
HORSTIFY: Sound Security Analysis of
Smart Contracts

Sebastian Holler‡∗, Sebastian Biewer†, Clara Schneidewind∗
∗Max-Planck-Institute for Security & Privacy

Universitätsstraße, Bochum, Germany
†Saarland University, ‡Saarbrücken Graduate School of Computer Science

Saarland Informatics Campus, Saarbrücken, Germany

Abstract—The cryptocurrency Ethereum is the most widely
used execution platform for smart contracts. Smart contracts
are distributed applications, which govern financial assets and,
hence, can implement advanced financial instruments, such as
decentralized exchanges or autonomous organizations (DAOs).
Their financial nature makes smart contracts an attractive
attack target, as demonstrated by numerous exploits on popular
contracts resulting in financial damage of millions of dollars.
This omnipresent attack hazard motivates the need for sound
static analysis tools, which assist smart contract developers in
eliminating contract vulnerabilities a priori to deployment.

Vulnerability assessment that is sound and insightful for
EVM contracts is a formidable challenge because contracts
execute low-level bytecode in a largely unknown and potentially
hostile execution environment. So far, there exists no provably
sound automated analyzer that allows for the verification of
security properties based on program dependencies, even though
prevalent attack classes fall into this category. In this work, we
present HORSTIFY, the first automated analyzer for dependency
properties of Ethereum smart contracts based on sound static
analysis. HORSTIFY grounds its soundness proof on a formal
proof framework for static program slicing that we instantiate to
the semantics of EVM bytecode. We demonstrate that HORSTIFY
is flexible enough to soundly verify the absence of famous attack
classes such as timestamp dependency and, at the same time,
performant enough to analyze real-world smart contracts.

Index Terms—Ethereum, Smart Contract, Blockchain, Depen-
dency Analysis, Security, Tool

I. INTRODUCTION

Modern cryptocurrencies enable mutually mistrusting users
to conduct financial operations without relying on a cen-
tral trusted authority. Foremost, the cryptocurrency Ethereum
supports the trustless execution of arbitrary quasi Turing-
complete programs, so-called smart contracts [30], which
manage money in the virtual currency Ether.

The expressiveness of smart contracts gives rise to a whole
distributed financial ecosystem known as Decentralized Fi-
nance (DeFi), which encompasses a multitude of (financial)
applications such as brokerages [20], [31], decentralized ex-
changes [2], [16], [32] or decentralized autonomous orga-
nizations [14], [26]. However, smart contracts have shown

This work has been supported by the Heinz Nixdorf Foundation through
a Heinz Nixdorf Research Group (HN-RG) and funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy—EXC 2092 CASA—390781972, and through
grant 389792660 as part of TRR 248—CPEC, see https://perspicuous-
computing.science.

to be particularly prone to programming errors that lead to
devastating financial losses [4]. These severe incidents can be
attributed to different factors. First, smart contracts are agents
that interact with a widely unpredictable and potentially hostile
environment. Accounting for all possible environment behav-
iors adds a layer of complexity to smart contract development.
Second, smart contracts manage real money. This financial
nature makes them an extraordinarily lucrative attack target.
Third, transactions in blockchain-based cryptocurrencies, like
Ethereum, are inherently immutable. As a consequence, not
only the effects of exploits are persistent, but also vulnerable
smart contracts cannot be patched. Given this state of affairs,
it is of utmost importance to preempt contract vulnerabilities
a priori to contract deployment.

Sound static analysis tools allow for reasoning about all
possible runtime behaviors without deploying a contract on the
blockchain. In this way, smart contract developers and users
can reliably identify and eliminate harmful behavior before
publishing or interacting with Ethereum smart contracts. How-
ever, as shown in recent works [24], [25], most automatic static
analyzers for Ethereum smart contracts that promise soundness
guarantees cannot live up to their soundness claims.

To the best of our knowledge, the only tools targeting
sound and automated static analyses of smart contract security
properties are Securify [27], ZEUS [18], EtherTrust [12],
NeuCheck [21], and eThor [24]. The soundness claims of
ZEUS, Securify, EtherTrust, and NeuCheck are systematically
confuted in [25] and [24].

The analysis tool eThor [24] comes with a rigorous sound-
ness proof but only supports the verification of reachability
properties. While this is sufficient to characterize the absence
of interesting attack classes, many other smart contract security
properties do not fall within this property fragment. Grishenko
et al. [13] give a semantic characterization of security prop-
erties that characterize the absence of prominent classes of
smart contract bugs. Most of these properties fall into the
class of non-interference-style two-safety properties that we
will refer to as dependency properties and fall out of the scope
of eThor’s analysis. The only tool that, up to now, targeted
the (sound) verification of dependency properties was the tool
Securify [27]—which was empirically shown unsound in [24].

Our Contributions: In this work, we revisit Securify’s
approach. In this course, we analyze the peculiar challenges

245

2023 IEEE 36th Computer Security Foundations Symposium (CSF)

© 2023, Sebastian Holler. Under license to IEEE.
DOI 10.1109/CSF57540.2023.00023

20
23

 IE
EE

 3
6t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

79
-8

-3
50

3-
21

92
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

75
40

.2
02

3.
00

02
3

in designing a sound static dependency analysis tool for
Ethereum smart contracts. We show how to overcome these
obstacles with a principled approach based on rigorous formal
foundations. Leveraging a formal proof framework for static
program slicing [29], we design a provably sound dependency
analysis for Ethereum smart contracts on the level of Ethereum
Virtual Machine (EVM) bytecode. Finally, we give an im-
plementation of the analyzer HORSTIFY that performs the
static dependency analysis via a logical encoding, which can
be automatically solved by Datalog solvers. We demonstrate
how to use HORSTIFY to automatically verify dependency
properties on smart contracts, such as the ones defined in [13].
Concretely, we make the following contributions:
• We study the root causes of the soundness issues of

the state-of-the-art Ethereum smart contract analysis tool
Securify [27] that so far had only been reported through
empirical evidence in [24], [25]. In this course, we
uncover new soundness problems in Securify’s analysis,
which we can show to affect real-world smart contracts.

• We devise a new dependency analysis for EVM bytecode
based on program slicing following the static program
framework presented in [29].

• We prove this dependency analysis to be sound with
respect to a formal semantics of EVM bytecode.

• We show how to approach relevant smart contract security
properties presented in [13] with the dependency analysis.

• We present HORSTIFY, an automated prototype static
analysis tool that implements the dependency analysis.

• We demonstrate that HORSTIFY overcomes the sound-
ness issues of Securify while showing comparable per-
formance and small precision loss on real-world smart
contracts.

The remainder of the paper is organized as follows: Sec-
tion II overviews our approach; Section III introduces the
necessary background on Ethereum smart contract execution;
Section IV discusses the challenges in designing sound static
analysis tools for smart contract dependency analysis; Sec-
tion V introduces the slicing proof framework from [29] that
our analysis builds on; Section VI presents our static analysis
based on program slicing and its soundness proof; Section VII
reports on our prototype implementation HORSTIFY and its
practical evaluation; and Section IX concludes the paper.

II. OVERVIEW

In this paper, we develop a dependency analysis tool for
EVM bytecode that is designed in accordance with formal
correctness statements providing overall soundness guarantees.
The correctness proof is modularized as depicted in Figure 1.
The core module is a generic proof framework [29] for
backward slicing using abstract control flow graphs (CFGs).
In these CFGs, each node is annotated with all variables it
reads and all variables it writes. The backward slice of a
node is a set containing all nodes that possibly influence
the variables written in the respective node. The framework
extends the abstract CFG to a program dependence graph
(PDG) by explicitly defining the data and control dependencies

Abstract CFG

Program Dependence
Graph (PDG)

Backward Slices

Generic
correctness
statement

EVM Semantics

Security Properties

Horn Clauses

Security Patterns

Solver

Correctness
Statement

Correctness
Statement

secure/
insecure

EVM CFG Semantics

A

B

C

HoRStify

EVM
Backward Slices

Slicing Framework

D

E

Fig. 1. Overview on the formal guarantees of HORSTIFY

between the nodes. For this PDG, the framework establishes
a generic correctness statement for slicing: whenever a node
influences another, the influencing node appears in the back-
ward slice of the influenced node. To obtain the correctness
result for a concrete programming language the abstract CFG
representation is instantiated for a concrete program semantics.

We instantiate the framework for EVM bytecode by devising
a new EVM CFG semantics. We show (A) that the EVM CFG
semantics satisfies all requirements for instantiation and (B)
that it is equivalent to a formalisation of the EVM bytecode
semantics. From this, we obtain backward slicing for EVM
contracts with a corresponding correctness statement (C).

