniques. Finally,
we discuss challenges and open issues in the existing model
inversion attacks, focusing on the roadmap for future research
directions.

Index Terms—Model Inversion Attack, Taxonomy of Attack,
Adversarial Capabilities, Defense, Sensitive Attribute

I. INTRODUCTION

Artificial intelligence is the key driving force in our modern
era, where machine learning (ML) and its applications play
a significant role. In the current century, ML, particularly
deep learning, is used almost everywhere, including predictive
modeling [1], [2], social media analytics [3], [4], user authenti-
cation [5]–[8], image recognition [9], [10], audio analysis [11],
[12], disease prediction and associated factors [13]–[17], and
data analytics [18], [19]. However, these ML models can
intentionally or unintendedly leak information about training
data or memorize information during the model training [20],
[21] phase, a crucial part of the ML model lifecycle. This
phenomenon paves the way for different privacy attacks like
model stealing [22], model inversion [23], and membership
inference [24] attack. An adversary with different capabilities
can perform these attacks with different aims, particularly tar-
geting training data samples [25] which might contain sensitive
private information like SSN, gender, racial identity, and facial
expressions [26]–[28]. Consequently, these attacks can reveal

sensitive information about an individual or generate fake
images/audio, or even fool the model into providing incorrect
predictions. Among these privacy attacks, model inversion
is comparatively less explored [25], [29], particularly in the
attribute inference (AI) sub-category. Model inversion attack
(i.e., AI) has distinct and inconsistent characteristics compared
to other privacy attacks, making it even more challenging [30].

ML models can leak training data information in different
ways. For example, an adversary can query the target model
to get a prediction reflecting the input-output data mapping.
Also, an adversary can adapt techniques like an augmented
synthetic dataset to query the model, which outputs prediction
as memorized information from training data [31]. Eventually,
the adversary can leverage those data to develop an attack
model for estimating or reconstructing training samples [20].
Additionally, deep learning models can leak sensitive infor-
mation in model weight updates or gradient parameters in
federated learning environments [32]. Furthermore, models
can leak sensitive training data during online learning [10],
where the adversary can perform an attack leveraging the
difference in output (prediction) before and after an update.

Protecting sensitive training data privacy has been a sig-
nificant concern in the last few years [10], [23], [33]–[35].
Over the last few years, image and tabular data have been
vulnerable to privacy attacks [10], [33], [35]. One direction
of research explores possible privacy attacks against ML
models [23], [35], [36] whereas another research direction
investigates ways to defend against these attacks [23], [34].
Among different types of privacy attacks against ML models
Model Inversion (MI) attack is the most challenging due to its
inherent properties [30]. MI attacks and their defenses have
been explored relatively recently [23], [34], which require a
systematic review for better understanding and future path-
ways.

Model Inversion Attack and its Taxonomy: An adversary
in MI attack intends to reconstruct training data or infer sensi-
tive information in training data [33], [34]. For tabular training
data, adversary infers sensitive attributes training samples [33],
[37] or reconstructs images of individuals or generic images
of a class in case of image data [10], [23]. We can classify
MI attacks into two broader sub-classes: 1) Inference and
2) Reconstruction. The first one refers to inferring sensitive
attributes exactly or approximately or estimating properties
related to the training data sample [33], [38]–[40]. Inference
can be further categorized into three sub-categories depending
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on inference attack objective: Attribute Inference (AI) to
infer exactly an individual’s sensitive attribute values using
output labels and other information like confidence scores
and information about non-sensitive attributes (tabular data),
depending on the attack strategy [23], [33], [36], whereas
Approximate Attribute Inference (AAI) refers to inferring
sensitive attribute values either approximately or close to
the value of attributes in the training data sample [41], and
Property Inference (PI) stands for inferring properties (not
explicitly stated as an attribute in the training set) related
to individual training data sample such as if an individual
is wearing glasses or has a doctor’s specialty [42], [43]. In
the second category, i.e., Reconstruction or Image Recon-
struction (IR), an adversary applies image labels as inputs,
along with some additional information like confidence scores,
blurred or masked images, and objectively reconstructs images
of an individual or a class representative [10]. However,
an adversary can reconstruct specific individual images or
a representative image of a class [35]. Therefore, image
reconstruction (IR) can further be classified into two sub-
types: Typical Image Reconstruction (TIR) [10], [23], [35],
and Individual Image Reconstruction (IIR) [10], [23], [25],
[35]. In Figure 1, we present a comprehensive taxonomy of
different MI attacks.

Black-box vs. White-box Settings: There might be varia-
tions in terms of settings of the adversarial MI attack, i.e., the
target model access might be a black-box or white-box [44] to
an adversary. When the adversary has black-box access, it can
get only query the target model but does not know details of
the parameters like weights, gradients, etc., of the target model
or any specific assumption underlying the model architectures.
When it queries the model, it gets the output labels or
confidence scores of classes [35], [45]. However, in white-
box access, an adversary knows details about target model
parameters and the entire transparent model architecture and
can query the model or even capable of changing the model
parameters [46], [47]. So, the adversary gets better control
over the model in white-box setup and possibly performs MI
and other privacy attacks with higher efficacy [35].

Our Contributions. We make the following contributions:
• We present a first-ever systematic literature review and

characterization of the model inversion attacks and their
defenses

• We provide a comprehensive taxonomy of the existing
model inversion attacks, based on different criteria

• We illustrate foundational perspectives of the model in-
version attacks in the literature, focusing on the key attack
methodologies and underlying assumptions (in tables in
the Appendix). We also outline state-of-the-art defense
principles against model inversion attacks

• We highlight core challenges and discuss open issues in
model inversion attack research domain

II. PRELIMINARIES

ML models work on datasets to predict or make a decision
based on a model trained by a dataset relevant to the problem

domain. In the ML pipeline, first, the dataset is selected
and preprocessed, and computed inputs (features) are used
to train the ML model, which includes some sensitive and
non-sensitive features as well in the training dataset. In the
pipeline, after the model training step, a different validation
dataset from the same distribution is used to validate the
trained model and then used to test on test data to predict
or make a decision on unknown data. MI attack architecture
includes two trained/developed ML models (based on attack
methodology). In the MI attack paradigm, the trained model is
termed the target model, and the inversion model developed by
the adversary is called the attack model [23]. In this section,
we focus on types of ML models and learning techniques,
the training process of ML models, MI attacks, and attack
pipelines, as well as differential privacy– a commonly used
defense technique for adversarial attacks against ML models.

