
Statement-Oblivious Threshold Witness Encryption
Sebastian Faust∗, Carmit Hazay†, David Kretzler∗, Benjamin Schlosser∗

∗Technical University of Darmstadt, Darmstadt, Germany
{first.last}@tu-darmstadt.de

† Bar-Ilan University, Ramat Gan, Israel
carmit.hazay@biu.ac.il

Abstract—The notion of witness encryption introduced by
Garg et al. (STOC’13) allows to encrypt a message under a
statement x from some NP-language L with associated relation
(x,w) ∈ R, where decryption can be carried out with the
corresponding witness w. Unfortunately, known constructions for
general-purpose witness encryption rely on strong assumptions,
and are mostly of theoretical interest. To address these short-
comings, Goyal et al. (PKC’22) recently introduced a blockchain-
based alternative, where a committee decrypts ciphertexts when
provided with a valid witness w. Blockchain-based committee
solutions have recently gained broad interest to offer security
against more powerful adversaries and construct new crypto-
graphic primitives.

We follow this line of work, and propose a new notion of
statement-oblivious threshold witness encryption. Our new notion
offers the functionality of committee-based witness encryption
while additionally hiding the statement used for encryption. We
present two ways to build statement-oblivious threshold witness
encryption, one generic transformation based on anonymous
threshold identity-based encryption (A-TIBE) and one direct
construction based on bilinear maps. Due to the lack of efficient
A-TIBE schemes, the former mainly constitutes a feasibility
result, while the latter yields a concretely efficient scheme.

Index Terms—Threshold Witness Encryption, Statement
Obliviousness, Committee-Based Decryption, Threshold Tag-
Based Encryption

I. INTRODUCTION

The notion of witness encryption as introduced by Garg
et al. [1] allows a party to encrypt a message m under
some problem instance x such that the ciphertext can only
be decrypted by someone holding a witness w. There are
countless applications of witness encryption ranging from
public key encryption with fast key generation, attribute-based
encryption for general circuits [1], to using it for encrypting
a prize for solving an NP-hard puzzle like the millennium
problems, or achieving fairness in MPC [2]. More formally,
witness encryption is defined for an NP language L with
associated relation (x,w) ∈ R, where x is the statement and
w is the corresponding witness. Security as defined by Garg
et al. [1] states that for any ciphertext that was created for x
not in the language L, ciphertexts do not reveal information
about the encrypted message. While this notion only deals
with statements that are not in the language, Goldwasser et
al. [3] introduced the notion of extractable witness encryption
stating that even for a statement in the language, ciphertexts
hide the message.

Although great progress has been made over the last years
[1], [3]–[7], witness encryption still has limitations. First,

known constructions rely on strong assumptions like multi-
linear maps [1], [3], [5], [6], indistinguishability obfuscation
[4] or cryptographic invariant maps [7], and its constructions
are not practically efficient yet. Second, even the stronger
notion of extractable witness encryption does not hide the
statement for which the ciphertext was created. This rules
out interesting applications that require the statement to be
private until decryption takes place, as it may disclose sensitive
information.

The first shortcoming of state-of-the-art witness encryp-
tion can be circumvented via so-called extractable Witness
Encryption on Blockchains (eWEB) put forward by Goyal
et al. [8]. It is based on a blockchain following a recent
trend in cryptography, where constructions leverage the power
of blockchains, e.g., [2], [9]–[12]. In the context of witness
encryption, this results in a shift from relying on strong
number theoretic assumptions to relying on an honest quorum
of users within a committee. This trend is further fueled
by a line of work that presents constructions of how such
committees can be obtained in a blockchain setting [10], [13],
[14].

In a nutshell, the scheme of [8] works as follows. Parties
encrypt a message by secret sharing it to a committee and
labeling the shares with a statement x. To decrypt, parties
need to send a witness to the committee proving that x
is in the language L and getting the secret shares back.
While the construction of Goyal et al. is certainly more
efficient than standard general-purpose witness encryption,
the downside of their solution is the storage complexity of
the committee, which grows linearly with the number of
ciphertexts. Improving on the approach of [8], [9] propose as
an application for their large-scale non-interactive threshold
cryptosystem a solution, in which the decryption committee
stores only secret key shares of a labeled threshold encryption
scheme. The committee receives ciphertext-witness-pairs and
decrypts only if the witness corresponds to the statement
encoded as the label of the ciphertext. This reduces the storage
complexity to be only constant. Following [8], [9], Campanelli
et al. [10] presents a similar construction called Blockchain
Witness Encryption (BWE). However, their construction is not
practical (e.g., for each encryption a smart contract deployment
is required).

In this work, we start with the approach of [9], which
we abstractly call threshold witness encryption, and address
the second shortcoming by a new feature called statement

17

2023 IEEE 36th Computer Security Foundations Symposium (CSF)

© 2023, Sebastian Faust. Under license to IEEE.
DOI 10.1109/CSF57540.2023.00026

20
23

 IE
EE

 3
6t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

79
-8

-3
50

3-
21

92
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

75
40

.2
02

3.
00

02
6

obliviousness, which guarantees that the statement is hidden
given the ciphertext. This new feature allows us to extend
applications of standard (threshold) witness encryption with
an additional privacy property. For instance, we can construct
time-lock encryption from witness encryption, as proposed
by [6], without leaking the concrete time at which a decryption
can happen to third parties, or we can construct a dead-man’s
switch, as proposed by [8], without revealing for which person
it was created. Moreover, this feature enables a new class
of applications that inherently require the privacy property
and are not covered by standard witness encryption. As a
concrete example, imagine a user wants to buy some shares
of a company or some tokens on a Decentralized Finance
(DeFi) trading platform, once the price of the asset reaches a
certain value; however, without the necessity of having to stay
online. Privacy is an important aspect in this scenario, since
revealing information, e.g., the intended purchase price, could
lead to financial disadvantages, e.g., due to insider trading. To
support the described scenario, the user can exploit statement-
oblivious threshold witness encryption in the following way.
The user encrypts its transaction with the desired share price
as statement and a signature of a trusted price oracle service
as the required witnesses. Trusted price oracles are already
available in the DeFi ecosystem and heavily used for building
various financial products. The ciphertext is sent to the user’s
broker who repeatedly requests the signed current share price
from the oracle service, attempts decryption, and, if this gives
a valid transaction, executes the trade. For decrypting, the
broker sends the ciphertext together with the current share
price to the decryption committee. As the statement is hidden,
no one, not even the oracle service, learns the desired share
price until the transaction is successfully decrypted. Due to the
required signature of the oracle service, the broker cannot send
incorrect share prices to the decryption committee. We provide
more details about use-cases of our new security feature in
Section IX.

While [8] and [9] tackled the first limitation and present
more efficient constructions that are effectively the same as
witness encryption, both schemes still suffer from the fact
that the statement is public. In this work, we address the
privacy feature mentioned above. To this end, we introduce a
novel notion that we call statement-oblivious threshold witness
encryption (SO-TWE) and show how to instantiate it.

A. Contribution

We start by giving a summary of our contribution and
defer an high-level overview of our constructions as well
as a discussion of the technical challenges to the technical
overview.

1) Primitive definition: We introduce the notion of
statement-oblivious threshold witness encryption (SO-TWE).
This primitive provides effectively the same functionality as
witness encryption while requiring a committee with a fixed
number of corrupted parties as typically done in threshold
cryptography. As we envision the committee to perform
decryption on request, we define a security notion against

CCA Secure Statement-Oblivious Threshold Witness Encryption
(SO-TWE)

Definition in Section III

CCA Secure Oblivous Tag-based Threshold Encryption (O-TTBE)
Definition in Section IV

A
S

Collision-Resistant
Hash Function

One-time Signatures (OTS)

CPA Secure Anonymous Threshold
Identity-Based Encryption (A-TIBE)
CPAST
ATIBE)

Homomorphic Secret Sharing (HSS)

CPA-Secure Anonymous Verifiable
Identity-Based Encryption (A-VIBE)

Section VIII

Section VII

A
S

Programmable
Random Oracle (pROM)

Bilinear Decisional
Diffie Hellman (BDDH)

Section VI

Section V

Fig. 1. The Landscape of Our Contributions.

chosen-ciphertext attacks (CCA) which is at least as strong as
the notion of extractability for threshold witness encryption.
In addition, the statement-obliviousness property guarantees
that the statement used to generate a ciphertext is hidden. We
provide a formal security game combining the CCA security
with our new statement-obliviousness property.

We do not follow up on the existing notions of extractable
Witness Encryption on Blockchains, proposed by [8], or
Blockchain Witness Encryption, proposed by [10], as both
notions are tied to the blockchain setting. We take a more
general approach by using the committee to achieve witness
encryption without defining the origin of the committee. In
contrast to earlier works, however, our notion considers only
static corruptions.

2) Instantiating SO-TWE: We show how to instantiate SO-
TWE via a series of transformations, as depicted in Figure 1.
For all constructions and transformations, we provide formal
security proofs. As a first step, we introduce the notion
of oblivious threshold tag-based encryption (O-TTBE) as an
extension of standard threshold tag-based encryption as pre-
sented in [15]. Similar to statement-obliviousness, oblivious-
ness in this context ensures that the tag used for encryption is
hidden. Then, we present a general transformation from CCA
secure O-TTBE to CCA secure SO-TWE.

As a second step, we show two ways to construct CCA se-
cure O-TTBE schemes. First, we generically build a O-TTBE
scheme from collision-resistant hash functions, one-time sig-
natures and CPA secure anonymous threshold identity-based
encryption (A-TIBE). To the best of our knowledge, there are

218

constructions for anonymous identity-based encryption [16],
[17] and threshold identity-based encryption [18], but there
is no construction of an A-TIBE scheme. The techniques
used for anonymous IBE do not allow for a straightfoward
thresholdization via secret sharing while maintaining a high
threshold and non-interactive decryption at the same time.
As a feasibility result, we show how to instantiate A-TIBE
from non-threshold anonymous identity-based encryption, a
signature scheme and homomorphic secret sharing (HSS). This
transformation follows [10] which constructs non-anonymous
threshold identity-based encryption from HSS. While proving
the security of our construction, we discovered a gap in the
analysis of [10]. In particular, the construction in [10] allows
corrupted parties to trick honest parties into accepting invalid
identity keys, and hence, does not provide key generation
consistency. We propose a solution to fix this gap. While
the A-TIBE-based construction constitutes a feasibility result,
we emphasize that any progress in constructing these building
blocks, e.g., in terms of efficiency, immediately yields more
efficient constructions of SO-TWE.