For the actual analysis, we express dependencies in EVM
contracts by means of dependency predicates which we char-
acterize by (fixpoints over) a set of logical rules, given in the
form of Constrained Horn Clauses (CHC). Most importantly,
we show that if the backward slice of some program point
contains some other program point, then the (potential) de-
pendency between these two program points is also captured
by the predicate encoding (D).

From the EVM bytecode analyzer Securify [27] we adopt
the idea of defining so-called security patterns to soundly
approximate the satisfaction (or violation) of a security prop-
erty. A security pattern is a set of facts over dependency
predicates, which characterize the form of dependencies that
are ruled out by the pattern. In contrast to Securify, our
formal characterization of dependency predicates enables a
correctness statement for the approximating behavior of the
security patterns w.r.t. their corresponding property (E).

Finally, we present the prototype tool HORSTIFY that
implements our dependency analysis and uses the Datalog
engine Soufflé to perform the fixpoint computation and to
check whether a security pattern is matched. A pattern match
guarantees (in)security w.r.t. the respective security property.

Challenges: The main challenge of designing a practical
and sound dependency analysis for EVM bytecode is finding
precise and performant abstractions that tame the complexity
of EVM bytecode while maintaining soundness guarantees. As

246

we will show in Section IV, EVM bytecode’s language design
makes this task particularly hard: Non-standard language fea-
tures introduce corner cases that are easily overlooked or make
it necessary to enhance the analysis with custom optimizations
that can lead to unsoundness when done in an ad-hoc manner.
As a consequence, it is of paramount importance to construct
a sound analysis tool with formal foundations that are flexible
enough to cover those subtleties.

The slicing framework [29] enables a modular soundness
proof that separates the standard argument for the correctness
of slicing from the characterization of program dependencies.
However, even though this reduces the proof effort, a naive
instantiation of the framework would introduce a multitude of
superfluous dependencies and hence lead to a highly imprecise
analysis. For this reason, the key challenge lies in the design
of the EVM CFG semantics. We will show how to approach
these challenges with a solid theoretical foundation and by
circumventing the bothersome technical hurdles without com-
promising the soundness of the analysis.

In this paper, we give a high-level overview of the relevant
theorems and proofs and refer the interested reader to an
extended version of this paper [15] for the technical details.

III. BACKGROUND ON ETHEREUM SMART CONTRACTS

Ethereum smart contracts are distributed applications that
are jointly executed by the users of the Ethereum blockchain.
In the following, we shortly overview the workings of
Ethereum and the resulting particularities of the Ethereum
smart contract execution environment.

a) Ethereum: The cryptocurrency Ethereum supports
smart contracts via an account-based execution model. The
global state of the system is given by accounts whose states are
modified through the execution of transactions. All accounts
have in common that they hold a balance in the currency
Ether. An account can be either an external account that
is owned by a user of the system and that solely supports
user-authorized money transfers, or a contract account that
manages its spending behavior autonomously by means of a
program associated with the contract that may use its own
persistent storage to provide advanced stateful functionalities.

Users interact with accounts via transactions. Transactions
either call existing accounts or create new contract accounts. A
call transaction transfers an amount of money (that could be 0)
to the target account and triggers the execution of the account’s
code if the target is a contract account. A contract execution
can modify the contract’s persistent storage and potentially
initiates further transactions. In this case, we speak of internal
transactions, as opposed to external transactions, which are
initiated by users on behalf of external accounts.

b) Smart Contract Languages: Smart contracts are spec-
ified in EVM bytecode and executed by the Ethereum Virtual
Machine (EVM). EVM bytecode is a stack-based low-level
language that supports standard instructions for stack ma-
nipulation, arithmetics, jumps, and memory access. On top,
EVM’s instruction set includes blockchain-specific opcodes,
for example, to access transaction information and to initiate

internal transactions. While the EVM bytecode is technically
Turing-complete, the execution of smart contracts is bounded
by a transaction-specific resource limit. With each transaction,
the originator sets this limit in the unit gas and pays for it
upfront. During the execution, instructions consume gas. The
execution halts with an exception if running out of gas and
reverts all effects of the prior execution.

In practice, Ethereum smart contracts are written in high-
level languages—foremost, Solidity [1]—and compiled to
EVM bytecode. Solidity is an imperative language that mimics
features of object-oriented languages like Java but supports
additional primitives for accessing blockchain information and
performing transactions. For better readability, we will give
examples using the Solidity syntax even though our analysis
operates on EVM bytecode. We will introduce relevant Solid-
ity language features throughout the paper when needed.

c) Adversarial Execution Environment: The blockchain
environment poses novel challenges to the programmers of
smart contracts. As opposed to programs that run locally,
smart contracts are executed in an untrusted environment. This
means, in particular, that certain system parameters cannot be
fully trusted. A prominent example of this issue is Ethereum’s
block timestamp: In Ethereum’s blockchain-based consensus
mechanism, the system is advanced by appending a bulk
of transactions grouped into a block to the blockchain, a
distributed tamper-resistant data structure. These blocks are
created by special system users, so-called miners. While all
system users check that blocks only contain valid transactions,
the correctness of a block’s metadata cannot easily be verified.
So is each block required to carry a timestamp, but due to the
lack of synchronicity in the system, this timestamp can only be
checked to lie within a plausible range. This enables a miner
to choose the value of the block timestamp freely within this
range. The following example illustrates how this peculiarity
can be exploited in a smart contract:

1 function spinWheel() private (uint) {
2 return block.timestamp % 37; }

The function spinWheel() implements a spinning wheel that
determines a random number between 0 and 36 based on
the block timestamp (accessed via block.timestamp). Based on
such a function, a contract could implement a roulette game
where players bet money on the outcome of the spinning
wheel. While the system timestamp may serve as a decent
source of randomness for programs that run locally, this is not
the case for smart contracts. A miner could easily tweak the
timestamp of a block containing an invocation of the spinWheel

function and thereby influence its outcome. In this way, a
miner could ensure to win the roulette game themself.

IV. CHALLENGES IN SOUND DEPENDENCY ANALYSIS

As recently demonstrated in the literature [25], the sound
analysis of Ethereum smart contracts is a challenging problem;
most analysis tools aiming at provable soundness guarantees
fall short of their goal. This can be mainly attributed to the
non-standard language features of the EVM bytecode language
and the unusual execution model of the EVM: Smart contracts

247

compliance: all jump(L1, Y,), sstore(L2, ,).

MustFollow(L1, L2) ∧ DetBy(L1, Y, caller)
violation: some sstore(L1, X,).

¬MayDepOn(X, caller) ∧ ¬MayDepOn(L1, caller)

Fig. 2. Restricted Write compliance and violation pattern [27]

are executed in a (potentially) hostile environment, which can
interact with, and even, schedule contracts. The smart contract
execution is dependent on the gas resource and the low-level
EVM bytecode language features little static information. As a
consequence, execution heavily depends on unknown runtime
parameters, which makes it hard to reason statically about
contract behaviors in a sound and reasonably precise and
efficient manner. This incentives the incorporation of ad-hoc
optimizations, which increase the complexity of the analysis
even further. Consequently, it is crucial to establish rigorous
formal foundations for EVM bytecode analysis and to align
the implementation with these foundations. In the following,
we demonstrate how the lack of formal foundations affects the
guarantees of the state-of-the-art analysis tool Securify [27].

A. Securify

The automated analyzer Securify is the only analysis tool up
to now that aims at giving provable guarantees for dependency
analyses of EVM bytecode contracts. It decompiles the byte-
code into a stackless intermediate representation (IR), where
values are stored in variables in static single assignment (SSA)
form rather than on a stack. Further, it determines the CFG of
the contract and encodes the transitive control and data flow
dependencies between variables and program locations as a set
of dependency predicates. While it is not possible to specify
arbitrary (security) properties in Securify, the tool allows for
defining compliance patterns and violation patterns that serve
as “approximations” for the satisfaction and, respectively, the
violation of the property. These patterns are defined over the
dependency predicates and can be checked automatically using
the Datalog solver Soufflé [17]. A compliance pattern is sound
w.r.t. a property, if satisfying the pattern implies satisfaction
of the property, and, analogously, a violation pattern is sound
w.r.t. a property if satisfying the pattern implies violation of the
property. If neither of the patterns is satisfied, the satisfaction
of the property is inconclusive. Obviously, it cannot be that
for the same contract and for the same property a sound
compliance and violation pattern hold simultaneously.