A. ML models and Types of ML models

ML models are used to predict either discrete or continuous
data. Commonly used ML models are classified into four types
according to their technique and purposes, as follows:

Supervised Learning: This is a label-based ML model
training approach. For example, if we have n samples of
k features x1, x2, ..., xk in the training data, and there is a
ground truth or label yi for i <= n associated with each
of the n feature vectors. The ML model is trained on the
input features corresponding to the output labels. So, the
training step enables capturing the mapping between inputs
(features) and outputs (labels) corresponding to each training
sample [48]–[50]. When the training is complete, test data
is applied, and for the input features, it predicts the class
label for the feature vector. Different ML models like Support
Vector Machines (SVM), Decision Trees, Naive Bayes, K-
Nearest Neighbor (K-NN), Neural Networks, and Logistic
Regression follow supervised technique [51], [52]. For discrete
class labels, they are called as classification problem, and for
continuous class labels, they are called regression.

Unsupervised Learning: This technique of ML uses un-
labeled data to train the model. So, there are n training
samples (Xtrain) of k features x1, x2, ..., xk in the training
data, but no ground truth or label yi. Therefore, in this
learning, different clustering algorithms are adopted to align
more similar training samples together. During testing, test
samples Xtest are checked with samples in the designed
clusters to assign them to the cluster that is mostly similar.
To measure the similarity between training (Xtrain) and test
(Xtest) samples, distance measures like l2 distance, manhattan
distance, or cosine metrics are commonly used [49], [53].
These assigned clusters are considered as the particular class
(predicted) to which the test samples belong. These techniques
are used for pattern recognition, outlier detection, or anomaly
detection. DBSCAN, K-means clustering are some of the ML
algorithms of unsupervised learning [54].

Semi-supervised Learning: This technique is in between
the above two methods, where some samples have labels
associated with the feature space and some are unlabeled data.

440



Model Inversion 
Attack

Reconstruction 
Attack

Attribute 
Inference

Fredrikson et al.[33]
Fredrikson et al.[23]

Hidano et al.[36]
Song et al.[20]

Typical
Image Recon

Fredrikson et al.[23]
Hitaj et al.[32]
Melis et al.[42]
Salem et al.[10]
Song et al.[20]
Wang et al.[91]
Yang et al.[35]

Inference 
Attack

Approximate 
Attribute 
Inference

Zhao et al.[41]

Property 
Inference

Melis et al.[42]

Individual
Image Recon
Aivodji et al.[86]

Fredrikson et al.[23]
He et al.[87]

Melis et al.[42]
Salem et al.[10]
Wei et al.[85]
Yang et al.[35]

Zhang et al.[25]
Zhao et al.[41]

Fig. 1: A taxonomy of existing Model Inversion (MI) attacks in the literature, targeting different machine learning target models
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Fig. 2: Overview of Reinforcement Learning Technique

So the learning algorithm applies the knowledge about a few
labeled samples (Xlabel) and tries predicting labels of the
rest of the unlabeled dataset samples (Xunlabel) [55], [56].
A commonly used algorithm in this technique is self-learning,
where a base classifier Cbase is first trained with Xlabel and
then queried with Xunlabel samples to obtain pseudo labels
yunlabel, i.e., labels for unlabeled samples. Finally, a final
model is trained with both labeled Xlabel and unlabeled data
Xunlabel with their pseudo labels yunlabel. Learning concepts
like few shot learning [57] and contrastive learning [58] follow
semi-supervised based transfer learning fashion.

Reinforcement Learning: This is an iterative technique
commonly used for Artificial Intelligence driven agent learn-
ing. In this technique, the agent (A) learns to take action (a)
based on a given environment in such a way that maximizes
the reward (r) [59]. So, there is agent, reward, action related
to each state (s) of the agent interacting like a state transition
diagram in markov model, as presented in Figure 2. In this
technique, states are associated with actions taken by the agent
in a way that maximizes the reward, i.e., minimal penalty.
Finally, the set of actions (a1, ..., an) taken by agent construct
the overall task. Another popular learning technology called
transfer learning is booming in this era, where an ML model
trained on large-scale datasets is used to test on a small dataset

without further retraining. This training approach can also leak
sensitive information on training data [60].

B. Model Inversion (MI) Attacks

Model Inversion (MI) attacks leverage the output labels of
the target model and additional auxiliary information such as
confidence score, gradient or parameters of the model, etc.,
depending on implementation, for inverting the target model to
infer training data sensitive attributes or reconstruct the sample
of training data [29], [32], [33], [35]–[37], [61]. Suppose we
have a dataset d containing m features and output labels y. We
consider a classification problem with n possible classes in the
output. Assume that, x1, x2, ..., xm are m input features in the
dataset, where features x1, x2, ..., xt are sensitive features and
features xt+1, ..., xm are non-sensitive features. Therefore, the
following function is the target model:

ftar : Rm −→ Rn (1)

where Rm denote input features of m dimensions and Rn is
the confidence values of n classes for each tuples of input
features of d dimensions [23], [34], [36]. On the other side,
the attack model will be the inverse of the target model, i.e.,

fatk : [Rn, ftar, y] −→ Rs (2)

where Rn denote the confidence score vector of n classes, ftar
is the target model, y is the predicted class in target model, and
Rs denotes the sensitive attribute values in training dataset.
We illustrate a detailed overview of the model inversion
sensitive attribute inference (AI) attack in Figure 3a and image
reconstruction (IR) attack in Figure 3b. An adversary can
form the attack dataset Dadv performing row-wise column
concatenation among prediction column y (‘Life Ratings’ in
Figure 3a), inputs features x1, x2, ..., xm and highest class con-
fidence score column conf ∈ Rn (‘Confidence’ in Figure 3a),
where all columns have the same number of rows. Then
adversary can train the surrogate inversion model with Dadv
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Id Marital 
status

Age Income

100 Married 38 High

101 Single 26 Low

102 Married 29 High

103 Married 41 High

Life Ratings

Not happy

Pretty happy

Pretty happy

Not happy

Confidence

c1
c2
c3
c4

Marital 
status

Married

Single

Married

Married

Target Model Prediction Confidence Surrogate  Inversion Model Inference

(a) Model Inversion Attribute Inference (AI) Attack

Input Image
Xsen i-1

Target Model

Prediction
pred

Confidence
conf

GAN

Optimization

𝜃 = (𝐺𝐴𝑁 𝑝𝑟𝑒𝑑, 𝑐𝑜𝑛𝑓 ,Xsen i-1
)

(b) Image Reconstruction (IR) Attack

Fig. 3: (a.) Details of Model Inversion Attribute Inference Attack in surrogate model training approach. The target model takes
the input dataset with 3 samples (on the left top), where Marital status is the sensitive attribute. The target model predicts
Life Ratings either ’Not happy’ or ’Pretty happy.’ The adversary uses the predicted labels and confidence information (by
row-wise column concatenation) to form Dadv (adversarial dataset) and train the surrogate inversion model to infer sensitive
attributes, i.e., Marital status (shown as the output on the right side), (b.) Model Inversion attack for image reconstruction
in optimization-based approach, where the adversary considers minimizing the optimization function θ iteratively (e.g., using
GAN model with optimization algorithm) to obtain a better reconstruction of inputs/features (Xseni−1 ).

or perform an optimization-based technique to reconstruct
inputs/features 3. We illustrate different inversion techniques
in Section III-C.