As a second way, we present a concretely efficient in-
stantiation of O-TTBE in the random oracle model. Our
construction extends Hash-ElGamal with a bilinear mapping
and efficient non-interactive zero knowledge arguments. The
resulting scheme is concretely efficient in terms of ciphertext
size and bilinear mapping evaluations. The construction also
yields the first efficient threshold witness encryption scheme
that additionally achieves statement obliviousness. This is
because our generic transformation from O-TTBE to SO-TWE
only adds simple hash function evaluations and a check of
the witness relation. We formally prove the security of this
construction via a reduction to the Decision Bilinear Diffie-
Hellman assumption.

B. Technical Overview

In this section, we outline the main techniques used to
construct SO-TWE and discuss the major challenges.
Emulation of the witness encryption functionality. We consider
the setup of a SO-TWE scheme to be executed by a trusted
dealer or via a distributed key generation protocol. During the
setup, the public key and the verification key are published
while the secret key shares are distributed to the committee
members. It is assumed that an adversary can statically corrupt
a subset of the committee members. We allow the adversary
to corrupt all but one committee member. Upon corruption
the adversary takes full control over the committee members,
and hence, learns their secret key shares. Users can encrypt
messages non-interactively based on the public key and a self-
chosen statement. Decryption is performed in an interactive
way via a request-response protocol. To this end, a user sends
the ciphertext, a statement candidate and a witness to the
committee. All committee members compute and send their
decryption shares to the user, who attempts to combine the
shares to the actual message. This will only be successful if
it receives sufficiently many valid decryption shares and the
witness relation has been verified successfully. Further, the

statement-obliviousness property provides that the combined
shares will only yield the original plaintext if the statement
candidate used for the decryption is the same as the one
used for encryption. While emulating the functionality of
witness encryption using a committee-based approach seems
to be easy at first glance, achieving statement obliviousness
in combination with CCA security is highly non-trivial, as
discussed next.
Achieving obliviousness in the CCA-setting. Due to the com-
mittee setting in which decryption is executed on request,
we require security against chosen-ciphertext attacks (CCA).
The major challenge is to simultaneously guarantee CCA
security and achieve our new notion of statement oblivi-
ousness. A common technique to achieve CCA security in
the threshold setting is to incorporate ciphertext validation
before decryption [18]–[22]. The validation ensures that each
decryption request issued by the adversary in the security
game is either declined or yields exactly the original plaintext
created by some user. This feature is required by the security
proofs of known CCA secure threshold constructions, e.g., to
prevent the adversary from exploiting homomorphisms in the
group structure to decrypt valid ciphertexts that contain related
messages. The difficulty in our setting is that the decryption
committee may not know the statement used for encryption.
In fact, the information if the correct statement has been
used for decryption must not be leaked before decryption is
completed. Any such leakage would allow corrupted servers
to break the obliviousness property. It follows that we have
to allow for multiple decryptions, with different statements,
of the same ciphertext, and hence, cannot follow the standard
approach of previous work. The described scenario makes it
highly challenging to achieve obliviousness in combination
with CCA security in the threshold setting. In particular,
the challenge is to render decryptions useless for statements
different than the one used for encryption despite applying
the correct secret key shares when generating the decryption
shares. Prior CCA-secure encryption schemes apply the secret
key (shares) during decryption only after ensuring that the
resulting (combined) decryption yields exactly the original
message. Hence, we cannot use existing approaches to solve
the described challenge.
SO-TWE from oblivious threshold tag-based encryption (cf.
Section V). As a first step towards SO-TWE, we present a
transformation from a primitive called oblivious threshold tag-
based encryption (O-TTBE). To this end, we first extend the
standard notion of threshold tag-based encryption presented
by Arita and Tsurudome [15] with an obliviousness property.
Similar to statement-obliviousness, obliviousness for a tag-
based encryption scheme requires that two ciphertexts created
with different tags cannot be distinguished.

Our first transformation takes a CCA secure O-TTBE
scheme in order to construct SO-TWE. The high-level idea
is to use the hash of the statement as a tag for the O-
TTBE scheme. For decryption, a user needs to provide a
statement candidate together with a corresponding witness.
The decryption servers first check if the witness is valid and

319

then use the hash of the provided statement candidate as the
tag in the decryption of the O-TTBE scheme. The statement-
obliviousness property is directly obtained from the oblivious-
ness property of the O-TTBE scheme but constructing CCA
secure O-TTBE still faces the challenges explained above.
As depicted in Figure 1, we follow two different paths to
overcome these challenges and to construct CCA secure O-
TTBE as described below.
O-TTBE from programmable random oracles and bilinear
maps (cf. Section VI). In general, independently of the obliv-
iousness setting, the major difficulty when proving CCA
security is to answer decryption queries without knowledge
of the secret key. When instantiating O-TTBE from black-
box primitives, this task is realized by using oracles of the
underlying primitive in the reduction. For example, in our
transformation from O-TTBE to SO-TWE the reduction to O-
TTBE uses the decryption oracle of the O-TTBE security game
to answer decryption queries of the SO-TWE adversary. When
combining CCA security with an obliviousness property, we
additionally face the discussed challenge to answer different
decryption queries for the same ciphertext. Here, a random
looking value needs to be returned except for the decryption
query that contains the tag used for encryption. For a concrete
O-TTBE scheme, we need to address both challenges in
parallel. Due to the strict ciphertext validation used in existing
CCA secure encryptions schemes (e.g., [18]–[22]) extending
these schemes to support tag obliviousness cannot be done in
a straightforward way.

We propose a new construction starting from CPA secure
Hash-ElGamal, which is a variant of classical ElGamal [23].
In Hash-ElGamal, the encryption algorithm given a message
m samples a random exponent a and outputs two elements
A = ga and M = m ⊕ H(Xa) for a group generator
g, a random oracle H , and a public key X = gx. In the
threshold setting, the secret key x is secret shared among the
decryption servers. The decryption shares of the servers are
calculated as di := Axi , where xi is the share of the i-th
server. We apply an extension to this scheme that allows us
to solve both aforementioned challenges at once. We do so
by applying a random offset T to A in both, encryption and
decryption. This offset is unique for each ciphertext-tag pair
to obtain random values from decryption for tags different
to the one used for encryption. When applying the offset via
multiplication or exponentiation, e.g., M = m ⊕ H(Xa·T),
an adversary can easily perform an homomorphic attack, i.e.,
Axi·T = (Axi·T ′

)
T
T ′ . In order to prevent this, we apply the

offset using a bilinear mapping e, i.e., M = m⊕H(e(T,Xa)).
Further, we ensure that a ciphertext component A cannot

be reused in different ciphertexts expect by the party that
generated A, and hence, knows the plaintext anyway. We
do so, by adding a non-interactive zero-knowledge argument
of knowledge of a to the ciphertext. The second ciphertext
component, M , is used for computing the challenge value of
the non-interactive zero-knowledge argument, in order to link
this component to the zero-knowledge argument. In classical
ElGamal-based schemes, adding a zero-knowledge argument

of knowledge of a to the ciphertext is not sufficient to achieve
CCA security, as demonstrated in detail by [19]. Instead,
it is necessary to provide an additional trapdoor to solve
the general challenge of CCA security, to answer decryption
queries. Interestingly, in our construction, the tag-dependent
offset does not only give us tag obliviousness but also provides
us with such a trapdoor for free. In particular, in the reduction,
we can simulate the random oracle used to compute the
offset such that we learn the discrete logarithm of all offsets
sampled by the random oracle. This allows us to compute
e(T,Xa) via e(A,X)logg(T). We elaborate further on the
concrete challenges and the intuition of our construction in
Section VI before presenting the formal specification.

Despite being the first instantiation of O-TTBE, our con-
struction yields a concretely efficient scheme. The ciphertexts
consist of a bitstring with length equal to the message length,
a group element of the bilinear mapping’s base group and
two exponents (in Zq , where q is the bilinear group’s order).
Decryption shares consist of one group element in the map-
ping’s target group and two exponents. Encryption requires
a single evaluation and decryption three evaluations of the
bilinear map.
O-TTBE from anonymous threshold identity-based encryption
(cf. Section VII). While the construction described in the
previous paragraph yields an efficient scheme, we also present
a generic solution. Boneh et al. [18] show how to achieve CCA
security from one-time signatures and CPA secure identity-
based encryption. Following this approach, we achieve CCA
security in the threshold setting by combining one-time sig-
natures with CPA secure anonymous threshold identity-based
encryption (A-TIBE). The anonymity property of the TIBE is
utilized to achieve obliviousness of the TTBE scheme. The
high-level idea is to encode the tag into the identity of the
IBE ciphertext. Since the anonymity property guarantees that
no information about the identity can be obtained from the
ciphertext, the tag stays hidden as well. Only the decryption
with the correct tag, i.e., with the identity key corresponding
to the tag, reveals information about the plaintext.
Constructing A-TIBE (cf. Section VIII). As a final step, we
explore two directions to obtain anonymous threshold identity-
based encryption (A-TIBE). First, we present a black-box
construction based on homomorphic secret sharing (HSS). The
same approach was used by Campanelli et al. [10] in order to
construct threshold IBE without anonymity. When exploring
this direction, we discovered a gap in the security analysis of
[10]. The construction in [10] does not provide key generation
consistency, a security property that enables parties to validate
correctness of received identity keys. Without that property,
maliciously corrupted committee members can provide ar-
bitrary identity key shares. This may result in an incorrect
identity key such that the decryption of some ciphertext yields
a different plaintext than the originally encrypted message. As
such an attack is not possible in the non-threshold setting,
standard IBE does not provide means to validate identity keys.
It follows that the straightforward thresholdization of IBE
using HSS is not sufficient to provide a secure threshold IBE

420

scheme.
To overcome this problem, we propose a new IBE prim-

itive with an additional verifiability property. Verifiable IBE
contains a check if an identity key is computed correctly
which may be of independent interest in other settings where
malicious security is required. Such a scheme can be built from
a standard IBE scheme together with an existentially unforge-
able signature scheme. Eventually, we construct anonymous
threshold IBE by executing the key generation algorithm of the
verifiable IBE scheme within HSS. We provide a formal proof
showing security of the construction, including the discussed
identity key generation consistency property. We note that
in this black-box construction, we need to consider general-
purpose HSS like [10].

Finally, we explore the transformation of the concrete
anonymous non-threshold IBE scheme of Boyen and Wa-
ters [16]. The challenge in this transformation is that the
identity key generation requires multiplication of secret values
and freshly chosen randomness that needs to remain private.
A direct secret sharing of these values pose some challenges
which we discuss in the full version of this paper [24]. While
general-purpose secure multi-party computation can solve this
task, we aim for a threshold IBE scheme that requires no
interaction during identity key generation. We point out and
discuss two ways how the aforementioned issues can be
tackled and leave formal specifications and security analyses
of these approaches to future work.

