
On Sustainable Ring-based Anonymous Systems
Sherman S. M. Chow∗ Christoph Egger† Russell W. F. Lai‡ Viktoria Ronge§ Ivy K. Y. Woo‡

∗The Chinese University of Hong Kong, Shatin, N.T., Hong Kong †Université Paris Cité, CNRS, IRIF, Paris, France
‡Aalto University, Espoo, Finland §Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

Abstract—Anonymous systems (e.g. anonymous cryptocur-
rencies and updatable anonymous credentials) often follow a
construction template where an account can only perform a
single anonymous action, which in turn potentially spawns new
(and still single-use) accounts (e.g. UTXO with a balance to spend
or session with a score to claim). Due to the anonymous nature
of the action, no party can be sure which account has taken part
in an action and, therefore, must maintain an ever-growing list
of potentially unused accounts to ensure that the system keeps
running correctly. Consequently, anonymous systems constructed
based on this common template are seemingly not sustainable.

In this work, we study the sustainability of ring-based anony-
mous systems, where a user performing an anonymous action is
hidden within a set of decoy users, traditionally called a “ring”.

On the positive side, we propose a general technique for ring-
based anonymous systems to achieve sustainability. Along the
way, we define a general model of decentralised anonymous
systems (DAS) for arbitrary anonymous actions, and provide
a generic construction which provably achieves sustainability. As
a special case, we obtain the first construction of anonymous
cryptocurrencies achieving sustainability without compromising
availability. We also demonstrate the generality of our model by
constructing sustainable decentralised anonymous social networks.

On the negative side, we show empirically that Monero, one of
the most popular anonymous cryptocurrencies, is unlikely to be
sustainable without altering its current ring sampling strategy. The
main subroutine is a sub-quadratic-time algorithm for detecting
used accounts in a ring-based anonymous system.

Index Terms—ring signatures, sustainability, cryptocurrencies,
anonymous systems, Monero

I . I N T R O D U C T I O N

Consider the setting of Hilbert’s Hotel thought experiment of
running infinitely many rooms, but with a privacy twist: each
guest can stay in their room for as long as they want and can
leave quietly without notifying Hilbert. As Hilbert respects the
privacy of each guest, he never checks whether a previously
assigned room has become vacant. The number of potentially
occupied rooms thus grows indefinitely as more guests arrive.

The above situation manifests itself as a sustainability issue in
real-world anonymous systems. In anonymous cryptocurrencies
based on unspent transaction output (UTXO), the number of
potentially unused accounts grows indefinitely since transac-
tions are anonymous and confidential. Another example is
anonymous credential systems, where the authority assigns to
each anonymously authenticated session a score that can be
anonymously claimed by the user owning the session. Similarly,
the list of scored sessions grows indefinitely as the authority
cannot be sure which session has been claimed.

A. Sustainability by Partitioning

We focus on the sustainability of ring-based anonymous sys-
tems, including popular ring-based anonymous cryptocurrencies
such as Monero. Abstractly, users can perform certain actions
while remaining anonymous among a set of decoy users, known
as a “ring” in ring signatures, chosen ad hoc for each action.
A ring-based anonymous action of a guest in Hilbert’s hotel is
to anonymously notify Hilbert of a set of room numbers upon
leaving, one of which is the room that the guest occupied.

To ease the burden of bookkeeping the ever-growing list of
potentially occupied rooms, we suggest the following intuitively
simple solution. Let the hotel rooms be partitioned into chunks
of equal size k. A guest must anonymously inform Hilbert of
(a subset of) the chunk their room belongs to upon leaving
their room. On one hand, the guest remains anonymous among
other guests occupying rooms in the same chunk. On the other
hand, once Hilbert is notified k = |C| times about a chunk C,
he can be sure that all rooms in chunk C are vacant and thus
remove them from his list. A counting argument shows that
the number of potentially occupied rooms is at most k times
the number of guests currently staying in the hotel.

B. Our Contributions

We study the use of the above partitioning strategy in
achieving sustainability in ring-based anonymous systems.

Positive Results: We propose a general technique based on
partitioning for constructing sustainable ring-based anonymous
systems. Despite being intuitively simple, formalising the
sustainability notion and the technique for achieving it while
maintaining a high generality requires significant effort.

Modelling: To discuss the sustainability of anonymous
systems in general, we must first rigorously define a general
model capturing a wide class of anonymous systems of interest.
Our starting point is a formal model [1] of ring confidential
transactions (RingCT) [2], which is a ring-based anonymous
system allowing users to receive coins in accounts, and transfer
these coins to other accounts while preserving both spender and
receiver anonymity. Generalising RingCT, Section III defines
a general model of decentralised anonymous systems (DAS)
parametrised by a class of admissible anonymous actions, which
capture anonymous transactions as a special case. Note that
our techniques are equally applicable to centralised systems.

Different from RingCT [1], DAS is additionally equipped
with a formal definition of sustainability, which roughly requires
that the description size of the state of the DAS cannot be
much larger than the number of currently unused accounts.

568

2023 IEEE 36th Computer Security Foundations Symposium (CSF)

© 2023, Sherman S. M. Chow. Under license to IEEE.
DOI 10.1109/CSF57540.2023.00035

20
23

 IE
EE

 3
6t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

79
-8

-3
50

3-
21

92
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

75
40

.2
02

3.
00

03
5

Construction: We present in Section IV-A a construction
of DAS for any polynomial-time computable anonymous
actions, using the same cryptographic building blocks as
those used in the RingCT construction Omniring [1], which
can be efficiently instantiated over prime-order cyclic groups
(e.g. elliptic curves). Restricting that rings must be output
by a “partitioning sampler” [3], we can prove that our DAS
construction achieves sustainability, formalising the intuitive
idea presented in Section I-A.

Applications: Specialising the class of anonymous actions
to anonymous transactions, we obtain in Section V-A essentially
a sustainable version of Omniring – the first construction
of anonymous cryptocurrencies that is sustainable without
compromising availability. The only prior attempt [4] achieves
sustainability at a detrimental cost of being vulnerable to denial-
of-service attacks (see Section I-D).

To illustrate generality and applicability, Section V-B shows
a construction of sustainable decentralised anonymous social
networks by designing complex classes of anonymous actions.

Negative Results: Our positive results show that partitioning
is sufficient for sustainability. We also investigate whether it is
necessary. Since this question is too open-ended to answer
analytically, we narrow down and focus on the setting of
Monero, one of the popular anonymous cryptocurrencies, and
empirically study its ring sampling strategy, which is modelled
abstractly as the “mimicking sampler” [3].

Our contributions here are twofold. In Section VI, we propose
an efficient algorithm for detecting surely-used accounts, which
applies to general ring samplers (in contrast to the trivial one
outlined in Section I-A, which works only for ring sampling
with partitioning samplers). It is based on the graph-theoretic
framework [5] for studying ring samplers, and runs in sub-
quadratic-time in the description size of the ring-membership
relations. We prove that it is correct and optimal.

Moreover, we evaluate the sustainability of systems employ-
ing mimicking samplers [3]. We simulate the sampling with
a mimicking sampler under various parameters, and run our
proposed algorithm to detect the number of used accounts. Our
empirical results in Section VII suggest that Monero (with its
current ring sampling strategy) is unlikely to be sustainable.

C. On Partitioning and Anonymity

Since our DAS construction requires partitioning samplers, a
natural question is whether this restriction impacts anonymity,
especially when compared to the ring sampling strategy used in
Monero. Fortunately, like mimicking samplers, partitioning sam-
plers have been shown [3] to achieve near-optimal anonymity,
i.e. close to the inverse of the chunk size, assuming that accounts
belonging to the same chunk have similar signing probabilities.
This assumption was justified [3] by the observation that, in
Bitcoin, the signing probability appears to depend mostly on
the age (difference between its spawn time and used time)
of the account, and by the fact that accounts of similar age
can be identified naturally, e.g. all accounts spawned in the
same block of a blockchain have the same age. Furthermore,
depending on the activity of the DAS, e.g. transaction rate of

a cryptocurrency, it is reasonable to have dozens or hundreds
of accounts spawned in each block.

D. Related Work

Sustainable Anonymous Cryptocurrencies: Sustainability of
anonymous cryptocurrencies was studied by Fauzi et al. [4].
In an anonymous transaction in their ring-based construction,
Quisquis, the source and target accounts are replaced by their
updated versions, while each decoy in the ring is replaced
by a re-randomised representation of itself. As such, all users
can safely forget the old accounts present in the ring but
remember their updated versions instead. The number of
accounts that users need to remember hence remains unchanged
after each transaction, meaning that the system is sustainable.
This mechanism, however, creates an issue of availability [6],
where a malicious user can deny an honest user from using its
accounts by repeatedly including them as decoys, thereby re-
randomising them, in transactions. As the adversary is first to
learn the re-randomised representations of the victim’s accounts,
it is well-positioned to deny access of the victim indefinitely.

Our construction avoids this problem by keeping decoy
accounts unchanged and achieving state clean-up differently:
We partition the universe of accounts into chunks and require
any set of decoys to stay within a single chunk. A full chunk
can be removed once the number of actions (transactions)
involving the chunk equals the chunk size, as it can be publicly
deduced that all accounts in that chunk have been expended.

Detection of Surely-Used Accounts: To our knowledge,
detecting accounts that have surely been used in a ring-based
anonymous system has been a largely untouched question. A
closely related topic is traceability to the source accounts of
rings. Since a traced account is a used account (although the
converse is not true), methodologies for tracing purposes can
be seen as potential tools for detecting used accounts.

The notion of “closed set” was informally introduced [7] as
a stepping stone for tracing transactions, with an approximated
search algorithm for closed sets to replace brute-force searching.
Traceability of Monero since the deployment of RingCT was
also empirically investigated [8], where the DM decomposition
was applied to the graph representation of Monero’s ring-
membership history, with the result of no account being traced.

Section VI formalises the prior informal notion [7] as
transaction graphs with two properties: closed and ring-induced.
We then give a sub-quadratic-time exact algorithm to search
for the largest closed ring-induced subgraphs in a transaction
graph. We formally prove that this is equivalent to searching
all accounts that are surely used in a DAS. Using our result,
we can further deduce from the existing empirical result [8]
that there has been no detectable used account in Monero since
RingCT was deployed (except those deliberately created [9]),
coinciding with our experimental result in Section VII.

I I . B A S I C C RY P T O G R A P H I C P R I M I T I V E S

Let λ ∈ N = {1, 2, . . .} be the security parameter. We
write PPT for probabilistic polynomial time. A function µ(λ)
is negligible in λ if µ(λ) = o(1/p(λ)) for any polynomial p.

569

OWTAG,A(1
λ)

pp← Setup(1λ)

msk← SKGen(pp)

mpk← PKGen(msk)

sk∗ ← AO(pp,mpk)

return (TagEval(sk∗) ∈ Tag)

BindingTAG,A(1
λ)

pp← Setup(1λ)

sk0, sk1 ← A(pp)
b0 := (sk0 ̸= sk1)

b1 := (TagEval(sk0) = TagEval(sk1))

return b0 ∧ b1

IND-RKAb
TAG,A(1

λ)

pp← Setup(1λ); msk← SKGen(pp)

δ∗ ← AO(pp,mpk← PKGen(msk))

if b = 1 then tag∗ ← TagEval(SKGen(pp))

else tag∗ ← TagEval(SKDer(msk, δ∗))

return AO(tag∗) ∧ (δ∗ /∈ ∆)

O(δ)
sk← SKDer(msk, δ)

tag← TagEval(sk)

∆ := ∆ ∪ {δ}
Tag := Tag ∪ {tag}
return tag

Fig. 1. One-wayness, key-binding, and related-key pseudorandomness experiments for tagging schemes. O(δ) is an oracle for generating malicious tags
(maintained in a set ∆ internally) using a secret key derived from the master secret key based on adversarially-chosen auxiliary information δ.

Zq = [q] = {0, 1, . . . , q − 1} for any q ∈ N, and N0 = N∪{0}.
For sets I and X , we write ⟨xi⟩i∈I for the set {(i, xi)}i∈I ,
and ⟨xi⟩i∈T ⊆ ⟨yi⟩i∈U if T ⊆ U and xi = yi ∀i ∈ T .