C. Auxiliary Information

While performing the MI attack, the adversary might have a
set of additional information, also called auxiliary information
or side-information. This auxiliary information varies from
model or implementation and depends on availability to the
adversaries [36]. It serves as the attack model’s additional
input feature. Some of the auxiliary information include:
output predicted labels y of the target classifier, confidence
scores Rn of the n classes, partial or all non-sensitive attribute
information training data, distributions of sensitive attributes,
confusion matrix of target model C, and a dataset for the
attacker to train [33], [35], [36]. In TIR or IIR, the auxiliary
information may include a blurred image or masked image of
the individual [10], [25], [35].

D. ML and Deep learning Model Training

Traditional ML (decision tree, SVM, KNN, etc.) [51], [52]
and deep learning models like convolutional neural network
(CNN) [62], [63], auto encoder (AE) [10], [64], and generative
adversarial network (GAN) [65], [66] are trained to better learn
the model parameters so that it can well predict when applied
to unknown data samples. This process is called ML and deep
learning model training. A few ML and deep learning model
training techniques are discussed below:

• Traditional ML Model Training: The goal of training in
supervised traditional ML models is to learn input-output
dependency in training samples so that, when it gets the
test samples, the prediction should be close to the actual
expected value and loss function is minimized [67], [68].
The model with higher loss indicates bad training, and

lower loss means a well-trained model. This loss function
is usually measured by squared error (SE) [68], which
can be expressed as:

SE = (ytrue − ypred)
2 (3)

where, ytrue is the actual and ypred is the predicted labels
from the ML model. Another form of representation of
this loss function is the mean squared error (MSE) [68],
expressed as below:

MSE =
1

N

∑
(x,y)∈Dtest

(ytrue − ypred)
2 (4)

where, N denotes total sample count, and Dtest is the test
dataset where each sample (x, y) belongs to this dataset.

• CNN, GAN, and AE Training: The CNN model is mainly
used for image data, where the basic architecture include
varying number of convolution and pooling layers [62],
[69]. In the convolution layer, the image is filtered with
the kernel to reduce the dimensionality, and padding is
performed to maintain the same dimensions. After that,
pooling is performed to get the maximal or minimal cells
covering the stride positions like scanning. On the other
hand GAN is composed of two different neural network:
discriminator (D), and generator (G) [32], [70], [71].
G is used to generate fake images, and the D matches
the image produced by G with the original image and,
based on that, provides the discrimination score back to
G, as presented in Figure 5. In this iterative process,
G regenerates images to match better, minimizing the
discrimination score, and D becomes a fool with fake
images to discriminate. AE is also a neural network based
model, where the main components are the encoder (E)
and decoder (D) [10], [64]. E performs mapping the
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input to a latent space (i.e., hidden layer in a neural
network), usually like a single layer perceptron; on the
other hand, the D decodes the latent representation back
to the original data (reconstructing images usually).
In all the various neural network-based models, the train-
ing goal is optimizing the loss function calculated as the
difference between the prediction and expected outputs
by iterative weight and bias adjustments [72]. There are
different optimization methods that these models use, like
adam, gradient descent, etc. [73], [74]. Although, among
different optimization techniques, a particular gradient
descent algorithm, named the stochastic gradient descent
(SGD) is most commonly applied in applications. SGD
follows the following updating formula:

θ = θ − η∇θCost(θ;x, y) (5)

where, θ is the updating parameter like weight, bias; ∇
is the parameter denoting gradient, η is learning rate,
and Cost(θ;x, y) belongs to the iteratively optimized
cost/loss function [74], [75].

• Centralized, Distributed, and Federated Learning: De-
pending on the server and client interaction involving
training data, ML and deep learning training techniques
can be categorized into the following three major cat-
egories: Centralized, Distributed, and Federated Learn-
ing [76]. In the centralized model, the ML model on
central server connected with clients/devices is trained
with the entire training dataset Dtrain. Clients only
send data and may query for a specific service. In the
distributed modeling, there are k clients and k distributed

datasets, D1, ..., Dk, where each client trains their own
ML model using the corresponding local datasets [76],
[77]. In the federated learning (FL) technique, the setup
is different. Each client uses their local data to train their
own models like distributed scheme; however, as opposed
to the distributed one, in federated learning, clients keep
data within the device and send only parameters (updates)
to the central server periodically for aggregation tasks.
This aggregated model might be shared with peers from
the central server [32], [78]–[80]. FL can be further clas-
sified into two types: horizontal federated learning (HFL),
where clients have same features space with different
samples, and vertical federated learning (VFL), where
sample space is identical but feature space is distinct
among the clients [80]. The detailed process of these
different learning approaches is illustrated in Figure 4.

E. Differential Privacy

Differential Privacy (DP) defines an algorithmic technique
to represent the information about a dataset through a random-
ization procedure, which makes sure it prohibits disclosing any
individual participant’s identifiable information [33], [81]–
[83]. This provides defense against membership inference
attacks but is not very helpful against MI attack [34], since
it compromises target model performances, i.e., there exists
trade-offs between privacy and model performances. When
privacy budget is higher and model performance is higher,
the model is more susceptible to MI attacks.

III. SYSTEMATIZATION OF MODEL INVERSION ATTACKS

Model inversion (MI) attack was first termed by Fredrik-
son et al. [33] into the privacy attack domain. The first
methodological formalization of this attack in white-box and
black-box– both scenarios are elaborated by Wu et al. [84].
Researchers have gradually explored more in MI attack tech-
niques to infer sensitive attributes of training instances or
reconstruct training instances leveraging auxiliary information.
In this section, we systematize existing MI attacks, their
objectives, foundational aspects, and key open issues with
future research directions. We present a systematic summary
of different MI attacks in Table I in the Appendix.
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A. MI Attack Classification

As MI attacks aim to reconstruct training samples (e.g.,
image data) or estimate sensitive attribute information (e,g.,
tabular data), we can objectively classify MI attacks into two
major categories: (1) Inference, and (2) Reconstruction, as
discussed in Section I and illustrated in Figure 1. These MI
attack techniques have a wide spectrum of variations and can
be categorized depending on five primary characteristics or
criteria. These categories are (i) based on target model access
types, i.e., white-box or black-box, (ii) depending on inver-
sion techniques incorporated, i.e., training surrogate model
or optimization-based approach, (iii) the adversarial targeted
types of data (image vs. tabular), (iv) learning schemes con-
sidered, i.e., centralized or distributed, or federated technique,
and (v) availability of auxiliary information, i.e., gradient in-
formation, confidence score information, and auxiliary dataset.
In Table I in the Appendix, we present the detailed character-
ization of the existing MI attacks.