An example of a security property is the restricted write
(RW) property for storage locations. Intuitively, a contract
satisfies RW, if for all storage locations, there is at least one
caller address that cannot write to this location. Figure 2 shows
a compliance1 and violation pattern for RW [27].

The compliance pattern for RW states that for all conditional
jump instructions at program location L1 that branch on con-
dition Y (jump(L1, Y,)) and for all storage write instructions

1The Securify implementation contains two compliance patterns; one is
shown in [27], the other one is shown in Figure 2.

1 contract Start { bool test = false;
2 function flipper() public {
3 if (uint(msg.sender) * 0 == 0)
4 { test = !test; } } }

Fig. 3. Securify counterexample: must-analysis

at location L2 (sstore(L2, ,)) that are necessarily preceded
by such jump instructions (MustFollow(L1, L2)), it must hold
that at location L1 the condition Y must be determined
by the caller of the transaction (DetBy(L1, Y, caller)). The
violation pattern for RW states that there is some storage
write instruction at location L1 writing to storage address X
(sstore(L1, X,)) such that that neither the address X nor
the execution of the storage instruction at L1 may depend
on the caller of the transaction (¬MayDepOn(X, caller) ∧
¬MayDepOn(L1, caller)).

B. Soundness Issues

Even though Securify characterizes security properties and
their corresponding compliance and violation patterns, no
formal connection between patterns and properties is estab-
lished. In particular, they do not prove the soundness of
the patterns they propose in [27] w.r.t. the properties they
are supposed to approximate. Doing so would require 1) to
prove that the dependency predicates imply semantic notions
of independence (sound core analysis) and 2) to prove that
the semantic notions implied by the security patterns indeed
imply the security properties (sound security patterns). In
the following, we use the example of the RW property to
show how the absence of formal soundness arguments causes
Securify to miss corner cases that undermine its soundness
guarantees.

1) Sound Core Analysis: Securify does not draw a con-
nection between the dependency predicates and the EVM
bytecode semantics. This leads to mismatches between the
intuitions for the predicates and their definitions.

a) Must-analysis: Securify’s dependency analysis and
predicates can be attributed to one of two categories: a
may-analysis aims at over-approximating possible control and
dataflow dependencies, encoded by may-predicates, and a
must-analysis aims at capturing dependencies and deducing
must-predicates that show a definite effect on the actual
execution. According to their usage in the security patterns,
negated may-predicates imply a notion of independence, while
must-predicates should imply a form of determination. More
precisely, it is stated that the must-predicate DetBy(L, Y, T)
“indicates that a different value of T guarantees that the value
of Y changes.” [27] This guarantee, however, is violated in the
contract shown in Figure 3, where Securify inferred that test is
determined by the caller although every caller can change the
value of test: The check of the conditional evaluates to true for
any value of msg.sender, hence allowing every caller to write
the test field. Still, Securify reports this contract to match
the compliance pattern, indicating that the condition in line 3
would be determined by the caller. The underlying reason for
this problem is of substantial nature: The must-analysis under-

248

1 contract Start { bool test = false;
2 function storeTest(uint c) public {
3 address[] memory a = new address[](7);
4 for (uint i = 0; i < 7; i++) {
5 a[i] = msg.sender;}
6 if (a[0] != address(0)) {test = !test;} } }

Fig. 4. Securify counterexample: storage abstraction

approximates control flows but over-approximates data flows.
More precisely, a variable X is considered to be determined by
a variable Y if Y occurs in the expression assigned to X . Since
msg.sender appears in the condition expression in line 3, the
condition is considered to be determined by msg.sender even
though it actually is independent of msg.sender. This treatment
makes the must-analysis inherently unsound.

Due to this substantial mismatch between the intuition for
the DetBy predicate and its implementation, it is unclear
whether adjusting the implementation of the must-analysis
such that it is sound, could result in a performant and precise
analysis. So, in this work, we will focus on the may-analysis.

b) Memory Abstraction: For establishing a sound may-
analysis, it is crucial to overapproximate dependencies for
all relevant system components that can interact with each
other. In particular, this includes stack, memory and storage
variables, because values are written from the stack to the
local memory and persistent storage, and back. However, the
addresses of memory and storage accesses are not statically
known but specified on the stack. E.g., the EVM instruction
MSTORE(x, y) denotes that the value in stack variable y
should be written to the address as given in stack variable x.
Consequently, the concrete memory address at which the value
in y will be stored may only be known at runtime. This poses
a big challenge to static analysis since for precisely modeling
the dependencies on different memory and storage cells, their
accesses need to be known statically. Otherwise, the dependen-
cies on all memory and storage cells would need to be merged,
resulting in a substantial precision loss. In practice, memory
and storage addresses can in most cases be precomputed by
partial evaluation [27]. Hence, this preprocessing information
can be used to enhance the analysis precision.

Securify implements this optimization in an unsound way, as
illustrated by the example in Figure 4. Here, function storeTest

locally defines a new address array a of size 7 and initializes
all its elements with the contract caller msg.sender. The write
access to the test variable is restricted by the condition that
the first array element a[0] (which obviously contains the
caller address) is not 0. Consequently, the contract satisfies
the RW property. Still, Securify certifies a violation of the RW
pattern w.r.t. test2. The example illustrates that the analysis
does not consider that a memory address may be statically
unknown at the point of writing but known at the point of
reading. Since writing to the array is done in a loop, for the
assignment a[i] = msg.sender the memory address cannot be
statically determined. For the condition in line 6, in contrast,

2This is indeed unsoundness and not imprecision: Securify guarantees that
a property does not hold if the violation pattern matches. Only inconclusive
cases (i.e., no compliance and no violation pattern matches) cause imprecision.

1 contract Start { bool test = false;
2 address a;
3 function setAddress(address addr) public
4 { a = addr; }
5 function flipper () public {
6 try Start(this).setAddress(msg.sender) {
7 if (a != address(0)) { test = !test; }
8 } catch { revert(); } } }

Fig. 5. Securify counterexample: reentrancy handling

1 contract Check {
2 function testZero (address a) public {
3 assert (a == address(0)); } }
4 contract Start {
5 bool test = false;
6 address check = address(42);
7 function flip() public {
8 try Check(check).testZero(msg.sender){
9 test = !test;

10 } catch {return;} } }

Fig. 6. Securify counter example: external call handling

the memory address for a[0] can be precomputed. However,
Securify fails to account for the fact that dependencies of
an unknown memory access should propagate to all concrete
memory addresses.

c) Reentrancy handling: Smart contracts are reactive
programs in the sense that they can transfer control to other
contracts and are subject to reentrancy, i.e., while awaiting the
return of the other contract, this contract may call the waiting
contract again. Figure 5 shows a simple case of reentrancy. In
this variant of Figure 3, function flipper calls the contract’s
function setAddress within a new internal transaction3. flipper
uses setAddress to store the caller msg.sender in the storage lo-
cation a (defined in line 2). Then, flipper modifies the critical
storage location test if and only if the address stored in a is
not zero. Ethereum contracts are executed non-concurrently,
so the value of a remains unchanged after line 6 and before
the evaluation of the condition in line 7.

Consequently, a caller with address 0 can never write to
the test field and the contract satisfies the RW property w.r.t.
test. Still, Securify reports a match of the violation pattern for
test. Inspection of the Securify code reveals that it does not
model potential dependencies between arguments of external
calls and storage locations accessible via reentrancy.

d) External call handling: Aside from reentrancy, exter-
nal calls may affect the local execution state in multiple ways.

The success of an external call is indicated by placing a
corresponding flag on the stack and the return value of the
call (if existent) is written to a memory fragment that is
specified as an argument to the call. These effects may depend
on the recipient and the arguments of the call. The example
in Figure 6 illustrates how ignoring those dependencies causes
an unsoundness in Securify: In this example, the sender check
is outsourced to the method testZero of another contract.
The assignment of variable test depends on whether testZero

3A reasonable contract would call a function of the same contract directly
so that such a call would be translated to a JUMP by the compiler. The chosen
syntax enforces that the function call will be translated to a CALL instead.