II. PRELIMINARIES

Here, we present the most important primitives. Throughout
this work, we denote the security parameter by κ ∈ N. We
denote the set {1, . . . , k} as [k]. For a negligible function negl :
N → R, it holds that for every c ∈ N there exists a n0 ∈
N such that for all n > n0: |negl(n)| < 1

nc . For the sake
of expressiveness, we often denote a negligible function by
negl. We use the abbreviation PPT to denote a probabilistic
polynomial-time algorithm.

A. Bilinear Maps

We briefly recall the basics of bilinear maps following [18],
[25]. Let BGen be a randomized algorithm that on input a
security parameter κ outputs a prime q, such that log2(q) =
O(κ), two cyclic groups of prime order q and a pairing e :
G×G→ GT .

We call e a bilinear map if the following properties hold:
• Bilinearity: For all u, v ∈ G and a, b ∈ Zq , we have
e(ua, vb) = e(u, v)ab.

• Non-degeneracy: For generator g of G it holds that
e(g, g) 6= 1. Since GT is of prime order q, this implies
that e(g, g) is a generator of GT .

• Efficiency: e can be computed efficiently in polynomial
time in κ.

A bilinear map satisfying the above properties is sometimes
called admissible bilinear map. We are only interested in
admissible bilinear maps and implicitly mean this type of
bilinear maps when writing bilinear maps in short. We call

BGen a Bilinear Group Generator if the algorithm can be
computed efficiently in polynomial time in κ and each pairing
e generated by BGen is a bilinear map.

While in the above setting the decisional Diffie-Hellman
assumption (DDH) does not hold in group G, there is an
extension to the setting with bilinear maps.

Definition 1 (DBDH). The Decision Bilinear Diffie-Hellman
assumption (DBDH) states that for every Bilinear Group
Generator BGen and algorithm D running in time polynomial
in security parameter κ it holds that∣∣Pr[D(Ḡ, g, h, ga, gb, e(h, g)ab)]− Pr[D(Ḡ, g, h, ga, gb, R)]

∣∣
≤ negl(κ)

where Ḡ = (q,G,GT , e) ←R BGen(κ), g, h ∈R G, R ∈R
GT , and a, b, c ∈R Zq . The randomness is taken over the
random choices of BGen, the group elements g, h, R, the
values a, b, c, and the random bits of D.

B. Hash Functions and Digital Signatures

A hash function H is a function that takes as input a
string x ∈ {0, 1}∗ and returns a fixed-length output string
H(x) ∈ {0, 1}`(κ) for some polynomial `(κ). A signature
scheme SIG = (KeyGen,Sign,Verify) over message space
M consists of three probabilistic polynomial-time algorithms.
The key generation algorithm KeyGen produces a key pair
(SigK,VerK) on security parameter 1κ. The signing algorithm
Sign takes a signing key SigK and a message m ∈ M and
produces a signature σ. A signature σ on message m can
be verified with respect to the verification key VerK using the
verification algorithm Verify. As standard, we require the hash
function to satisfy collision resistance and the digital signature
scheme to provide consistency and existential unforgeability
against chosen-message attacks. Formal definitions of these
properties are provided in Appendix B-A and B-B.

C. Anonymous Threshold Identity-Based Encryption

We derive the notion of Anonymous Threshold Identity-
Based Encryption from [17] as follows:

Definition 2 (TIBE). An anonymous threshold identity-based
encryption scheme (TIBE) TIBE is associated with the follow-
ing probabilistic polynomial-time algorithms:

1) Setup(1κ, s, n) takes as input a security parameter 1κ,
the number of decryption servers n and the security
threshold s, with 1 ≤ s ≤ n. It generates system
parameters pk, a verification key vk, and n master secret
key shares {ski}i∈[n]. The i-th decryption server gets
master secret key share ski.

2) ShareKeyGen(pk, i, ski, id) takes as input the public pa-
rameter pk, the decryption server index i, the corre-
sponding secret key ski and an identity id ∈ {0, 1}∗. It
generates an identity key share (i, iki).

3) ShareVf(pk, vk, id, i, iki) takes as input the public param-
eter pk, the verification key vk, an identity id, a decryption
server index i and an identity key share iki. It outputs true
or false.

521

4) Combine(pk, vk, id, {(i, iki)}i∈S) takes as input the pub-
lic parameter pk, the verification key vk, an identity id
and indexed identity key shares iki and returns an identity
key ik or ⊥.

5) Encrypt(pk, id,m) takes as input the public parameter
pk, an identity id and a message m and outputs a
ciphertext c.

6) Decrypt(pk, id, ik, c) takes as input the public parameter
pk, an identity id, an identity key ik and a ciphertext c
and outputs a message m.

We require for all κ, n, s ∈ N, where 1 ≤ s ≤ n, and any
(pk, vk, {ski}i∈[n]) ← Setup(1κ, s, n) the following proper-
ties:
• Share consistency: For any identity id ∈ {0, 1}∗ and

any i ∈ [n], if (i, iki)← ShareKeyGen(pk, i, ski, id), then
ShareVf(pk, vk, id, i, iki) = true.

• Decryption correctness: For any identity id ∈ {0, 1}∗,
if S is a subset of [n] of size s, IK := {(i, iki)|i ∈
S ∧ (i, iki) ← ShareKeyGen(pk, i, ski, id)}i∈S , and
ik ← Combine(pk, vk, id, IK), then we require
that for any m in the message space, m =
Decrypt(pk, ik,Encrypt(pk, id,m)).

Security. We define security via three properties: key genera-
tion consistency, security against chosen-identity attacks and
anonymity. Informally, the first one states that an adversary
cannot generate a ciphertext and two sets of valid identity key
shares for the same identity such that the shares combine to
different keys and the ciphertext is decrypted to two differ-
ent plaintexts. The last ones state that an adversary cannot
distinguish between two encryptions and two identities used
for encryption. We formally define the security game and
ANON-IND-ID-CPA security in Appendix B-E.

III. STATEMENT-OBLIVIOUS THRESHOLD WITNESS
ENCRYPTION

In the setting of threshold witness encryption (TWE), we
distinguish between users and decryption servers. Users either
aim to encrypt some plaintext under a statement x in some
NP language L or aim to decrypt some ciphertext knowing a
witness corresponding to the statement x ∈ L. Decryption
servers possess private information and assist users while
decrypting a ciphertext. The decryption servers constitute a
committee with a fixed number of corrupted parties. The
committee may be static or adaptive depending on the concrete
instantiation. For instance, a line of work [10], [13], [14]
proposed mechanisms to select committees without reveal-
ing the identity of the members until they speak to protect
against adaptive adversaries. The constructions are based on
techniques incorporated in many popular blockchain. We em-
phasize that our definition and construction abstracts from
the concrete instantiation of the committee. We only assume
that a committee consists of n decryption servers and only
s− 1 of them are corrupted. Moreover, we assume the setup
procedure of a TWE construction to be executed by a trusted
dealer. This approach is standard in threshold cryptography

and a trusted dealer could be realized by a tailored multi-party
computation protocol. The dealer distributes secret information
to the decryption servers and publishes public information to
all parties.

In contrast to the definition of extractable witness encryption
on blockchain (eWEB) by [8], we abstract away the realization
of the committee while their definition explicitly considers
a dynamic committee and a hand-off procedure to move
from one committee to another. Since the change of the
committee members is inherent to their definition, they also
consider adaptive corruption in their security game. Moreover,
their definition specifically considers a model where plaintexts
are shared to the committee members which reveal these
information only if a witness is presented. In contrast, our
definition follows the approach presented by [9] where only a
single secret key is shared between the committee members.
In contrast to the definition of blockchain witness encryption
(BWE) by Campanelli et al. [10] we do not explicitly define
our TWE based notion for blockchains. Here again, we ab-
stract away the concrete realization of the committee.

Formally, we define our new primitive as follows.

Definition 3 (TWE). A threshold witness encryption scheme
(TWE) TWE for an NP language L with associated relation
R consists of the following five PPT algorithms:

1) Setup(1κ, s, n) takes as input the security parameter 1κ,
a threshold s, and the number of decryption servers n,
where 1 ≤ s ≤ n. It outputs a triple (pk, vk, {ski}i∈[n]),
where pk is a public key, vk is a verification key, and
ski is the secret key share for the decryption server with
index i.

2) Encrypt(pk, x,m) takes as input the public key pk, a
statement x, and a message m. It outputs a ciphertext
c.

3) ShareDec(pk, c, x, w, (i, ski)) takes as input a public key
pk, a ciphertext c, a statement x, a witness w, and the
index i together with the secret key share ski of the i-th
decryption server. It outputs a decryption share di or a
failure symbol ⊥ together with the index i.

4) ShareVf(pk, vk, c, x, (i, di)) takes as input a public key
pk, a verification key vk, a ciphertext c, a statement x,
and an indexed decryption share (i, di). It outputs false
if the decryption share is invalid and true if it is valid
with respect to pk, vk, c, and x.

5) Combine(pk, vk, c, x, {(i, di)}i∈S) takes as input a public
key pk, a verification key vk, a ciphertext c, a statement
x, and a set of decryption shares {(i, di)}i∈S . It outputs
message m or ⊥.

We require for every security parameter κ ∈ N, every NP-
language L with associated relation R, every n, s ∈ N where
1 ≤ s ≤ n, every output (pk, vk, {ski}i∈[n]) of Setup(1κ, s, n),
every x ∈ L and w such that (x,w) ∈ R, for every message
m, and every ciphertext c← Encrypt(pk, x,m):
• Decryption share validity: If (i, di) ←
ShareDec(pk, c, x, w, (i, ski)), then
ShareVf(pk, vk, c, x, (i, di)) = 1.

622

• Correctness: For any S ⊆ [n] of size s, if {(i, di)}i∈S
is a set of distinct decryption shares with (i, di) ←
ShareDec(pk, c, x, w, (i, ski)) for each i ∈ S, then
Combine(pk, vk, c, x, {(i, di)}i∈S) = m.

Security. We define security via three properties: indis-
tinguishability under chosen-ciphertext attacks (IND-CCA),
statement obliviousness (SO) and decryption consistency un-
der chosen-ciphertext attacks (DC-CCA). Intuitively, IND-
CCA and SO state that ciphertexts created using two different
messages and two different statements cannot be distinguished.
We combine these property formally in the security game
ExpSO-CCA. The DC-CCA property states that an adversary
cannot produce two sets of valid decryption shares that are
combined to two different messages unequal ⊥. Formally, we
define the security game ExpSO-DC.