B. MI Attack Objectives and Applications

An adversary in the model inversion attack aims to: (i)
estimate sensitive attribute values in training instances or prop-
erty of training instances, (ii) reconstruct training instances.
Existing research approaches empirically investigate the first
adversarial aim for tabular data [20], [23], [33], [36]. We cate-
gorize this attack scenario as the attribute inference (AI) attack
(see Figure 1). This AI attack leads to the leaking of sensitive
private data of an individual in the training set [33] and can
have serious consequences, e.g., an adversary can target a
patient disease prognosis model and can infer an individual’s
(training instances) previous medical records (attributes) or
other sensitive information by posing this AI attack. In real
life, machine learning-as-a-service providers (MLasS), e.g.,
Amazon, Google, and Microsoft, allow deploying ML models
(trained on sensitive private data) in the clouds, which can
be further queried with API provided by the MLasS. Adver-
saries with capabilities can leverage these APIs to perform
AI attacks [22], [23], [33]. In recent research, researchers
extend the MI attack to a relaxed version, i.e., approximate
attribute inference (AAI) attack, which focuses on inferring the
sensitive attribute value based on some acceptable threshold
on the distance between the actual and inferred attribute
values, i.e., the value that exists within the threshold [41].
Personalized medicine, lifestyle prediction, facial recognition,
object identification, medical imaging, etc., are some of the
applications of target models, where adversaries can target and
perform MI attacks. In Table III in the Appendix, we present
different MI attacks and their real-life applications.

C. Foundational Aspects of MI Attacks

MI attacks in the literature consider two basic inversion
mechanisms as foundations– (i) optimization-based approach,
and (ii) surrogate model training approach. In Table I in the
Appendix, we present the approach considered in different MI
attacks in the literature and their other characteristics.

• Optimization-based approach: In the optimization-
based approach, the inversion purpose is turned into
a gradient-based optimization problem that objectively
reverses back the target model output to its input (recon-
structed training samples), without training any additional
model to handle this inversion task [23], [25], [35]. In
this approach, the learning objective, i.e., optimization
function in neural network-based models, is optimized
in iterations in a way to generate better estimation or
reconstruction of training instances. Existing research for
reconstruction attacks that follow the optimization-based
approach customizes the cost function in different ways
to attain the goal for better reconstruction under different
setups, e.g., white-box vs. black-box, the gradient vs.
confidence score information availability, etc [25], [32],
[33], [36], [85]. Fundamental steps in optimization-based
approach are [23], [25]:

✓ Query the target model ftar with auxiliary train-
ing set Daux for the adversary (depending on
setup/characteristics)

✓ Formulate the optimization function θ (similar to
Eqn. 5) utilizing predictions pred, confidence scores
conf (if available from target model ftar) and other
adversarial capabilities (Figure 3b)

✓ Run an optimization algorithm for λ step size and
α iterations; and in each iteration, compare the
generated feature vector Xseni (reconstructed) to the
feature representations in the last iteration Xseni−1

to update parameters according to function θ
✓ Perform post-processing, including rounding values

and denoising (applying filters) reconstructed feature
vectors Xseni to improve the quality of reconstruc-
tion. After α iterations, return the best-generated
feature vector Xseni

One of the commonly used optimization algorithms is the
gradient descent with different variations like stochastic
gradient descent (SGD), as illustrated in Section II-D.
Irrespective of the algorithm, an important step in the
optimization-based approach is to customize and formu-
late the optimization function function [23], [25], [36].
Existing research works consider different neural network
models, including GAN [32], autoencoder, and multilayer
perception (MLP) [23], with different optimization algo-
rithms to inverse the target model back to the original
inputs, i.e., reconstruct training samples.

• Surrogate model training approach: In the surrogate
model training approach, an adversary exploits the basic
auxiliary information and trains a surrogate model that
leverages input-output correlation in the target model
along with different auxiliary information and setups [20],
[42], [86], [87] to inverse the target model (to estimate
sensitive attributes or reconstruct training samples) by
training surrogate model. An example of surrogate model
training approach is illustrated in Figure 3a. This sur-
rogate model training approach enables capturing the
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input-output dependency in a better way compared to
optimization-based approach, particularly for complex
target models like long short-term memory (LSTM),
convolutional neural networks (CNN), or recurrent neu-
ral network (RNN) [35]. The fundamental steps in the
surrogate model training approach [10], [33], [35] are:
✓ Query the target model ftar with auxiliary train-

ing set Daux for the adversary (depending on
setup/characteristics)

✓ Obtain predictions pred and confidence scores conf
(if available) from target model ftar

✓ Concatenate Xin with pred and conf (if available)
to form the adversarial training dataset Dadv , where
Xin ∈ Daux and Xin = Xsen + Xnsen, i.e., Xin

is target model training samples’ all attributes (both
sensitive and non-sensitive attributes

✓ Train adversarial (i.e., inversion) model fadv with
Dadv , where inputs are all non-sensitive attributes
Xnsen, predictions pred and confidence scores conf
(if available); whereas output is the sensitive attribute
value Xsen

In image reconstruction attacks, these sensitive attributes
Xsen are features of reconstructed images from activation
layers in neural networks [20], [32], [35]. In the literature,
different MI attacks that consider surrogate model train-
ing approach follow these fundamental steps with some
customization based on setup, auxiliary information avail-
ability, and for performance boostup [20], [35]. Note that
the auxiliary training dataset Daux might vary depending
on available information [35]. For example, this set can
be: i) the same as the training set of the target model, ii)
a generic dataset related to a similar distribution (target
model training data), or iii) a completely distinct dataset
from any other source not necessarily identical to target
model training data. Although performances might vary
slightly, as expected, MI attacks are still effective with
any type of auxiliary training set available [35].

D. Black-box MI Attacks

As discussed in Section I, black-box is a restricted access
type to target models and hence the toughest setup for an
adversary to perform a privacy attack like MI attacks [10]. An
adversary with this access type does not have knowledge or
control regarding the target model’s internal architecture, pa-
rameters, weights, etc [32], [33], [36], [86]. The key insight for
these MI attacks is to utilize the API access to the target model
along with other capabilities to develop an inversion model
through querying the target model for inferring/reconstructing
sensitive attributes/training samples. We present a summary of
the existing black-box and white-box MI attacks in Table III
in the Appendix.