249

1 contract Start { bool test = false;
2 function flipper () public {
3 require(gasleft() > 10000);
4 bool flip = false;
5 if (msg.sender == address(0)) {
6 { while (gasleft() >= 5000)
7 { flip = !flip; } }
8 if (gasleft() < 5000) {test = flip;} } }

Fig. 7. Securify counterexample: gas handling

returns without the assert throwing an exception, which in turn
depends on (the input data) msg.sender. Hence, this contract
satisfies the RW property. Still, Securify reports a violation,
since no dependencies between the input to the call and the
call output are modeled.

e) Gas handling: Figure 7 shows a contract that indi-
rectly restricts write access to storage test by consuming the
gas resource in a controlled way. In line 3, the contract ensures
that it is executed with a generous amount of gas; if not enough
gas is available, the execution is aborted and no caller is able
to write to test. The code between lines 5 and 7 essentially
wastes masses of gas if the caller address is equal to 0, and,
otherwise, consumes very little gas. The crux of the contract
is in line 8: From the amount of gas that is left, the contract
can determine if the caller’s address is equal to 0—this is the
case if and only if less than 5000 gas units are left. Hence,
depending on the amount of available gas, either no caller or
only caller 0 can write to test. So, there is always at least
one caller that cannot write to test—the contract satisfies the
RW property. However, Securify reports a violation of this
property. The reason for this wrong analysis result is that
Securify does not track dependencies for the gas resource.

2) Sound Security Properties: Since the dependency predi-
cates do not have a semantic characterization, the soundness of
the security patterns w.r.t. their corresponding property cannot
be proven. Indeed, Schneidewind et al. [24] provide counter
examples for the soundness of 13 out of the 17 security
patterns given in [27]. Above that, the unsoundness of the
RW property undeniably manifests in line 4 of the contract
we constructed in Figure 5. For this example, Securify reports
simultaneously(!) satisfaction of a compliance and a violation
pattern for the RW property w.r.t. a. This refutes the claim that
compliance and violation patterns constitute sufficient criteria
for property compliance and violation, respectively.

V. ANALYSIS FOUNDATIONS

To design a sound static analysis for EVM bytecode based
on program slicing, we instantiate the slicing proof framework
from [29] with a formal bytecode semantics as defined in [13].
Before discussing the instantiation in Section VI, we shortly
overview both frameworks.

A. EVM bytecode semantics

The EVM semantics was formally defined in [13] in form of
a small-step semantics. We use a linearized representation of
the semantics inspired by Securify, where the use of the stack
is replaced by the usage of local variables in SSA form. We

will call these variables stack variables and, in the following,
always refer to the linearized representation of the semantics.

Formally, the semantics of EVM bytecode is given by a
small-step relation Γ � S → S′. The relation describes how a
contract, whose execution state is given by a callstack S, can
progress to callstack S′ under a transaction environment Γ.
The transaction environment Γ holds information about the ex-
ternal transaction that initiated execution. We let Γ � S →∗ S′
denote the reflexive transitive closure of the small-step relation
and call the pair (Γ, S) a configuration. The details of the
components of the EVM configurations can be found in [13].
The overall state of an external transaction execution is
captured by a callstack S. The elements of the callstack
model the states of all (pending) internal transactions. In-
ternal transactions can either be pending, as indicated by a
regular execution state (µ, ι, σ), or terminated. The state of
a pending transaction encompasses, the current global state
σ, the execution environment ι and the machine state µ.
The global state σ describes the state of all accounts of the
system and is defined as a partial mapping between account
addresses and account states. The execution environment ι,
among others, contains the code of the currently executing
contract. We model the code of a contract as a function C that
maps program counters to tuples (op(~x), pcnext, pre), where
op denotes an opcode from the EVM instruction set, ~x is the
vector of input and output (stack) variables to this opcode, and
pcnext denotes the program counter for the next instruction.
Further, we instrument each instruction with a list pre of
precomputed values for the arguments ~x. This instrumentation
is only introduced for analysis purposes and does not affect
the execution.

The machine state µ captures the state of the local machine
and holds the amount of gas (g) available for execution, the
program counter (pc), the local memory, and the state of the
(linearized) stack variables (s).

a) Small-step Rules: We illustrate the working of the
EVM bytecode semantics using the example of the ADD
instruction. This instruction takes two values as input and
writes their sum back to its return variable.

ι.code [µ.pc] = (ADD(r, a, b), pcnext, pre) µ.g ≥ 3
µ′ = µ[s→ µ.s[r → µ.s(a) + µ.s(b)]][pc→ pcnext][g −= 3]

Γ � (µ, ι, σ) :: S
ADD(a,b)−−−−−→ (µ′, ι, σ) :: S

Given a sufficient amount of gas (here 3 units), an ADD
instruction with result (stack) variable r and operand (stack)
variables a and b writes the sum of the values of a and b to
r and advances the program counter to pcnext. These effects,
as well as the subtraction of the gas cost, are reflected in the
updated machine state µ′.

b) Security properties: Previous work [13] has shown
that there are several generic smart contract security properties,
which are desirable irrespective of the individual contract
logic. The properties formally defined in [13] are integrity
properties that aim at ruling out the influence of attacker
behavior on sensitive contract actions, in particular, the spend-
ing of money. These properties are e.g., the independence

250

of a contract’s spending behavior from miner-controlled pa-
rameters (as the block timestamp) or mutable contract state.
Further, [13] introduces the notion of call integrity, which
requires that the spending behavior of a contract is independent
of the code of other smart contracts. Since call integrity is
hard to verify in the presence of reentering exeutions, a proof
strategy is devised that decomposes call integrity into one
reachability property (single-entrancy) that restricts reentering
executions and two local dependency properties. These local
dependency properties ensure that the spending behavior of the
contract does not depend on the return effects of calls to other
(unknown) contracts (effect independence) or immediately on
the code of such contracts (code independence).

Focussing on integrity, the security properties from [13]
are given as non-interference-style notions. We illustrate this
with the example of timestamp independence, a property that
requires that the block timestamp cannot influence a contract’s
spending behavior and hence would rule out vulnerabilities as
those in the roulette example:

Definition 1 (Independence of the block timestamp). A con-
tract C is independent of the block timestamp if for all
reachable configurations (Γ, sC :: S) it holds for all Γ′ that

Γ =/timestamp Γ′ ∧ Γ � sC :: S
π−→
∗
s′C :: S ∧ final (s′)

∧ Γ′ � sc :: S
π′
−→
∗
s′′C :: S ∧ final (s′′) =⇒ π ↓callsC = π′ ↓callsC

This definition requires that two executions of the contract
C starting in the same execution state sC and in transaction
environments Γ and Γ′ that are equal up to the block timestamp
(denoted by Γ =/timestamp Γ′) exhibit the same calling behavior
(captured by the call traces π ↓callsC). Intuitively, this ensures
that the contract C may not perform different money transfers
based on the block timestamp. The roulette example trivially
violates this property since, based on the block timestamp, the
prize will be paid out to a different user.

B. Program Slicing

Static program slicing is a method for capturing the de-
pendencies between different program points (nodes) and
variables in a program. Intuitively, the program slice of some
program node n in a program P consists of all those nodes n′

in P that may affect the values of variables written in n. Pro-
gram slices are constructed based on the program dependence
graph (PDG) that models the control and data dependencies
between the nodes of a program. In the following, we will
review the static slicing framework by Wasserraab et al. [29],
which establishes a language-independent correctness result
for slicing based on abstract control flow graphs (CFGs).

a) Abstract control flow graph: An abstract CFG is a
language-agnostic representation of program semantics. Tech-
nically, an abstract CFG is parametrized by a set of program
states Θ and defined by a set of nodes (representing program
points) and a set of directed edges between nodes. Edges may
be of two different types: State-changing edges n−⇑f −→ n′

alter the program state θ ∈ Θ by applying the function f to
θ and predicate edges n − (Q)√ −→ n′ guard the transition
between n and n′ with the predicate Q on the program state

θ. We write n as−→
∗
n′ to denote that node n can be reached

n′ using the edges in the list as. Abstract CFG edges can
be related to actual runs of the program by lifting them to a
small-step relation of the form 〈n, θ〉 −a−→ 〈n′, θ′〉.

b) PDG and backward slices: The PDG for a program
consists of the same nodes as the CFG for this program and
has edges that indicate data and control dependencies. To make
data dependencies inferable, each node n is annotated with a
set of variables that are written (short Def set, written Def(n))
and a set of variables that are read by the outgoing edges of
the node (short Use set, written Use(n)). A node n′ is data
dependent on node n (written n −→dd n

′) if n defines a variable
Y (Y ∈ Def(n)), which is used by n′ (Y ∈ Use(n′)) and n′

is reachable from n in the CFG without passing another node
that defines Y . A node n′ is (standard) control dependent on
node n (written n −→cd n

