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Abstract—Providing authenticated interactions is a key respon-
sibility of most cryptographic protocols. When designing new
protocols with strict security requirements it is therefore essential
to formally verify that they fulfil appropriate authentication prop-
erties. We identify a gap in the case of protocols with unilateral
(one-way) authentication, where existing properties are poorly
adapted. In existing work, there is a preference for defining strong
authentication properties, which is good in many cases but not
universally applicable. In this work we make the case for weaker
authentication properties. In particular, we investigate one-way
authentication and extend Lowe’s authentication hierarchy with
two such properties. We formally prove the relationship between
the added and existing properties. Moreover, we demonstrate
the usefulness of the added properties in a case study on remote
attestation protocols. This work complements earlier work with
additional generic properties that support formal verification of
a wider set of protocol types.

I. INTRODUCTION

Cryptographic protocols are necessary building blocks of the
Internet and the services we take for granted in today’s society.
We rely on these protocols to uphold basic security properties
such as secrecy (confidentiality) and authenticity. It has been
argued [1] that formal verification of security protocols should
be adopted early on in development to prevent logical design
flaws. We support this viewpoint, and that more work is needed
to make formal verification attainable for practitioners not
trained in formal methods.

We focus on authentication properties, whose definition and
meaning varies between different works and can be difficult to
map to a particular use-case or scenario for non-experts. Mak-
ing protocol verification accessible means providing reusable
and generic primitives and properties that can be applied to
many different protocols. However, authentication is not a one-
size-fits-all property. Different protocols will need different
levels of authentication depending on the intended goal of each
protocol. Using authentication specifications that are precise is
important during formal verification, since using a definition
that is too weak will miss feasible attacks, while using a
definition that is too strong may cause false-positives.

Lowe’s authentication hierarchy [2] provides an ordered set
of generic properties and has been widely used to verify au-
thentication properties, especially in works using the Tamarin
prover [3]. For example, it has been used for verification of 5G
authentication [4][5] and Direct Anonymous Attestation [6][7].

The hierarchy provides a powerful comparison between proto-
cols, as it allows reasoning about relative strength of different
authentication properties. Unfortunately, Lowe’s hierarchy in
its current form has some gaps. In particular, it only con-
siders mutual authentication, neglecting the many situations
where only one-way authentication is needed. For example,
important internet protocols such as TLS will only perform
authentication of the server, not the client, when unilateral
authentication is chosen (the terms unilateral and one-way
authentication are synonymous). A crucial aspect of one-way
authentication is that the authenticated agent will not make
any distinction between non-authenticated agents.

In this paper we define two one-way authentication proper-
ties that complement Lowe’s hierarchy where already the one-
way dimension differentiates the properties aliveness and weak
agreement, but lacks the corresponding one-way properties
for non-injective and injective agreement. We show how
the hierarchy can be intuitively extended with the proposed
properties and prove that they form a strict hierarchy. We also
show that the proposed one-way properties are applicable in
real-world scenarios by examining remote attestation as a case-
study. We therefore believe that the amended hierarchy would
be a useful resource for those who seek to find appropriate
verification properties to test their protocols against.

Previous works has often focused on finding the strongest
possible definition for authentication [8][9]. Granted, verifying
against such strong properties offers a higher confidence that a
protocol is secure. However, in practice it is often impractical
since not all protocols are designed to prevent every type of
adversarial behaviour. Rather, we argue that weaker properties
are often needed as these correspond to the actual guarantees
provided by the protocol. One-way authentication has been
used and discussed in an ad-hoc fashion in previous works
(e.g., [10][11]) but not properly defined as generic properties
and placed in an authentication hierarchy with associated
strictness proofs. Another related strand of work has discussed
unilateral key exchange. While key exchange requires au-
thentication, the opposite is not true, and we consider key
establishment as out of scope for this paper.

We argue that this work fills an important gap in the litera-
ture by formally stating and analysing one-way authentication
properties. Proving that these properties strictly differ from
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existing properties is important since the apparent strength of
a property (based on how it is expressed as a logical formula)
is not necessarily reflected by the set of feasible cryptographic
protocols that exhibit the property.

We also formally show the suggestion by Lowe that unique
and unpredictable nonces can provide both injectivity and
recency, thus protecting against replay and preplay attacks. In
fact, we introduce a sufficient criterion for protocols fulfilling
injective agreement to also fulfil recent injective agreement.
This potentially reduces the need of stronger authentication
properties such as synchronisation.

The contributions of this paper can be summarized as
follows.

• Extending Lowe’s authentication hierarchy with two au-
thentication properties according to a two-dimensional
categorisation.

• Proving strictness of the extended hierarchy by showing
the relationships between the sets of admissible protocols
for the different properties.

• Providing a sufficient criterion for recency given an
injective protocol.

• Demonstrating the applicability of the proposed proper-
ties in a case study based on remote attestation.

The rest of this paper is organised as follows. Section II
describes the formalism and notation used, briefly introduces
Lowe’s hierarchy, and discusses the meaning of strictness
for protocol properties. Section III describes the need for
additional properties, and introduces our proposed extended
hierarchy. Section IV shows a complete proof of the rela-
tionships between properties. In Section V, we illustrate that
nonces are a sufficient tool to provide recentness given a
protocol that is already injective. Section VI is a case study
on remote attestation protocols which illustrates cases where
our proposed properties may be useful. Section VII discusses
related work, and Section VIII presents some conclusions of
this work.

II. PRELIMINARIES

In this section we explain notation, and briefly introduce the
original hierarchy by Lowe. Finally, we highlight an important
distinction between trace properties and protocol properties,
which affects reasoning about strictness for protocol proper-
ties.

A. Notation and Terminology

We build on Schmidt et al. [12] for the formalisation of
protocols and traces. Protocols and adversaries are modelled
as a labelled transition system, where labelled multiset rewrite
rules describe protocol steps and adversary capabilities. A
trace is a sequence of sets of actions (ground facts). For the
sake of presentation, we only consider rewrite rules with a
single action, so a trace is thus a sequence of actions. We
write the set of all traces of a protocol P as traces(P).

Properties are specified as trace formulas in a two-sorted
first-order logic, with one sort for timepoints and one sort for
message contents. Traces may contain free variables, and so a

valuation θ is an instantiation of all free variables in a trace T .
For a given trace T , a valuation θ and a trace formula φ, we
write (T, θ) |= φ to mean that the trace formula is satisfied by
the trace with the given valuation. If all possible valuations of
T satisfy a trace formula, we write T |= φ. We say a security
property φ holds for a protocol P , written P |= φ, iff T |= φ
for every possible trace T ∈ traces(P ).

As an example, consider the trace formula for the authen-
tication property aliveness in Formula 1.

φalive ≜

∀ I Rn i. Commit(I,R, n)@i

→ (∃ I2 n2 j. Running(R, I2, n2)@j

(1)

In Formula 1, Commit and Running are actions, and i and j
are timepoints. We use the notation f(...)@i to signify that
an action f occurred at timepoint i. Terms I, R, n and i are
all examples of variables, and are not bound to any particular
value by a valuation. For the formula to hold for a trace it
must hold for any valuation.