Appendix A recalls basic cryptographic primitives. Below
is a more general syntax and security properties of tagging
schemes [1]. A tagging scheme provides two functionalities:
1) From a master public key, derive an ephemeral public key
along with some auxiliary information. Given the master secret
key and the auxiliary information, recover the corresponding
ephemeral secret key. 2) From an ephemeral secret key, derive
a one-way, binding, and pseudorandom tag. These security
properties should hold even if the adversary is given an oracle
for generating tags for keys derived from the same master key.

Definition 2.1 (Tagging Scheme): A tagging scheme TAG
consists of (Setup,SKGen,PKGen,PKDer,SKDer,TagEval)
for setup, secret-key generation, pubic-key generation, public-
key derivation, secret-key derivation, and tag evaluation.

pp← Setup(1λ) generates the public parameters pp to be
input by all other algorithms (often implicitly).

msk← SKGen(pp) generates a master secret key msk.
mpk/pk← PKGen(msk/sk) deterministically generates the

master public key mpk (or public key pk) corresponding to
the master secret key msk (or secret key sk).

(pk, δ)← PKDer(mpk) derives a public key pk with some
auxiliary information δ from a master public key mpk.

sk← SKDer(msk, δ) deterministically derives the secret key
sk corresponding to the public key pk.

tag← TagEval(sk) deterministically generates a tag corre-
sponding to the secret key sk (or msk).

Definition 2.2 (Correctness): TAG is correct if, for all λ ∈ N,
pp ∈ Setup(1λ), msk ∈ SKGen(pp), mpk ∈ PKGen(msk), and
(pk, δ) ∈ PKDer(mpk), pk = PKGen(SKDer(msk, δ)) holds.

Definition 2.3 (One-Way): TAG is one-way if, for any PPT
adversary A, it holds that Pr

[
OWTAG,A(1

λ) = 1
]

is negligible
in λ, where OWTAG,A is defined in Figure 1.

Definition 2.4 (Key-Binding): TAG is key-binding if, for
any PPT adversary A, it holds that Pr

[
BindingTAG,A(1

λ) = 1
]

is negligible in λ, where BindingTAG,A is defined in Figure 1.
Definition 2.5 (Related-Key Pseudorandomness): A tagging

scheme TAG is related-key pseudorandom if∣∣Pr[IND-RKA0
TAG,A(1

λ) = 1
]
− Pr

[
IND-RKA1

TAG,A(1
λ) = 1

]∣∣
is negligible in λ for any PPT adversary A, where
IND-RKAb

TAG,A is defined in Figure 1.

TABLE I
DA S S Y N TA X , PA R T I

Algorithm Syntax
Setup (pp, st)← Setup(1λ)
Master Key Generation (mpk,msk)← MKGen(pp)
Account Key Derivation (ask, x)← AKDer(msk, tk)
Source Account Checking b← SChk(acc, ask, x)
Target Account Checking b← TChk(acc,mpk, tk, y)

I I I . D E C E N T R A L I S E D A N O N Y M O U S S Y S T E M S

We formalise a general notion of decentralised anonymous
systems (DAS), which captures a wide class of systems
parametrised by their supported anonymous actions. For a
more intuitive understanding, in a series of footnotes, we show
how DAS captures RingCT [1] and anonymous credentials
(AC) as special cases and highlight additional differences.

A. Overview

a) Account: Account acc is the basic unit of a DAS, which
is associated with an account secret key ask and a (hidden)
attribute x belonging to an attribute space X .1 A “ring” is a
set of accounts. A current list of potentially unused accounts is
maintained by all users, along with the state st2 of the system.

b) Keys: Each DAS user is identified by a master public
key mpk who knows the corresponding master secret key msk.
A user owns an account if they know the corresponding account
secret key ask. Each user may own arbitrarily many accounts.

c) Action: An anonymous action is modelled as a map-
ping from the attributes (xi)i∈[m] of some source accounts
to the attributes (yj)j∈[n] of some target accounts the action
creates.3 Each account can be used in only a single anonymous
action. More concretely, a user who knows:

• the account secret keys (aski)i∈[m] of the source accounts
(acci)i∈[m] (identified by the identifiers (aidi)i∈[m] in our
formal definition) with attributes (xi)i∈[m], and

• the master public keys (mpkj)j∈[n] and attributes (yj)j∈[n]

could perform an anonymous action which results in
• an action transcript tx to be verified by other users,
• the creation of the target accounts (accj)j∈[n] with at-

tributes (yj)j∈[n], and

1In RingCT, an attribute x would be an integer representing the amount of
coins stored in the account acc. In AC, it could be a reputation score.

2In RingCT, the state includes tags corresponding to spent accounts. The
existing model [1] implicitly assumes that all users have access to the (growing)
list of spent tags. In AC, it could contain a list of scores of unclaimed sessions.

3In RingCT, actions are transactions. A user spends by creating a transaction
that transfers amounts, i.e. creating target receiving accounts which store the
transferred amounts as attributes. In AC, an action would be to authenticate.

570

• a token tkj∈[n] for each target account accj , which can
be combined with the master secret key mskj to recover
the account secret key for accj .
d) Predicates: A DAS is parametrised by a family of

attribute predicates P and a family of ring predicates Q. These
predicates define “legal” relations of input and output attributes
and choices of rings, respectively.

The class of admissible anonymous actions4 is captured
by P . Formally, P is a family of polynomial-time computable
predicates where each predicate pm,n ∈ P is parametrised by
(m,n) ∈ N2 and takes the following inputs:

• input attributes xi ∈ X for i ∈ [m],
• output attributes yj ∈ X for j ∈ [n], and
• auxiliary input aux justifying the action (e.g. the witness

of an NP statement) required in more complex policies.
Each source account acci used in an anonymous action is

hidden within a ring Ri chosen by the action-performing user,
subject to some public constraints Q. Formally, Q is a family
of polynomial-time computable predicates where each predicate
qm ∈ Q is parametrised by m ∈ N and takes as input:

• a universe U ⊆ N0, and
• a sequence of rings (Ri)i∈[m] ⊆ (N0)

m.
Looking ahead, without the enforcement of predicate qm in our
sustainable DAS construction, one can have complete flexibility
in claiming the ring of each source account; our partitioning
strategy (Section I-A) would run into availability issues since
the adversary could elicit premature account deletion.

e) Verification and Garbage Collection: Upon receiv-
ing predicates pm,n and qm, an action transcript tx, and a
corresponding list of target accounts (acci)i∈[n], a user could
verify them against the current state st of the system and the
current list of potentially unused accounts. Should the action
be considered valid, the user suitably updates its view of the
state of the system to st′ and appends the list of target accounts
(acci)i∈[n] to the list of potentially unused accounts. Finally, a
“garbage collection” step may be performed to detect accounts
which surely have been used.

B. Syntax

Definition 3.1 (DAS): A decentralised anonymous system
(DAS) for (P,Q) consists of the following seven PPT algo-
rithms with the syntax defined in Tables I and II.

Setup. Setup generates the public parameters pp and an initial
state st of the system.

Master Key Generation. MKGen generates a pair of master
public and secret keys (mpk,msk).

Account Key Derivation. AKDer inputs msk and a token tk.
It derives an account secret key ask and an attribute x.

4In RingCT, admissible anonymous actions are given by transactions with
balanced, non-negative, and bounded (to prevent overflow) input and output
amounts and tags honestly derived from the account secret key (so double-
spending can be detected upon duplication of tags). In AC, we may want to
forbid users with negative reputation to authenticate, or claim a reputation
score beyond the claimable value.

Action. Act inputs a state st, a list of potentially unused
accounts ⟨accaid⟩aid∈U , a predicate pm,n ∈ P , a sequence of m
tuples (Ri, aidi, aski, xi) consisting of a ring Ri ⊆ U , a source
account identifier aidi ∈ Ri, an account secret key aski, and an
attribute xi ∈ X , a sequence of n tuples (mpki, yi) consisting
of a master public key mpki and an attribute yi ∈ X , and some
auxiliary information aux. It outputs an action transcript tx
and a sequence of n tuples (acci, tki) consisting of a target
account and its token.

Verification. Vf inputs a state st, a list of potentially unused
accounts ⟨accaid⟩aid∈U , predicates pm,n and qm, an action
transaction tx, and a sequence of n target accounts ⟨acci⟩i∈[n].
It outputs a bit b deciding whether to accept the action and, if
so, an updated state st′ and an updated list ⟨acc′aid⟩aid∈U ′ of
potentially unused accounts.

Source Account Checking. SChk is an auxiliary algorithm
deciding if a tuple (acc, ask, x) is valid, i.e. the account secret
key and attribute of account acc is ask and x ∈ X , respectively.

Target Account Checking. TChk is an auxiliary algorithm
checking the validity of a tuple (acc,mpk, tk, y), i.e. account
acc with token tk is supposed to be created for master public
key mpk and attribute y ∈ X .

The syntax of DAS is very similar to that of RingCT [1].
The setup and master key generation MKGen algorithms share
identical syntax. The DAS account key derivation AKDer
algorithm generalises the RingCT receive algorithm. The DAS
action algorithm Act combines and generalises the RingCT one-
time account generation and spend algorithms. The verification
algorithms are identical up to statefulness and definition style.
The DAS source and target account checking algorithms SChk
and TChk generalise the amount and tag checking algorithms.

We highlight the following differences in the definitions:
1) Our DAS model is explicitly stateful (recall Footnote 2).
2) A DAS is parametrised by a ring predicate family Q which
is crucial for achieving sustainability. RingCT [1] does not
impose any restrictions on rings. 3) A DAS captures arbitrary
actions beyond transactions. 4) The RingCT model [1] explicitly
involves linkable tags for enforcing the single-use restriction.
Other mechanisms are possible (e.g. [4], see Section I-D),
which our DAS model captures. Our DAS model enforces
the single-use restriction through the authenticity property
to be defined shortly, which generalises the RingCT balance
property [1], but does not explicitly specify mechanisms for
achieving it. 5) RingCT does not have a garbage collection
step. Their (implicit) system state can only grow indefinitely.

C. Properties

We define the integrity, authenticity, privacy, and availability
properties of DAS, generalising the correctness, balance, privacy,
and non-slanderability of RingCT [1], respectively, as well as a
new sustainability property. To reduce clutter, uninitialised sets
which are referred to are implicitly initialised as empty sets.

Integrity: A DAS is said to have integrity if it satisfies both
derivation integrity and action integrity.

571

TABLE II
DA S S Y N TA X , PA R T I I

Algorithm Syntax

Action
(
tx, ⟨acci, tki⟩i∈[n]

)
← Act

(
st, ⟨accaid⟩aid∈U , pm,n, ⟨Ri, aidi, aski, xi⟩i∈[m] , ⟨mpki, yi⟩i∈[n] , aux

)
Verification

(
b, st′,

〈
acc′aid

〉
aid∈U′

)
← Vf(st, ⟨accaid⟩aid∈U , pm,n, qm, tx, ⟨acci⟩i∈[n])

Derivation integrity. If a tuple (acc,mpk, tk, y) is considered
valid by TChk, then (ask, y) can be recovered given (msk, tk)
such that (acc, ask, y) is considered valid by SChk.

Action integrity. If actions are performed over valid inputs,
which in particular include (acc, ask, x) tuples considered
valid by SChk, and each account is only used once, then
Vf always accepts and resulting target accounts ⟨acci,j⟩ are
always considered valid by TChk.

DAS integrity strengthens RingCT correctness in that cor-
rectness is required to hold even if some or all inputs, in
particular the target master public keys, for generating actions
are adversarially chosen. Since integrity subsumes correctness,
we do not formally define the latter.

Definition 3.2 (Integrity): A decentralised anonymous
system Ω for (P,Q) has integrity if for any PPT
algorithm A, Pr

[
DerivationIntegrityΩ,A(1

λ) = 1
]

and
Pr

[
ActionIntegrityΩ,A(1

λ) = 1
]

are both negligible in λ.
Figure 2 define the two experiments.

Authenticity: A DAS is said to have authenticity if a user
can authenticate that its action satisfies the system predicates.
This is captured by the properties of source binding, target
binding and knowledge-sound, explained in the following.