′) if n′ is reachable from n in the
CFG, but n can as well reach the program’s exit node without
passing through n′ and all other nodes on the path from n
to n′ cannot reach the exit node without passing through n′.
So intuitively, n is the node at which the decision is made
whether n′ will be executed or not. Based on the data and
control flow edges of the PDG, the backward slice of a node
n (written BS(n)) is defined as the set of all nodes n′ that can
reach n within the PDG.

c) Correctness statement: The generic correctness state-
ment for slicing proven in [29] is stated as follows:

Theorem 1. Correctness of Slicing Based on Paths [29]

〈n, θ〉 as−→
∗
〈n′, θ′〉

∃ as′. 〈n, θ′〉 as′−→
∗

BS(n′) 〈n′, θ′′〉 ∧ as ↓BS(n′)= as′

∧ (∀ V ∈ Use(n′).θ′(V) = θ′′(V))

Intuitively, the theorem states that whenever a node n can
reach some node n′ in the PDG (〈n, θ〉 as−→

∗
〈n′, θ′〉), then

removing all outgoing edges from nodes not in the backward

slice of n′ (〈n, θ〉 as′−→
∗

BS(n′) 〈n′, θ′′〉) without altering the
path through the PDG in any other way (as ↓BS(n′)= as′)
has no impact on n′. Having no impact on n′ means that
variables used in n′ are assigned to the same values re-
gardless of whether the edges have been removed or not
(∀V ∈ Use(n′). θ′(V) = θ′′(V)). We call the PDG without
the above-mentioned edges also sliced PDG or sliced graph.

VI. SOUND EVM DEPENDENCY ANALYSIS

In the following, we instantiate the slicing proof frame-
work [29] to accurately capture program dependencies of
EVM smart contracts in terms of program slices. We then
give a logical characterization of such program slices, which
allows for the automatic computation of dependencies between
different program points and variables with the help of a
Datalog solver. The generic correctness statement of the slicing
proof framework guarantees that the slicing-based dependen-
cies soundly over-approximate all real program dependencies.
We show how to use this result to automatically verify relevant
smart contract security properties such as the independence of
the transaction environment and the independence of mutable
account state as defined in [13].

251

A. Instantiation of Slicing Proof Framework
We instantiate the abstract CFG from the slicing framework

with the linearized EVM semantics.
The concrete layout of the instantiation heavily influences

the resulting backward slices and the precision of the analysis.
In the following, we sketch the most interesting aspects of our
instantiation of the CFG components and how they contribute
to the design of a precise dependency analysis.

Preprocessing Information: For a precise analysis, it is
indispensable to preprocess contracts to aggregate as much
statically obtainable information as possible—without com-
promising the soundness of the overall analysis. For example,
knowing the precise destination of jump instructions is crucial
to reconstruct control flow precisely, and, moreover, this
information usually can be easily reconstructed, especially,
when contracts were compiled from a high-level language with
structured control flow.

In the remainder, we assume that all existing preprocess-
ing information is correct and sufficient to reconstruct the
contract’s CFG. Recall that, formally, we consider a contract
a function, such that for a program counter pc, C(pc) =
(op(~x), pcnext, pre) where pre contains the preprocessing infor-
mation for the instruction op(~x): for every ~x[i], pre[i] either
holds a precomputed static value, or ⊥ to indicate that no static
value could be inferred. Note that we restrict preprocessing
to stack variables. For our analysis, we are only interested
in precomputed values for memory and storage locations and
jump destinations.

CFG States: The edges of the CFG are labeled with
state-changing functions or predicates on states. For EVM
bytecode programs, the CFG state θ is partitioned into stack
variables (denoted by xls), memory variables (xm), storage
variables (xg) and local (xel) and global (xeg) environmental
variables. Memory and storage variables represent cells in
the local memory, respectively the global storage of the
contract under analysis. Local environment variables contain
the information of the execution environment that is specific
to an internal transaction. Global environmental variables
denote environmental information whose accessibility is not
limited to a single internal transaction, like the state of other
contracts and the block timestamp. Environmental information
that cannot be directly accessed during the execution (such as
the storage of other contracts) is hidden in the dedicated global
environmental variable externaleg.

CFG Nodes, Edges & Def and Use Sets: To transform an
EVM bytecode program into a CFG, we map every program
counter pc to one or more nodes (pc, i) in the CFG (where
i ∈ N is used to distinguish between multiple nodes for
pc). We call a node (pc, 0) initial node (for pc) and nodes
(pc, i) with i > 0 intermediate nodes (for pc). Since the
size of the callstack below the translated callstack element
may influence the contract execution, the rule set defining
the CFG transformation constructs a relation of the form
C, cd � (pc, i) −a −→ (pc′, i′), where C is the contract for
which the CFG is constructed, cd is the size of the callstack,
and a stands for either a (Q)√ action (for a predicate edge) or

C(pc) = (JUMPI(x1
ls
, x2

ls
), pcnext, pre) f = (λθ.θ ← ge := θ[ge]− 10)

C, cd � (pc, 0)−⇑f−→ (pc, 1)

Def = {ge} Use = {ge}

C(pc) = (JUMPI(x1
ls
, x2

ls
), pcnext, pre) Q = (λθ.θ[x2

ls
] = 0)

C, cd � (pc, 1) −(Q)√−→ (pcnext, 0)

Def = ∅ Use = {x2
ls}

Fig. 8. JUMPI abstract CFG instantiation

⇑f action (for a state-changing edge). With every rule, we also
provide Def and Use sets. The Use sets contain all variables
whose values are retrieved from the state θ in the definition
of the Q predicate or f function. Similarly, the definition set
contains all variables that are overwritten by the function f
(and is always empty for predicate edges).

Figure 8 shows two exemplary rules for the conditional
jump instruction JUMPI. The first argument to JUMPI is the
jump destination and the second argument is the condition
variable that must be non-zero for the jump to happen. We
only show rules for the case that the condition is false, i.e., the
jump does not happen. The upper rule defines a state-changing
edge that deducts the gas that has to be paid for a JUMPI
instruction. Appropriately, both Def and Use sets contain the
gas variable because the current gas value must be read from
and the reduced value updated in state θ. Note that the edge
goes from the initial node for pc to an intermediate node for
pc, because a second step is necessary to decide whether the
program should jump. The second step, depicted by the lower
rule, continues in the intermediate node for pc and checks if
the condition (in variable x2

ls) is false (i.e., if it is zero) via
a predicate edge. In this case, the execution proceeds to the
initial node representing pcnext. x2

ls is the only variable used
by Q, hence it is the only variable in the Use set.

It can be shown that the CFG semantics and EVM semantics
coincide via two simulation relations where every (multi-)step
in the CFG semantics between initial nodes is simulated by a
step of the bytecode semantics and vice versa.

B. Core abstractions

We review the most interesting aspects of the CFG seman-
tics and how they lead to a precise dependency analysis. In
this course, we will show how to overcome the challenges
presented in Section IV.

a) Gas abstraction: In the EVM, the execution of in-
structions consumes gas. If the gas is not sufficient to finish
the execution of a contract, it is aborted with an exception.
Modeling this behavior accurately would result in a very
imprecise analysis, since, technically, every instruction would
be control-dependant on all its preceding instructions. This is
as the execution of an instruction depends on whether prior in-
structions led to an out-of-gas exception. However, in practice,
users should only call contracts with a sufficient amount of gas
since, otherwise, the contract execution exceptionally halts.
For this reason, there exist static analysis tools for computing

252

C(pc) = (ADD(y
ls
, x1

ls
, x2

ls
), pcnext, pre) f = (λθ.θ ← ge := θ[ge]− 3)

C, cd � (pc, 0)−⇑f−→ (pc, 1)

Def = {ge} Use = {ge}

C(pc) = (ADD(y
ls
, x1

ls
, x2

ls
), pcnext, pre)

f = (λθ.θ ← y
ls

:= θ[x1
ls
] + θ[x2

ls
])

C, cd � (pc, 1)−⇑f−→ (pcnext, 0)

Def = {yls} Use = {x1
ls
, x2

ls}

Fig. 9. CFG semantics rules for the ADD instruction.

1

2

4

5
6

7

3

{y1} {msg.sender}

{y1}

{gas} {gas}

{y2} {gas}

{y2}

{test} {flip}

y1 = msg.sender == address(0);

if (y1){

 while (gasLeft() >= 5000){

flip = !flip;
}

y2 = gasLeft() >= 5000;

if (y2){

 test = flip; }
}

1

2

4

5

6
7

3

 ⇒

Fig. 10. Example control flow with gas dependencies. Def sets are given at
the left of each node, Use sets at the right. Data dependencies are indicated
by black arrows, control dependencies by orange ones.