B. Lowe’s Hierarchy

We give a brief introduction to the authentication hierarchy
as specified by Lowe. In Lowe’s hierarchy, four main authen-
tication properties are introduced: aliveness, weak agreement,
non-injective agreement and (injective) agreement. Following
Lowe’s definitions [2], we assume the existence of at least two
roles in each protocol, an initiator and a responder. We further
assume that that the final step of the protocol performed by the
initiator role is labelled by a Commit action, and the final step
of the protocol performed by the responder role is labelled
by a Running action. The actions Commit and Running have
the following form. The first argument describes the name of
the acting agent, while the second argument takes the name
of the intended recipient. For example, Commit(I,R,n) means
that Commit was performed by I, and the expected responder
was R. The remaining argument contains a term representing
data items that are sent as part of the protocol.

Consider again Formula 1 for aliveness shown previously.
Intuitively, Formula 1 describes that whenever Commit has
occurred, then Running has occurred at some point, and was
performed by the responder R expected by the initiator I.
Excluding the responder term R, all other terms used in the
action Running are existentially quantified, signifying that they
do not need to agree with the values seen by the initiator I
performing Commit.

Commit can be seen as a claim made by the initiator.
Once Commit has occurred, we expect there to have been
some Running action. Typically, we assume that Commit is
performed by the initiator of the protocol, but this need not
be the case in practice. It is possible to generalise these
definitions to other kinds of interactions as well. A symmetric
authentication property can be formulated from the perspective
of the responder role, or for any other role involved in the
protocol. Moreover, the reasoning in this paper can be applied
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to a specific protocol phase that considers only a part of the
protocol.

Aliveness describes a very weak form of authentication. For
the stronger specifications for authentication, the initiator and
responder need to both agree on roles and data. The following
formulas show formulas for weak agreement, non-injective
agreement, and injective agreement, respectively.

φw−agree ≜

∀ I Rn i. Commit(I,R, n)@i

→ (∃n2 j. Running(R, I, n2)@j)

(2)

φni−agree ≜

∀ I Rn i. Commit(I,R, n)@i

→ (∃ j. Running(R, I, n)@j)

(3)

φi−agree ≜

∀ I Rn i. Commit(I,R, n)@i

→ (∃ j. Running(R, I, n)@j

∧ ¬(∃ I2 R2 i2. Commit(I2, R2, n)@i2

∧ i2 ̸= i))

(4)

It can be shown using the formulas that each successive
property in the hierarchy necessarily implies the previous, and
is thus at least as strong of a requirement. It can also be shown
that they are strictly stronger. Given property φ, we define the
set of protocols that fulfil each property as Sφ ≜ {P : P |= φ}
where P is a protocol. The following statement, which we state
without a proof (follows from Lowe’s work), will be used for
proving our extended hierarchy.

Assumption 1. The relations in the hierarchy are strict,
meaning that for each pair of properties there is a protocol
for which the stronger property does not hold but the weaker
does.
Si−agree ⊂ Sni−agree ⊂ Sw−agree ⊂ Salive

C. Strictness of Protocol Properties

Showing that trace properties are strict for traces can
be done by providing traces that distinguish the properties.
However, there is a subtle but important difference between
trace properties and protocol properties. A trace property holds
for a specific trace, while a protocol property has to hold for
every possible trace of the protocol. The original definitions by
Lowe contain a temporal requirement: the Running action must
have occurred before Commit. However, it is not necessary to
specify as part of the property. Consider the example of a
modified formula for injective agreement specified as follows.

φm−i−agree ≜

∀ I Rn i. Commit(I,R, n)@i

→ (∃ j. Running(R, I, n)@j

∧ j < i

∧ ¬(∃ I2 R2 i2. Commit(I2, R2, n)@i2

∧ i2 ̸= i))

(5)

In Formula 5, the requirement for j < i has been added
to Formula 4, meaning we additionally disallow traces where
Running happened after Commit. Trivially φm−i−agree ⇒
φi−agree. It may seem like the modification gives rise to a
different property, since we can easily find a trace that fulfils
φi−agree but not φm−i−agree using a trace where Commit
occurs before Running. However, the formulas give rise to the
exact same condition for protocols under a Dolev-Yao [13]
model where messages can be arbitrarily dropped.

Proof. Assume there is a protocol P so that P |= φi−agree

and P ̸|= φm−i−agree. Then there must exist at least one trace
T ∈ traces(P ) so that T |= φi−agree and T ̸|= φm−i−agree.
For this trace T , the only possibility is that there was some
Commit at a time i and a Running at a time j so that j >= i.
Importantly, there cannot be any matching Running actions
that occurred before Commit, or else the trace would also fulfil
φm−i−agree.

Then there must be a subtrace Ts consisting of the sequence
of actions in T leading up to and including all actions that
happened before or at timepoint i, but excluding all actions
that happened after. This is because our Dolev-Yao adversary
is able to drop all messages sent after this point1. Such a
trace contains a Commit action at i, but no matching Running
action. Such a trace does not fulfil φi−agree. Such a trace must
be a valid trace for protocol P , since it only contains states
in an order that was possible during trace T . But this is a
contradiction, since P |= φi−agree.

The same line of reasoning can be used to justify removal
of the temporal condition also from the other properties. This
example illustrates that strictness for trace properties does
not equate to strictness for protocol properties. In order to
show that two protocol properties are distinctly different, we
must first show that there exists a protocol fulfilling the first
property, but for which there exists a trace which violates the
other property.

III. ONE-WAY AUTHENTICATION

A. Motivation

Because injective agreement is defined as a strictly stronger
property relative to weak agreement, proving injectivity using
these definitions requires also proving weak agreement. How-
ever, weak agreement already requires agreement on initiator

1If we allow Running and Commit to occur at the same time, we could
drop the message needed for Running but not for Commit since we assume
they are performed by different agents.
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identity. For mutually authenticated key exchange this is
reasonable, since we may want to ensure that the key is always
established between two known agents before we ensure that
old sessions are not replayable. On the other hand, for unilat-
eral key-exchange, or for any type of one-way authentication,
it is typically not possible to prove that the authenticated agent
knows the identity of the unauthenticated agent, and so weak
agreement fails. For such cases, the specifications defined in
the hierarchy are not sufficient, as we may still want to show
that unilateral authentication holds injective properties in order
to prevent replay attacks. Injective agreement is too strong of
a property for unilateral authentication in these cases.

Protocols that are unilaterally authenticated can still be
considered secure, however only one of the agents can consider
the other to be authenticated. This does not in general lead
to an attacker-in-the-middle vulnerability, since agreement on
data unique to the client ensures to the client that server session
was performed with the client, regardless of who the server
believed was the intended recipient.

We argue for the relevance of unilateral authentication using
TLS as an example. As noted by Cremers et al. during formal
verification of a draft of TLS 1.3 [10], the client cannot
guarantee that the server agrees on the client’s identity during a
unilateral handshake. This means that the standard formulation
for non-injective agreement could not be used, even though
there was agreement on all data. The TLS protocol establishes
a session between a server and a client, and allows application
level protocols, such as HTTPS, to send data securely using the
established session key. All modes in TLS require the server
to be authenticated to the client, while it is optional for the
client to be authenticated to the server [14].