Experiment ExpSO-CCA
TWE,A (1κ)

M←A0(1
κ) with |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

α, β ∈R {0, 1}
(x0, x1,m0,m1)← AO(·,·,·,·)

1 (pk, vk, {ski}i∈M)

c∗ ← Encrypt(pk, xα,mβ)

(α′, β′)← AO(·,·,·,·)
2 (c∗)

return (α, β) = (α′, β′)

In the given security game, the adversary A = (A0,A1,A2)
corrupts the decryption servers in M. A1 and A2 can use
the oracle O(·, ·, ·, ·) to make decryption queries. To do so,
the adversary sends (i, c, x, w) to O which returns (i, di) ←
ShareDec(pk, c, x, w, (i, ski)). Only for A2, the oracle first
checks if c = c∗, x ∈ {x0, x1} and (x,w) ∈ R. If this holds,
the oracle returns (i,⊥) and otherwise it returns a correct
decryption share.

Experiment ExpSO-DC
TWE,A(1κ)

M←A0(1
κ) with |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(x, c, {(i, di)}i∈S , {(i, d′i)}i∈S′)← AO(·,·,·,·)
1 (pk, vk, {ski}i∈M)

m← Combine(pk, vk, c, x, {(i, di)}i∈S)
m′ ← Combine(pk, vk, c, x, {(i, d′i)}i∈S′)

where S,S ′ ⊆ [n] ∧ |S| = s = |S ′|
if ∀i ∈ S : ShareVf(pk, vk, c, x, (i, di)) = true

∧ ∀i ∈ S ′ : ShareVf(pk, vk, c, x, (i, d′i)) = true

∧ ⊥ 6= m 6= m′ 6= ⊥
return 1

else

return 0

Here, the adversary A = (A0,A1) corrupts
the decryption servers in M and A1 can use the
decryption oracle O(i, c, x, w) that returns (i, di) ←
ShareDec(pk, c, x, w, (i, ski)).

Definition 4 (SO-IND-CCA Security of TWE). A thresh-
old witness encryption scheme TWE is statement-oblivious

and message-indistinuishable under chosen-ciphertext attacks
(SO-IND-CCA) secure if for all PPT adversaries A =
(A0,A1,A2), there exist negligible functions negl0 and negl1
such that∣∣∣∣Pr[ExpSO-CCA

TWE,A (1κ) = 1]− 1

4

∣∣∣∣ ≤ negl0(κ) ∧

Pr[ExpSO-DC
TWE,A(1κ) = 1] ≤ negl1(κ).

a) Remark 1: The standard notion of witness encryption
(cf. [1]) defines security without access to a decryption oracle.
This is due to the fact that decryption in the standard notion
can be attempted by any party locally using knowledge of
the witness. In the threshold setting, decryption is performed
via an interaction with a decryption committee that performs
decryption in a distributed way using a secret shared trapdoor.
Hence, we have to give the adversary access to a decryption
oracle.

b) Remark 2: We note that in the context of TWE
SO-IND-CCA security implies extractability, an additional
security requirement often required from witness encryption.
We provide further details to the notion of extractability for
TWE and a reduction from extractability to SO-IND-CCA
security in Appendix A.

IV. OBLIVIOUS THRESHOLD TAG-BASED ENCRYPTION

In this section, we present the notion of oblivious threshold
tag-based encryption (O-TTBE) which constitutes an exten-
sion of standard threshold tag-based encryption as presented
in [15]. Intuitively, a threshold tag-based encryption scheme
is oblivious if a ciphertext hides the tag it was created with.
We first state the definition of threshold tag-based encryption
and present the obliviousness property as part of the security
guarantees afterwards.

Definition 5 (TTBE). A threshold tag-based encryption
scheme (TTBE) TTBE consists of the following five PPT
algorithms:

1) Setup(1κ, s, n) takes as input the security parameter 1κ,
a threshold s, and the number of decryption servers n
where 1 ≤ s ≤ n. It outputs a triple (pk, vk, {ski}i∈[n]),
where pk is a public key, vk is a verification key, and ski
is the secret key share for the i-th decryption server.

2) Encrypt(pk, t,m) takes as input a public key pk, a tag t,
and a message m, and it outputs a ciphertext c.

3) ShareDec(pk, c, t, (i, ski)) takes as input a public key pk,
a ciphertext c, a tag t, and the index i together with the
secret key share ski of the decryption server with index
i. It outputs a decryption share di or a failure symbol ⊥
together with the index i.

4) ShareVf(pk, vk, c, t, (i, di)) takes as input a public key
pk, a verification key vk, a tag t, and an indexed decryp-
tion share (i, di). It outputs false if the decryption share
is invalid and true if it is valid with respect to pk, vk, c
and t.

5) Combine(pk, vk, c, t, {(i, di)}i∈S) takes as input a public
key pk, a verification key vk, a ciphertext c, a tag t, and a

723

set of decryption shares {(i, di)}i∈S . It outputs message
m or ⊥.

We require for every security parameter κ ∈ N, every
committee parameters n, s ∈ N where 1 ≤ s ≤ n, every
(pk, vk, {ski}i∈[n]) generated by Setup(1κ, s, n), every mes-
sage m, every tag t and every c← Encrypt(pk, t,m):
• Decryption share validity: If

(di, i) ← ShareDec(pk, c, t, (i, ski)), then
ShareVf(pk, vk, c, t, (i, di)) = 1.

• Correctness: If {(i, di)}i∈S is a set of s
distinct decryption shares with (i, di) ←
ShareDec(pk, c, t, (i, ski)) for each i ∈ S, then
Combine(pk, vk, c, t, {(i, di)}i∈S) = m.

Security. Security of a TTBE scheme is defined via two
properties: oblivious indistinguishable messages under chosen-
ciphertext attacks (IND-CCA) and decryption consistency un-
der chosen-ciphertext attacks (DC-CCA). The intuition for
these properties is analog to the ones of threshold witness
encryption. The IND-CCA property states that ciphertexts
created using two different messages and two different tags
cannot be distinguished. The DC-CCA property states that an
adversary cannot produce two sets of valid decryption shares
that are combined to two different messages unequal ⊥. To
formalize these properties, we design the following security
games:

Experiment ExpO-CCA
TTBE,A(κ)

M←A0(1
κ) with |M| < s

α, β ∈R {0, 1}
(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(t0, t1,m0,m1)← AO(·,·,·)
1 (pk, vk, {ski}i∈M)

c∗ ← Encrypt(pk, tα,mβ)

(α′, β′)← AO(·,·,·)
2 (c∗)

return (α, β) = (α′, β′)

The decryption oracle O(·, ·, ·) takes as parameter an in-
dex i, a ciphertext c and a tag t, and computes (i, di) ←
ShareDec(pk, c, t, (i, ski)). If (c, t) ∈ {(c∗, t0), (c∗, t1)} it
returns (i,⊥), otherwise it returns (i, di).

Experiment ExpO-DC
TTBE,A(κ)

M←A0(1
κ) with |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(t, c, {(i, di)}i∈S , {(i, d′i)}i∈S′)← AO(·,·,·)
1 (pk, vk, {ski}i∈M)

where S,S ′ ⊆ [n] ∧ |S| = s = |S ′|
m← Combine(pk, vk, c, t, {(i, di)}i∈S)
m′ ← Combine(pk, vk, c, t, {(i, d′i)}i∈S′)

if ∀i ∈ S : ShareVf(pk, vk, c, t, (i, di)) = true

∧ ∀i ∈ S ′ : ShareVf(pk, vk, c, t, (i, d′i)) = true

∧ ⊥ 6= m 6= m′ 6= ⊥
return 1

else

return 0

The decryption oracle O(·, ·, ·) takes as parameter an
index i, a ciphertext c and a tag t , and returns
ShareDec(pk, c, t, (i, ski)).

Definition 6. A TTBE scheme TTBE is OB-IND-CCA secure
if for every PPT adversary A = (A0,A1,A2), there exists
negligible functions negl0 and negl1 such that∣∣∣∣Pr[ExpO-CCA

TTBE,A(κ) = 1]− 1

4

∣∣∣∣ ≤ negl0(κ) ∧

Pr[ExpO-DC
OTTBE,A(κ) = 1] ≤ negl1(κ).

We use the notation of oblivious TTBE in short for referring
to an OB-IND-CCA secure TTBE.

V. CONSTRUCTING STATEMENT-OBLIVIOUS TWE
In this section, we present a construction for statement-

oblivious threshold witness encryption (SO-TWE) from obliv-
ious threshold tag-based encryption (O-TTBE).

Construction 1: SO-TWEOTTBE

Public parameters:
The scheme is defined for a language L with relation R. The
number of committee members is denoted by n and the threshold
parameter is s. We make use of a oblivious tag-based encryption
scheme OTTBE and a collision-resistant hash function H : X→
T, where X is the statement space of language L and T is the tag
space of OTTBE.

Setup(1κ, s, n):
Output (pk, vk, {ski}i∈[n]) := OTTBE.Setup(1κ, s, n).

Encrypt(pk, x,m):
Output c := OTTBE.Encrypt(pk, H(x),m).

ShareDec(pk, c, x, w, (i, ski)):
If (x,w) ∈ R, output OTTBE.ShareDec(pk, c,H(x), (i, ski)).
Otherwise, output (i,⊥).

ShareVf(pk, vk, c, x, (i, di)):
If di = ⊥, output false. Otherwise output
OTTBE.ShareVf(pk, vk, c,H(x), (i, di)).

Combine(pk, vk, c, x, {(i, di)}i∈S):
Output OTTBE.Combine(pk, vk, c,H(x), {(i, di)}i∈S).

Theorem 1. Let OTTBE be a threshold tag-based encryption
scheme that is OB-IND-CCA secure and H be a collision-
resistant hash function. Then, the scheme SO-TWEOTTBE is a
SO-IND-CCA secure threshold witness encryption scheme.

The security proof is presented in the full version of this
paper [24].
Confidential witnesses and decryptions. We can add the sup-
port of confidential witnesses and decryptions to our construc-
tion by applying techniques from [8]. To ensure confidential-
ity of witnesses, clients send non-interactive zero-knowledge
proofs of knowledge of the witness to the decryption severs.
Then, as part of the decryption algorithm the servers check
the validity of the proof against the submitted statement,
instead of checking the witness relation directly. To achieve
confidentiality of decryptions, the decryption servers encrypt

824

decryption shares under the public key of the client as part of
the decryption algorithm. We ensure that decryption requests
cannot be replayed with different public keys by applying
the witness confidentiality approach and labeling the zero-
knowledge proof with the submitted public key.

VI. O-TTBE FROM BILINEAR MAPPINGS AND RANDOM
ORACLES

In this section, we present the construction of a concretely
efficient oblivious threshold tag-based encryption scheme. Our
construction is based on bilinear maps and random oracles
and its security relies on the Decision Bilinear Diffie-Hellman
assumption (cf. Section II-A). Before we present the formal
specification of the construction, we give an intuition about
the challenges of designing an O-TTBE scheme and how they
are addressed by our construction.