(sound) gas bounds [3] and even Solidity’s online compiler
provides gas estimates for smart contract execution.

Hence, for our analysis we assume that a contract does not
run out of gas and do not model the corresponding behavior in
the CFG semantics. We remark that Securify also makes this
assumption implicitly; we spell it out explicitly as follows:

Assumption 1 (Absence of local out-of-gas exceptions (infor-
mal)). A contract execution does not exhibit local-out-of-gas
exceptions if each local exception can be attributed to the
execution of an INVALID opcode.

In contrast to Securify, we do not ignore gas entirely,
but model the gas reduction for all instructions. This allows
capturing dependencies such as the one highlighted in Figure 7
(and missed by Securify). In the CFG, we always model the
gas reduction as a separate edge involving an intermediate
node (e.g., with the upper rule in Figure 8). The Def set of
one node contains only the gas variable, while the Def set
of the other node only contains the (stack) variables involved
in the actual instruction. An example for that is given by the
(simplified) CFG rules of the ADD instruction in Figure 9.
Technically, an ADD instruction performs two types of state
updates: it decreases the gas and performs addition on stack
variables. Since those two state updates are independent,
their execution can be split into two different nodes. As a
consequence, the node (pc, 1) is not data-dependent on nodes
writing the gas variable.

Still, the gas abstraction is sound (under Assumption 1) and
correctly captures the dependencies of the example in Fig-
ure 7: Figure 10 shows an incomplete and simplified CFG of
the example in Figure 7 with annotated Def and Use sets. The

m[x] = msg.sender;

y1 = m[0];

if (y2){

y2 = y1 != 0

 test = !test;

1

2

3

4

5

6}

{⏉m} {sender,x} ⋃ Xm

{y1} {0m}

{y2} {y1}

{y2}

{test} {test}

Securify (with fix)

1

2

3

4

5

6

Xm.D Xm.D ⋃ {sender,x}

{y1} {0m.S, 0m.D}

{y2} {y1}

{y2}

{test} {test}

HoRStify

1

2

3

6

5

4

 ⇒
Xm

 ⇒

Fig. 11. Simplified version of contract in Figure 4 satisfying the RW property
with PDGs depicting the dependencies modeled by Securify and HORSTIFY.

example illustrates how the CFG captures the dependency of
the storage write (test = flip) on the msg.sender variable. The
storage write in 6 is control dependant on the conditional y2

in 5 , and 5 depends on node 4 where y2 is defined. 4
accesses the gas value, so a dependency between 4 and the
gas nodes is established. Node 3 is one of these gas nodes
(there are more not shown in the picture). The execution of
3 depends on condition y1 checked in 2 , so it is control

dependant on 2 . Node 1 defines y1, so 2 depends on 1 .
Thus, there is a transitive dependency between writing to test

in 6 and reading msg.sender in 1 .
b) Memory Abstraction: To precisely model memory and

storage accesses in a CFG, it is important to know statically
as many memory and storage locations as possible. Assume
that such statical information is not available: then memory (or
storage) cannot be separated into regions and all read and write
operations introduce dependencies with the whole memory
(or storage). This would introduce many false dependencies.
During a preprocessing step, such static information can be
inferred. But, as demonstrated in Section IV, using prepro-
cessed data may introduce unsoundness. This requires careful
integration of preprocessing information into the CFG defining
rules. In the following we consider only memory variables; all
ideas equally apply to storage variables.

We propose a, to the best of our knowledge, novel memory
abstraction that is sound and provides high precision. To po-
sition our approach between unsound and imprecise memory
abstractions, we revisit Figure 4 in a simplified version that is
depicted as a CFG in Figure 11. The black and solid line parts
of the left CFG visualize how Securify misses the dependency
between msg.sender (1) and writing to test (5). In Securify,
write accesses to unknown memory locations are assumed to
write a special memory variable >m. However, when reading
from a statically known memory location (as done in 2),
Securify does not consider that a value could have been written
to this location when the location was not statically known,
i.e., that the value could have been stored in >m: the Use set
of 2 contains only 0m, but not >m. A hypothetical fix for
this unsoundness is to replace the variable >m by the whole
set Xm of all memory variables. This fix is depicted in violet
in Figure 11. Now, the dependency of the read access in 2 to
the write operation in 1 is naturally established. One should

253

{sender, x}m[1] = msg.sender;

m[x] = 42;

y1 = m[0]

if (y2){

y2 = y1 != 0

 test = !test;

}

2

3

4

5

6

7

{⏉m}

{sender}

{y1} {0m}

{y2} {y1}

{y2}

{test} {test}

Securify (with fix)

1{1m}

{x} ⋃ Xm 2

3

4

5

6

7

Xm.D

{y1} {0m.D, 0m.S}

{y2} {y1}

{y2}

{test} {test}

HoRStify

1{1m.S}
{}1'{1m.D}

Xm.D

1

2

3

4

5

6

7

Xm

 ⇒

Fig. 12. Contract violating the RW property with PDGs depicting the
dependencies as modeled by Securify and HORSTIFY.

notice, however, that this interpretation implies that the Use
set of node 1 needs to contain all variables in Xm as well:
a new value is written to one unknown location, but for all
other locations the value is “copied” from the existing memory
cells, and hence, all these cells need to be included in the Use
set. Even though fixing the soundness issue, this modeling
would lead to an imprecise analysis as depicted in Figure 12.
This variant of Figure 11 first writes msg.sender to the known
memory location 1 in node 1 and then writes a value to an
unknown memory location in node 2 . Since the condition
y2 only depends on the value in memory location 0 while
msg.sender was written to location 1, the final write to the
test variable in 6 does not depend on msg.sender. However,
the hypothetical fix of Securify infers a possible dependency
between 6 and msg.sender (shown in violet in the left CFG
in Figure 12). This imprecision is caused by interpreting a
write to an unknown memory location as a write to possibly all
memory locations as this requires the Use set in 2 to contain
Xm. This creates a dependency between the assignment of
location 1 to msg.sender in 1 and the memory access in 2 .

Our memory abstraction is sound but more precise than
the hypothetical fix above. For every memory variable x we
use two sub-variables instead: S-variable xm.S stores values
that are assigned to x when the memory location for x is
statically known, and D-variable xm.D stores values assigned
to x when x’s location is not statically known. During the
execution, every write access to a memory variable x stores
the assigned value in xm.D, unless the memory location for
x is statically known, in which case xm.S stores the value
and xm.D is set to ⊥. Correspondingly, when reading from
a variable (regardless of the memory location being statically
known or not), first, the value of the D-variable is read, and
only if it is ⊥, the value of the S-variable is taken. We model
this read access with the function

load θ x =

{
θ[xm.S] if θ[xm.D] = ⊥
θ[xm.D] otherwise.

This two-layered memory abstraction ensures that the exe-
cution is deterministic and that the read values coincide with
those obtained during an execution without prior preprocess-
ing. load is used in the inference rules in Figure 13 that define

the memory read and write operations for the CFG semantics.
In these rules, we use Xm.S for the set of all S-variables and
Xm.D for the set of all D-variables. The leftmost MSTORE
rule is for the case that a value is written to a memory
location that could not be statically inferred (i.e., pre[0] = ⊥).
There, any of the memory variables from Xm.D might be
redefined, hence the Def set contains all variables in Xm.D.
As discussed for the hypothetical fix of Securify, also the Use
set needs to include Xm.D, because we must not interrupt
potential dependencies for memory cells that are not changed
by this MSTORE instruction. An example for this is node 2
in Figure 12 (right CFG). The S-variables are not part of the
Use set and hence not part of the value intermingling in 2 .
This removes the imprecision that occurred in the proposed
hypothetical fix above. Still, the MLOAD rules make sure that
no dependencies to S-variables are missed by adding both
D-variables and S-variables to the Use set. This way, the
connection between the memory location and the stored value
is preserved; x1

m.D does not inherit any data dependencies
from x2

m.S for locations x1 6= x2. An example for that is
given in Figure 12, where memory location 0 does not inherit
the dependency from memory location 1 written in 1 . This is
thanks to the node splitting at 1 that breaks the propagation
of dependencies on precomputed locations to dynamic ones.

c) Call Abstraction: Contract calls in Ethereum trigger
a multitude of possible (side) effects. When calling another
account, the control flow is handed over to the code residing
in this account. This code may initiate further internal transac-
tions, e.g., perform money transfers or even reenter the calling
contract before reporting back the result to the callee.