Fig. 1 shows a simplified TLS 1.3 handshake. The TLS
handshake establishes shared symmetric session keys between
the server and the client, and additionally authenticates the
server using a certificate or pre-shared key. If the client is
also able to authenticate using a certificate, then the server can
request client authentication. In this scenario the client would
send Certificate and CertificateVerify messages before sending
the Finished message. The case where client authentication is
performed is known as mutual TLS.

Connections between servers and clients are often unilater-
ally authenticated, as the client can know and authenticate the
server, while the server has no prior knowledge of the client
identities.

B. Proposed Properties

While the definition of non-injective agreement is strictly
stronger than weak agreement, the requirements they relate
to do not depend on each other. It is possible to agree on
data, while not agreeing on participant identities. This is
not reflected in the hierarchy, since a proof of non-injective
agreement necessarily proves weak agreement, therefore also
requiring agreement on participant identities. This is illustrated
in Table I.

Table I shows the authentication properties separated into
two columns, mutual and one-way. Mutual properties require

Fig. 1. TLS 1.3 Handshake

TABLE I
AUTHENTICATION HIERARCHY. PROPERTIES DEFINED IN THIS WORK ARE

SHOWN IN BLUE.

Surj. Integ. Inj. Mutual One-Way
• • • Injective ⇒ One-Way

Agreement Injective Agreement
⇓ ⇓

• • Non-injective ⇒ One-Way Non-
Agreement Injective Agreement

⇓ ⇓
• Weak ⇒ Aliveness

Agreement
Surj. = Surjectivity, Integ. = Integrity, Inj. = Injectivity

agreement also on initiator identity, while one-way do not.
In the vertical axis we show three supported properties:
surjectivity (there is at least one Running for each Commit),
integrity (the two roles have the same view on the shared data)
and injectivity (there is at most one Commit for each Running).
Every authentication property at least describes a surjective
property from Running to Commit. In principle, one can also
imagine the case where there is injectivity but not integrity, but
it is not clear whether such protocols are feasible or practical.

We propose that the hierarchy is extended to include two
weaker alternatives to non-injective and injective agreement,
called one-way non-injective agreement and one-way injective
agreement. We define one-way non-injective agreement and
one-way injective agreement as follows.

a) Definition: one-way non-injective agreement: A pro-
tocol guarantees one-way authentication with non-injective
agreement to an agent A acting as the initiator if A completes
a run of the protocol apparently with B, then there was an
agent B acting as responder not necessarily with A, and A and
B agreed on the data for this run.

Formula 6 shows one-way non-injective agreement.

φow−ni−agree ≜

∀ I Rn i. Commit(I,R, n)@i

→ (∃ I2 j. Running(R, I2, n)@j)

(6)
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As will be shown, one-way non-injective agreement is
stronger than aliveness, but weaker than non-injective agree-
ment. Unlike weak agreement, it does not guarantee that the
responder knew the initiator identity during the protocol run.

The entity authentication property used by Cremers et
al. during formal verification of TLS 1.3 [10] matches our
definition of one-way non-injective agreement. Therefore, their
results do not show that replay attacks are prevented. This does
not mean that replay attacks against TLS are possible, but
rather that the stronger property one-way injective agreement
as defined below would be needed to formally prove absence
of replay attacks.

Note that the main contributions of this paper are not
proposing the properties themselves (as variations have been
discussed in the literature previously), but rather extending the
authentication hierarchy with well-defined generic properties
with strictness proofs between the properties.

b) Definition: one-way injective agreement: A protocol
guarantees one-way authentication with injective agreement to
an agent A acting as the initiator if A completes a run of the
protocol apparently with B, then there was an agent B acting
as responder not necessarily with A, and A and B agreed on
the data for this run, and for each run of A there was a unique
run by B.

Formula 7 shows one-way injective agreement.

φow−i−agree ≜

∀ I Rn i. Commit(I,R, n)@i

→ (∃ I2 j. Running(R, I2, n)@j

∧ ¬(∃ I3 R2 i2. Commit(I3, R2, n)@i2

∧ i2 ̸= i))

(7)

One-way injective agreement ensures to the initiator that
the responder run was unique and agreed on the data. This
is enough to show that a session was unique between the
responder and the initiator, however the responder’s view of
the participating agents may not match what the initiator
believes.

IV. STRENGTH AND STRICTNESS

We prove that if we extend the hierarchy with the above
one-way properties, then each property is distinct and the sets
of protocols that fulfil the properties will follow a strict partial
order according to Theorem 1. Property sets defined in this
work are shown in blue.

Theorem 1.

Si−agree ⊂ Sow−i−agree

⊂ ⊂
Sni−agree ⊂ Sow−ni−agree

⊂ ⊂
Sw−agree ⊂ Salive

The proof strategy for Theorem 1 is given in Fig. 2. The dot-
ted lines represent relations that are already taken to be strict
as per Assumption 1. The proof begins by showing in step 1
that the weaker properties hold from the stronger properties.
Step 1 of the proof follows directly from the definitions of

Fig. 2. Proof Strategy

Fig. 3. Euler Diagram of Property Sets

the properties, and only shows implication between protocol
properties. Next, we show that properties are distinctly differ-
ent along the diagonal in step 22. Finally, in step 3 we prove
strictness for the relations for which implication was shown
in step 1. Step 3 depends on the previous steps, along with
Assumption 1. This proves Theorem 1, and additionally shows
that properties are distinct along the diagonal.

Steps 2 and 3 are needed in order to show that the definitions
for one-way authentication properties are distinctly different
from any existing authentication property when considering
them as protocol properties. There are several cases to con-
sider. Assume that we know implication holds, and we are
tasked with proving strictness for the sub-problem shown in
Formula 8 (i.e. the lower four properties in the hierarchy).

Sni−agree ⊆ Sow−ni−agree

⊂ ⊆
Sw−agree ⊂ Salive

(8)

It is possible that the proposed property Sow−ni−agree is equal
to Sni−agree, that Sow−ni−agree is equal to Salive, or that
Sow−ni−agree is equal to Sw−agree. It is also possible that
one of Sow−ni−agree and Sw−agree is a subset of the other.
Together, steps 2 and 3 show that none of these cases apply;
all subsets are strict, and Sow−ni−agree and Sw−agree each
contain elements not in the other set. That is, we conclude the
set relation shown in Fig. 3.

2Distinctly different in this case refers to the sets being incomparable with
respect to the subset relation.
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Step 2 specifically proves that Sow−ni−agree and Sw−agree

are distinct and each contain elements not in the other set.
Step 3 specifically proves that from Assumption 1 it follows
that all other relations must be strict. Using the same method
we can then prove the top part of the hierarchy, showing that
all relations are strict.

A. Step 1: Proving Horizontal and Vertical Implications

We begin with the first part of the proof by showing where
implication holds between the proposed and existing properties
in the hierarchy. Clearly, the original properties non-injective
and injective agreement are at least as strong as strong as their
corresponding one-way properties (proof in Appendix).

Lemma 1. φni−agree ⇒ φow−ni−agree

Lemma 2. φi−agree ⇒ φow−i−agree

We can also conclude that one-way injective agreement
implies one-way non-injective agreement directly from their
formal definition.