Common approaches towards CCA security in the thresh-
old setting incorporate ciphertext validation before decryp-
tion [18]–[22]. The validation ensures that each decryption
request is either declined or yields exactly the original plain-
text created by some client. This feature is the common way to
prevent the adversary from executing ciphertext-reuse. Under
this term, we understand reusing and potentially adapting
ciphertext components in maliciously created ciphertext with
the goal to extract decryptions for valid ciphertexts from the
decryptions of maliciously created ones.

In an oblivious threshold scheme, declining decryptions is
not possible since a single decryption server must not detect
if the provided tag is valid. This is due to the fact that
some servers can get corrupted in the threshold setting. If
a single server was able to check the validity of a tag, the
adversary would be able to exploit corrupted servers to break
obliviousness. It follows that we have to apply a less strict
ciphertext validation allowing for multiple decryptions, with
different tags, of the same ciphertext. However, decryptions
with invalid tags must not leak any information about the en-
crypted plaintext or the tag used for encryption. Consequently,
we cannot follow the approaches of previous work.

Instead, we have to take one step back and address the
challenge of achieving CCA security independent of previous
work. It turns out that the discussed ciphertext validation
is necessary but not sufficient to prove CCA security. In
particular, when constructing a CCA secure encryption scheme
it is not sufficient to take a CPA secure scheme and add a zero-
knowledge proof of correct encryption to the ciphertexts. Prov-
ing security via a reduction to a number theoretic assumption
is typically done by building a simulator that uses a concrete
adversary on the scheme to break the underlying assumption.
Even if a ciphertext is proven to be created correctly, the
simulator needs to be capable of answering decryption queries
of the adversary without actually knowing the secret key. This
challenge is typically addressed by incorporating an additional
trapdoor into the construction. It follows that for achieving
CCA security we need both, (i) a way to prevent ciphertext
reuse and (ii) a trapdoor to enable the simulator to answer
decryption queries. In addition, for tag obliviousness, we

have to achieve the former while (iii) still allowing multiple
decryptions, with different tags, for the same ciphertext.

We propose a new construction deploying a single exten-
sion together with a simple zero-knowledge proof of correct
encryption to a standard threshold variant of CPA secure Hash-
ElGamal. The extension provides both, (iii) tag obliviousness
and (ii) a trapdoor for decryption, such that a simple zero-
knwoledge proof of correct encryption is sufficient to decline
invalid ciphertexts, and hence, (i) prevent ciphertext reuse.

We start by briefly recalling Hash-ElGamal. In Hash-
ElGamal, the encryption of a message m samples a random
exponent a and outputs two elements A = ga and M =
m⊕H(Xa) for a group generator g, a random oracle H , and
a public key X = gx. In the threshold setting, the secret key x
is secret shared among the decryption servers. The decryption
shares of the servers are calculated as di := Axi , where xi is
the share of the i-th server.

Our extension is to apply a random offset T to A for both,
encryption and decryption, using a bilinear map e. This offset
is unique for each ciphertext-tag pair. Precisely, we compute
M := H(e(T,Xa)) ⊕m for encryption and di := e(T,Axi)
for decryption. As our notion requires each encrypting party
and decryption server to be capable of generating the offset
independently, we generate the offset using a random oracle.
In particular, we compute the offset T by applying the random
oracle to the tag t and the ciphertext component A, i.e., we
compute T = H2(t, A). Finally, we add a non-interactive
Schnorr zero-knowledge argument of knowledge of a [26] to
the ciphertext, which we bind to the ciphertext component M .
The binding is done by incorporating M into the generation of
the challenge in the Fiat-Shamir transformation [27]. In addi-
tion, we add a Chaum-Pedersen zero-knowledge argument [28]
of correct decryption to decryption shares.

The random offset T adds a random exponent logg(T) to
decryptions with invalid tags, and hence, ensures that invalid
decryptions do not give any information about the encrypted
message (cf. (iii)). Further it provides a backdoor that can
be exploited by the simulator to answer decryption queries
without knowledge of xi (cf. (ii)). In particular, the simula-
tor can simulate the random oracle such that the simulator
learns k = logg(T) for each T generated by H2. This way,
the simulator can calculate the combined decryption shares
D = e(Xk, A) = e(T,Ax) which can again be used to
interpolate decryption shares of individual parties. Finally,
the zero-knowledge argument of knowledge of a ensures that
a component A cannot be re-used for different ciphertexts,
and hence, prevents ciphertext reuse (cf. (i)). Further, the
zero-knowledge argument of correct decryption ensures that
malicious servers cannot trick honest clients into excepting
incorrect decryptions.

Our construction yields a concretely efficient scheme. The
ciphertexts consist of a bitstring with length equal to the
message length, a group element of the bilinear mapping’s
base group and two exponents (in Zq , where q is the bilinear
group’s order). Decryption shares consist of one group element
in the mapping’s target group and two exponents. Encryption

925

requires a single evaluation and decryption three evaluations
of the bilinear map.

We continue by presenting the concrete construction:

Construction 2: TTBEpROM

Public parameters:
The scheme is defined over a bilinear map e : G×G→ GT with
groups G and GT where each group is of order q. The number of
committee members is denoted by n and the threshold parameter
is s. The message and tag length is defined as l. We make use
of random oracles H1 : GT → {0, 1}l, H2 : {0, 1}l × G → G,
H3 : {0, 1}l ×G2 → Zq , H4 : G3 → Zq .

Setup(1κ, s, n):
Sample a generator, g, of G, a secret key x ∈R Zq and a sharing
polynomial F of degree s − 1 over Zq such that F (0) = x. Set
pk = (g,X := gx), vk := {gF (i)}i∈[n] and ski := F (i) = xi for
each i ∈ [n]. Output (pk, vk, {ski}i∈[n]).
Encrypt(pk, t,m):
Sample a, r ∈R Zq and calculate:

A := ga, T = H2(t, A), M̃ := e(T,Xa), M := H1(M̃)⊕m
U := gr, w = H3(M,A,U), f = r + aw, π := (w, f)

Return c = (M,A, π).
Note that π constitutes a zero knowledge argument of knowledge
of logg(A).

ValidateCT(c):
Parse c = (M,A, π = (w, f)) and return true iff

w = H3(M,A,U) for U =
gf

Aw
.

ShareDec(pk, c, t′, (i, ski)):
If ValidateCT(c) = false return (i,⊥). Otherwise choose ri ∈R
Zq and compute,

T ′ := H2(t
′, A), Di := e(T ′, Axi)

Ui := e(T ′, Ari), Vi := e(T ′, gri)

wi := H4(Di, Ui, Vi), fi := ri + xi · wi
πi := (wi, fi)

and return di := (i,Di, πi).
Note that πi constitutes a zero knowledge argument that
(e(T ′, A), e(T ′, vki), Di) is a Diffie-Hellmann triple.

ShareVf(pk, vki, c, t
′, di):

Parse di = (i,Di, πi = (wi, fi)), c = (·, A, ·), calculate T ′ :=
H2(t

′, A) and return true iff

wi = H4(Di, Ui, Vi) for Ui =
e(T ′, A)fi

Dwi
i

, Vi =
e(T ′, g)fi

e(T ′, vki)wi
.

Combine(pk, vk, c, t′, {(di)}i∈S):
Return m =M ⊕H1(

∏
i∈S(Di)

λS
0,i).

Correctness of the scheme can be shown as follows:

m = M ⊕H1(
∏
i∈S

(Di)
λS
0,i) = M ⊕H1(

∏
i∈S

(e(T ′, Axi))λ
S
0,i)

= M ⊕H1(
∏
i∈S

e(T ′, A)xi·λS
0,i) = M ⊕H1(e(T ′, A)x)

= m⊕H1(e(T, gax))⊕H1(e(T ′, gax)) = m,

where t = t′ yields H2(t, A) = T = T ′ = H2(t′, A)).

For security, we state the following theorem:

Theorem 2. Let BGen be a Bilinear Group Generator,
(e,G,GT , q) ←R BGen(κ) be a bilinear group in which the
Decisional Bilinear Diffie-Hellman (DBDH) assumption holds,
and H1, H2, H3, H4 be programmable random oracles. Then,
the scheme TTBEpROM is an OB-IND-CCA secure oblivious
threshold tag-based encryption scheme.

We will provide an intuition of our proof for indistinguish-
able messages under chosen-ciphertext attacks, here, and defer
the formal security proof for both indistinguishable messages
under chosen-ciphertext attacks (defined via ExpO-CCA

TTBEpROM,A)
and decryption consistency under chosen-ciphertext attacks
(defined via ExpO-DC

TTBEpROM,A) to the full version of this pa-
per [24].
Proof intuition. We prove indistinguishable messages via
a reduction to the DBDH assumption. Hence, we build a
distinguisher D that receives a tuple (ḡ, h̄, α = ḡx, β = ḡy, γ)
and decides if the received tuple is a DBDH tuple, i.e., if
γ = e(h̄, ḡ)xy . D has access to an adversary A on the
experiment ExpO-CCA

TTBEpROM,A.
The reduction is based on the observation that, in order

to win in ExpO-CCA
TTBEpROM,A, adversary A when receiving a

challenge ciphertext (M∗, A∗, ·) has to query H1 at either
P0 = e(H2(t0, A

∗), A∗)x or P1 = e(H2(t1, A
∗), A∗)x. If

D defines public parameters g = ḡ and pk = X = α
and challenge ciphertext components H2(t1−b, A

∗) ← h̄ (via
programming of the random oracle) and A∗ = β for some
b ∈R {0, 1}, it follows that P1−b = γ iff the received
tuple is a DBDH tuple. Hence, we can distinguish DBDH
tuples from random tuples based on the event that γ has been
queried by A. However, setting M∗ = mbm ⊕ H1(γ) for
bm ∈R {0, 1} does not yield a valid ciphertext if the tuple is no
DBDH tuple, a fact that makes the reduction distinguishable
from a real experiment. While there are techniques to deal
with this problem (cf. [19]), this distinguishability makes the
argumentation more long-winded. Instead, we make use of
the fact that we are in the tag-based setting, i.e., there are two
possible keys at which H1 can be queried to decide which
tag or message has been used for encryption. In particular, we
create M∗ such that it is a correct encryption of mbm under tag
tb, i.e., M∗ = m ⊕ H1(Pb). At the same time, we program
H2 such that P1−b = γ iff the received tuple is a DBDH
tuple, i.e., by programming H2(t1−b, A

∗) ← h̄. Hence, we
can distinguish based on the event that γ has been queried
while still creating a valid ciphertext.

The next question is how to actually compute Pb without
knowing x nor y = logg(A

∗). Here we make use of the fact
that D simulates the random oracle H2 that is used to compute
the tag-dependent offset. In particular, whenever the random
oracle H2 is supposed to sample a random value in G, it
samples a random exponent k ∈R Zq instead and returns ḡk.
The output is still uniformly random distributed in G but D
learns the discrete logarithm of every value sampled by H2.
This way, D can restore k = logg(H2(tb, A

∗)) and compute
Pb = e(α, βk) = e(H2(tb, A

∗), A∗)x.