The first black-box MI attack was introduced by Fredrikson
et al. [33] against a linear regression target model. This
black-box attack only considered returned predictions from
the target model to infer sensitive attributes. Black-box attack
in [23] against the decision tree target model considered

adversary can obtain both prediction and confidence scores.
Different black-box attacks adopt various techniques to infer
sensitive attributes depending on available information and
setups. However, the basic steps involved in Black-box MI
attacks are: (1) query the target model ftar with data samples,
(2) obtain predictions pred, confidence scores conf based on
setup, and (3) apply an algorithm to identify the best suitable
candidate as the estimated sensitive attribute value.

Most commonly used algorithm in step (3) is the maximum
a posterior (MAP) technique [23], [36]. Fredrikson et al. [23]
in their MAP technique compute scores for each possible value
of the sensitive attribute and return the one maximizing scores,
where score = ci,j ∗ pi (ci,j is the value in the target model
confusion matrix cm, and pi is class marginal prior) [23].
Similarly, Hidano et al. [36] compute the scores by multiplying
class marginal pi with an error term ei = err(y, x̂), where
y is the actual value, and x̂ is the sensitive attribute value
considered. Step (2) assumptions also differ in existing black-
box MI attacks. While most attacks assume only access to
predictions pred [33], [36], researchers also consider the
availability of confidence scores conf along with pred and
design the attacks utilizing all available information from
target models [23].

Black-box MI attacks follow significantly distinct ap-
proaches in Step (1) depending on the setups. In [23], [33],
the adversary is assumed to have knowledge of non-sensitive
attributes of the training samples, thereby they query the target
model simply by setting different values of sensitive attributes
and follow Step (3) algorithm to obtain the best candidates. In
another attack [36], the adversary injects poisoned samples by
tweaking non-sensitive attribute values (making coefficients
0) to alter the target model ftar. This controlled poisoning
ensures minimum malicious samples and allows adversaries
to have better control over the prediction pred. Finally, in
Step (3), it also applies a similar algorithm to find suitable
candidates.

Adversaries might not have access to training samples (i.e.,
non-sensitive attribute values) [35]. Yang et al. [35] have im-
plemented black-box MI attack (image reconstruction) without
access to training samples. In Step (1), this attack queries the
target model with samples taken from generic distributions. In
Step (2), instead of having access to actual confidence scores
conf , this work considers a more restricted scenario, where
the adversary only gets truncated scores conftrun and applies
this as inputs to design a surrogate inversion model (Step (3))
to obtain reconstructed images (input is conftrun and output
is the features of reconstructed images). It also considers the
other two sets of data in Step (1), as described in Section III-C.
This work shows the black-box MI attack is still successful
even without full knowledge about target model training sets.

E. MI Attacks on Federated Learning

As data volume increases, expanding deep learning model
computational power has become vital. Therefore, models
are designed/deployed in collaborative fashion for both train-
ing [88] and inference [89], as illustrated in Figure 4. Among

445



collaborative learning techniques, federated learning (FL)
is the most promising because of its flexible and privacy-
preserving multiparty updating principle (as discussed in Sec-
tion II-D) [32], [42], [90].

While FL has been considered as privacy-preserving learn-
ing for a long, recent studies have shown it is also suscepti-
ble to privacy attacks like membership inference and model
inversion attacks to some extent [32], [85], [87], [91]. In
the FL setup, each client trains their local models with their
private data and shares updates periodically to the server.
However, this does not ensure the protection of private training
data [32], [87], [91]. MI attacks against the FL clients focus on
image reconstruction (IR) attacks and can be broadly classified
into two major subcategories: (i) malicious participant and
(ii) malicious server. In the malicious participant scenario, a
malicious participant in FL acts as an adversary and tries to
reconstruct training samples of other clients [32], [42], [85].
Whereas, in the malicious server scenario, the server itself
acts as an adversary to reconstruct any participant’s training
samples [91].

Major steps in MI attacks in FL are: (a) target a specific
clients’ training data class/sample, (b) obtain gradient updates
from the server (malicious participant), (c) utilize the gradient
updates and other additional information to training an inver-
sion model. Among the MI attacks in malicious participant
subcategory, they differ in terms of objectives in step (a),
e.g., MI attacks in [32], [85], [90] targets a particular class
(like class ’4’ in MNIST dataset [92], ’horse’ in CIFAR-
10 dataset [93], etc.) and reconstructs a typical image of
that class, i.e., typical image reconstruction (TIR) attacks.
Another type of MI attack has the goal of reconstructing an
individual training image (sample) [42], [91] i.e., individual
image reconstruction (IIR) attacks. Step (b) is applicable
in malicious participant subcategory, where the malicious
participant obtains the iterative gradient updates from the
server (aggregator) and utilizes that to train an inversion
model. For the malicious server scenario, the server already
has access to the local updates [91]. In Step (c), researchers
commonly apply gradient-based techniques [32], [42], [85] to
train the inversion models. Also, GAN models (discussed in
Section II-D), GAN-based architectures/techniques [32], [91],
or SGD-based models [42] can be trained utilizing gradient
updates to reconstruct higher quality training data images.

An observation to note that all these different MI attacks
in FL vary in terms of participant data setups [32], [42].
Most research considers data is disjoint among the clients,
i.e., multiple clients have a distinct class of training data [32],
[85], [90]. However, in a more realistic setup, it’s common that
multiple clients might share samples of the same class, i.e., not
disjoint. This setup is considered in recent research, and it has
been shown that even in this scenario, image reconstruction
attacks are effective [42], [91].

F. MI Attacks in Online Learning

In general, training an ML model is considered expensive in
terms of time and cost. Hence, with the availability of large-

scale continuous data, retraining the model from scratch be-
comes a burden [10]. Therefore, online training has become an
effective solution, which involves training an already trained
ML model with only the updating dataset (new data samples).
Suppose, Mcur: Xcur → Ycur, where Xcur and Ycur are the
input and output sets that the current ML model is trained with.
If Dnew is the updating dataset (new data samples), then the
online training process can be defined as Fonline: Mcur →
Mnew, where Mnew is the updated version of Mcur (trained
with Dnew).

The online training process can also leak sensitive infor-
mation on training samples or updating samples [10]. Salem
et al. [10] designed MI attacks against the target model in
online training setup to reconstruct samples in the update set
Dnew. Fundamental steps in such an MI attack pipeline are:
(i) select a Qprob probing set and query the two versions of
target models, i.e., Mcur and Mnew, (ii) utilize the posterior
differences obtained from posterior probabilities in outputs of
two target models in step (i), (iii) train an inversion model
to reconstruct training samples as outputs, taking posterior
differences in step (ii) as inputs. The inversion model in
step (iii) can be implemented using different neural network-
based architecture, e.g., autoencoder used in [10], where the
encoder (E) takes posterior difference as inputs and maps to
intermediate vector representation, which is then decoded back
to original samples by the decoder (D).