Lemma 3. φow−i−agree ⇒ φow−ni−agree

Proof. Trivial. Formula (7) ⇒ (6)

Finally, one-way non-injective agreement implies aliveness
(proof in Appendix).

Lemma 4. φow−ni−agree ⇒ φalive

Based on Lemmas 1 – 4 and Assumption 1 it is possible
to extend the hierarchy in the sense that logical implications
hold as illustrated in Table I.

B. Part 2: Proving Diagonal Distinctiveness

For part 2 we prove diagonal distinctiveness by first cre-
ating four protocols that each provide a different level of
authentication. We prove in each case that the authentication
property holds for all traces of the protocol. Next, we show
pairwise differences between the authentication properties by
showing traces of each protocol that cause violations of other
authentication properties. This proves that the two properties
are distinctly different.

We define four protocols, one for each property connected
with a diagonal red line in Fig. 2. The protocols are defined
with an initiator (labelled I) and a responder (labelled R),
and are shown in Fig. 4. We use the notation {x, y, ...}skA
to represent a signature over the variables x, y, ... using secret
key A. We assume a revealing signature scheme for all figures.
We require that the initiator is in possession of the responder’s
public key and is able to verify signatures made using the
responder’s private key. In these protocols, each signature
using the responder private key is produced as part of the
Running action.

We then analyse the protocols in a symbolic model, where
we assume perfect cryptographic primitives. Specifically, we
assume an asymmetric signature scheme, where a signature of
a message can only be produced by an agent with knowledge
of the secret key. We also assume a Dolev-Yao adversary

that can intercept all messages, modify their contents, remove
messages from the channel and send its own messages. We
further assume that the key of the responder cannot get leaked,
however the adversary may possess its own keys. Finally, we
assume all agents (including the adversary) are able to generate
unique fresh values.

Clearly, in this model there is no way for the adversary
to produce any signatures using the responder key. Then any
signature required by the initiator must have been produced by
the responder, and therefore the responder must agree on at
least the data items contained in the signature. From this alone
it easy to check that Protocol Pa must fulfil one-way non-
injective agreement, Protocol Pb must fulfil weak agreement,
and Protocol Pd must fulfil non-injective agreement. Proto-
col Pc requires a little more motivation. For this protocol, the
value n is produced by I, meaning Commit will only occur
using values for n that I generated and believed to be unique,
and so there will only be one Commit for each nonce.

In order to make our proofs rigorous, we have used the
Tamarin prover [3] in order to verify that our properties hold
for each protocol3. The Tamarin prover is based upon the same
formal model used in this paper.

Lemma 5. Pa ∈ Sow−ni−agree

Lemma 6. Pb ∈ Sw−agree

Lemma 7. Pc ∈ Sow−i−agree

Lemma 8. Pd ∈ Sni−agree

Having established that the four protocols each fulfil one of
the four properties that are diagonally connected in Fig. 2, we
now proceed to show that each protocol violates the diagonally
adjacent property.

Fig. 5 shows four traces. Each trace belongs to the cor-
responding protocol in Fig. 4. The traces represent runs of
the protocols where a network adversary has intercepted and
modified messages. Trace Ta is a valid trace for Protocol Pa,
Trace Tb is a valid trace for Protocol Pb, and so on. Note
that in Trace Td, initiator I performs two runs of the protocol,
while responder R only performs one. The adversary is able to
send the final message by repeating a previous message that
it has already seen, completing the protocol for I without the
involvement of R.

Lemma 9. Pa ∈ Sow−ni−agree\Sw−agree

Proof. Consider the trace Ta shown in Fig. 5 (a). In the trace,
each agent follows the rules described by Protocol Pa. The
initiator I sends and receives matching messages, and the
responder R receives and then sends a matching message. The
steps performed by the adversary A falls within the adversary
capabilities. The trace is therefore a valid trace for Protocol Pa.
This protocol fulfils one-way non-injective agreement accord-
ing to lemma 5. The trace corresponds to a sequence of actions
Ta = [Running(R,A, n), Commit(I,R, n)]. This trace is
incompatible with Formula 2 for weak agreement, since the

3Available at https://gitlab.liu.se/ida-rtslab/public-code/2023 ow-auth
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(a) (b) (c) (d)
Fig. 4. Distinguishing protocols. Fig. (a) shows a protocol fulfilling one-way non-injective agreement. Fig. (b) shows a protocol fulfilling weak agreement
(c) shows a protocol fulfilling one-way injective agreement. Fig. (d) shows a protocol fulfilling non-injective agreement.

(a) (b)
Fig. 5. Distinguishing traces. Fig. (a) shows a trace fulfilling one-way non-injective agreement, but not weak agreement. Fig. (b) shows a trace fulfilling weak
agreement, but not one-way non-injective agreement.

(c) (d)
Fig. 5. Distinguishing traces. Fig. (c) shows a trace fulfilling one-way injective agreement, but not non-injective agreement. Fig. (d) shows a trace fulfilling
non-injective agreement, but not one-way injective agreement.
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initiators do not match between the Running and Commit
actions. In practice this means the responder R believed it
performed the protocol with the adversary A instead of the
initiator I.
Ta ∈ Pa ∧ Ta ̸⊢ φw−agree

⇒ Pa ∈ Sow−ni−agree ∧ Pa ̸∈ Sw−agree

⇒ Pa ∈ Sow−ni−agree\Sw−agree

We state similar lemmas for the three remaining traces. The
proofs are included in the Appendix, but follow essentially the
same procedure. Trace Td is a special case, since the initiator
performs two runs. After the second run, one-way injective
agreement does not hold since the Commit was not unique.
Both runs still adhere to the specification set by Protocol Pd,
which fulfils non-injective agreement.

Lemma 10. Pb ∈ Sw−agree\Sow−ni−agree

Lemma 11. Pc ∈ Sow−i−agree\Sni−agree

Lemma 12. Pd ∈ Sni−agree\Sow−i−agree

Lemmas 9 – 12 show that some of the properties are distinct
from each other, namely that Sow−ni−agree and Sw−agree are
distinct, and that Sow−i−agree and Sni−agree are distinct.

Lemmas 5 – 8 and 9 – 12 together show that the set of
protocols that satisfy the diagonally connected properties in
Fig. 2 are distinctly different (i.e., neither is a subset of the
other). For each property there is a protocol that belongs to
the set of protocols that satisfy that property, but which does
not satisfy the diagonally adjacent property.

C. Part 3: Proving Horizontal and Vertical Strictness

We now proceed to show that from Assumption 1 we can
conclude that all properties are distinct. In particular, we prove
inequality for the relations in yellow in Fig. 2. We only show
the proof for two of the relations, the remaining two are
included in the appendix.