1026

As explained above, the major challenge is to answer
decryption queries without having access to the private key
x. However, this problem can be solved the same way as
computing Pb. In particular, D answers decryption queries
for ciphertext c = (·, A, ·) and tag t by restoring k =
logg(H2(t, A)) and computing e(β,Ak) = e(H2(t, A), Ax).
The only keys for which the restoring of the exponent k does
not work are (t1−b, A

∗) = (t1−b, β) for which D programmed
the random oracle to h̄ without knowing logg(h̄). However,
in consistency with the original security game, D declines
decryptions for (c, t) if (c, t) ∈ {(c∗, t0), (c∗, t1)}. Hence, D
only fails to answer decryption queries if A sends a valid
ciphertext c 6= c∗ such that c = (·, A∗, π). However, to do so,
the adversary needs to be capable of generating a valid zero-
knowledge argument π of knowledge of y = logg(A

∗) without
actually knowing y. In fact, not even D has knowledge of y.
The probability is negligible for a computationally bounded
adversary to find such a proof. It follows that D is capable
of answering all decryption queries, expect with negligible
probability.

VII. OBLIVIOUS TTBE FROM ANONYMOUS TIBE

This section presents a general transformation from an
anonymous threshold identity-based encryption scheme, a one-
time signature scheme and a collision-resistant hash functions
to an oblivious threshold tag-based encryption scheme. The
scheme depicts an extension of [18].

Construction 3: TTBEIBE

Public parameters:
The number of committee members is denoted by n and the thresh-
old parameter is s. We make use of a one-time signature scheme
OTS, an anonymous threshold identity-based encryption scheme
TIBE, and a collision-resistant hash function H : T × K → I,
where T, K, I is the tag space, the verification key space of OTS,
and the identity space of TIBE.

Setup(1κ, s, n):
Run (pk, vk, {ski}i∈[n]) ← TIBE.Setup(1κ, s, n) and output the
keys (pk, vk, {ski}i∈[n]).

Encrypt(pk, t,m):
Generate a signature key pair (SigK,VerK)← OTS.KeyGen(1κ),
calculate id := H(t,VerK), c0 := TIBE.Encrypt(pk, id,m), and
σ := OTS.Sign(SigK, c0). Output c := (c0,VerK, σ).

ShareDec(pk, c, t, (i, ski)):
Parse c to (c0,VerK, σ) and check that
OTS.Verify(VerK, σ, c0) = true. If the check fails, output
(i,⊥). Otherwise, calculate id := H(t,VerK) and output an
identity key share (i, iki) ← TIBE.ShareKeyGen(pk, i, ski, id)
as di.

ShareVf(pk, vk, c, t, (i, di)):
Parse c to (c0,VerK, σ) and output true
iff OTS.Verify(VerK, σ, c0) = true and
TIBE.ShareVf(pk, vk, H(t,VerK), i, di) = true.

Combine(pk, vk, c, t, {(i, di)}i∈S):
Parse c to (c0,VerK, σ), calculate id = H(t,VerK) and ik :=
TIBE.Combine(pk, vk, id, {(di)}i∈S). If ik = ⊥, output ⊥.

Otherwise, output m := TIBE.Decrypt(pk, id, ik, c0).

Correctness of the scheme is easy to see. If the same tag
is used for decryption and encryption, the encryption contains
a ciphertext under the same identity for which the decryption
algorithm creates the identity key. Next, we show security.

Theorem 3. Let TIBE be an anonymous threshold identity-
based encryption scheme that is ANON-IND-ID-CPA secure,
H be collision-resistant hash function, and OTS an exis-
tentially unforgeable one-time signature scheme. Then, the
scheme TTBEIBE is a OB-IND-CCA secure threshold tag-
based encryption scheme.

The security proof is presented in the full version of the
paper [24].

VIII. CONSTRUCTING ANONYMOUS TIBE
In this section, we construct an anonymous threshold

identity-based encryption scheme (TIBE) from an anonymous
non-threshold verifiable identity-based encryption scheme
(VIBE) and an homomorphic secret sharing scheme (HSS)
with linear decoding. A VIBE extends the definition of an
identity-based encryption scheme with a verification algorithm
that allows to check if an identity key was generated correctly.
An HSS scheme allows to secret share some value and to
perform operations on the shares such that the result of the
combination yields the output of a function applied directly
to the value. We state the definitions for VIBE and HSS in
Appendix B-C and B-D respectively. The HSS scheme is used
to execute the Extract algorithm of the VIBE scheme in a
distributed way. The operations that need to be supported
by the HSS scheme depend on the concrete VIBE scheme,
i.e., how the output shares of its Extract algorithm can be
computed. While we use the HSS scheme in a black-box
way, it is an interesting open question to provide concrete
instantiations of the following black-box transformation. In the
full version of this paper [24], we discuss potential pathways to
obtain an anonymous threshold IBE scheme from the concrete
anonymous IBE scheme by Boyen and Waters [16].

Construction 4: Anonymous TIBE

Public parameters:
The number of committee members is denoted by n
and the threshold parameter is s. This construction uses
an ANON-IND-ID-CPA secure VIBE scheme VIBE =
(VIBE.Setup,VIBE.Extract,VIBE.Verify,VIBE.Encrypt,
VIBE.Decrypt) and a linear decoding HSS scheme
HSS = (HSS.Share,HSS.Eval,HSS.Dec) for the function
y := (ikz, ρz) ← VIBE.Extract(pk, x, z) with public input
z = id and shared private input x = msk, as building blocks.

Setup(1κ, s, n):
• (pkVIBE, vkVIBE,msk)← VIBE.Setup(1κ)
• (msk1, . . . ,mskn)← HSS.Share(1κ,msk)
• return (pk, vk, (sk1, . . . , skn)) :=
(pkVIBE, vkVIBE, (msk1, . . . ,mskn))

ShareKeyGen(pk, i, ski, id):

1127

• return (i, iki), where iki := yi ← HSS.Eval(i, id, ski)

ShareVf(pk, vk, id, i, iki):
• return true

Combine(pk, vk, id, {(i, iki)}i∈S):
• y ← HSS.Dec({iki}i∈S)
• Parse y := (ik, ρ)
• if VIBE.Verify(pk, vk, id, ik, ρ) = 1 return ik
• else return ⊥

Encrypt(pk, id,m):
• return VIBE.Encrypt(pk, id,m)

Decrypt(pk, id, ik, c):
• return VIBE.Decrypt(pk, ik, c)

We first show that our construction satisfies the cor-
rectness properties, in particular share consistency and de-
cryption correctness. Then, we prove the security property,
ANON-IND-ID-CPA security.

The share consistency property states that for all correctly
generated identity key shares, the ShareVf algorithm outputs
true. Since the ShareVf algorithm of our construction always
outputs true, the property is apparently satisfied. Decryption
correctness is easy to see as well. Let, for any κ, n ∈ N
and 1 ≤ s ≤ n, (pk, vk, {ski}i∈[n]) ← Setup(1κ, s, n).
Note that ski := mski where mski is the i-th share
obtained using HSS.Share(1κ,msk) for a master secret
key of the non-threshold VIBE scheme VIBE. Then,
for any id, ShareKeyGen(pk, i, ski, id) returns an output
share of HSS.Eval(i, id,mski) which equals a share of
VIBE.Extract(pk,msk, id). Given any set of s
identity key shares, the Combine algorithm first
decodes the shares to (ik, ρ) and outputs ik if
VIBE.Verify(pk, vk, id, ik, ρ) = 1. Due to the correctness
property of the (s, n)-HSS scheme, (ik, ρ) is exactly
the output of VIBE.Extract(pk,msk, id). Now, due
to the correctness property of VIBE, it follows that
Decrypt(pk, ik,Encrypt(pk, id,m)) = m holds for any
message m.

Finally, we show that the scheme TIBE is
ANON-IND-ID-CPA secure. Formally, we state the following
theorem.

Theorem 4. Let VIBE be an ANON-IND-ID-CPA secure
VIBE scheme satisfying soundness and let HSS be a linear
decoding (s, n)-HSS scheme satisfying correctness and com-
putational security. Then, TIBE defined in Construction 4 is an
ANON-IND-ID-CPA secure (n, s)-TIBE scheme.

The security proof is presented in the full version of the
paper [24].

IX. APPLICATIONS

Statement-oblivious threshold witness encryption (SO-
TWE) is interesting whenever use-cases of classical witness
encryption, e.g., the ones presented in [1], [8], should be
extended by an additional privacy property, i.e., if the state-
ment used for encryption is required to stay hidden until

the decryption is successful. A straightforward example is
witness encryption based time-lock encryption, as proposed
by [6], with a hidden release time. In simplified settings, in
which the decryption servers have access to public data (e.g.,
timestamps), our intermediate notion of oblivious threshold
tag-based encryption (O-TTBE) is often sufficient. However,
in more sophisticated scenarios, e.g., if the decryption servers
need to rely on external authorities to provide authenticated
public data, it is necessary to use SO-TWE. We present use-
cases and briefly explain how they can be realized using our
primitives; one of the use-case is provided in this section and
others are deferred to the full version of this paper [24]. The
use-cases are partial extensions to the ones presented by [8]
for their notion of eWEB.
Price-dependent transaction execution with hidden price.
Imaging a user that wants to buy some asset at a Decentralized
Finance (DeFi) trading platform once the share price reaches
a certain value. Since the user does not know when this
event happens, it does not want to stay online all the time.
The user’s goal is to keep the transaction and the desired
share price private until the price hits the intended value.
Privacy is an important aspect in this scenario, since revealing
information, e.g., the intended purchase price, could lead to
financial disadvantage, e.g., due to insider trading. In the DeFi
space, oracle services are widely deployed and commonly
used. These services provide signed information about real-
world data such as share prices. However, achieving the user’s
goal requires additional techniques. To support the described
scenario, the user can exploit SO-TWE.

In more detail, suppose there is a committee holding the
secret key shares of a SO-TWE scheme with public key pk
for language L with associated relation R. L is defined such
that a statement x specifies the intended share price as well
as the public key of the oracle service and (x,w) ∈ R if
the witness w contains a proof that the current share price
equals the specified one signed by the oracle. Initially, the
user creates a transaction tx containing the trade description
and encrypts it using the public key of the SO-TWE scheme,
i.e., c = Encrypt(pk, x, tx), where the statement is from the
specified language. The user sends the ciphertext c to its
broker. Next, the broker regularly requests the current share
price together with a proof from the oracle and provides this
information as the witness w together with the ciphertext c to
the decryption committee. Each committee member performs
ShareDec(pk, c, x, w, (i, ski)) to obtain a decryption share
(i, di). After obtaining s valid shares from the committee, the
broker executes Combine(pk, vk, c, x{(i, di)}i∈S). If decryp-
tion was executed with the intended share price, the result
is tx. In this case, the broker executes the transaction which
effectively performs the trade. Otherwise, the output of the
Combine-algorithm does not constitute a valid transaction.