Definition 3.3 (Authenticity): A decentralised anonymous
system Ω for (P,Q) has authenticity if it satisfies source
binding, target binding, and knowledge soundness as below.

a) Source Binding: Source binding states that an account
acc is computationally bound by SChk to a tuple (ask, x) of
account secret key and attribute. The probability

Pr


SChk(acc, ask, x) = 1

∧ SChk(acc, ask′, x′) = 1

∧ (ask, x) ̸= (ask′, x′)

∣∣∣∣∣∣∣∣∣
(pp, st, ⟨accaid⟩aid∈U)

← Setup(1λ)

(acc, ask, x, ask′, x′)

← A(pp, st, ⟨accaid⟩aid∈U)


should be negligible in λ for any PPT adversary A.

b) Target Binding: Target binding states that an account
acc is computationally bound by TChk to an attribute y. The
probability below should be negligible in λ for any PPT A:

Pr


TChk(acc,mpk, tk, y) = 1

∧ TChk

(
acc,mpk′,
tk′, y′

)
= 1

∧ y ̸= y′

∣∣∣∣∣∣∣∣∣∣∣∣∣

(pp, st, ⟨accaid⟩aid∈U)

← Setup(1λ)(
acc,mpk, tk, y,
mpk′, tk′, y′

)
← A

(
pp, st,

⟨accaid⟩aid∈U

)


.

c) Knowledge Soundness: Knowledge soundness states
that a (collection of) user(s) producing valid action transcripts
must “know” the valid inputs to the Act algorithm which result

DerivationIntegrityΩ,A(1
λ)

(pp, st)← Setup(1λ); (mpk,msk)← MKGen(pp)

(acc, tk, y)← A (pp, st,mpk,msk)

(ask, x)← AKDer(msk, tk)

valid_target := (TChk(acc,mpk, tk, y) = 1)

attribute_recovered := (x = y)

valid_source := (SChk(acc, ask, x) = 1)

return valid_target ∧ ¬(attribute_recovered ∧ valid_source)

ActionIntegrityΩ,A(1
λ)

(pp, st0)← Setup(1λ) pi,mi,ni , qi,mi ,
⟨Ri,j , aidi,j , aski,j , xi,j⟩j∈[mi]

,〈
mpki,j , yi,j

〉
j∈[ni]

, auxi


i∈[t]

← A(pp, st0)

for i ∈ [t] do(
txi, ⟨acci,j , tki,j⟩j∈[ni]

)
← Act

 sti, ⟨acci,j⟩j∈Ui
, pi,mi,ni ,

⟨Ri,j , aidi,j , aski,j , xi,j⟩j∈[mi]
,〈

mpki,j , yi,j
〉
j∈[ni]

, auxi


(
bi, sti+1, ⟨acci+1,j⟩j∈Ui+1

)
← Vf

(
sti, ⟨acci,j⟩j∈Ui

, pi,mi,ni ,
qi,mi , txi, ⟨acci,j⟩j∈[ni]

)
valid_predicates := (∀i ∈ [t], pi,mi,ni ∈ P ∧ qi,mi ∈ Q)
valid_rings := (∀i ∈ [t], ∀j ∈ [mi], aidi,j ∈ Ri,j ⊆ Ui)

valid_sources :=
(
∀i ∈ [t], ∀j ∈ [mi], SChk(accaidi,j , aski,j , xi,j) = 1

)
valid_attributes := (∀i ∈ [t], ∀j ∈ [mi], ∀k ∈ [ni], xi,j , yi,k ∈ X)

satisfied :=

(
∀i ∈ [t],

pi,mi,ni((xi,j)j∈[mi], (yi,j)j∈[ni], auxi) = 1
∧ qi,mi(Ui, (Ri,j)j∈[mi]) = 1

)
single_use :=

(
∀ distinct i, i′ ∈ [t], {aidi,j}j∈[mi]

∩ {aidi′,j}j∈[mi′]
= ∅
)

valid_txs := (∀i ∈ [t], bi = 1)

valid_targets :=
(
∀i ∈ [t], ∀j ∈ [mi], TChk(acci,j ,mpki,j , tki,j , yi) = 1

)
targets_pushed :=

(
∀i ∈ [t], ∀j ∈ [ni], acci,j ∈ {acci+1,j′}j′∈Ui+1

)
return valid_predicates ∧ valid_rings ∧ valid_sources ∧ valid_attributes
∧ satisfied ∧ single_use ∧ ¬(valid_txs ∧ valid_targets ∧ targets_pushed)

Fig. 2. Derivation and Action integrity experiments.

in said transcripts, and that each source account used to produce
said transcripts is only used once. Formally, for any PPT adver-
sary A, there exists an expected polynomial-time extractor EA
such that Pr

[
AuthenticityΩ,A,EA

(1λ) = 1
]

is negligible in λ,
where AuthenticityΩ,A,EA

is defined in Figure 3.
RingCT provides a mechanism (i.e. linkable tags) for

enforcing the single-use restriction, but such a restriction is
not captured in any security property, in particular, the balance
property. The DAS authenticity property explicitly captures the
single-use restriction.

Privacy: A DAS is private if, given an action transcript tx,
each source account acci involved in the action is computa-
tionally hidden within the ring Ri (i.e. source-private) and
each target account computationally hides its associated master
public key and attribute (i.e. target-private).

572

AuthenticityΩ,A,EA
(1λ)

(pp, st0)← Setup(1λ)
(
pi,mi,ni , qi,mi , txi, ⟨acci,j⟩j∈[ni]

)
i∈[t]

,(
⟨Ri,j , aidi,j , aski,j , xi,j⟩j∈[mi]

,〈
mpki,j , tki,j , yi,j

〉
j∈[ni]

, auxi

)
i∈[t]

← (A, EA)(pp, st0)

for i ∈ [t] do(
bi, sti+1, ⟨acci+1,j⟩j∈Ui+1

)
← Vf

(
sti, ⟨acci,j⟩j∈Ui

, pi,mi,ni , qi,mi , txi, ⟨acci,j⟩j∈[ni]

)

b′i :=



∀j ∈ [ni], ∃j′ ∈ Ui+1, acci,j = acci+1,j′

(pi,mi,ni ∈ P) ∧ (qi,mi ∈ Q)
pi,mi,ni

(
(xi,j)j∈[mi], (yi,j)j∈[ni], auxi

)
= 1

qi,mi

(
Ui, (Ri,j)j∈[mi]

)
= 1

∀j ∈ [mi], aidi,j ∈ Ri,j ⊆ Ui

∀j ∈ [mi], SChk(acci,j , aski,j , xi,j) = 1

∀j ∈ [ni], TChk(acci,j ,mpki,j , tki,j , yi,j) = 1

valid_txs := (∀i ∈ [t], bi = 1) ; valid_actions :=
(
∀i ∈ [t], b′i = 1

)
single_use :=

(
∀ distinct i, i′ ∈ [t], {aidi,j}j∈[mi]

∩ {aidi′,j}j∈[mi′]
= ∅
)

return valid_txs ∧ ¬ (valid_actions ∧ single_use)

Fig. 3. Authenticity experiment.

Definition 3.4 (Privacy): A decentralised anonymous system
Ω for (P,Q) is private if for any PPT adversary A,∣∣Pr[Privacy0Ω,A(1

λ) = 1
]
− Pr

[
Privacy1Ω,A(1

λ) = 1
]∣∣

is negligible in λ, where PrivacybΩ,A is defined in Figure 5.
The definitions of DAS and RingCT privacy are essentially

the same, modulo the differences inherited from syntactical
changes. In particular, we emphasise that both definitions
capture both source and target accounts anonymity: source
anonymity by hiding source accounts within a ring and target
anonymity by the one-time account derivation mechanism.

Availability: A DAS is said to be available if an action which
is considered valid against a state st will still be considered
valid against a newer state st′.

Definition 3.5 (Availability): A decentralised anonymous
system Ω for (P,Q) is available if for any PPT adver-
sary A, Pr

[
AvailabilityΩ,A(1

λ) = 1
]

is negligible in λ, where
AvailabilityΩ,A is defined in Figure 5.

Our availability property generalises the RingCT non-
slanderability property [1]. In RingCT, which has the linkable
tag mechanism baked into the syntax, the only way to invalidate
an (intercepted) honest user’s transaction is to forge a tag
linking to the honest user’s account. Since DAS allows any
single-use mechanism, we generalise the non-slanderability
to availability, capturing attacks trying to invalidate honest
action transcripts by any means, e.g. the attack against Quisquis
mentioned in Section I-D. To elaborate, consider that a user
generates a Quisquis transaction tx at time t, which is valid
w.r.t. a state stt. Before being able to publish the transaction,
an adversary intercepts and publishes another transaction with
overlapping source accounts, i.e. input ring members, thus
advancing the state to stt+1. Now, the transaction tx will no
longer be valid w.r.t. stt+1. This violates availability.

MKGenO(uid)
assert pp ̸= ⊥
if uid /∈ UID then

(mpk,msk)← MKGen(pp)

(MPK,MSK)[uid] := (mpk,msk)

UID := UID ∪ {uid}
return MPK[uid]

CorruptO(uid)
assert uid ∈ UID \ UID†

UID∗ := UID∗ ∪ {uid}

ACC∗ :=
⋃

uid∈UID∗

ACC[uid]

return MSK[uid]

VfO
(
p, q, tx, ⟨acci⟩i∈[n]

)
(b, st′,

〈
acc′aid

〉
aid∈U′)← Vf

(
st, ⟨accaid⟩aid∈U , p, q, tx, ⟨acci⟩i∈[n]

)
if b = 1 then {st = st′; U = U ′; accaid = acc′aid, ∀aid ∈ U}
return

(
b, st, ⟨accaid⟩aid∈U

)

ActO

 pm,n, ⟨Ri, aidi, aski, xi⟩i∈S∗ ,
⟨Ri, aidi, uidi, tki⟩i∈[m]\S∗ ,

⟨mpki, yi⟩i∈T∗ ,
〈
uid′i, yi

〉
i∈[n]\T∗ , aux


assert (uidi /∈ UID∗, ∀i ∈ [m] \ S∗)

assert (uid′i /∈ UID∗, ∀i ∈ [n] \ T ∗)

assert (accaidi /∈ ACC†, ∀i ∈ [m] \ S∗)

(aski, xi)← AKDer(MSK[uidi], tki), ∀i ∈ [m] \ S∗

mpki ← MPK[uidi], ∀i ∈ [n] \ T ∗(
tx, ⟨acci, tki⟩i∈[n]

)
← Act

(
pm,n, ⟨Ri, aidi, aski, xi⟩i∈[m] ,

⟨mpki, yi⟩i∈[n] , aux

)
ACC[uidi] := ACC[uidi] ∪ {acci}, ∀i ∈ [n]

return (tx, ⟨acci, tki⟩i∈[n])

Fig. 4. Oracles for Privacy and Availability experiments.

Formally, these attacks are captured in the availability
experiment by running the verification algorithm on an honestly
generated transcript, followed by an arbitrary sequence of
adversarial actions (e.g. intercepting the honest transcript),
followed by another run of the verification algorithm. The
adversary wins if they manage to let the verification pass the
first time but fail the second time.

Sustainability: Finally, we define the notion of sustainability
for DAS. A DAS is said to be sustainable if, at any point in
time, the list ⟨acci⟩i∈U of potentially unused accounts and the
system state st are not much larger than the true number of
unused accounts.

Definition 3.6 (Sustainability): Let k ∈ N. A decentralised
anonymous system Ω for (P,Q) is said to be k-sustainable if
there exists β(λ) ∈ poly(λ) such that for any PPT adversary A,
Pr

[
SustainabilityΩ,A,k,β(1

λ) = 1
]

is negligible in λ, where
SustainabilityΩ,A,k,β is defined in Figure 6. Ω is said to be
sustainable if it is k-sustainable for some k.

I V. S U S TA I N A B L E A N O N Y M O U S S Y S T E M

We present a generic construction of DAS with all desired
properties. A main ingredient is an account partitioning
technique which leads to sustainability while retaining other
properties. We also discuss how to deploy the partitioning
technique and instantiate the cryptographic building blocks.

A. Construction

We present a construction of DAS for an arbitrary attribute
predicate family P and a specific ring predicate family Q.