G. Memorization vs. MI Attacks

ML and deep learning models can be either benign or
malicious [20]. A benign model does not memorize the training
data during the model training phase. In contrast, an adversary
can hide sensitive information (training dataset) in model
training parameters. Adversaries can leverage this memorized
information to pose privacy attacks, including membership
inference and MI attacks [20], [21], [37], [46]. Therefore,
memorization positively impacts risks for privacy attacks, i.e.,
the more a model can memorize, the more likely it is to
be vulnerable to a privacy attack, e.g., an MI attack [37],
[94]. One of the root causes for the memorization is the
gap between model performance on training and test sets,
measured by a popular term in ML called overfitting [95].
The more a model overfits, the more it loses generalizability
and the more it memorizes, a way to leak training data
sensitive private information [95]. Song et al. and Carlini et
al., in their recent works, showed how the malicious models
can memorize information regarding training data (image or
text data) either intendedly [20] or unintendedly [21], which
makes models vulnerable for adversarial attacks including
membership inference [24] or MI attacks [33].

Unintended memorization refers to the inherent capability
of an ML to hide training data dependency/correlation in
model parameters, weights, biases, etc., during the iterations
of the training phase [21]. An adversary, even with black-box
access, can query these unintended memorized target models,
and the memorization allows the models to leak sensitive
information in the form of predictions pred [21]. An adversary
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can leverage these predictions pred to develop an inversion
model and perform an MI attack, as discussed in Section III-C.

In intended memorization, an adversary purposefully adopts
techniques so that the target model is overparameterized during
training to memorize training data [20]. One such technique is
adding a regularization term with the usual loss function (e.g.,
SGD loss in Eqn. 5) for penalizing during optimization so that
the model either (i) encodes sensitive attribute information to
the signs of parameters or (ii) increase correlation between
parameters and sensitive attributes [20]. Another way is to
augment and increase the training set samples with the goal of
encoding sensitive information directly to the least significant
bits of parameters [20], which requires adversarial access to
the model parameters to pose an MI attack against target
models, i.e., white-box access.

H. Impact of Adversarial Knowledge on MI Attacks

Adversarial knowledge or capability plays a vital role in
MI attack design and performances [23], [35]. In general,
MI attacks designed using a similar inversion technique with
more available adversarial capabilities achieve better attack
performances/success rates compared to the scenario with
less adversarial capabilities [36], [42], [86]. In Section II,
we illustrate different auxiliary information and categorize
auxiliary information considered in different MI attacks in
Table I in the Appendix.

Among existing black-box attacks, MI attacks in [23], [35],
[36] consider access to confidence scores conf besides predic-
tions pred and is more effective than MI attack without access
to conf [33]. Other adversarial capabilities that Fredrikson
et al. [23] consider are access to confusion matrix (Cm),
class marginal priors, and all other non-sensitive attributes
of training samples. Another black-box attack considered no
or partial non-sensitive attribute information availability [35].
Although the adversary in black-box attack in [35] has partial
adversarial knowledge on non-sensitive attributes, still this
attack is effective compared to MI attack with full adversarial
capabilities [23]. This is because surrogate model training
approach inversion technique [35] is more robust and flexible
compared to optimization-based approach (although involves
overhead to train the surrogate model), while not compromis-
ing performance [35].

In the white-box setup, the impact of adversarial capabilities
is even more prolific [25]. This is primarily because adversarial
capabilities significantly contribute to gradient computations,
which is the basic parameter that white-box setup makes
available to an adversary. For example, image reconstruc-
tion attack designed in [25] considers different adversarial
capabilities like access to blurred, T-masked, center-masked
images or no auxiliary image. It shows that when no auxiliary
image is available to an adversary, the reconstructed images
are significantly different from the actual ground truth. The
reconstruction quality drastically improves with the availability
of any auxiliary information like blurred or masked images.
Also, since center-masked images hide less sensitive parts
in images compared to T-masked and thereby, reconstruction

quality is comparatively higher in center-masked auxiliary
information [25].

I. Open Issues and Future Directions

• Attack with the minimal capabilities: Existing MI at-
tacks, both inference and reconstruction attacks consider
a large pool of adversarial capabilities [23], [33], [35],
[36], [86]. Some of these capabilities, e.g., access to
confusion matrix, target model training samples’ non-
sensitive attribute values, or dataset to training inversion
model, are not only overarching but also unrealistic to
some extent. It is crucial to identify the minimal set
of required capabilities for MI attacks and design such
effective attacks under more realistic setups.

• Performance stability in MI attacks: Model inversion
attacks aim to infer or reconstruct target models training
samples. However, the same attack technique does not
perform equally against all target models. Target model
architecture might impact attack success rates. This opens
up directions for further investigation on factors affecting
performance stability in MI attacks across target models
and to design more target model agnostic attacks, miti-
gating the stability factors.

• Access type invariant attacks: An avenue for future
research is to introduce robust attacks that can be applied
to either of the target model access types, i.e., black-box
or white-box, without compromising attack performance
significantly. State-of-the-art MI attacks are generally
designed for particular target model access types [10],
[33], [36]. While some attacks are customizable to suit
other access types, they significantly suffer in perfor-
mance [20], [23], [87].

• Generalization vs. MI attack performances: When
an ML model is overparameterized during the training
phase, it reduces generalizability as it tends to memorize
more [21]. In practice, generalization is measured as a
gap in model performance between training and test sets.
If this gap is not significant, it implies the model general-
izes well. Memorization and generalization are treated as
two sides of the coin. A positive association is established
between the MI attack and memorization [37], [94].
However, the empirical establishment of a relationship
between generalization and MI attacks is yet to analyze.

• Unified comparison metrics: In current privacy and
security research, there is no unified suitable metric
for attack performance measures (different metrics are
presented in Table III in the Appendix). For each pri-
mary category of MI attacks, a particular metric might
capture the performance in a better way compared to
other metrics. Therefore, based on category, in-depth
investigation is a call for unfolding such a unified metric
that all designed attacks should consider for experimental
evaluations.

• Reduced dependency on priors: One interesting ob-
servation is that existing attacks are highly dependent
on training data class marginal priors computed as a
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ratio of samples that belong to a particular class and
total samples. It is unexplored whether a model inversion
attack is not effective without such information on target
model training data, e.g., when an adversary generates its
own synthetic data and performs such an attack.

• Multimodal data-based MI attacks: Model inversion
attacks are focused on an image or tabular data mostly
in the literature [23], [32], [35]. However, other data
domains like text or audio/speech might be even more
vulnerable and consequential due to privacy implications.
One possible future direction is to study this attack
in those domains as well. Also, some target models
are trained with multimodal data leveraging different
sources/data types. Existing attacks have not investigated
the challenges of attacking target models trained with
multimodal datasets.