The statement-obliviousness property guarantees that no
party, not even the broker or the oracles, gets to know anything
about the trade, neither the asset, the amount or the specified
price, until the transaction is successfully decrypted and the
trade can be executed. This way, we prevent insider trading. To

1228

incentivize the broker to execute the trade reliably and timely,
users can rely on multiple brokers rewarding the one executing
the trade first.

ACKNOWLEDGMENTS

The first, third, and fourth authors were supported by the
German Federal Ministry of Education and Research (BMBF)
iBlockchain project (grant nr. 16KIS0902), by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation)
SFB 1119 – 236615297 (CROSSING Project S7), and by
the BMBF and the Hessian Ministry of Higher Education,
Research, Science and the Arts within their joint support
of the National Research Center for Applied Cybersecurity
ATHENE. The second author was supported by ISF grant
No. 1316/18 and by the Algorand Centres of Excellence
programme managed by Algorand Foundation. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of Algorand Foundation.

REFERENCES

[1] S. Garg, C. Gentry, A. Sahai, and B. Waters, “Witness encryption and
its applications,” in STOC, 2013.

[2] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers,
“Fairness in an unfair world: Fair multiparty computation from public
bulletin boards,” in CCS, 2017.

[3] S. Goldwasser, Y. T. Kalai, R. A. Popa, V. Vaikuntanathan, and N. Zel-
dovich, “How to run turing machines on encrypted data,” in CRYPTO,
2013.

[4] S. Garg, C. Gentry, S. Halevi, M. Raykova, A. Sahai, and B. Waters,
“Candidate indistinguishability obfuscation and functional encryption
for all circuits,” in FOCS, 2013.

[5] C. Gentry, A. B. Lewko, and B. Waters, “Witness encryption from
instance independent assumptions,” in CRYPTO, 2014.

[6] J. Liu, T. Jager, S. A. Kakvi, and B. Warinschi, “How to build time-lock
encryption,” Des. Codes Cryptogr., 2018.

[7] D. Boneh, D. B. Glass, D. Krashen, K. E. Lauter, S. Sharif, A. Sil-
verberg, M. Tibouchi, and M. Zhandry, “Multiparty non-interactive key
exchange and more from isogenies on elliptic curves,” J. Math. Cryptol.,
2020.

[8] V. Goyal, A. Kothapalli, E. Masserova, B. Parno, and Y. Song, “Fast
batched dpss and its applications,” in PKC, 2022.

[9] A. Erwig, S. Faust, and S. Riahi, “Large-scale non-interactive threshold
cryptosystems through anonymity,” IACR Cryptol. ePrint Arch., 2021.

[10] M. Campanelli, B. David, H. Khoshakhlagh, A. K. Kristensen, and
J. B. Nielsen, “Encryption to the future: A paradigm for sending secret
messages to future (anonymous) committees,” IACR Cryptol. ePrint
Arch., 2021.

[11] V. Goyal, E. Masserova, B. Parno, and Y. Song, “Blockchains enable
non-interactive MPC,” in TCC, 2021.

[12] G. Almashaqbeh, F. Benhamouda, S. Han, D. Jaroslawicz, T. Malkin,
A. Nicita, T. Rabin, A. Shah, and E. Tromer, “Gage MPC: bypassing
residual function leakage for non-interactive MPC,” Proc. Priv. Enhanc-
ing Technol., 2021.

[13] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk,
C. Lin, T. Rabin, and L. Reyzin, “Can a public blockchain keep a
secret?” in TCC, 2020.

[14] C. Gentry, S. Halevi, B. Magri, J. B. Nielsen, and S. Yakoubov,
“Random-index PIR and applications,” in TCC, 2021.

[15] S. Arita and K. Tsurudome, “Construction of threshold public-key
encryptions through tag-based encryptions,” in ACNS, 2009.

[16] X. Boyen and B. Waters, “Anonymous hierarchical identity-based en-
cryption (without random oracles),” in CRYPTO, 2006.

[17] C. Gentry, “Practical identity-based encryption without random oracles,”
in EUROCRYPT, 2006.

[18] D. Boneh, X. Boyen, and S. Halevi, “Chosen ciphertext secure public
key threshold encryption without random oracles,” in CT-RSA, 2006.

[19] V. Shoup and R. Gennaro, “Securing threshold cryptosystems against
chosen ciphertext attack,” in EUROCRYPT, 1998.

[20] P. Mol and S. Yilek, “Chosen-ciphertext security from slightly lossy
trapdoor functions,” in PKC, 2010.

[21] B. Libert and M. Yung, “Non-interactive cca-secure threshold cryptosys-
tems with adaptive security: New framework and constructions,” in TCC,
2012.

[22] V. Koppula and B. Waters, “Realizing chosen ciphertext security
generically in attribute-based encryption and predicate encryption,” in
CRYPTO, 2019.

[23] T. E. Gamal, “A public key cryptosystem and a signature scheme based
on discrete logarithms,” in CRYPTO, 1984.

[24] S. Faust, C. Hazay, D. Kretzler, and B. Schlosser, “Statement-oblivious
threshold witness encryption,” Cryptology ePrint Archive, Paper
2023/668, 2023, https://eprint.iacr.org/2023/668. [Online]. Available:
https://eprint.iacr.org/2023/668

[25] D. Boneh and M. K. Franklin, “Identity-based encryption from the weil
pairing,” in CRYPTO, 2001.

[26] C. Schnorr, “Efficient identification and signatures for smart cards,” in
CRYPTO, 1989.

[27] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in CRYPTO, 1986.

[28] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
CRYPTO, 1992.

[29] E. Boyle, N. Gilboa, Y. Ishai, H. Lin, and S. Tessaro, “Foundations of
homomorphic secret sharing,” in ITCS, 2018.

APPENDIX A
REDUCTION: EXTRACTABILITY TO SO-IND-CCA

SECURITY

This section provides further details to the notion of ex-
tractable threshold witness encryption and presents the re-
duction from extractability to SO-IND-CCA security in the
threshold setting.

Intuitively, the original notion of extractable witness encryp-
tion states that any adversary that is able to obtain non-trivial
information about a plaintext is also able to provide the witness
for the corresponding ciphertext. Formally, this is defined by
allowing the adversary to win the security game with non-
negligible advantage but requiring that such an adversary can
be used to extract the witness for the challenged plaintext.
It is natural to translate this notion from witness encryption
to our context, the one of threshold witness encryption, by
defining extrability via the same security game as the one of
SO-IND-CCA security, ExpSO-CCA, with the only difference
that the adversary is allowed to query the decryption oracle
O(·, ·, ·, ·, ·) with any ciphertext-witness pair while the oracle
in the original experiment returns ⊥ if c = c∗, x ∈ {x0, x1}
and (x, (ws, wp)) ∈ R. We call this game ExpSO-Ext

TWE,A, when
played with an adversary A for a scheme TWE.

Extractability now requires that if the adversary has a non-
negligible advantage in the security game, then it is possible
to construct a witness extractor that extracts a valid witness
with non-negligible probability.

Definition 7 (Extractability of SO-TWE). Let A be a PPT
adversary A = (A0,A1,A2) such that the following holds:
for every pk generated by Setup, for every x0, x1,m0,m1 and
every auxiliary information z ∈ {0, 1}poly(κ):

Pr[ExpSO-Ext
TWE,A(1κ) = 1] ≥ 1

4
+

1

poly(κ)
.

1329

Then there exists a PPT extractor E such that:

Pr[(b, w) = E(1κ, x0, x1, z) : (xb, w) ∈ R] ≥ 1

poly(κ)
.

We state the following theorem:

Theorem 5. Any statement-oblivious threshold witness en-
cryption scheme TWE, that is SO-IND-CCA secure, is also
extractable.

Proof: Assume an adversary A = (A0,A1,A2) that
breaks extractability of TWE. This means that A is able to
win game ExpSO-Ext

TWE,A(1κ) with a non-negligible advantage and
there is no extractor E .

From the fact that there is no extractor, we can derive that
A does not query the oracle with input (·, ·, xb, ws, wp) such
that xb ∈ {x0, x1} and R(xb, (ws, wp)) = true; otherwise,
there would exist the trivial extractor Etriv that equals A up to
this query and then outputs (xb, (ws, wp).

As the adversary A does not make such queries, it can be
used in the SO-IND-CCA game without any modifications and
will still win with non-neglgible probability.

APPENDIX B
FURTHER DEFINITIONS

A. Collision Resistance of Hash Functions

The collision resistance property of hash functions states
that any PPT adversary can find two values x, x′ such that
x 6= x′ and H(x) = H(x′) only with negligible probability.

B. Security Properties of Digital Signatures

We assume digital signatures to satisfy consistency and
existential unforgeability against chosen-message attacks. The
consistency property states that for all κ ∈ N, for all
(SigK,VerK) ← KeyGen(1κ) and for every m ∈ M it holds
Pr[Verify(VerK,m,Sign(SigK,m))] = 1.

We define existential unforgeability against chosen-message
attacks via the following game

Experiment ExpEX-UNF
SIG,A (κ)

(SigK,VerK)← KeyGen(1κ)

(m∗, σ∗)← AO(·)(VerK)

if Verify(VerK,m∗, σ∗) = 1 then return 1

else return 0

where the adversary may ask its oracle O on a message m ∈
M and gets back the signature σ ← Sign(SigK,m). The pair
(m∗, σ∗) output by A must be different to any (m,σ) obtained
by the oracle.

Definition 8. A signature scheme SIG is existentially unforge-
able against chosen-message attacks if for every κ ∈ N and
every PPT adversary A there exists a negligible function negl
such that

Pr[ExpEX-UNF
SIG,A (κ) = 1] ≤ negl(κ).

Definition 9 (OTS). A signature scheme OTS =
(KeyGen,Sign,Verify) is called one-time signature scheme

with existential unforgeability against chosen-message attacks,
if for every κ ∈ N and every PPT adversary A′ that makes as
most one oracle query there exists a negligible function negl
such that

Pr[ExpEX-UNF
OTS,A′(κ) = 1] ≤ negl(κ).

C. Verifiable IBE

We state a definition for verifiable identity-based encryption
as an extension of identity-based encryption presented by
Boneh and Franklin [25]. In particular, the primitive contains
a verification algorithm that allows to check if an identity key
is generated correctly.