This behavior poses a big challenge to sound static analysis
since all possible effects of interactions with other (potentially
unknown) contracts need to be over-approximated. Securify
avoids this challenge by sacrificing soundness and ignoring
all data dependencies arising from external calls (including
effects of reentrancy) as demonstrated by the examples in Fig-
ure 5 and Figure 6. In contrast, to give a sound and precise
characterization of these dependencies, we first simplify the
problem by restricting our analysis to a set of well-behaved
smart contracts and then model the remaining dependencies in
a fine-grained manner.

The class of smart contracts that we target are such contracts
that cannot write storage variables in reentering executions.
This restriction rules out race conditions on contract variables
and as such is a highly-desirable property that can be easily
achieved (e.g., by a strict local locking discipline). We call
contracts satisfying this restriction store unreachable:

Assumption 2 (Store unreachability (informal)). A contract
C is store unreachable if all its reentering executions cannot
reach an SSTORE instruction.

The contract in Figure 5 trivially violates store unreachabil-
ity since the field a can be written in a reentering execution.
This could be easily fixed by guarding each function with a
lock that blocks reentering executions. Store unreachability is
a local reachability property of the contract under analysis and

254

C(pc) = (MLOAD(y
ls
, x

ls
)), pcnext, pre)

pre[1] = ⊥
f = (λθ.θ ← y

ls
:= load θ (θ[x

ls
]))

C, cd � (pc, 0)−⇑f−→ (pc, 1)

Def = {yls} Use = Xm
.D ∪ Xm

.S ∪ {xls}

C(pc) = (MSTORE(x1
ls
, x2

ls
), pcnext, pre)

pre[0] = ⊥
f = (λθ.θ ← θ[x1

ls
].D := θ[x2

ls
])

C, cd � (pc, 0)−⇑f−→ (pc, 1)

Def = Xm
.D Use = Xm

.D ∪ {x1
ls
, x2

ls}

C(pc) = (MLOAD(y
ls
, x

ls
)), pcnext, pre)

pre[1] = bxmc
f = (λθ.θ ← y

ls
:= load θ xm

)

C, cd � (pc, 0)−⇑f−→ (pc, 1)

Def = {yls} Use = {xm
.S, xm

.D}

C(pc) = (MSTORE(x1
ls
, x2

ls
), pcnext, pre)

pre[1] = bxmc
f = (λθ.θ ← x

m
.S := θ[x2

ls
])

C, cd � (pc, 0)−⇑f−→ (pc, 1)

Def = {xm
.S} Use = {x2

ls}

C(pc) = (MSTORE(x1
ls
, x2

ls
), pcnext, pre)

pre[0] = bxmc f = (λθ.θ ← x
m
.D := ⊥)

C, cd � (pc, 1)−⇑f−→ (pc, 2)

Def = {xm
.D} Use = ∅

Fig. 13. MLOAD memory abstraction instantiation

C(pc) = (CALL(y
ls
, gls

, tols
, vals

, iols
, isls

, ools
, osls

), pc′, pre)
f1 = λθ.θ ← y

ls
:= applyCall(θ, C, pc)[y

ls
]

f2 = λΘ.θ ← externaleg
:= applyCall(θ, C, pc)[externaleg

]
f = λθ.f2(f1(Θ))

C, cd � (pc, 0)−⇑f−→ (pc, 1)

Def = {yls
, externaleg}

Use = {gls
, tols

, vals
, iols

, isls
, ools

, osls
, gel

, actorel} ∪ X
m ∪ X

eg ∪ X
g

Fig. 14. Simplified CFG rule for the CALL opcode

as such falls in the scope of the sound analysis tool eThor [24]
and hence can be automatically verified.

Even when focussing on store unreachable contracts, the
program dependencies induced by external calls are manifold
and often subtle. Figure 14 shows one (slightly simplified)
rule of the CFG semantics for external calls. As seen in
the previous examples, node splitting is used to separate the
dependencies of different variables. The rule displayed in Fig-
ure 14 gives one of the rules for setting a call’s return value
(written to the stack variable yls) and updating the external
environment (represented by variable externaleg) according to
the call effects.

To obtain the updated CFG state after a call, the rule uses
the function applyCall, which executes the internal transaction
initiated by the CALL opcode4. The CFG state resulting from
this execution is then used to describe the state updates (in
the case of the given rule, the updates on the variables yls

and externaleg, as indicated by the Def set). Even though the
whole CFG state θ is taken as an argument by applyCall,
not all variables in θ can influence all aspects of the state
after returning. The variables that indeed may affect yls and
externaleg are given in the Use set. More precisely, the result
of a call may still depend on the global state, so all global
environmental variables (Xeg), as well as the global variables
of the contract under analysis itself (Xg). Additionally, the
execution of the called contract can be influenced by the
parameters given to the call: The argument gls attributes to
the amount of gas given to the call, tols gives the address of

4We define applyCall using the EVM semantics and hence can infer Def
and Use sets from the corresponding EVM semantics rules.

the recipient account and vals the amount of money transferred
with the call. The arguments iols and isls specify the memory
fraction (offset and size) from which input data to the call
is read and ools and osls correspondingly define the memory
fraction where the call’s result data will be written. In the
given simplified rule, we consider that the concrete memory
fragments could not be precomputed and hence all memory
(Xm) could potentially be input data to the call. The Use set
also contains the calling account (as given in actorel), since
this information is made accessible during a call. Finally, the
Use set contains the amount of gas that is available at the
point of calling (given by gel) since this value may influence
the amount of gas given to the call.

We want to highlight two forms of dependencies, which may
erroneously be assumed to be ruled out by the assumption of
store unreachability: First, the Use set explicitly contains the
storage variables (Xg) of the contract under analysis, even
though we assume this contract to be store unreachable and
(by the semantics) its storage variables cannot be accessed
by any other contract. Second, both the Def and the Use set
contain the variable externaleg that represents the external
environment (in particular the state of other contract accounts).
This implies that the rule in Figure 14 explicitly models
information to be stored and retrieved from contract accounts
during an external call. In Figures 15 and 16, we illustrate the
need for these dependencies by two examples.

The example in Figure 15 shows how dependencies on a
storage variable are introduced by reading a contract variable
during a reentering execution. Note that store unreachability
only assures that reentering executions can not write contract
variables, but does not prevent read accesses. The example
gives another version of the Test contract, which performs
the check of msg.sender in an indirect way: First, it writes
msg.sender to the contract variable sender. To read the variable
again, a RetrieveSender contract rs is used as a proxy: 5 The
Test contract calls RetrieveSender’s getTestSender function (in
line 15), which in turn reenters Test via its getSender function
(in line 3) to obtain the value of sender. This value is finally

5Note that in Ethereum, a contract is identified by its address. In Solidity, the
syntax RetrieveSender rs = RetrieveSender (address(42)) means
that the contract at address 42 is assumed to be (of the type) RetrieveSender
and accessible via variable rs.

255

1 contract RetrieveSender {
2 function getTestSender() public returns (address) {
3 try Test(msg.sender).getSender() returns (address a) {
4 return a; }
5 catch {return address(0); }}}
6
7 contract Test {
8 bool test = false;
9 address sender;

10 RetrieveSender rs = RetrieveSender (address(42));
11 function getSender () public returns (address) {
12 return sender;}
13 function flip () public {
14 sender = msg.sender;
15 try rs.getTestSender() returns (address a) {
16 if (a != address(0)){
17 test = !test;}}
18 catch {return; }}}

Fig. 15. Example: Reading storage variables during reentering execution.

1 contract SaveAddr {
2 address addr = address(0);
3 function set(address a) public {
4 addr = a; }
5 function get() public returns (address) {return addr; }}
6
7 contract Test {
8 bool test = false;
9 SaveAddr sa = SaveAddr (address(42));

10 function flip () public {
11 try sa.set(msg.sender) {
12 try c.get() returns (address a) {
13 if (sa != address(0)){
14 test = !test; } }
15 catch {return; }}
16 catch {return; } } }

Fig. 16. Example: Propagating dependencies via an external contract account.

returned to contract Test. As a consequence, the return variable
a in line 16 contains the value of msg.sender, and so the
assignment of variable test is dependent on msg.sender. This
dependency, however, can only be tracked when considering
that the contract’s own storage variables may influence the
return value of an external call.