573

PrivacybΩ,A(1
λ)

(pp, st)← Setup(1λ)

O := {MKGenO,CorruptO,ActO,VfO}
pm,n, qm, ⟨Ri, aidi, aski, xi⟩i∈S∗ ,(

⟨Ri,j , aidi,j , uidi,j , tki,j⟩i∈[m]\S∗

)1
j=0

, ⟨mpki, yi⟩i∈T∗ ,(〈
uid′i,j , yi,j

〉
i∈[n]\T∗

)1
j=0

, (auxj)
1
j=0


← AO(pp, st)

assert ⟨Ri,0⟩i∈[m]\S∗ = ⟨Ri,1⟩i∈[m]\S∗

for j ∈ {0, 1} do(
txj ,

⟨acci,j , tki,j⟩i∈[n]

)

← ActO


pm,n, ⟨Ri, aski, xi⟩i∈S∗ ,
⟨Ri,j , uidi,j , tki,j⟩i∈[m]\S∗ ,

⟨mpki, yi⟩i∈T∗ ,
〈
uid′i,j , yi,j

〉
i∈[n]\T∗ ,

auxj


(bj , ∗, ∗)← Vf(st, ⟨accaid⟩aid∈U , pm,n, qm, txj , ⟨acci,j⟩i∈[n])

assert bj = 1

UID† := UID† ∪ {uidi,j : i ∈ [m] \ S∗} ∪
{
uid′i,j : i ∈ [n] \ T ∗}

ACC† := ACC† ∪ {accaidi,j}i∈[m]\S∗ ∪ {acci,j}i∈[n]\T∗

return b′ ← AO
(
txb, ⟨acci,b⟩i∈[n]

)
AvailabilityΩ,A(1

λ)

(pp, st)← Setup(1λ)

O := {MKGenO,CorruptO,ActO,VfO} pm,n, qm, ⟨Ri, aidi, uidi, tki⟩i∈[m] ,
⟨mpki, yi⟩i∈T∗ ,

⟨uid′i, yi⟩i∈[n]\T∗ , aux

← AO(pp, st)

(tx, ⟨acci, tki⟩i∈[n])

← ActO

 pm,n, qm, ∅, ⟨Ri, aidi, uidi, tki⟩i∈[m] ,
⟨mpki, yi⟩i∈T∗ ,

⟨uid′i, yi⟩i∈[n]\T∗ , aux


UID† := {uidi : i ∈ [m]}
ACC† := {accaidi : i ∈ [m]}

(b, ∗, ∗)← Vf
(
st, ⟨accaid⟩aid∈U , pm,n, qm, tx, ⟨acci⟩i∈[n]

)
∗ ← AO(tx, ⟨tki⟩i∈T)

(b′, ∗, ∗)← Vf
(
st, ⟨accaid⟩aid∈U , pm,n, qm, tx, ⟨acci⟩i∈[n]

)
return b ∧ ¬b′

Fig. 5. Privacy and Availability experiments.

SustainabilityΩ,A,k,β(1
λ)

(pp, st0)← Setup(1λ)(
pi,mi,ni , qi,mi , txi, ⟨acci,j⟩j∈[ni]

)
i∈[t]
← A(pp, st0)

for i ∈ [t] do(
bi, sti+1, ⟨acci+1,j⟩j∈Ui+1

)
← Vf

(
sti, ⟨acci,j⟩j∈Ui

, pi,mi,ni , qi,mi ,
txi, ⟨acci,j⟩j∈[ni]

)
unused :=

∑
i∈[t]

ni −
∑
i∈[t]

mi; valid_txs := (∀i ∈ [t], bi = 1)

sustainable_state := (|stt| ≤ k · β(λ) · unused ∧ |Ut| ≤ k · unused)
return valid_txs ∧ ¬sustainable_state

Fig. 6. Sustainability experiment.

Fix any chunk size k ∈ N. To define Q (parametrised by k),
let Partition be a function that maps U ⊆ N0 to

Partition(U) := {U ∩ (i · k + Zk) : i ∈ N0}.5

Let Q be a singleton family consisting of a single predicate q
which accepts (U, (Ri)i∈[m]) if and only if for all i ∈ [m] there
exists a chunk Ci ∈ Partition(U) such that Ri ⊆ Ci.

Let COM be a commitment scheme for message space X ,
TAG a tagging scheme, and ARG a non-interactive argument
system. Consider statement-witness tuples (stmt,wit)6:

stmt = (p, ⟨accaid⟩aid∈R , {(Ri, tagi)}i∈[m], ⟨acci⟩i∈[n]),

where accaid = (pkaid, comaid) and acci = (pki, comi), and

wit =
(
(aidi, ski, ri, xi)i∈[m], (mpki, δi, yi, ri)i∈[n], aux

)
.

Let R be a relation which accepts statement-witness tuples
(stmt,wit) of the above form satisfying the following:

• p((xi)i∈[m], (yi)i∈[n], aux) = 1.

• For all i ∈ [m],


aidi ∈ Ri

pkaidi = TAG.PKGen(ski)

comaidi = COM.Com(xi; ri)

tagi = TAG.TagEval(ski).

• For all i ∈ [n],

{
(pki, δi) = TAG.PKDer(mpki)

comi = COM.Com(yi; ri).

Our DAS construction Ω for (P,Q) is presented in Figure 7.
The core of the construction is the Act algorithm, which
does the following. For each source account, it derives the
tag corresponding to the account secret key. For each output
attribute, it generates a new target account.7 Then, it generates a
zero-knowledge argument that the above are computed correctly
and that the input and output attributes satisfy the predicate.

The following theorems summarise the properties of our
DAS construction. The proofs of Theorems 4.1 to 4.4 are
standard, and we defer them to Appendix C. We highlight
Theorem 4.5 for the sustainability of our DAS.

Theorem 4.1: If TAG is correct and key-binding and ARG
is complete for R, then Ω has integrity.

Theorem 4.2: If COM is binding and ARG is knowledge-
sound for R, then Ω has authenticity.

Theorem 4.3: If TAG is related-key pseudorandom, COM is
hiding, and ARG is zero-knowledge for R, then Ω is private.

Theorem 4.4: If TAG is one-way and related-key pseudo-
random, and ARG is knowledge-sound and zero-knowledge
for R, then Ω has availability.

Theorem 4.5: If Ω has authenticity, then Ω is k-sustainable.
Proof: Recall that k is the chunk size. Let β(λ) be the

size of a tag produced by the tagging scheme TAG. Since
TAG.TagEval is PPT, β(λ) is a polynomial. Let A be a PPT
adversary in the experiment SustainabilityΩ,A,α,β(1

λ). Write

5For example, if k = 3 (so that i · k + Zk = {3i, 3i+ 1, 3i+ 2}
for each i ∈ N0) and U = {0, 1, 4, 5, 6, 7, 8}, then Partition(U) =
{{0, 1}, {4, 5}, {6, 7, 8}}.

6Public parameters for COM and TAG are implicitly included in stmt.
7This corresponds to the one-time account generation in Omniring [1].

574

Setup(1λ)

ppTAG ← TAG.Setup(1λ)

ppCOM ← COM.Setup(1λ)

ppARG ← ARG.Setup(1λ)

pp := (ppTAG, ppCOM, ppARG)

return (pp, st := ∅)

MKGen(pp)

msk← TAG.SKGen(ppTAG)

mpk← TAG.PKGen(msk)

return (mpk,msk)

AKDer(msk, tk)

parse tk as (δ, x, r)

sk← TAG.SKDer(msk, δ)

ask := (sk, r)

return (ask, x)

Act

(
st, ⟨accaid⟩aid∈U , pm,n,

⟨Ri, aidi, aski, xi⟩i∈[m] , ⟨mpki, yi⟩i∈[n] , aux

)
parse st as ⟨TagC⟩C∈Partition(U)

for i ∈ [m] do

parse aski as (ski, ri)

tagi ← TAG.TagEval(ski)

for i ∈ [n] do

(pki, δi)← TAG.PKDer(mpki)

comi ← COM.Com(yi; si) // with uniform randomness si

acci := (pki, comi); tki := (δi, yi, si)

R :=
⋃

i∈[m]

Ri

stmt :=
(
pm,n, ⟨accaid⟩aid∈R , {(Ri, tagi)}i∈[m], ⟨acci⟩i∈[n]

)
wit :=

(
(aidi, ski, ri, xi)i∈[m], (mpki, δi, yi, si)i∈[n], aux

)
π ← ARG.Prove(stmt,wit)

tx :=
(
{(Ri, tagi)}i∈[m], π

)
return

(
tx, ⟨acci, tki⟩i∈[n]

)

Vf(st, ⟨accaid⟩aid∈U , pm,n, qm, tx, ⟨acci⟩i∈[n])

parse st as ⟨TagC⟩C∈Partition(U)

parse tx as
(
{(Ri, tagi)}i∈[m], π

)
R :=

⋃
i∈[m]

Ri

stmt :=

(
pm,n, ⟨accaid⟩aid∈R ,

{(Ri, tagi)}i∈[m], ⟨acci⟩i∈[n]

)

if


pm,n ∈ P ∧ qm(U, (Ri)i∈[m]) = 1
qm ∈ Q ∧ ARG.Vf(stmt, π) = 1

{tagi}i∈[m] ∩
⋃

C∈Partition(U)

TagC = ∅ then

U ′ := U ∪ ([n] + max(U) + 1);U ′′ := Partition(U ′)

acci+max(U)+1 := acci, ∀i ∈ [n]

TagC := TagC ∪ {tagi}i∈[m]:Ri⊆C , ∀C ∈ U ′′

st′′ ← GC(⟨TagC⟩C∈Partition(U′) , ⟨accaid⟩aid∈U′)

return (1, st′)

else return (0, st)

GC(st, ⟨accaid⟩aid∈U) // subroutine of Vf

parse st as ⟨TagC⟩C∈Partition(U) ; U ′ := U

for C ∈ Partition(U) do

if |Tag[C]| = |C| then U ′ := U ′ \ C
return (⟨TagC⟩C∈Partition(U′) , ⟨accaid⟩aid∈U′)

SChk(acc, ask, x)

parse acc as (pk, com)

parse ask as (sk, r)

return

{
pk = TAG.PKGen(sk)
com = COM.Com(x; r)

TChk(acc,mpk, tk, y)

parse acc as (pk, com)

parse tk as (δ, x, r)

return

{
x = y
com = COM.Com(x; r)

Fig. 7. Generic construction of a Decentralised Anonymous System

m :=
∑

i∈[t] mi and n :=
∑

i∈[t] ni; therefore, unused =
n−m. Since Ω has authenticity, unused ≥ 0. In the following,
suppose that all transcripts output by A are valid so that
valid_txs = 1. By the definition of Q, each ring Ri,j included
in each transcript txi satisfies Ri,j ⊆ Ci,j for some chunk
Ci,j ∈ Partition([n]), for all i ∈ [t] and j ∈ [mi]. Since Ω has
authenticity, a ring R can only appear at most k times across
all transcripts. In other words, each chunk C ∈ Partition([n])
covers at most k rings appearing in transactions. The number
of rings that can be covered by all chunks combined is thus
⌈n/k⌉ · k. The number of chunks that are not covering k rings
is at most min{⌈n/k⌉, ⌈n/k⌉ · k −m} ≤ n−m+ k − 1 =
unused+ k − 1 ≤ k · unused. By the construction of GC, the
tags and accounts corresponding to chunks covering k rings are
removed. Therefore, we have |stt| ≤ k·β(λ)·unused and |Ut| ≤
k · unused. In other words, SustainabilityΩ,A,k,β(1

λ) = 0.

B. On Sustainability versus Privacy

For a DAS scheme to be s-sustainable, we show that s must
be as large as the minimum ring size n ever used in the sequence
of anonymous actions. In the following, consider a private DAS
scheme Ω. As Ω is private, only the ring-membership relations
can possibly reveal whether an account has been used or not.

Suppose time t has elapsed, i.e. there have been t actions,
and let N be the number of accounts created so far. For each
i ∈ [t], suppose the i-th action specifies a ring Ri of size at
least n, and exactly n − 1 accounts in Ri are used. Further
suppose that all rings R1, . . . , Rt are disjoint, which forces
N ≥ nt. The number of unused accounts is N−(n−1)t, while

the number of potentially unused accounts is N , i.e. none of the
accounts can be ruled out. The sustainability parameter satisfies
1
s ≤

N−(n−1)·t
N = 1− (n−1)·t

N ≤ 1− n−1
n = 1

n , i.e. s ≥ n.

Our users can pick rings of size at most k, we have s ≥ k,
the chunk size, which matches the k-sustainability of our
construction, i.e. sustainability deteriorates with anonymity.