Lemma 13. Sow−ni−agree ⊂ Salive

Proof. 1) From Lemma 4: Sow−ni−agree ⊆ Salive

2) From Lemma 10: Pb ∈ Sw−agree\Sow−ni−agree

We prove inequality by showing that Salive\Sow−ni−agree is
nonempty:
Sw−agree ⊂ Salive (Assumption 1)
⇒ Sw−agree\Sow−ni−agree ⊆ Salive\Sow−ni−agree
2)
=⇒ Pb ∈ Salive\Sow−ni−agree

⇒ Salive ̸= Sow−ni−agree
1)
=⇒ Sow−ni−agree ⊂ Salive

Lemma 14. Sni−agree ⊂ Sow−ni−agree

Proof. 1) From Lemma 1: Sni−agree ⊆ Sow−ni−agree

2) From Lemma 9: Pa ∈ Sow−ni−agree\Sw−agree

We prove inequality by showing that Sow−ni−agree\Sni−agree

is nonempty:
Sni−agree ⊂ Sw−agree (Assumption 1)
⇒ Sow−ni−agree\Sw−agree ⊆ Sow−ni−agree\Sni−agree

2)
=⇒ Pa ∈ Sow−ni−agree\Sni−agree

⇒ Sow−ni−agree ̸= Sni−agree
1)
=⇒ Sni−agree ⊂ Sow−ni−agree

Lemma 15. Si−agree ⊂ Sow−i−agree

Lemma 16. Sow−i−agree ⊂ Sow−ni−agree

Now we have proven all relations in Theorem 1. The proof
is summarised through the list of lemmas below.

Proof of Theorem 1.
From Assumption 1: Si−agree ⊂ Sni−agree ⊂ Sw−agree ⊂
Salive

From Lemma 15: Si−agree ⊂ Sow−i−agree

From Lemma 14: Sni−agree ⊂ Sow−ni−agree

From Lemma 16: Sow−i−agree ⊂ Sow−ni−agree

From Lemma 13: Sow−ni−agree ⊂ Salive

We have also shown that our definitions are distinctly
different from existing authentication properties. We state this
as Theorem 2 and Theorem 3.

Theorem 2. Sow−i−agree ̸= Sni−agree

Proof. From Lemma 11: Pc ∈ Sow−i−agree\Sni−agree

⇒ Sow−i−agree ̸= Sni−agree

Theorem 3. Sow−ni−agree ̸= Sw−agree

Proof. From Lemma 9: Pa ∈ Sow−ni−agree\Sw−agree

⇒ Sow−ni−agree ̸= Sw−agree

V. PREPLAY ATTACKS AND INJECTIVITY

A preplay attack occurs when an adversary is able to predict
and perform a part of the protocol before it is initiated, and
then replay messages in order to successfully complete the
protocol at a later stage. An injective protocol guarantees that
no replay attacks can occur, but not necessarily that preplay
attacks are impossible . Preplay attacks are attacks where the
adversary can break security by preparing a protocol run in
advance. Consider the case that the initiator is using a counter
instead of a nonce in order to identify each protocol run. The
initiator can be sure that the responder has performed the
protocol at least as many times as itself by requiring a message
signed by the responder with the same counter value that was
used to initiate the protocol. However, since the counter values
are predictable, an adversary could perform preplay attacks by
initiating a run with the responder using a counter value that
will be used in the future (injective agreement does not require
the initial message to be signed). In order to protect against
preplay attacks, we may want to describe a property that is
at least as strong as injective agreement but that additionally
ensures that the responder run occurred recently. To this end
we define a property named recent injective agreement. We
then show that for a reasonable definition of recent injective
agreement, there is an alternative method to provide preplay
attack protection that is far simpler to reason about. Namely,
usage of fresh data automatically ensures that a run must
have been performed recently. Reasoning about recentness in
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this way was proposed originally by Lowe [2]. Our work
contributes by providing a formal definition for recentness,
along with a formal proof that agreement on fresh data ensures
recentness. Below we define recent injective agreement.

a) Definition: recent injective agreement: A protocol
guarantees recent injective agreement to an agent A acting as
the initiator if A completes a run of the protocol apparently
with B, then there was an agent B acting as responder, and A
and B agreed on the data for this run, and each such run of A
corresponds to a unique run of B, and the run by B happened
at some point after the protocol was initiated by A.

We formalise the definition by introducing a Start action,
which is performed by the initiator upon initiating the protocol.
Our property requires that Running happened before Commit
but after Start.

φr−i−agree ≜

∀ I Rn i. Commit(I,R, n)@i

→ (∃ j k.Running(R, I, n)@j

∧ Start(I,R, n)@k

∧ k < j ∧ j < i

∧ ¬(∃ I2 R2 i2. Commit(I2, R2, n)@i2

∧ i2 ̸= i))

(9)

Recent injective agreement gives us a guarantee regarding the
timing of the Running action. Running must have occurred
while the initiator was performing the protocol, since it oc-
curred at a timepoint between the start and end of the protocol.

An alternative way to specify a property in order to protect
against preplay attacks named synchronisation was given by
Cremers et al. [8]. Injective synchronisation is a stronger
property than recent injective agreement, since it requires an
ordering for all messages in the protocol, instead of only
the three specified here. Cremers et al. provide a sufficient
condition for a non-injectively synchronising protocol to also
be injective, and named it the LOOP property. The LOOP
property describes that given a role and a claim for that role
(in our formalism a Commit action), if for every other role
which has an event that precedes the claim, there exists some
other event for the same role (e.g. Running) which happened
after an event in the claim role (e.g. Start), but before the
claim itself. The LOOP property is a sufficient condition to
fulfil injective synchronisation for a protocol fulfilling non-
injective synchronisation.

The LOOP property and our definition of recency both
involve a casual chain of actions that alternate roles. As noted
by Cremers et al. it is possible to achieve such a causal chain
using a nonce, although it is not always sufficient. Since we
assume the protocol is already injective, it is sufficient in our
case, and a nonce can be used to provide recency. We take
inspiration from the LOOP property and provide a condition
for showing that a protocol fulfilling injective agreement also
fulfils recent injective agreement.

b) Definition: Unique Start Property: A protocol fulfils
the unique start property if Start is always performed before
each Commit in the protocol steps performed by the initiator,

and each matching Start and Commit uses the same nonce,
and each Start uses a unique nonce that does not appear in
any previous action.

The unique start property is a sufficient requirement in order
for any protocol fulfilling injective agreement to also fulfil
recent injective agreement. We provide a proof below.

Proof. Assume any trace T where injective agreement holds,
and the unique start property holds. Then for every Commit
action there exists a Running action which happened earlier,
using the same nonce as the given Commit. From the unique
start property we can conclude that at some point before
each Commit, there was a Start action using the same nonce.
The unique start property also requires that Start must have
been the first action to use this particular nonce, and so must
have happened before both Running and Commit. We can
then conclude that trace T fulfils recent injective agreement.
Since T was an arbitrary trace, any protocol P for which
every trace T ∈ traces(P ) fulfils injective agreement and the
unique start property, all traces must also fulfil recent injective
agreement.

The unique start property is very useful since it is al-
ready provided by a very common mechanism, namely using
unique and unpredictable nonces. We only need to assume
that generated nonces are sufficiently unique and sufficiently
unpredictable in order to provide a unique identity for each
protocol run. Once it has been proven that injective agreement
holds, we can rule out preplay attacks4 based on proper usage
of nonces. We have not included recent injective agreement in
the hierarchy because it is so similar in practice to injective
agreement when using nonces. In principle, we could extend
the hierarchy also with recency, and additionally capture a
corresponding one-way property.