Definition 10 (VIBE). A verifiable identity-based encryption
scheme VIBE consists of five probabilistic polynomial-time
algorithms:

1) Setup(1κ) takes as input a security parameter 1κ and
outputs a public key pk including public parameters, a
verification key vk and a master key msk. pk include a
description of the finite message space M and the finite
ciphertext space C.

2) Extract(pk,msk, id) takes as input the public key pk, the
master key msk and an identity id ∈ {0, 1}∗. It outputs
an identity secret key ikid together with a proof ρid stating
that ikid was computed correctly.

3) Verify(pk, vk, id, ikid, ρid) takes as input the public key pk,
the verification key vk, an identity id, an identity key ikid,
and a proof ρid. It outputs 1 if ikid is a valid identity key
for identity id and 0 otherwise.

4) Encrypt(pk, id,m) takes as input the public key pk, an
identity id and a message m. It outputs a ciphertext c
encrypted under identity id.

5) Decrypt(pk, ikid, c) takes as input the public key pk, an
identity secret key ikid and a ciphertext c. It outputs a
message m.

We require these algorithms to fulfill the following correct-
ness and verifiability properties for all κ ∈ N:

• Correctness: For every (pk, vk,msk)← Setup(1κ), every
id ∈ {0, 1}∗, every (ikid, ·) ← Extract(pk,msk, id) and
every m ∈M:

Decrypt(pk, ikid,Encrypt(pk, id,m)) = m.

• Verifiability: For every (pk, vk,msk)← Setup(1κ), every
id ∈ {0, 1}∗ and every (ikid, ρid)← Extract(pk,msk, id)

Verify(pk, vk, id, ikid, ρid) = 1.

We define security by three properties: soundness,
anonymity and security against chosen-plaintext attacks. We
start defining the soundness property. Informally, soundness
means that an adversary cannot come up with two different
but valid identity keys that decrypt a chosen ciphertext to
two different plaintexts. Formally, we define the soundness
property via the following game.

1430

Experiment ExpSOUND
VIBE,A(κ)

(pk, vk,msk)← Setup(1κ)

(ID, c, (ikID, ρID), (ik
′
ID, ρ

′
ID))← AO(·)(pk, vk)

if Verify(pk, vk, ID, ikID, ρID) = 1

∧ Verify(pk, vk, ID, ik′ID, ρ
′
ID) = 1

∧ Decrypt(pk, ikID, c) 6= Decrypt(pk, ik′ID, c)

return 1

else

return 0

The adversary can use its oracle O(·) to make identity key
queries. More precisely, upon receiving id from A the oracle
returns (ikid, ρid)← Extract(pk,msk, id) for any id ∈ {0, 1}∗.

Definition 11 (Soundness). A verifiable identity-based encryp-
tion scheme VIBE satisfies soundness if for all κ ∈ N and all
PPT adversary

Pr[ExpSOUND
VIBE,A(κ) = 1] ≤ negl(κ).

We next move on to the anonymity and security against
chosen-plaintext attacks. The anonymity property of a VIBE
scheme informally states that an adversary cannot learn the
associated identity from a ciphertext, while the security against
chosen-plaintext attacks states that an adversary cannot distin-
guish two ciphertexts over different messages. We combine
both properties following Gentry [17] and define security via
the following game.

Experiment ExpA-V-CPA
VIBE,A (κ)

(pk, vk,msk)← Setup(1κ)

(ID0, ID1,m0,m1)← AO0 (pk, vk)

α, β ∈R {0, 1}
c∗ ← Encrypt(pk, IDα,mβ)

(α′, β′)← AO1 (c∗)

return (α, β) = (α′, β′)

In the game ExpA-V-CPA
VIBE,A , the adversary can use its oracle O

to make key generation queries. Upon receiving id, O returns
Extract(pk,msk, id) if id /∈ {ID0, ID1} and ⊥ otherwise.

Definition 12 (ANON-IND-ID-CPA). A VIBE scheme VIBE
is ANON-IND-ID-CPA secure if for all PPT adversary A in
game ExpA-V-CPA

VIBE,A , there exists a negligible function negl such
that ∣∣∣∣Pr[ExpA-V-CPA

VIBE,A (κ) = 1]− 1

4

∣∣∣∣ ≤ negl(κ).

In the full version of this paper [24], we show how to
construct a VIBE scheme from a standard identity-based
encryption scheme IBE combined with an existentially un-
forgeable signature scheme SIG. Assuming IBE satisfies
ANON-IND-ID-CPA security, the VIBE construction satisfies
soundness and ANON-IND-ID-CPA security.

D. Homomorphic Secret Sharing

We follow the definition of Boyle et al. [29] for homo-
morphic secret sharing (HSS) schemes but state a simplified
version that fits our application. In particular, we consider only
a single input HSS and incorporate robust decoding in our
definition where only s output shares are required for correct
decoding. Additionally, we use the notation of s-out-of-n HSS
to denote an n-server (s − 1)-secure HSS according to the
definition of Boyle et al.

In Section VIII, we utilize an HSS to transform a VIBE
scheme into a threshold IBE scheme. In particular, the identity
key generation will be executed in a distributed fashion,
i.e., the Extract algorithm of the non-threshold scheme. The
homomorphic operations that need to be supported by the
HSS depend on the concrete VIBE construction. Since we
present a black-box construction in Section VIII, we consider
a generalized homomorphic secret sharing scheme.

Definition 13 (HSS). An s-out-of-n homomorphic secret shar-
ing scheme HSS for a function F : ({0, 1}∗)2 → {0, 1}∗, or
(s, n)-HSS in short, consists of three PPT algorithms:

1) Share(1κ, x) takes as input a security parameter 1κ and
a user input x. It outputs n shares (x1, . . . , xn), where
server i gets share xi.

2) Eval(i, z, xi) takes as input a server index i, a public
input z and the i-th share xi. It outputs yi ∈ {0, 1}∗,
corresponding to server i’s share of F (z;x).

3) Dec({yi}i∈S) takes as input a set of output shares and
outputs the final output y ∈ {0, 1}∗.

We require the following correctness and security properties
for every κ ∈ N:
• Correctness: For any input z, x ∈ {0, 1}∗ and any set of

shares (x1, . . . , xn) ← Share(1κ, x). Let ∀i ∈ [n] yi ←
Eval(i, z, xi), then for any set S ⊆ [n] of size s it holds
that

Dec({yi}i∈S) = F (z;x).

• Computational security: Security of an HSS HSS is de-
fined via the experiment ExpHSSHSS,A,I where the adversary
A = (A0,A1) corrupts a set M⊂ [n] of s− 1 servers.
Then, we require∣∣∣∣Pr[ExpHSSHSS,A,M(κ) = 1]− 1

2

∣∣∣∣ ≤ negl(κ),

where the experiment is defined as follows.

Experiment ExpHSSHSS,A,I(κ)

(x0, x1)← A0(1
κ), where |x0| = |x1|.

b ∈R {0, 1}
(x̂1, . . . , x̂n)← Share(1κ, xb)

b′ ← A1({x̂i}i∈I)
return b = b′

A trivial construction of the Eval algorithm is the identity
function. Then, the Dec algorithm first reconstructs x and
computes F (z;x) next. As described above, we utilize an

1531

HSS to perform the Extract algorithm of a VIBE scheme in
a distributed way. In this scenario, the Eval algorithm being
the identity function means that the party that should learn the
identity key also learns the master secret key. Since this is an
undesired effect, we impose an additional requirement on the
decoding algorithm. We define a linear decoding HSS as a
slightly weakening of an additive HSS as defined by Boyle
et al. [29]. Intuitively, a linear decoding HSS requires the
decoding to be a linear combination of the output shares. In
contrast to an additive HSS, a linear decoding HSS enables
a decoding algorithm whose output depends on the set of
servers from which shares are obtained. In particular, the
coefficients depend on the servers’ indices that computed the
shares. This notion allows to capture any s-out-of-n Shamir’s
secret sharing.

Definition 14 (Linear Decoding HSS).
An (s, n)-HSS scheme HSS = (Share,
Eval,Dec) is called linear decoding if Dec works as
follows:

Let {y1, . . . , yn} be a set of output shares. Then, for any set
S ⊆ [n] of size s, there exists a set of s coefficient {aS,i}i∈S
such that

Dec({yi}i∈S) =
∑
i∈S

aS,i · yi.

E. Threshold IBE

In this section, we state the formal security games for
threshold identity-based encryption schemes (TIBE). The no-
tation for TIBE is given in Section II-C. We first define the
security game for anonymity and security against chosen-
identity attacks.

Experiment ExpA-T-CPA
TIBE,A (1κ)

M←A0(1
κ), where |M| < s

α, β ← {0, 1}
(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(ID0, ID1,m0,m1)← AO(·,·)
1 (pk, vk, {ski}i∈M)

c∗ ← Encrypt(pk, IDα,mβ)

(α′, β′)← AO(·,·)
2 (c∗)

return (α, β) = (α′, β′)

The adversary can use its oracle O(·, ·) to make key generation
queries. To do so, the adversary sends (i, id) to O and receives
(i, iki)← ShareKeyGen(pk, i, ski, id). In the game, we require
that ID0 and ID1 was not used in any oracle query of A1 before
or after providing the identities and messages.

Next, we define the game for key generation consistency.

Experiment ExpKC-CPA
TIBE,A(1κ)

M←A0(1
κ), where |M| < s

(pk, vk, {ski}i∈[n])← Setup(1κ, s, n)

(ID, c, {(i, iki)}i∈S , {(i, ik′i)}i∈S′)← AO(·,·)
1 (pk, vk, {ski}i∈M),

where S,S ′ ⊆ [n] ∧ |S| = s = |S ′|
if ∀i ∈ S : ShareVf(pk, vk, ID, i, iki) = true

∧ ∀i ∈ S ′ : ShareVf(pk, vk, ID, i, ik′i) = true

∧ ik = Combine(pk, vk, ID, {iki}i∈S)
∧ ik′ = Combine(pk, vk, ID, {ik′i}i∈S′)

∧ ik, ik′ 6= ⊥
∧ Decrypt(pk, ID, ik, c) 6= Decrypt(pk, ID, ik′, c)

return 1

else

return 0

The adversary can use its oracle O(·, ·) in the same way
as described above without any restrictions on the queried
identities.

Definition 15 (ANON-IND-ID-CPA). A TIBE scheme TIBE is
ANON-IND-ID-CPA secure if for every κ, n ∈ N, every 1 ≤
s ≤ n and for every PPT adversary A := (A0,A1,A2) there
exist two negligible function negl0 and negl1 such that∣∣∣∣Pr[ExpA-T-CPA

TIBE,A (κ) = 1]− 1

4

∣∣∣∣ ≤ negl0(κ) ∧

Pr[ExpKC-CPA
TIBE,A(κ) = 1] ≤ negl1(κ).

1632