C. Instantiations

To use the DAS in Figure 7, one needs to specify how rings
are sampled, such that they satisfy a predicate qm ∈ Q, and
instantiate the building blocks COM, TAG, and ARG.

a) Partitioning Ring Samplers: A natural way to sample
rings with respect to the predicate family Q is to use a
partitioning sampler [3]. In more detail, let Π be a partitioning
sampler hardwired with the same partition function Partition
as in Q. On input an account identifier aid, Π(aid) simply
returns the unique chunk C ∈ Partition(N0) containing aid.
The partitioning sampler achieves near-optimal anonymity [3]
and is robust against graph-based attacks [5]. We refer to those
works for more details.

b) Cryptographic Building Blocks: A strategy to effi-
ciently instantiate the cryptographic building blocks is to
instantiate the commitment scheme COM and the tagging
scheme TAG over a common mathematical structure, e.g. a
cyclic group G of prime-order q, and pick an argument system
ARG which supports proving relations over the said structure,
e.g. G, natively. This avoids the concretely expensive NP
reductions from the relations induced by COM and TAG and
those natively supported by ARG.

575

c) Group-based Instantiation: We could instantiate COM
by (the vector-generalisation of) Pedersen’s commitment [10]
over G, TAG by any constructions in [1] over G, and ARG by
a zero-knowledge succinct non-interactive argument of knowl-
edge (zk-SNARK) for (Zq,G)-arithmetic relations (e.g. [11],
[12]). Instantiated as such, an account acc is of a fixed polyno-
mial size independent of the size of its associated attribute x.
Furthermore, since rings output by partitioning sampler Π
admits a succinct representation, e.g. a chunk identifier, and
proofs generated by a zk-SNARG are succinct, i.e. of size
poly-logarithmic in the statement size, an action transcript tx
is also of size poly-logarithmic in the statement size.

The above generic construction of DAS is similar to and
generalises that of the RingCT scheme Omniring [1]. Many of
the differences are inherited from the syntactical differences
between DAS and RingCT highlighted in Section III. Below,
we summarise the similarities and key differences:

• The setup, master key generation, account key derivation,
source checking, and target checking algorithms are almost
identical to their RingCT counterparts (up to naming).

• The Action algorithm combines the one-time account
generation and spend algorithms in RingCT, and supports
more general actions (than just RingCT transactions).

• The verification algorithm differs from its RingCT counter-
part in two crucial ways (on top of checking more general
attribute predicates than RingCT’s balance predicate): 1) It
additionally checks that a ring predicate is satisfied. 2) It
attempts to shrink the state via garbage collection.

The inclusion of ring predicates and garbage collection are the
core components for achieving sustainability.

V. A P P L I C AT I O N S

We discuss two instances of DAS in our framework by
specifying their attribute spaces and classes of predicates.
Specifically, we consider anonymous cryptocurrencies as a
simple example, as well as the more complex example of
decentralised anonymous social networks, which requires dis-
tinguishing different types of accounts.

We do not intend to formalise the security properties for
these high-level applications. Despite being highly application-
specific, they are natural extensions of the generic security
properties that should be trivially implied by combining the
latter with other basic tools. Our goal is to highlight general
techniques of using our generic construction blueprint to build
more complex applications.

A. Anonymous Cryptocurrencies

Cryptocurrencies are a means of tracking financial transac-
tions in a decentralised system. A user holds several accounts—
often called unspent transaction outputs—which are considered
coins of different values. A transaction is accepted by the
system if it does not create money but instead only redistributes
it, i.e. the value of new accounts should be equal to the
value of the used accounts. We encode the account balance as
a bounded integer and verify the balance by the predicate
(
∑

i∈[m] xi −
∑

i∈[n] yi = 0) ∧ (∀i ∈ [n], 0 ≤ yi ≤ β)

where β is a public upper bound of an account balance. With
this, we essentially recover RingCT [1], [2], now equipped
with sustainability. This naturally generalises to a setting with
multiple types of assets in the same system where the predicate
needs to verify the equality of each type of asset.

B. Decentralised Anonymous Social Networks

DAS is not confined to ring-signature applications but applies
to systems allowing users to hide within an anonymity set. With
the recent rise of decentralised social networks and the need
to block misbehaving users for quality services, we exemplify
with Decentralised Anonymous Social Network (DASN).

1) Overview: A DASN is a decentralised means of allowing
users to engage in different activities, e.g. posting messages and
rating other users’ messages. We will use “post” as a wildcard
to refer to any action that a user can perform. A new user
can dynamically join the system by registering themself and
obtaining an account. The account encodes, say, the score of the
user, along with other information used by the DASN internally.

A user Alice can make an anonymous post if her score
satisfies a posting policy and she has only a few unclaimed
ratings. Each post is given a unique identifier which is bound to
the author, and is subject to evaluation by other users governed
by some publicly defined evaluation policies. After a publicly
specified evaluation period elapsed, all ratings of the post will
be aggregated, finalised, and are to be claimed by the author.
Each user Alice will be forced by the DASN to anonymously
claim the (possibly negative) ratings of these posts, i.e. updating
her account to encode her new score.

DASN is also known as anonymous blocklisting/reputation.
Existing works focus on attaining complexity sublinear in the
size of the ever-growing rating list [13], [14]. Naturally, a
DASN can be constructed from a DAS, where joining, posting,
rating, and claiming simply correspond to performing actions
with different classes of instructions with different predicates.
It is intuitive that such a DASN construction inherits the
sustainability and availability of the base scheme.

2) Construction:
a) Setup: First, the DASN public parameters additionally

specify a pseudorandom function PRF, an upper bound n ∈ N
of unclaimed ratings allowed, a finalising mechanism determin-
ing when the evaluation period of a post should end, and the
families of admissible predicates for joining, posting, rating,
and claiming. The attribute (t, k, s, I) encoded in an account
consists of a type t ∈ {user, rating}, a PRF secret key k,
a score s, and a set I storing at most n post identifiers. By
construction, the type t of an account is public, and each rating
account (i.e. with t = rating) is associated with a unique
post identifier uid. Let F denote the set of post identifiers that
the rating accounts are associated with.

b) Joining: To join the DASN, Alice generates a DAS
master key pair (mpk,msk). She also picks a fresh PRF secret
key k. She then performs an action which does not input any
source account and outputs a single target account under mpk
encoding (t = user, k, s = 0, I = ∅). The joining predicate
that Alice picks for this transaction should check that t = user,

576

score s = 0 (or other admissible initial scores), and I = ∅.
Alice then publishes the action transcript. After the action is
verified by other users, Alice’s account will be recognised and
included in the DASN state. In the following, we will assume
that Alice owns a user account acc encoding (user, k, s, I).

c) Posting: To write a post, Alice generates a fresh DAS
master key pair (mpk′,msk′) where the master public key
mpk′ serves as the post identifier, i.e. uid = mpk′. She then
performs an action which takes her user account as the source
account and outputs a target account under mpk encoding
(user, k, s, I ∪ {uid}). The posting predicate checks that the
score s is admissible for writing a post, none of the rating
accounts indexed by F is owned by her (i.e. F ∩ I = ∅)8, the
target attribute is correctly computed, and she has at most n−1
unclaimed posts before posting, i.e. |I| ≤ n − 1. Alice then
publishes the action transcript along with the post identifier
uid (and the post itself, which the DASN does not care about).

To verify the post, the verifiers check that the identifier uid
is not associated with any post under evaluation or waiting to
be claimed, in addition to that the action is valid. The target
account created by this action will become Alice’s new user
account, while the old user account can no longer be used.

d) Rating: Suppose that each user can rate each post
at most once, and that a rating takes the form of a (possibly
negative) score to be added to the post author’s score. Let
uid = mpk′ be the identifier of the post under evaluation. To
rate it with a score s′, Alice computes an “evaluation tag”
y = PRF(k, uid) bound to uid and her PRF key k. She then
performs an action which inputs her user account acc as the
source account and a re-randomised version of acc as the target
account. The rating predicate is hardwired with uid and tag y,
and checks that the source and target attributes are identical and
y = PRF(k, uid). Alice then publishes the action transcript
along with score s′ and tag y. The verifiers check that the
action transcript is valid, y is unique, and post uid is still under
evaluation. If so, they agree to aggregate s′ to the score of uid.

e) Finalising: When the finalising mechanism concludes
the evaluation period of post uid = mpk′, which got an
aggregated score s′, the verifiers agree to perform an action
that takes no source accounts and outputs a target account
under mpk′ encoding (rating, k′ = ⊥, s′, I ′ = ∅). The action
is performed using public randomness. After verification, the
verifiers agree to insert uid into the set F .

f) Claiming Scores: Alice cannot post if she already has
too many unclaimed ratings. To keep using the DASN, she
must claim any unclaimed finalised ratings of her past posts.

Let Ī ⊆ I be the identifiers of Alice’s posts which have been
finalised. Recall that each identifier uid ∈ Ī is actually a DAS
master public key mpk′ whose corresponding msk′ is known to
Alice. She can thus recover the secret key of the corresponding

8By the sustainability of the underlying DAS, the cardinality of F is not
much larger than the number of finalised but unclaimed ratings. Therefore, the
computation complexity of proving and verifying F∩I = ∅ should be moderate.
In case an even higher efficiency is desired, anonymity can be traded for
efficiency by making F structured, e.g. sorted, and having Alice reveal a subset
J ⊆ F in plain such that proving and verifying (J ∩I = ∅∧(F \J)∩I = ∅)
is more efficient than doing so for F ∩ I = ∅.

rating account and the score suid encoded within. To claim these
ratings, Alice performs an action using her user account acc as
well as all rating accounts associated with Ī as source accounts.
The action outputs, as the target account, an updated version
of Alice’s account encoding the updated attribute (user, k, s+∑

uid∈Ī suid, I \ Ī). The claiming predicate verifies that one
source account is of type user and the others are of type
rating, and that the target attribute is computed correctly.
After verification, if some rating accounts are removed from
the DASN state, e.g. by GC with the construction in Figure 7,
the corresponding post identifiers are removed from F .

V I . G A R B A G E C O L L E C T I O N

We propose a general algorithm for detecting used accounts
given a set U of account identifiers and a sequence R = (ri)i
of rings with ri ⊆ U . (Section VI uses lowercase letters for
rings to align with the notation of [5].) We highlight that,
unlike (the core component of) the GC algorithm in Figure 7,
which only works for rings sampled by a partitioning sampler,
the algorithm proposed in this section can detect surely-used
accounts regardless of how the rings are sampled. In what
follows we call this algorithm a garbage collector.

Section VI-A gives a high-level description of how the
garbage collection problem can be viewed as a graph problem.
Section VI-C formally shows that our garbage collector is
correct, i.e. its outputs are used accounts, and it is also optimal,
in the sense that it outputs all surely-used accounts that one
can infer from the sequence of ring-memberships R = (ri)i.
Information other than ring-memberships is not taken into
account by our garage collector. Other information sources
could be, for example, the action behaviours of users, or
deployment issues such that a ring no longer computationally
hides its source account.

A. Overview

Our garbage collector is based on the notion of transaction
graphs [5] and their Dulmage-Mendelsohn (DM) decomposi-
tions [15], also known as their cores. The transaction graph
induced by (U,R) is a bipartite graph G = (U,R,E) where
the nodes of G are labelled by elements of U and R, and an
edge (u, r) is in E if u ∈ r, i.e. u is a member of the ring r.
In the general case where r contains ℓ > 1 source accounts, r
is duplicated into ℓ copies of itself in the transaction graph.

There exists at least one maximum matching in G in which
all rings in R are saturated (maximum matching M saturates v
if v is in M), reflecting the fact that each ring must have been
sampled by a source account. Many maximum matchings could
exist in G, each representing a possible assignment from a
source account to a ring. The core of G, denoted by Core(G),
is the union of all maximum matchings of G. Edges in G
but missing in Core(G) represent impossible assignments from
source accounts to rings.

Given the set of all maximum matchings, whether an
account u has been used or not can be determined by logical
deduction. If there exists a maximum matching M in G which
does not saturate u, u is possibly yet to be used (for M being

577

GC(U,R)

E := {(u, r) : r ∈ R, u ∈ r}
G := (U,R,E), G′ ← Core(G)

C := {C = (UC , RC , EC) : C is a component in G′}

R∗ :=
⋃

C∈C:|UC |=|RC |

RC ; U∗ := nbE(R
∗), E∗ := E ∩ (U∗ ×R∗)

return G∗ := (U∗, R∗, E∗)

Fig. 8. Garbage collector.

a possible source-account-to-ring assignment). The converse is
also true: If u is saturated in every maximum matching in G (i.e.
all possible source-account-to-ring assignments include u), then
u has surely been used in an anonymous action. Consequently,
the set of all surely-used accounts is equivalent to the set of
all accounts that are saturated in every maximum matching
in G. Directly computing the set of all maximum matchings
of a bipartite graph is, however, computationally hard9.