These results depend on the restrictions we have applied on
what protocols we consider. Importantly, if Commit and Start
are not performed by the initiator, so that Start is not the first
action of the protocol, then we can no longer guarantee that
the initial message was sent recently. An adversary that can
inject messages may be able to initiate the protocol earlier
than intended. This could be considered a form of preplay
attack. The property recent injective agreement still gives a
guarantee that the continuation of the protocol was recent,
since we ensure that a Running action occurred after Start.

Our results generalise to protocols with more than one data
item, since we have put no restriction on the contents of n.
The variable n may consist of a list of values, and as long
as a single item in n is unique and unpredictable then our
assumptions still hold.

VI. REMOTE ATTESTATION CASE STUDY

We exemplify how specifications using one-way authen-
tication requirements naturally arise for some protocols by
using remote attestation as an example. Remote attestation is a

4Not all types of preplay attacks can be ruled out, but we can at least rule
out an attack where Running occurred before the protocol was started.
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process in which some target platform proves or attests its cor-
rect and trustworthy operation to some remote party [15][16].
Remote attestation schemes have been proposed for the pur-
pose of malware detection for low-end devices [17], trust
in enterprise networks [18], and for secure provisioning of
workloads to cloud services [19][20].

Remote attestation requires a mechanism for providing a
proof of correct state on the target. Trustworthy integrity mea-
surements can be performed by trusted firmware or dedicated
hardware modules, forming a hardware root of trust. We refer
to this part of the platform as the attestation agent. It is
typically desirable for any root of trust to be minimal, so that
it is easy to reason about the security of the trusted computing
base. Therefore, we expect the attestation agent to have very
limited capabilities.

Remote attestation protocols involve two main roles, the
verifier and the prover [16]. The verifier is the role interested
in the state of the prover. The prover is the role providing
evidence of the trustworthiness of some target environment
through the use of the attestation agent. The verifier, target
and attestation agent all participate in the protocol. Remote
attestation protocols are interesting since they are naturally
asymmetric. The verifier is interested in the state of the
target, but it is the attestation agent which is required to
provide trustworthy evidence of the target. In addition, while
it is crucial that the verifier can trust the attestation, and
therefore the attestation agent, the attestation agent may not
have knowledge about the identity of the verifier.

In the next section we describe an attestation scenario and
an attacker model. In the section after we list some attacks that
a remote attestation protocol will need to protect against, and
then in a following section we describe the security properties
we should require in order to guarantee absence of the attacks
listed.

A. Attestation Scenario and Attacker Model

We will describe a remote attestation scenario where some
low-end medical equipment is continuously being monitored
to ensure correct operation. In order to ensure that the equip-
ment is operating correctly, a remote attestation protocol is
implemented as part of the trusted computing base built into
the equipment. In order for the equipment to prove its trustwor-
thiness, remote attestation is performed. The equipment will
be acting as the prover in this scenario. The remote attestation
scenario follows the protocol sketch shown in Fig. 6.

First the verifier sends a challenge to the prover, asking it
to prove it is in a correct state. The prover uses its attestation
agent in order to collect proof of its correct operation. This is
sent back to the verifier, and the verifier then decides whether
to trust or not to trust the prover based on the information
provided by the attestation agent.

We describe the role capabilities and objectives in more
detail. We first focus on the verifier role. The verifier is
trying to perform the protocol with a particular target T, and
ensure that T is operating correctly. The verifier has failed
its objective if it is possible for an adversary to compromise

Fig. 6. Example Remote Attestation Protocol

TABLE II
REMOTE ATTESTATION PROTOCOL GOALS

Role Objective
Verifier Ensure that target is secure
Target Provide attestation on request

Attestation Agent Provide measurements of target state
Adversary Compromise target without detection

T at any point without the verifier ever learning about the
compromise. We assume that the verifier knows all devices it
manages, and specifically that it knows the public attestation
key provisioned to the attestation agent of each prover. The
objective of the target and the attestation agent is simply to
provide a proof of correct operation. Finally, the adversary is
attempting to compromise the target while avoiding detection
by the verifier. The goals for each role are summarised in
Table II.

B. Specifying Security Properties

Remote attestation faces a number of challenges. The central
requirement, common to all use-cases of remote attestation, is
that a proof sent by the prover should accurately reflect the
state of the target. Sailer et al. [21] described some of the
potential attacks that are important for a remote attestation
protocol to protect against. They required protection against
replay attacks, data tampering and masquerading attacks. Pre-
play attacks are also a potential danger to remote attestation
protocols. A preplay attack in the context of remote attesta-
tion could involve the adversary storing an honest attestation
response before compromising a target. Once the verifier
requests a new attestation, the old attestation is sent instead.
A mechanism must be in place to ensure the old data is not
accepted. The attacks are summarised in Table III together
with an explanation of what the attacks mean in the context of
remote attestation, as well as the corresponding authentication
property that mitigates the attack.

Masquerading attacks are possible when the verifier is not
able to correctly identify the attesting agent. If the verifier
thinks it is verifying some device A, when in reality attestation
was performed by device B, there is a complete lack of
authentication. With aliveness we at least ensure that device
A is capable of performing remote attestation, and has done
so at some point. While aliveness is not enough to prevent
past messages from being replayed, or that measurement
data was authentic, we will cover such cases as part of
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TABLE III
ATTACKS THAT COULD COMPROMISE THE SECURITY OF REMOTE

ATTESTATION. THE RIGHTMOST COLUMN SHOWS A PROPERTY THAT WILL
HELP IN MITIGATING THE ATTACK.

Attack Explanation Auth.
Property

Masquerading
Attack

The adversary is able to masquerade
as another device, by utilising another
device’s response in order to attest itself
to the verifier.

Aliveness

Measurement
Tampering

The adversary is able to tamper with
the attestation data, in order to remove
any discriminating evidence of device
compromise.

One-Way
Non-
injective
Agreement

Replay
Attack

The adversary is able to reuse previous
attestation data or messages in order to
attest itself.

One-Way
Injective
Agreement

Preplay
Attack

The adversary is able to prepare an
attestation that can be used later once
the system has been compromised

One-Way
Recent
Injective
Agreement

the protection for the other attacks. Preventing measurement
tampering requires that we include agreement on data into
our authentication specification. This is provided by the non-
injective agreement properties, and so we should require either
non-injective agreement or one-way non-injective agreement.
A replay attack can occur if we do not require unique data
for every run. Injective agreement ensures that unique verifier
runs always correspond to unique device runs. If a protocol is
at least one-way injective, replay attacks are not possible. As
shown in Section V, assuming our verifier always generates
a new nonce at the start of the protocol in order to provide
injectivity, then we also protect against preplay attacks where
the attestation was performed before the initial request. One-
way injective agreement is enough to cover agreement on
responder identity, meaning the verifier knows which prover
attested. In addition, there is agreement on measurement data,
meaning it was the same as when it was sent. Finally, it ensures
that the attestation was unique and not replayed.

C. Mutual vs. One-Way

As can be seen in Table III, one-way injective agreement
is sufficient to prevent common remote attestation attacks. We
can ask if it is beneficial to additionally consider (mutual)
injective agreement. The guarantee provided by mutual authen-
tication as opposed to one-way authentication, is that no other
initiator (in this case the verifier) can intercept communication
with the responder (the prover) in order to introduce itself
as the initiator to the responder. This attack is prevented if
the response from the responder conveys the identity of its
believed initiator, since then the true initiator can see that there
was no initiator mismatch.