• Federated unlearning vs. MI attacks: While researchers
have investigated privacy leakage in FL and designed
MI attacks against such paradigm [32], [42], [91], it has
only been analyzed superficially and even unstudied. One
such learning is vertical federated learning (VFL) [96],
discussed in Section II-D. MI attacks are yet to design
against this promising research direction in VFL. Also,
in FL, after some iterations, any client might go down
or remove, captured by a popular notion called federated
unlearning [97]. It is still a question of whether an adver-
sary can perform an MI attack, even in such scenarios.

IV. DEFENSES AGAINST MODEL INVERSION ATTACKS

Defense mechanisms against adversarial attacks have been
comparatively less investigated in existing works. In this
section, we illustrate the basic fundamentals of different de-
fense techniques in the literature and describe open issues or
challenges for the future. We present the foundational charac-
teristics of different defense techniques against MI attacks in
Table IV in the Appendix.

A. Defenses against back-box MI Attacks

Black-box MI attacks consider very restricted setup, and
therefore designing defenses against these attacks are even
more challenging [23], [33]. Existing research considers differ-
ent approaches, including adding noise, rounding confidence
scores, and differential privacy (DP) [23], [29], [33], [98].

1) Noise Superposition: Adding random noise to the pos-
teriors, i.e., confidence scores, can work well if the adversary
relies on confidence scores to design the attack model. A
number of research approaches utilize this noise superposition
technique for defending against MI attacks [10], [25], [98].
For example, suppose X1 is a training sample and Y1 is the
posterior class probabilities, then adding δ̃ noise to posterior
class probabilities would result in updated posteriors Yup=
Y1 + δ̃. This defense imposes noises randomly from the
uniform distribution to the posteriors when queried. This
noise addition should be done on each sample individually so
that the posteriors (on all queries) do not leak input-output
correlation. Weak correlations between inputs and outputs

reduce MI attack performances, as illustrated in empirical
evaluations [10].

2) Perturbation and Rounding based Defenses: Among var-
ious defense techniques introduced against MI attacks, this one
is investigated in [23], [29]. This technique involves perturbing
or rounding the target model confidence scores. The defense
can be guided or unguided. In the unguided perturbation
or rounding, the target model randomly perturbs or simply
rounds the confidence scores before making them available
as outputs [23]. As a result, an adversary that implements
the MI attack utilizing the confidence scores (obtained by
querying the target model) would have incorrect predictions,
i.e., sensitive attribute estimation or reconstructing samples.
Guided perturbation or rounding serves a similar goal, only in
a guided way, e.g., using a module that serves as the purifier of
confidence score, which necessarily perturbs/clusters targeted
confidence scores while minimizing loss function [29]. This
clustering reduces dispersion and makes confidence scores
indistinguishable (to samples), causing incorrect predictions
for adversarial estimation.

3) Differential Privacy (DP) based Defenses: Differential
privacy (DP) is a randomization technique considered to
ensure training data privacy [33]. This technique commonly
uses the ε parameter as the privacy budget, which indicates
the maximum distance between sample values (ground truth)
and their randomized values (DP randomized). Suppose Xin

is the set of input samples (all attributes), ftar is the target
model trained with DP, so the randomized set of samples
(differentially private set), Xrnd= ftar(Xin) + L(Xin, ε),
where L(Xin, ε) is the Laplacian distribution noise applied
on samples with privacy budget ε. When ε is very small,
varying inputs produce similar outputs; therefore less effective
for an adversary to exploit privacy leakage. So, in general, DP
is a great defense against privacy attacks. However, DP only
randomizes dataset samples and prevents individual samples’
inclusivity estimation in the dataset. However, it does not
ensure attribute level privacy, which is the goal of MI attacks,
and so DP is less effective against MI attacks [33], [34].

B. Minimizing Input-Output Dependency

One of the root causes for MI attacks is the depen-
dency between inputs and outputs that the adversary lever-
ages (through querying the target model) while designing
attack [34]. Therefore, Wang et al. [34] proposed a new model-
agnostic defense using mutual information regularization to
reduce the input-output dependency. The key idea is to include
an additional regularizer term using mutual information [99],
[100] I(Xin, Ŷ )= H(Ŷ ) − H(Ŷ |Xin) between inputs and
outputs; along with traditional cross-entropy loss function
L(y, f(Xin)), where Xin and Ŷ denote input features and
output labels. This customized loss function with the addi-
tional regularizer penalty term enables iteratively reducing
the mutual information through penalization and updating
parameters iteratively [99], [100] between inputs and outputs.
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C. Open Issues and Future Directions

• Defending MI attacks in FL: Federated learning has
become a popular form of learning technique in recent
years. Researchers have investigated privacy leakage in
FL and designed MI attacks under different assump-
tions [32], [85], [91]. However, these attacks do not
empirically analyze possible defenses to mitigate the
attacks. Therefore, one big challenge is still remaining
to design effective defenses against MI attacks in FL.

• Target model agnostic defenses: In general, model
inversion attack defense is comparatively less ex-
plored [23], [34]. However, most of these defenses, e.g.,
rounding confidence in a neural network or priority-
based sensitive attribute placement in decision tree [23],
are targeted for specific target models. While some of
these can be applied to other target models through
customizing and tweaking [34], more generic forms of
defenses agnostic to target models are yet to introduce
and evaluate their efficacy.

• Defense vs. target model utility: There is a tradeoff
between target model performance (utility) and defense
success rates [33], [34]. To be more precise, as the
defense techniques against MI attacks are applied, and
they become successful in reducing attack performance,
at the same time, the target models suffer much from
downstream task performances, e.g., using DP as a de-
fense [34]. It has become important to design effective
MI attack defenses that do not compromise target model
performances significantly.

• Generalizable defense framework: One of the chal-
lenges in privacy attack defenses is to implement a
robust and generalizable defense framework that supports
effective defenses against any privacy attack under any
general assumptions. So far, in the literature, privacy
attack defenses are ad-hoc, based on attack technique,
downstream target model task (classification or regres-
sion), assumptions, target model access types, etc., which
require further investigations to identify generic charac-
teristics that bring them all privacy attacks under the same
defense framework.

• Adaptive Multifactor defense: Studies found that input-
output correlation in training data is a contributing factor
for MI attacks [34]. There might be other factors that
holistically control MI attack success. Also, different
viable factors might impact differently based on setups
like sample size, model parameter weight, data types, bi-
nary/multiclass classification tasks, etc. Therefore, under-
standing these factors and designing an adaptive defense
based on the findings is a potential future direction.

V. DISCUSSIONS AND FUTURE WORK

In this section, we highlight takeaways in model inversion
attack research domains, shortcomings in existing research,
and potential ways to overcome challenges and improve at-
tack/defense performances or future research directions.