An alternative view on detecting used accounts, which we
will show to be equivalent, is to look at the set of accounts
covered by a set of rings. If the cardinalities of the two sets
are equal, surely every account in the covered set has been
used. For example, it is certain that both account 0 and 1 have
been used if a ring r = {0, 1} appears twice. Generalising, we
define the notion of closed ring-induced subgraphs. A subgraph
H = (U ′, R′, E′) of a transaction graph G = (U,R,E) is said
to be ring-induced if E′ contains all edges in E connecting
to R′, written as U ′ = nbE(R

′). The graph H is closed if the
number of neighbours of the rings in R′ equals the number
of rings in R′, i.e. |nbE′(R′)| = |R′|. If H is a closed ring-
induced subgraph of G, all accounts in U ′ must have been used.

In Figure 8, we propose a sub-quadratic-time garbage
collector GC for finding closed ring-induced subgraphs of a
transaction graph G induced by any given accounts U and
sequence of rings R. Our garbage collector first computes the
core Core(G) of the transaction graph G induced by (U,R).
It then outputs the subgraph of G ring-induced by

⋃
C RC ,

where C = (UC , RC , EC) runs through all closed components
of Core(G). The run-time of GC is dominated by the time
of computing Core(G), which takes time O(|U |1/2 · |E|) [17].
In Section VI-C, we prove that: 1) GC finds the largest closed
ring-induced subgraph of G, and 2) this is equivalent to finding
all accounts saturated in every maximum matching in G. These
imply GC is optimal – it returns all surely-used accounts that
we can infer from (the graph representation of) the sets (U,R).

In Section VI-B, we define all notions required to analyse
our garbage collector. We then outline the strategy for proving
its correctness and optimality in Section VI-C and defer the
proofs of the technical lemmas to Appendix B.

B. Definitions

Definition 6.1 (Transaction Graph [5]): A transaction graph
G = (U,R,E) is a bipartite graph with a maximum matching
of size |R|.

9The counting problem of all maximum matchings in a bipartite graph is
#P-complete [16], and the search problem is no easier.

Definition 6.2 (Core [15]): The core of a bipartite graph G =
(U,R,E), denoted by Core(G) = (U,R,E′), is a subgraph
of G where E′ is the union of all maximum matchings in G.

Definition 6.3 (Neighbours): For a bipartite graph G =
(U,R,E) and a node r ∈ R, the set of neighbours of r
under edges E′ ⊆ E is nbE′(r) := {u ∈ U : (u, r) ∈ E′}.
Generalising, the set of neighbours of R′ ⊆ R under E′ ⊆ E
is nbE′(R′) := {u ∈ U : (u, r) ∈ E′, r ∈ R′}.

Definition 6.4 (Ring-Induced Subgraphs): For a transaction
graph G = (U,R,E), a subgraph H = (U ′, R′, E′) of G is
said to be ring-induced by R′, if U ′ = nbE′(R′) and E′ =
{(u, r) ∈ E : r ∈ R′}. We say that H is ring-induced if it is
ring-induced by some R′.

Definition 6.5 (Closeness): A transaction graph G =
(U,R,E) is said to be closed if |nbE(R)| = |R|.

C. Analysis

We first show that the garbage collector in Figure 8 outputs
the largest closed ring-induced subgraph of the transaction G
induced by the input (U,R). Note that the notion of largest is
well-defined for closed ring-induced subgraphs since the union
of two such graphs is also a closed ring-induced subgraph.

Theorem 6.6: If a transaction graph G has a closed ring-
induced subgraph H , then Core(H) =

⋃
i Hi where each Hi

is a closed component of Core(G).
Theorem 6.7: Let G be a transaction graph. If
{Hi = (Ui, Ri, Ei)}i is the collection of all closed components
of Core(G), then the subgraph of G induced by

⋃
i Ri is closed.

We defer the technical proof of Theorem 6.6 and Theorem 6.7
to Appendices B-A and B-B, respectively.

To see why Theorems 6.6 and 6.7 imply that GC given in
Figure 8 outputs the largest closed ring-induced subgraph of G,
we observe the following: On the one hand, Theorem 6.7
guarantees that GC always returns a closed ring-induced
subgraph H of G. On the other hand, Theorem 6.6 implies
that the subgraph H found by GC is the largest.

Using the above, we next show that finding the set of accounts
saturated in every maximum matching in G (i.e. the surely-
used accounts) is equivalent to finding the set of accounts in
the largest closed ring-induced subgraph of G. This concludes
that GC in Figure 8 is correct and optimal.

Theorem 6.8: Let G be a transaction graph. An account u is
saturated in all maximum matchings M in G if and only if u
belongs to the biggest closed ring-induced subgraph H of G.

Proof: For the if part, u is an account node in H , which
is a closed ring-induced subgraph of G; Theorem 6.6 implies
that u belongs to a closed component C of Core(G). Since C is
closed, all maximum matchings in C, and hence G, saturate u.

For the only-if part, given that u is saturated in all maximum
matchings M in G, we claim that the unique component C
in Core(G), which contains u, must be closed. Suppose that
is the case. Theorem 6.7 implies that u belongs to a closed
ring-induced subgraph H ′ of G. Since H is the biggest closed
ring-induced subgraph of G, H ′ is a subgraph of H , so u is
in H . It remains to prove that the unique component C in
Core(G) which contains u must be closed. C is a transaction

578

50 100 150 200 250 300
time T

20

40

60

80

100

120

|U
|/

un
us

ed

(m,n)=(1,1)
(m,n)=(2,2)
k=3
k=4
k=6
k=8
k=11

Fig. 9. Ratio of uncollected to unused accounts against T .

graph. We rely on a technical lemma, Lemma 4, which implies
that the subgraph C ′ of C formed by removing u and all edges
in C connected to it is also a transaction graph, which means
that C ′ has at least one maximum matching in which all rings
in C ′ are saturated. Let M ′ be one such maximum matching.
Note that M ′ is a maximum matching of C also, but it does not
saturate u. This means that there exists a maximum matching
of G which does not saturate u, violating our assumption.

V I I . O N T H E S U S TA I N A B I L I T Y O F M O N E R O

We conclude by empirically evaluating the (un)sustainability
of Monero. To clarify, we do not intend to study whether their
concrete system is sustainable, but instead, whether the abstract
ring sampling strategy of Monero is likely to be sustainable.

A. Modelling
The ring sampling strategy currently adopted by Monero

can be abstracted as a mimicking sampler [3], which samples
ring members according to an approximated distribution that
“mimics” the source account distribution: Each account ui is
sampled as a ring member with probability pi, where pi is
the (estimated) probability that ui is a source account at the
sampling time. This process repeats until the ring is populated
to a predetermined ring size.

More concretely, we consider the following experiment
parametrised by an initial number of accounts a (at time
t = 0), a ring size k, a time bound T , the number of source
and target accounts (m,n) in each anonymous action, and a
sequence (St)t∈[T] of source account distributions. To model
the formation of rings, at each time t ∈ [T], m source accounts
are sampled according to the distribution St, each of which
samples a ring, and n target accounts are spawned. The ring
members are sampled using the mimicking sampler, which
samples k ring members according also to the distribution St.

After T time steps have elapsed, let U be the set containing
all initial accounts and all target accounts spawned during the
whole process, and R = (Ri)

mT
i=1 be the sequence of all sampled

rings. To answer whether a mimicking sampler can provide
sustainability, we run GC in Figure 8 on (U,R) to check how
many used accounts can be detected.

In our experiment, we let the source account distribution St

be that induced by the following sampling process: First,
an age is sampled from the empirical age distribution [3]10,

10The age distribution of Monero is unknown due to its anonymous nature.
The empirical distribution [3] is from Bitcoin data as an estimation for Monero.

which is a shifted Pareto distribution with PDF Pr [age = t] ∝
(t+1)−(α+1) and α = 0.172. A uniformly random account of
the sampled age is then chosen. If no account of the sampled
age exists or the sampled account has already been used in a pre-
vious action, the procedure is repeated until an unused account
is sampled. We picked a ∈ {2, 3, . . . , 10}, k ∈ {2, 3, . . . , 11},
T ∈ {40, 80, . . . , 320}, and (m,n) ∈ {(1, 1), (2, 2)}. For each
combination of parameters, we performed 1000 runs. Our result
is summarised in Figure 9, where we plot the ratio |U |/unused
(following notations in Figure 6) against T for a = 5.

B. Result and Evaluation

Recall that by definition, a DAS is sustainable only if the
ratio |U |/unused is upper-bounded by some constant for all T .
For example, with the proven sustainable partitioning sampler
with ring size k, we would obtain a plot where the curve never
grows beyond k (for any choice of the other parameters).

In our experiment, in contrast, the concerned ratio strictly
increases with T for all sets of parameters, which means the
system is keeping an ever-growing set of accounts even when
the number of unused accounts remains constant. We remark
that as the number of initial accounts a increases (not shown),
the ratios for the same (m,n) under various k’s converge (to the
magenta curve in Figure 9), which is the case when essentially
no used account can be collected by GC. Thus, our result says
that mimicking sampler is unlikely to offer sustainability.

In both Monero and our experiment, a ring is sampled from a
distribution that mimics the source account distribution. Monero
differs from our experiment mainly in two ways: 1) Their
approximation on the source account distribution is some Ŝt

different from our St, which is a code-induced distribution that
cannot be expressed analytically. 2) Historically, Monero has
been updating their ring-sampling strategy continuously, from
allowing a ring size of 1 (i.e. no anonymity), to mandating
some minimum ring size (and increasing it). Our experiment
does not intend to replicate the ring-sampling specifics of
Monero, but to answer the more general question of whether
a mimicking sampler could offer sustainability. We also note
that, the effect of using different approximations St and Ŝt

should have minimal impact on (the resulting transaction graph
and hence) the (un)sustainability result, since any reasonable
approximation would by nature assign to a source account some
decoy accounts that are spawned in adjacent time. From our
result, Monero is unlikely to be sustainable with the adoption
of a mimicking sampler. Complementary to our result is the
empirical work of [8], which analysed the transaction graph
constructed from actual Monero data. Their result implies that,
upon running our GC on Monero, no used account would be
collected, coinciding with our experimental result.

As additional references, we provide in Figures 11 and 12
further results on mimicking sampler, where we plot the fraction
of used accounts that can be collected (i.e. |U∗|/|R| for
(U∗, ∗, ∗)← GC(U,R)) against ring size k and the number of
initial accounts a. Our plots show that this fraction quickly
approaches zero as k and a increaseFor comparison, the current
recommended ring size of Monero is k = 11.

579

A C K N O W L E D G M E N T S

Chow is supported by General Research Fund (CUHK
14210621 and 14209918), University Grants Committee, Hong
Kong. Egger received funding by the European Commission
under the Horizon2020 research and innovation programme,
Marie Sklodowska-Curie grant agreement No 101034255.
Ronge was supported by Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) as part of the Research
and Training Group 2475 “Cybercrime and Forensic Computing”
(grant number 393541319/GRK2475/1-2019), and by the state
of Bavaria at the Nuremberg Campus of Technology (NCT).

R E F E R E N C E S

[1] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K.
Thyagarajan, and J. Wang, “Omniring: Scaling private
payments without trusted setup,” in ACM CCS 2019,
ACM Press, Nov. 2019, pp. 31–48.

[2] S. Noether and A. Mackenzie, “Ring confidential trans-
actions,” Ledger, vol. 1, pp. 1–18, Dec. 2016.

[3] V. Ronge, C. Egger, R. W. F. Lai, D. Schröder, and
H. H. F. Yin, “Foundations of ring sampling,” PoPETs,
vol. 2021, no. 3, pp. 265–288, Jul. 2021.

[4] P. Fauzi, S. Meiklejohn, R. Mercer, and C. Orlandi,
“Quisquis: A new design for anonymous cryptocurren-
cies,” in ASIACRYPT 2019, Part I, ser. LNCS, vol. 11921,
Springer, Heidelberg, Dec. 2019, pp. 649–678.

[5] C. Egger, R. W. F. Lai, V. Ronge, I. K. Y. Woo, and
H. H. F. Yin, “On defeating graph analysis of anonymous
transactions,” PoPETs, vol. 2022, no. 3, pp. 538–557,
Jul. 2022.

[6] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh, “Zether:
Towards privacy in a smart contract world,” in FC 2020,
ser. LNCS, vol. 12059, Springer, Heidelberg, Feb. 2020,
pp. 423–443.