In the scenario with the low-end medical equipment, no
communication is meant to take place after the attestation.
Once the prover has sent the response then the protocol is
completed, and the prover is not waiting for any additional
information from its believed initiator. If an additional verifier
masquerades itself as the origin of the attestation challenge,

then this makes no difference for neither the prover nor the
original verifier. The verifier still receives the same informa-
tion, and the prover can complete the protocol regardless.
Since there seems to be no security benefits to additionally
indicating the original verifier during attestation, we may
consider omitting it during protocol design in order to save
bandwidth and make attestation more efficient.

VII. RELATED WORK

The first part of this section goes through related work
on specifying authentication properties. We then highlight
some examples where one-way authentication properties have
been defined or used in the literature, but without the same
formal treatment, or in contexts different from ours. Finally,
we describe related work to our case-study. Specifically, we
mention some previous works where authentication properties
for remote attestation have been discussed.

A. Hierarchies

As discussed in Section II, the original work by Lowe [2]
forms the foundation of our work. In it, Lowe defines and
formalises authentication properties in the process algebra
CSP. We extend this work by identifying suitable properties
for one-way authentication, and show how such properties
relate to the existing hierarchy. In addition, we provide a
formalisation of a claim made by Lowe, that relates recentness
and agreement through the usage of fresh data.

Roscoe [9] proposed an alternative authentication specifica-
tion in the form of an intensional specification for protocols.
An intensional specification does not depend on what each
protocol is trying to achieve, rather it treats the ordering
of messages to be the defining trait of a correctly executed
protocol. For the intensional specification to be fulfilled, each
message must be sent and received in the correct order for each
run. This property is stronger than the definition of injective
agreement, since we additionally consider the ordering of
individual messages as violation of the protocol security.

Work by Cremers et al. [8] formalised a definition for
intensional authentication named synchronisation, and showed
how non-injective and injective synchronisation could be seen
as a strictly stronger property compared to non-injective and
injective agreement respectively. Our methodology for proving
strictness takes inspiration from their work. Their definition
extends the hierarchy, providing stronger protocol require-
ments. We have taken the opposite approach by specifying
properties that are strictly weaker than the definition of in-
jective agreement. We argue both approaches are needed in
order to provide sufficient granularity during verification, but
also allow verifying the strongest known requirements in order
to prove absence of any unintended behaviour. Their definition
does not distinguish between data items in the form of agent
names or nonces. This in practice means that the distinction
between one-way authentication and mutual authentication is
not specified in the security property for their model, but is
rather a consequence of the protocol specification.
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Cremers and Mauw [22] define an alternative authentication
hierarchy that builds upon on the synchronisation specifica-
tion. This hierarchy additionally considers multiple properties
that each describe flavours of aliveness, in addition to the
synchronisation properties presented in [8]. The aliveness
properties are weak aliveness, weak aliveness in the correct
role, recent aliveness and recent aliveness in the correct role.
Due to differences in the formalisation of properties, it is
not possible to directly translate the formalism to ours. In
particular, the formalism used in our work does not allow
for mismatched roles, since the actions Running and Commit
are only considered from the perspective of a particular role.
Thus their definition of weak aliveness is weaker than any
specification described here, since it only states that an agent
has performed some action, regardless of which step or in
which role. In the formalism used by Cremers and Mauw,
the aliveness properties and the agreement properties are not
related: proving a property from one side of the hierarchy
does not prove anything about any property from the other
side of the hierarchy. This means that the relative strength of
the properties is not apparent. In particular, recent aliveness
with the correct roles is not stronger, nor weaker than non-
injective agreement according to their analysis. The reason is
subtle, since a protocol without any communication fulfils non-
injective agreement but not recent aliveness in the correct role,
according to their definitions. It is not immediately obvious
how the variations of aliveness would be useful in the analysis
of real-world protocols.

A definition of authentication called correspondence was
given by Woo and Lam in 1993 [23]. The definition is
similar to agreement in the sense that it requires that an
event A should have been preceded by an event B. When
using correspondence to define authentication, each event may
contain different parameters. In a sense correspondence is
a very general definition for agreement, however we must
reason about the meaning of each specification individually.
Authentication properties in the protocol verifier ProVerif [24]
are specified as correspondence assertions.

Yet another definition of authentication is known as entity
authentication [25][26]. Entity authentication describes infor-
mally that the protocol provides recent evidence that an entity
really is the one claimed. In addition, strong entity authentica-
tion is defined so that the responder must provide evidence of
its peer entity. Therefore, entity authentication describes a one-
way authentication property, while strong entity authentication
describes a mutual authentication property. It is not clear how
entity authentication is to be formalised in a symbolic model.

Generic formal goals for authentication protocols were
given by van Oorschot [27] in the context of authenticated
key establishment. Six goals are specified, and they are stated
as beliefs of agent A about some intended other agent B.
Some goals are shown to be related to each other, but not all
relations. Formulating goals specifically for key establishment
was out of scope for our work.

B. One-Way Authentication Usage

Cremers et al. [10] formally verified draft 10 of TLS 1.3
using Tamarin. It was noted that for unilaterally authenticated
mode it was not possible to guarantee that the server believed
it was communicating with the client who actually initiated the
protocol. In order to verify that the client could authenticate
the server, a weakening of the usual agreement property had
to be used. The property used corresponds to our definition of
one-way non-injective agreement.

Another, later draft of TLS 1.3 was formally verified by
Bhargavan et al. [11] using ProVerif. During formal verifica-
tion an issue with RTT 0.5 was found, which allowed for a
mismatch between the believed authentication of the client
and the server. In particular, it is possible that the client
believed it was authenticated to the server when it received
early data, when in reality the server had not received the
authenticating messages, and so believed the message was
sent to an anonymous client. This effectively corresponds to a
mismatch on initiator identity similar to the one-way properties
discussed. Bhargavan et al. refer to this weakened property
as weak authentication. Weak authentication was undesired in
the case they analysed, since the intent was to use mutual
TLS, and so the client expects that it is authenticated. If the
intent is to perform unilateral TLS then the client is effectively
anonymous, and so weak authentication is expected.

Some works have discussed one-way authentica-
tion [28][29][30], primarily in the context of key exchange
protocols. Authenticated key exchange takes a different view
on authentication. In such models, authentication and secrecy
is usually combined, with authentication being defined as a
successful exchange of a session key between two agents.
As long as it can be guaranteed that the key can only be
known to the specified agents, then usage of the session key
is enough to prove authentication. While such definitions
are useful in the context of authenticated key exchange,
they do not cover pure authentication. Furthermore, having a
separation between authentication and secrecy properties can
be beneficial in order to more clearly specify requirements,
and in order to allow for changes in security models more
easily.

C. Remote Attestation Authentication

Formal verification of remote attestation can be divided into
two categories. Ether the integrity proof mechanism is verified,
or the properties of the protocol. Describing properties for
formal verification of remote attestation protocols has received
limited attention. Of the works on protocol verification, we
have examples of verification for Direct Anonymous Attesta-
tion [31][6][7][32], Intel SGX attestation [33], and Intel TDX
attestation [34]. During formal verification of Direct Anony-
mous Attestation, focus has been on verifying the anonymity
of the proposed cryptographic schemes.