• Robust model inversion attacks: Model inversion attack
is still in flux. More investigations are required to design
effective attacks under more realistic assumptions. This
includes identifying minimal required capabilities for this
attack under different setups and access types. It is also
important to ensure these attacks are more robust against
state-of-the-art defenses and invariant to target model
architectures. Another research direction is to explore
these attacks on scenarios where target models are trained
in fairly recent learning concepts like zero short, few
shot [57], and contrastive learning [58], besides federated
learning techniques and different scenarios of FL like
federated unlearning, as discussed in Section III-I.

• Generalized defense against inversion attacks: Con-
sidering its security and privacy threats, it has become a
challenge to design effective and target model agnostic
defenses against MI attacks. This requires further inves-
tigations in the federated learning environment, consid-
ering its large-scale applications. Also, in the future, as
data volume and modality would increase, an important
step is to identify factors controlling the MI attack and
its relationship with other privacy attacks. This would
enable the implementation of more generic multifactor-
based privacy attack defense frameworks.

• Multimodal MI attacks: While data volume is increas-
ing, data modality is also ever-growing. This phenomenon
has made designing MI attacks on multimodal training
data an open avenue for investigation. Since existing
attacks are only limited to image and tabular data, they
can further be explored in other domains like audio or
text. Even it would be interesting to explore whether MI
attacks are effective when target models are trained with
multimodal data fusion techniques from multiple sources.

VI. CONCLUSIONS

Versatile AI and ML applications and large volume multi-
modal data availability are the root causes for data pri-
vacy threats, either tabular/image/audio/text data domains.
One such consequential threat is the model inversion attack,
which objectively looks for inferring training data sensitive
attributes (tabular data) or reconstructing training data samples
of an individual/class (image/audio/text data). In recent years,
researchers have introduced MI attacks exploiting different
auxiliary information to infer sensitive attributes (tabular data),
although most of them focus on reconstruction attacks (image
data). This can further be extended to other modalities like
against multi-modal audio/text data (both centralized and fed-
erated learning), even to rigorously explore inference attacks
on tabular data. Additionally, effective generalized robust
attack techniques are yet to investigate. Likewise, target model
agnostic defenses against MI attacks are crucial. This paper
provides a systematization of the MI attacks– a taxonomy
of approaches, foundational aspects, open challenges, and
potential future directions in the MI attack domain.
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[99] A. Kraskov, H. Stögbauer, and P. Grassberger, “Estimating mutual
information,” Physical review E, vol. 69, no. 6, p. 066138, 2004.

[100] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio,
A. Courville, and D. Hjelm, “Mutual information neural estimation,”
in International Conference on Machine Learning. PMLR, 2018, pp.
531–540.

[101] I. W. P. Consortium, “Estimation of the warfarin dose with clinical and
pharmacogenetic data,” New England Journal of Medicine, vol. 360,
no. 8, pp. 753–764, 2009.

[102] W. Hickey, “FiveThirtyEight: How Americans Like Their Steak,” http:
//fivethirtyeight.com/datalab/how-americans-like-their-steak/, 2014.

[103] J. Prince, “Social science research on pornography,” http://byuresearch.
org/ssrp/downloads/GSShappiness.pdf.

[104] G. Research, “MovieLens 1M Dataset,” http://grouplens.org/datasets/
movielens/, 2003.

[105] F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model
for human face identification,” in Proceedings of 1994 IEEE workshop
on applications of computer vision. IEEE, 1994, pp. 138–142.

[106] H.-W. Ng and S. Winkler, “A data-driven approach to cleaning large
face datasets,” in 2014 IEEE international conference on image pro-
cessing (ICIP). IEEE, 2014, pp. 343–347.

[107] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces
in the wild: A database forstudying face recognition in unconstrained

environments,” in Workshop on faces in’Real-Life’Images: detection,
alignment, and recognition, 2008.

[108] K. Lang, “Newsweeder: Learning to filter netnews,” in Machine Learn-
ing Proceedings 1995. Elsevier, 1995, pp. 331–339.

[109] A. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th annual meeting of the association for computational linguistics:
Human language technologies, 2011, pp. 142–150.

[110] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” Advances in neural
information processing systems, vol. 29, pp. 2234–2242, 2016.

[111] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proceedings of the IEEE international conference on
computer vision, 2015, pp. 3730–3738.

[112] J. Buolamwini and T. Gebru, “Gender shades: Intersectional accuracy
disparities in commercial gender classification,” in Conference on
fairness, accountability and transparency. PMLR, 2018, pp. 77–91.

[113] N. Zhang, M. Paluri, Y. Taigman, R. Fergus, and L. Bourdev, “Beyond
frontal faces: Improving person recognition using multiple cues,” in
Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 4804–4813.

[114] B. Verhoeven and W. Daelemans, “Clips stylometry investigation (csi)
corpus: A dutch corpus for the detection of age, gender, personality,
sentiment and deception in text.” in LREC, 2014, pp. 3081–3085.

[115] D. Yang, D. Zhang, L. Chen, and B. Qu, “Nationtelescope: Monitoring
and visualizing large-scale collective behavior in lbsns,” Journal of
Network and Computer Applications, vol. 55, pp. 170–180, 2015.

[116] D. Yang, D. Zhang, and B. Qu, “Participatory cultural mapping based
on collective behavior data in location-based social networks,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 7,
no. 3, pp. 1–23, 2016.

[117] Y. O. D. Repository, “Yelp Dataset,” https://www.yelp.com/dataset,
2004, [Online; accessed 12-July-2022].

[118] G. Chen, J. Zhou, and Z. Liu, “Global synchronization of coupled
delayed neural networks and applications to chaotic cnn models,”
International Journal of Bifurcation and Chaos, vol. 14, no. 07, pp.
2229–2240, 2004.

[119] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
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[123] J. M. Lobo, A. Jiménez-Valverde, and R. Real, “Auc: a misleading
measure of the performance of predictive distribution models,” Global
ecology and Biogeography, vol. 17, no. 2, pp. 145–151, 2008.

APPENDIX

Paper selection Methodology: In this manuscript, we
systematically study existing model inversion attacks since
it was first introduced [33] till date. We choose papers as
follows: step1: We consider paper [33] as the baseline. step2:
We have done brute force searches in both defense and attack
directions for the most influential works. step3: We expand the
search radius in five dimensions (Table I in Appendix): (i) data
types (image vs. tabular), (ii) target model access types (black-
box vs. while-box), (iii) inversion technique (training vs. opti-
mization) types, (iv) model learning (centralized, distributed,
federated) types, and (v) auxiliary information (confidence-
based, gradient-based, auxiliary data-based) types.
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