[7] Z. Yu, M. H. Au, J. Yu, R. Yang, Q. Xu, and W. F.
Lau, “New empirical traceability analysis of CryptoNote-
style blockchains,” in FC 2019, ser. LNCS, vol. 11598,
Springer, Heidelberg, Feb. 2019, pp. 133–149.

[8] S. Vijayakumaran, Analysis of CryptoNote transaction
graphs using the Dulmage-Mendelsohn decomposition,
Cryptology ePrint Archive, Report 2021/760, 2021.

[9] D. A. Wijaya, J. Liu, R. Steinfeld, and D. Liu, “Monero
ring attack: Recreating zero mixin transaction effect,” in
TrustCom/BigDataSE 2018, IEEE, 2018, pp. 1196–1201.

[10] T. P. Pedersen, “Non-interactive and information-
theoretic secure verifiable secret sharing,” in
CRYPTO’91, ser. LNCS, vol. 576, Springer, Heidelberg,
Aug. 1992, pp. 129–140.

[11] R. W. F. Lai, G. Malavolta, and V. Ronge, “Succinct argu-
ments for bilinear group arithmetic: Practical structure-
preserving cryptography,” in ACM CCS 2019, ACM
Press, Nov. 2019, pp. 2057–2074.

[12] T. Attema, R. Cramer, and M. Rambaud, “Compressed
Σ-protocols for bilinear group arithmetic circuits and ap-
plication to logarithmic transparent threshold signatures,”
in ASIACRYPT 2021, Part IV, ser. LNCS, vol. 13093,
Springer, Heidelberg, Dec. 2021, pp. 526–556.

[13] M. Rosenberg, M. Maller, and I. Miers, “SNARKBlock:
Federated anonymous blocklisting from hidden common
input aggregate proofs,” in S&P 2022, IEEE, 2022,
pp. 948–965.

[14] J. P. K. Ma and S. S. M. Chow, “SMART credentials in
the multi-queue of slackness,” in EuroS&P, IEEE, 2023.

[15] A. L. Dulmage and N. S. Mendelsohn, “Coverings of
bipartite graphs,” Canadian Journal of Mathematics,
vol. 10, 517–534, 1958.

[16] S. P. Vadhan, “The complexity of counting in sparse,
regular, and planar graphs,” SIAM Journal on Computing,
vol. 31, no. 2, pp. 398–427, 2001.

[17] T. Tassa, “Finding all maximally-matchable edges in a
bipartite graph,” Theoretical Computer Science, vol. 423,
pp. 50–58, 2012.

A P P E N D I X A
B A S I C C RY P T O G R A P H I C P R I M I T I V E S

We recall the standard definitions of pseudorandom functions,
commitment schemes and argument systems.

Definition A.1 (Pseudorandom Functions): A pseudorandom
function PRF : K × X → Y is associated with an efficiently
sampleable key space K, a domain X , and a codomain Y . It
is said to be secure if for any PPT adversary A∣∣∣∣∣∣

Pr
[
APRF(k,·),O0(1λ) = 1

∣∣∣ k ← K, f ← YX
]

− Pr
[
APRF(k,·),O1(1λ) = 1

∣∣∣ k ← K, f ← YX
]
∣∣∣∣∣∣ ≤ negl(λ),

where YX denotes the set of all functions from X to Y , Ob

inputs x ∈ X and outputs PRF(k, x) if b = 0 and else f(x).
Definition A.2 (Commitments): A commitment scheme

for message space X , randomness space R, and commitment
space C is a tuple of PPT algorithms COM = (Setup,Com).
The setup algorithm pp ← Setup(1λ) generates the public
parameters pp. The commitment algorithm com ← Com(x)
inputs (implicitly) the public parameters pp, a message x ∈ X ℓ,
and (implicitly) a randomness r ∈ R and outputs a commitment
com ∈ C. Unless specified, it is understood that r is sampled
uniformly at random from R.

Definition A.3 (Binding): A commitment scheme
COM is binding if for any PPT adversary A it holds
that Pr

[
BindingCOM,A(1

λ) = 1
]

is negligible in λ, where
BindingCOM,A is defined in Figure 10.

Definition A.4 (Hiding): A commitment scheme COM is
hiding if for any PPT adversary A∣∣Pr[Hiding0COM,A(1

λ) = 1
]
− Pr

[
Hiding1COM,A(1

λ) = 1
]∣∣

is negligible in λ, where HidingbCOM,A is defined in Figure 10.
Definition A.5 (Non-Interactive Arguments): A non-

interactive argument system is a tuple of PPT algorithms

580

BindingCOM,A(1
λ)

pp← Setup(1λ)

(x, r, x′, r′)← A(pp)
b0 := ((x, r) ̸= (x′, r′))

b1 := (com(x; r) = com(x′; r′))

return b0 ∧ b1

HidingbCOM,A(1
λ)

pp← Setup(1λ)

(x0, x1)← A(pp)
com← Com(xb)

b′ ← A(com)

return b′

Fig. 10. Biding and Hiding experiments for Commitments.

2 4 6 8 10
ring size k

0.0

0.2

0.4

0.6

0.8

%
 u

se
d

ac
co

un
ts

 c
ol

le
ct

ed

(m,n)=(1,1)
(m,n)=(2,2)
T=40
T=80
T=160
T=240
T=320

2 3 4 5 6 7 8 9
ring size k

10-3

10-2

10-1

100

%
 u

se
d

ac
co

un
ts

 c
ol

le
ct

ed

(m,n)=(1,1)
(m,n)=(2,2)
T=40
T=80
T=160
T=240
T=320

Fig. 11. Percentage of unused accounts collected against k for a = 6.

ARG = (Setup,Prove,Vf). The setup algorithm pp ←
Setup(1λ) generates the public parameters. The proving
algorithm π ← Prove(stmt,wit) inputs (implicitly) the public
parameters pp, a statement stmt, and a witness wit and outputs
a proof π. The verification algorithm Vf(stmt, π) inputs
(implicitly) the public parameters pp, a statement stmt, and a
proof π and outputs a bit b.

Definition A.6 (Completeness): A non-interactive argument
system ARG is complete for a relation R if for any λ ∈ N,
any public parameters pp ∈ Setup(1λ), any pair of state-
ment and witness (stmt,wit) satisfying R, and any proof
π ∈ Prove(stmt,wit), it holds that Vf(stmt, π) = 1.

Definition A.7 (Knowledge Soundness): A non-interactive
argument system ARG is knowledge-sound for a relation R
if for any PPT prover A there exists an expected polynomial
time knowledge extractor EA such that

Pr

[
Vf(stmt, π) = 1

∧ R(stmt,wit) = 0

∣∣∣∣∣ pp← Setup(1λ)

((stmt, π),wit)← (A, EA)(pp)

]
is negligible in λ, where we wrote (A, EA) for the joint
execution with common input and randomness.

Definition A.8 (Zero-Knowledge): A non-interactive argu-
ment system ARG is zero-knowledge for a relation R if there
exists a PPT simulator S = (S0,S1) such that for any PPT A∣∣∣∣∣ Pr

[
AO0(pp)

∣∣ pp← Setup(1λ)
]

− Pr
[
AO1(pp)

∣∣ (pp, td)← S0(1λ)]
∣∣∣∣∣ ≤ negl(λ),

where Ob(stmt,wit) asserts that R(stmt,wit) = 1 and returns
Prove(stmt,wit) if b = 0 and S1(td, stmt) if b = 1.

A P P E N D I X B
P R O O F S F O R G A R B A G E C O L L E C T O R

A. Proof of Theorem 6.6

Theorem 6.6: If a transaction graph G has a closed ring-
induced subgraph H , then Core(H) =

⋃
i Hi where each Hi

is a closed component of Core(G).

2 3 4 5 6 7 8 9 10
number of initial accounts a

0.0

0.2

0.4

0.6

0.8

1.0

%
 u

se
d

ac
co

un
ts

 c
ol

le
ct

ed

(m,n)=(1,1)
(m,n)=(2,2)
T=40
T=80
T=160
T=240
T=320

2 3 4 5 6 7 8
number of initial accounts a

10-3

10-2

10-1

100

%
 u

se
d

ac
co

un
ts

 c
ol

le
ct

ed

(m,n)=(1,1)
(m,n)=(2,2)
T=40
T=80
T=160
T=240
T=320

Fig. 12. Percentage of unused accounts collected against a for k = 5.

Proof: The theorem follows from two technical lemmas, Lem-
mas 1 and 2. Lemma 1 states that Core(H) is a closed ring-
induced transaction subgraph of Core(G). Lemma 2 states that,
if a transaction graph G′ satisfies G′ = Core(G′), and H ′ is a
closed ring-induced subgraph of G′, then H ′ =

⋃
i Hi where

each Hi is a closed component of G′. The conditions of two
lemmas are satisfied by G′ = Core(G) and H ′ = Core(H)
due to Lemma 1, the fact that Core(G′) = Core(Core(G)) =
Core(G) = G′, and the fact that the core of a transaction graph
is itself a transaction graph. We can thus apply Lemma 2 to
reach the desired conclusion.

Proposition 1: If G is a transaction graph and H is a closed
ring-induced subgraph of G, then H is also a transaction graph.

Proposition 2: If G is a transaction graph, then Core(G) is
also a transaction graph.

The two propositions above are trivial.
Proposition 3: If a transaction graph G is closed, then

Core(G) is closed.
Proof: Let G = (U,R,E), and Core(G) = (U,R,E′).

Suppose Core(G) is not closed, then |nbE′(R)| ≠ |R|.
Since Core(G) is also a transaction graph, we have |U | =
|nbE′(R)| ≥ |R|. Consequently |nbE(R)| ≥ |nbE′(R)| > |R|,
contradicting that G is closed.

Proposition 4: If a transaction graph G has a closed ring-
induced subgraph H , then Core(H) is a subgraph of Core(G).

Proof: It suffices to show that a maximum matching in G can
be formed by adding edges in G to any maximum matching
in H . Let G = (U,R,E) and H = (U ′, R′, E′) where |U ′| =
|nb(R′)| = |R′| (since H is closed and ring-induced). Let M
be any maximum matching in H . Assume for now that G \H
is also a transaction graph. Then, there exists a maximum
matching M ′ in G \H . We have that M ∪M ′ is a maximum
matching of G, and the claim follows.

It remains to show that G\H is a transaction graph. Suppose
not, then there exists a ring r∗ in G \H such that all edges
connecting r∗ in G are pointing to U ′. However, this means the
subgraph of G induced by R′∪{r∗} has U ′ as the set of users,
where |R′ ∪ {r∗}| = |R′|+1 = |U ′|+1 > |U ′|, contradicting
that this ring-induced subgraph is a transaction graph.

Lemma 1: If a transaction graph G has a closed ring-induced
subgraph H , then Core(H) is a closed ring-induced transaction
subgraph of Core(G).

Proof: By Propositions 1 and 2, Core(H) is a transaction
graph. By Proposition 4, Core(H) is a subgraph of Core(G).
By Proposition 3, Core(H) is closed.

581

It remains to show that Core(H) is ring-induced. Suppose
not, then there exists an edge e∗ = (u∗, r∗) in Core(G) ⊆ G
connecting r∗ ∈ R′ to u∗ ∈ U , which is not in Core(H).
Since H is ring-induced, we have e∗ ∈ E′, hence u∗ ∈ U ′.
Since e∗ is in Core(G), it is in a maximum matching M of G.
Let M ′ be the subset of M connected to R′. Since e∗ is
connecting R′, e∗ ∈ M ′. Since H is ring-induced, all edges
of M ′ are connecting R′ to U ′. Therefore, M ′ is a maximum
matching of H and e∗ ∈ Core(H), a contradiction.

Proposition 5: Let G = (U,R,E) be a transaction graph,
and H = (U ′, R′, E′) a proper subgraph of G, i.e. U ′ ⊂ U or
R′ ⊂ R or E′ ⊂ E. If G is connected, then E′ ⊂ E.

Proof: Suppose E = E′. Then the only ways for H to be
a proper subgraph of G are U ′ being a proper subset of U
or R′ being a proper subset of R. If the former is true, i.e.
U ′ ⊂ U , then there exists u ∈ U \U ′ and an edge e ∈ E \E′

connecting u, for otherwise G is not connected. If the latter
is true, i.e. R′ ⊂ R, then there exists r ∈ R \R′ and an edge
e ∈ E \ E′ connecting r, for otherwise G is not connected.
Both cases contradict E = E′.