VIII. CONCLUSIONS

In conclusion, we argue that the strongest possible definition
for authentication is not always appropriate, and that it is
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sometimes necessary to specify a weaker property in order
to accurately capture the guarantees provided by a protocol.
One-way authentication requires strictly weaker authentication
requirements, and has received little attention outside of au-
thenticated key exchange. We show that one-way authenti-
cation is a useful concept that generalises to other types of
protocols such as remote attestation, in addition to unilateral
TLS which has been discussed previously in the literature.
We also conclude that considerable effort is needed in order
to formally prove the relationship between different authen-
tication properties. Seemingly distinct trace properties may
sometimes coincide due to adversary capabilities or protocol
assumptions. In particular our modified injective agreement
property coincides with injective agreement, as does recent
injective agreement when we can assume the unique start
property.
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APPENDIX

A. Proofs for lemmas 1, 2, and 4.

Lemma 1. φni−agree ⇒ φow−ni−agree

Proof. Definition of non-injective agreement from Formula
3:
∀ I Rn i. Commit(I,R, n)@i
→ (∃ j. Running(R, I, n)@j)

So for any commit there is some running event with
matching arguments. Then, with I2 = I:
∀ I Rn i. Commit(I,R, n)@i
→ (∃ I2 j. Running(R, I2, n)@j)

Lemma 2. φi−agree ⇒ φow−i−agree

Proof. Definition of injective agreement from Formula 4:
∀ I Rn i. Commit(I,R, n)@i
→ (∃ j. Running(R, I, n)@j ∧ j < i
∧¬(∃ I2 R2 i2. Commit(I2, R2, n)@i2 ∧ i2 ̸= i))

Rename I2 to I3.
∀ I Rn i. Commit(I,R, n)@i
→ (∃ j. Running(R, I, n)@j ∧ j < i
∧¬(∃ I3 R2 i2. Commit(I3, R2, n)@i2 ∧ i2 ̸= i))

Then, with I2 = I:
∀ I Rn i. Commit(I,R, n)@i
→ (∃ I2 j. Running(R, I2, n)@j ∧ j < i
∧¬(∃ I3 R2 i2. Commit(I3, R2, n)@i2 ∧ i2 ̸= i))

Lemma 4. φow−ni−agree ⇒ φalive

Proof. Definition of one-way non-injective agreement from
Formula 6:
∀ I Rn i. Commit(I,R, n)@i
→ (∃ I2 j. Running(R, I2, n)@j)

With n2 = n:
∀ I Rn i. Commit(I,R, n)@i
→ (∃ I2 n2 j. Running(R, I2, n2)@j

B. Proofs for lemmas 10 – 12

Lemma 10. Pb ∈ Sw−agree\Sow−ni−agree

Proof. Consider the trace Tb shown in Fig. 5 (b). In the trace,
each agent follows the rules described by Protocol Pb. The
initiator I sends and receives matching messages, and the
responder R receives and then sends a matching message.
The steps performed by the adversary A falls within the
adversary capabilities. The trace is therefore a valid trace for
Protocol Pb. This protocol fulfils weak agreement according
to lemma 5. The trace corresponds to a sequence of actions
Tb = [Running(R, I,m), Commit(I,R, n)]. This trace is
incompatible with Formula 6 for one-way non-injective agree-
ment, since the nonces do not match between the Running and
Commit facts. In practice this means the responder R believed
it performed the protocol using nonce m instead of the value
n seen by the initiator. Tb ∈ Pb ∧ Tb ̸⊢ φow−ni−agree

⇒ Pb ∈ Sw−agree ∧ Pb ̸∈ Sow−ni−agree

⇒ Pb ∈ Sw−agree\Sow−ni−agree

Lemma 11. Pc ∈ Sow−i−agree\Sni−agree

Proof. Consider the trace Tc shown in Fig. 5 (c). In the trace,
each agent follows the rules described by Protocol Pc. The
initiator I sends and receives matching messages, and the
responder R receives and then sends a matching message. The
steps performed by the adversary A falls within the adversary
capabilities. The trace is therefore a valid trace for Protocol Pc.
This protocol fulfils one-way injective agreement according
to lemma 7. The trace corresponds to a sequence of actions
Tc = [Running(R,A, n), Commit(I,R, n)]. This trace is
incompatible with Formula 3 for non-injective agreement,
since the initiators do not match between the Running and
Commit facts. In practice this means the responder R believed
it performed the protocol with the adversary A instead of the
Initiator I. Tc ∈ Pc ∧ Pc ∧ Tc ̸⊢ φni−agree

→ Pc ∈ Sow−i−agree ∧ Pc ̸∈ Sni−agree

→ Pc ∈ Sow−i−agree\Sni−agree

Lemma 12. Pd ∈ Sni−agree\Sow−i−agree

Proof. Consider the trace shown in Fig. 5 (d). In the trace,
each agent follows the rules described by Protocol Pd. The
initiator I performs two runs. In the first run, the initia-
tor run perfectly matches the responder run. However, in
the second run the adversary replays the previous mes-
sages sent by the responder. This is within the capabili-
ties of the adversary. Therefore, the trace is a valid trace
for Pd. This protocol fulfils non-injective agreement ac-
cording to lemma 8. The trace corresponds to a sequence
of actions Td = [Running(R,A, n), Commit(I,R, n),
Commit(I,R, n)]. This trace is incompatible with Formula
7 for one-way injective agreement, since the initiator was
tricked to accept a replayed responder run. Td ∈ Pd ∧ Td ̸⊢
φow−i−agree

⇒ Pd ∈ Sni−agree ∧ Pd ̸∈ Sow−i−agree

⇒ Pd ∈ Sni−agree\Sow−i−agree
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C. Proofs for lemmas 15 and 16

Lemma 15. Si−agree ⊂ Sow−i−agree

Proof. 1) From Lemma 2: Si−agree ⊆ Sow−i−agree

2) From Lemma 11: Pc ∈ Sow−i−agree\Sni−agree

We prove inequality by showing that Sow−i−agree\Si−agree

is nonempty:
Si−agree ⊂ Sni−agree (Assumption 1)
⇒ Sow−i−agree\Sni−agree ⊆ Sow−i−agree\Si−agree
2)
=⇒ Pc ∈ Sow−i−agree\Si−agree

⇒ Sow−i−agree ̸= Si−agree
1)
=⇒ Si−agree ⊂ Sow−i−agree

Lemma 16. Sow−i−agree ⊂ Sow−ni−agree

Proof. 1) From Lemma 3: 1) Sow−i−agree ⊆ Sow−ni−agree

2) From Lemma 12: 3) Pd ∈ Sni−agree\Sow−i−agree

We prove inequality by showing that
Sow−ni−agree\Sow−i−agree is nonempty:

Sni−agree ⊂ Sow−ni−agree (Lemma 14)
⇒ Sni−agree\Sow−i−agree ⊆ Sow−ni−agree\Sow−i−agree
2)
=⇒ Pd ∈ Sow−ni−agree\Sow−i−agree

⇒ Sow−ni−agree ̸= Sow−i−agree
1)
=⇒ Sow−i−agree ⊂ Sow−ni−agree
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