Proposition 6: Let G = (U,R,E) be a transaction graph,
and H = (U ′, R′, E′) a closed ring-induced subgraph of G. If
E′ ⊂ E, then U ′ ⊂ U and R′ ⊂ R.

Proof: For any e = (u, r) ∈ E \E′, since H is ring-induced,
we have r /∈ R′; therefore, R′ is a proper subset of R (and
|R′| < |R|). Since H is closed, we have |U ′| = |R′|. Since G
is a transaction graph, we have |U | ≥ |R|. We immediately
arrive at that |U ′| < |U |, i.e. U ′ is a proper subset of U .

Lemma 2: Let G be a transaction graph where G = Core(G).
If H is a closed ring-induced subgraph of G, then H =

⋃
i Hi

where each Hi is a closed component of G.
Proof: Write H = (UH , RH , EH) =

⋃
i∈I Hi where Hi is

a component of H , and assume for now that each Hi is a
component of G.

We first show that each Hi is closed. Suppose that there exists
j ∈ I such that Hj is not closed. Let J ⊆ I be maximal such
that Hj is not closed for all j ∈ J . Write Hj = (Uj , Rj , Ej).
We have |Uj | = |nb(Rj)| ≠ |Rj |. Since Hj is a component
of G and, therefore, a transaction graph, we have |Uj | ≥ |Rj |,
hence |nb(Rj)| > |Rj |. Then |nb(RH)| =

∑
i∈I |nb(Ri)| =∑

i∈I\J |Ri|+
∑

j∈J |nb(Rj)| >
∑

i∈I\J |Ri|+
∑

j∈J |Rj | =
|RH |, contradicting that H is closed.

It remains to show that Hi is a component of G for all i ∈ I .
Note that Hi is a ring-induced subgraph of H , therefore also

a ring-induced subgraph of Gi for some component Gi of G.
We argue below that Hi = Gi for all i ∈ I .

Suppose not, then there exists i∗ ∈ I such that Hi∗ =
(U ′

i∗ , R
′
i∗ , E

′
i∗) is a proper subgraph of Gi∗ = (Ui∗ , Ri∗ , Ei∗).

Since Gi∗ is connected, from Proposition 5, we know that
E′

i∗ ⊂ Ei∗ . Further, since Hi∗ is a closed ring-induced subgraph
of Gi∗ , from Proposition 6, we have U ′

i∗ ⊂ Ui∗ and R′
i∗ ⊂ Ri∗ .

Observe that there exist no edge e = (u, r) ∈ Ei∗ where r ∈
R′

i∗ and u ∈ Ui∗ \U ′
i∗ , since Hi∗ is ring-induced. Consequently,

there exists an edge e∗ = (u∗, r∗) ∈ Ei∗ such that u∗ ∈ U ′
i∗

and r ∈ Ri∗ \R′
i∗ , for otherwise, G is not connected and hence

not a component.

Now note that since G = Core(G), e∗ belongs to a maximum
matching M of Gi∗ . By the pigeonhole principle, there exists
an edge e† = (u†, r†) in M where r† ∈ R′

i∗ and u† ∈ Ui∗ \U ′
i∗ .

However, Hi∗ is ring-induced by the rings R′
i∗ , so e† is an edge

in Hi∗ , or e† ∈ U ′
i∗ . We have arrived at a contradiction.

B. Proof of Theorem 6.7

Theorem 6.7: Let G be a transaction graph. If
{Hi = (Ui, Ri, Ei)}i is the collection of all closed components
of Core(G), then the subgraph of G induced by

⋃
i Ri is closed.

Proof: The proof of this theorem relies on a technical lemma,
Lemma 5, which states that if there exists an edge connecting
a ring r in a closed component of Core(G) to a node u
outside the component, then u belongs to a closed component
of Core(G). By Lemma 5, any edge e in G connected to a
ring r in Hi for some i must be pointing to a node u in Hj

for some j. Therefore, the subgraph of G induced by
⋃

i Ri

has neighbours nbE(
⋃

i Ri) =
⋃

i Ui. For all i, since Hi is
closed and connected, we have |Ui| = |Ri|. Consequently,
|nbE(

⋃
i Ri)| = |

⋃
i Ui| = |

⋃
i Ri|, i.e. then the subgraph

of G induced by
⋃

i Ri is closed.
Lemma 3: Let G = (U,R,E) be a transaction graph. If

G = Core(G) and G is connected, then for all ring r ∈ R, it
holds that deg(r) ≥ 2.

Proof: Since G is a transaction graph, deg(r) ≥ 1 for all
r ∈ R. Suppose the claim is false, let r∗ be a ring in R
with deg(r∗) = 1. Let u∗ be the unique neighbour of r∗. We
consider two cases.

Case 1: deg(u∗) = 1. In this case, u∗ and r∗ are not con-
nected to any other nodes in G, violating that G is connected.

Case 2: deg(u∗) > 1. Let r′ ̸= r∗ be another neighbour
of u∗. Since G = Core(G), there exists a maximum matching
M containing (u∗, r′). In this M , r∗ is not connected to node
u ∈ U , since its only neighbour u∗ is connected to r′. However,
since G is a transaction graph, any maximum matching of G
must involve all r ∈ R, including r∗.

As both cases lead to a contradiction, the claim is true.
Lemma 4: Let G = (U,R,E) be a transaction graph where

G = Core(G), G is connected and G is not closed. If H is
a subgraph of G obtained by removing any one user node
u0 ∈ U and all edges connecting to u0, then it holds that H
is a transaction graph.

Proof: Suppose, contrary to the claim, that H is not a
transaction graph, i.e. H does not have any matching involving
all rings R. Then u0 is saturated in all maximum matchings
in G. We show in the following that this is not possible.

Let M be any maximum matching in G. Let the edge
saturating u0 in M be (u0, r0). By Lemma 3, all ring r ∈ R
satisfies deg(r) ≥ 2. Since deg(r0) ≥ 2, r0 has at least one
neighbour other than u0. If there exists a neighbour u1 ̸= u0

of r0 which is not saturated in M , then we are done since
removing (u0, r0) and adding (u1, r0) results in a maximum
matching in which u0 is not saturated.

Suppose all neighbours of r0 are saturated in M . For each
neighbour u1 ̸= u0, let the edge in M saturating u1 be (u1, r1).
Since deg(r1) ≥ 2, r1 has at least one neighbour other than u1.

582

If there exists a neighbour u2 ̸= u1 of r1 which is not saturated
in M , then we are done since removing (u0, r0) and (u1, r1),
and adding (u1, r0) and (u2, r1) results in a maximum matching
in which u0 is not saturated.

Suppose all neighbours of r1 are saturated in M . For
each neighbour u2 ̸= u1, let the edge in M saturating u2

be (u2, r2). Consider all infinitely many possible sequences
(u0, u1, u2, . . .) produced using the above procedure. Since G
is not closed, |U | = |nbE(R)| > |R|. However, since M
is a maximum matching, we have |U(M)| = |R|, where
U(M) = {u ∈ U : (u, r) ∈ M} denotes the set of
user nodes in M . Therefore, there must exist a sequence
(u0, u1, . . . , ui, . . .) such that ui is not in U(M), i.e. ui is not
saturated in M . Thus, removing (u0, r0), . . . , (ui−1, ri−1) and
adding (u1, r0), . . . , (ui, ri−1) results in a maximum matching
in which u0 is not saturated.

Lemma 5: Let G = (U,R,E) be a transaction graph and
H = (U ′, R′, E′) be a closed component of Core(G). If there
exists an edge e = (u, r) ∈ E with u /∈ U ′ and r ∈ R′, then u
belongs to another closed component of Core(G).

Proof: Suppose e = (u, r) ∈ E with u /∈ U ′ and r ∈ R′

exists, then u must belong to another component I of Core(G).
Suppose that the claim is false, i.e. I is not closed. Note that I is
a transaction graph where I = Core(I) since I is a component
of Core(G). Applying Lemma 4, the graph I ′ obtained from I
by removing u and all edges in I connected to it is also a
transaction graph, i.e. there exists a maximum matching M ′

in I ′. Note that M ′ is also a maximum matching in I .
Consider now a maximum matching M in H . We observe

that M ∪M ′ is a maximum matching of the transaction graph
H ∪I . Let (u†, r) be the edge in M saturating r. By removing
(u†, r) from and adding e = (u, r) to M ∪ M ′, we obtain
another maximum matching M∗ in H ∪ I . However, this
implies e is an edge in Core(G) connecting a node in H ,
contradicting that H is a component of Core(G).

A P P E N D I X C
P R O O F S F O R DA S P R O P E R T I E S

Theorem 4.1: If TAG is correct and key-binding and ARG
is complete for R, then Ω has integrity.

Proof: (Sketch.) The derivation integrity is immediate from
the correctness of TAG. For the action integrity, we notice from
the ActionIntegrityΩ,A experiment for any PPT algorithm A
that, if the single_use condition is omitted, then the correctness
of TAG and the completeness of ARG guarantee that the
experiment returns 0 with certainty. If the single_use condition
is taken into consideration, then the experiment returns 1 if A
is able to produce two distinct secret keys sk, sk′ included in
two distinct account secret keys which generate an identical
tag of the tagging scheme TAG. This however violates that
TAG.TagEval is key-binding.

Theorem 4.2: If COM is binding and ARG is knowledge-
sound for R, then Ω has authenticity.

Proof: (Sketch.) The source and target binding properties
are immediate given the binding property of COM.

To prove the knowledge soundness of Ω, we construct a
knowledge extractor EA which runs the knowledge extractor
of ARG for each action transcript output by an adversary A.
Consider the experiment AuthenticityΩ,A,EA

(1λ). The exper-
iment outputs 1 if valid_txs = 1 but valid_actions = 0 or
single_use = 0. From the knowledge-soundness of ARG,
the probability of valid_txs = 1 but valid_actions = 0 is
negligible. For the event of valid_txs = 1 but single_use = 0,
this happens only if EA can produce two distinct tags, say tag =
TAG.TagEval(sk) and tag′ = TAG.TagEval(sk′), for a single
account acc, which happens only if EA can produce two distinct
tuples (ask, x) and (ask, x′) where SChk(acc, ask, x) = 1 and
SChk(acc, ask′, x′) = 1. By the source binding property, this
occurs with negligible probability.

Theorem 4.3: If TAG is related-key pseudorandom, COM is
hiding, and ARG is zero-knowledge for R, then Ω is private.

Proof: (Sketch.) We first consider a static-corruption variant
of PrivacybΩ,A where adversary A declares in advance all
queries to CorruptO, and then argue about privacy against
adaptive corruption by complexity leveraging. The privacy of Ω
against static corruption could be proven straightforwardly.

First, we modify PrivacybΩ,A to obtain a pair of hybrids
where the ARG proof in the challenge transcript is replaced by
one simulated by the zero-knowledge simulator of ARG. This
modification is unnoticeable due to ARG being zero-knowledge.
Next, we define another pair of hybrids where tags of the
honest users included in the challenge transcript are replaced
by random ones. This is unnoticeable since TAG is related-key
pseudorandom. For the final pair of hybrids, the only difference
between these experiments is in the target accounts included in
the challenge transcript. Since COM is hiding, this difference
can be noticed with negligible probability.

Theorem 4.4: If TAG is one-way and related-key pseudo-
random, and ARG is knowledge-sound and zero-knowledge
for R, then Ω has availability.

Proof: (Sketch.) Similar to the proof of privacy, it is easier to
first consider a variant of availability against static corruption,
and then argue about availability against adaptive corruption
by complexity leveraging. The availability of Ω against static
corruption could be proven straightforwardly.

First, we modify AvailabilityΩ,A to obtain a hybrid where
the ARG proof in the challenge transcript is replaced by one
simulated by the zero-knowledge simulator of ARG. This
modification is unnoticeable due to ARG being zero-knowledge.
Next, we define another hybrid where tags of the honest users
included in the challenge transcript are replaced by random
ones. This modification is unnoticeable due to TAG being
related-key pseudorandom. Finally, we argue that the above
hybrid outputs 1 only with negligible probability. Indeed, for
this experiment to output 1, the adversary must produce a valid
action transcript different from the challenge one such that they
contain at least one common tag tag, which was sampled at
random by the experiment. Since ARG is knowledge-sound, by
running the knowledge extractor of ARG, we could obtain sk
satisfying tag = TAG.TagEval(sk). This, however, violates the
one-wayness of TAG.

583