The example in Figure 16 shows how dependencies can
be propagated via another contract account. Note that store
unreachability is a contract-specific property that only ensures
that the contract under analysis is not written in reentering
executions. The assumption does not restrict the storage mod-
ification of other contracts. The version of the Test contract
given in Figure 16 uses the contract SaveAddr to propagate
the value of msg.sender. To this end, it first writes the value
of msg.sender into the addr storage variable of the SaveAddr

contract sa using the set function (in line 11). Afterwards,
it retrieves the value back by accessing c’s storage via the
get function (in line 12). Consequently, the return variable
a contains the value of msg.sender in line 13 what makes
the following write to test dependent on that value. This
dependency can only be faithfully modeled when considering
that an external call may change the state of other accounts,
and may also be influenced by this state. This motivates why
the externaleg variable needs to be included in both the Def
and the Use set of the rule in Figure 14.

C. Soundness Reasoning via Dependency Predicates

Inspired by Securify, we define dependency predicates that
can capture the data and control flow dependencies induced
by the PDG (as given through the CFG semantics). They are
inhabited via a set of logical rules (CHCs) R(C) that describe
the data and control flow propagation through the PDG of a
contract C. More formally, the transitive closure of the C’s
PDG is computed as the least fixed point over R(C) (de-
noted by lfp(R(C))). Most prominently, lfp(R(C)) includes
the predicates VarMayDepOn and InstMayDepOn. Intuitively,
VarMayDepOn(y, x) states that the value of variable y may
depend on the value of variable x and InstMayDepOn(n, x)
says that the reachability of node n may depend on the
value of variable x. In the following, let nx and ny denote
nodes that define variables x and y, respectively. The formal
relation between dependency predicates and backward slices
is captured by the following lemma:

Lemma 1 (Fixpoint Characterization of Backward Slices). Let
x and y be variables and C be a contract. The following holds:

1) (∃nx ny. nx ∈ BS(ny))⇒ VarMayDepOn(y, x) ∈ lfp(R(C))
2) (∃ n nif nx. nif −→cd n ∧ nx ∈ BS(nif))

⇒ InstMayDepOn(n, x) ∈ lfp(R(C))

Lemma 1 states 1) that whenever there is a node nx
defining x in the backward slice of a node ny defining y, then
VarMayDepOn(y, x) is derivable from the CHCs in R(C) and
2) that whenever there is a node nx defining x in the backward
slice of a node nif on which node n is control dependent then
InstMayDepOn(n, x) is derivable from R(C). The intuition
behind statement 2) is that node n is controlled by nif (by
the definition of standard control dependence), which means
that nif is a branching node. nx ∈ BS(nif) indicates that the
branching condition of nif depends on variable x and, hence,
so does the reachability of n.

Next, we give an explicit semantic characterization of the
dependency predicates, which we prove sound using Theo-
rem 1. This explicit characterization enables us to compose
security patterns as a set of different facts over dependency
predicates and to reason about them in a modular fashion. As a
consequence, we can show in Section VI-D that checking the
inclusion of security patterns in the least fixpoint of the rule set
R(C) is sufficient to prove non-interference-style properties.
Concretely, we can characterize facts from the VarMayDepOn
predicate as follows:

Theorem 2 (Soundness of Dependency Predicates).

∀x y. VarMayDepOn(y, x) 6∈ lfp(R(C))⇒ y ⊥ x

with y ⊥ x given as:

∀nx i θ1 θ2 θ′1. θ1 =/x θ2 ∧ 〈nx+, θ1〉
Ny−−→

i

〈n, θ′1〉

⇒ ∃θ′2. 〈nx+, θ2〉
Ny−−→

i

〈n, θ′2〉 ∧ θ′1(y) = θ′2(y)

where nx+ denotes the unique successor node of nx, and Ny the

set of all nodes defining y. 〈nx+, θ1〉
Ny−−→

i

〈n, θ′1〉 describes an
execution from nx to n that passes exactly i nodes defining y.

256

The theorem states that if VarMayDepOn(y, x) is not in-
cluded in lfp(R(C)) then y is independent of x (y ⊥ x).
A variable y is considered independent of x if for any two
configurations θ1 and θ2 that are equal up to x, and any
execution starting at node nx+, the first node after x is defined,
passing i nodes that define y, and ending in a node n at state
θ′1, one can find a matching execution from θ2 that passes
the same number of nodes defining y and ends at node n in
a state θ′2 such that θ′2 and θ′1 agree on y. This definition
ensures loop sensitivity: it captures that during a looping
execution, every individual occurrence of a node defining y
can be matched by the other execution—so that the values of
y agree whenever y gets reassigned. The proof of Theorem 2
uses Lemma 1 and Theorem 1. For the full proof and a similar
characterization of InstMayDepOn(i, x), we refer to [15].

D. Sound Approximation of Security Properties

With Theorem 2 we are able to formally connect depen-
dency predicates and (independence-based) security proper-
ties. We take trace noninterference as a concrete example,
which comprises a whole class of non-interference-style secu-
rity properties. Concretely, we consider trace noninterference
w.r.t. a set of EVM configuration components Z, which
includes, for example, the block timestamp. A predicate f
defines instructions of interest. If two executions of a contract
C start in configurations that differ only in the components in
Z, then the instructions of interest must coincide in the two
traces that result from these executions.

Definition 2 (Trace noninterference). Let C be an EVM
contract, Z be a set of components of EVM configurations and
f be a predicate on instructions. Then trace noninterference
of contract C w.r.t. Z and f (written TNI(C,Z, f)) is defined
as follows:

TNI(C,Z, f) := ∀ Γ Γ′ s s′ t t′ π. π′

(Γ, s) =/Z (Γ′, s′)

⇒ Γ � sC :: S
π−→
∗
tC :: S ∧ final (t)

⇒ Γ � s′C :: S
π′
−→
∗
t′C :: S ∧ final (t′)

⇒ π ↓f= π′ ↓f

where π ↓f denotes the trace filtered by f , so containing only
the instructions satisfying f .

The dependency properties defined in [13] can be expressed
in terms of trace noninterference. E.g., the timestamp indepen-
dence property in Definition 1 is captured as an instance of
trace noninterference as follows:

TNI(C, {Γ.timestamp}, λop.op = CALL)

We show that we can give a sufficient criterion for
trace noninterference in terms of dependency predicates. More
precisely, we give a set PCZ,f of facts, such that PR(C)

Z,f ∩
lfp(R(C)) = ∅ implies TNI(C,Z, f). Practically, this means
that we can prove TNI(C,Z, f) by computing the least fix-
point over the CHCs R(C) (e.g., using a datalog engine)
and then check whether it contains any fact from PCZ,f . For
components in Z, we assume a function toVar that maps
components of the EVM semantic domain to CFG variables.

The dependency predicates constituting a security pattern for
trace noninterference are defined as

PCZ,f :={InstMayDepOn(pc, toVar(z)) | z ∈ Z
∧ C(pc) = op(~x, pcnext, pre) ∧ f(op)}
∪ {VarMayDepOn(xi, toVar(z)) | z ∈ Z ∧ pc ∈ dom(C)

∧ C(pc) = (op(~x, pcnext, pre)) ∧ f(op) ∧ xi ∈ ~x }.

The following theorem shows that PCZ,f is a security pattern
for trace noninterference:

Theorem 3 (Soundness of trace noninterference). Let C be
a contract, Z a set of components, and f an instruction-of-
interest predicate. Then it holds that

(∀p ∈ PCZ,f . p 6∈ lfp(R(C)))⇒ TNI(C,Z, f).

The absence of facts from PCZ,f in lfp(R(C)) ensures that
the reachability of all instructions satisfying f is independent
of variables representing components in Z and that all argu-
ments xi of such instructions are independent of z as well.
These independences imply trace noninterference since they
ensure that in two executions starting in configurations equal
up to Z, all instructions satisfying f are executed in the same
order (otherwise their reachability would depend on Z) and
with the same arguments (otherwise their argument variables
would depend on Z). Consequently, such executions produce
the same traces, when only considering instructions satisfying
f . A full proof of Theorem 3 can be found in [15].

E. Discussion

In this section, we presented a sound analysis pipeline
for checking security properties for linearized EVM bytecode
contracts by means of reasoning about dependencies between
variables or instructions. While our work was inspired by
Securify [27], we developed new formal foundations for the
dependency analysis of EVM bytecode contracts and in this
way revealed several sources of unsoundness in the analysis of
Securify. Further, we provide soundness proofs for the analysis
pipeline end-to-end; all theorems and proofs are available in
the extended version of this paper [15]. The key pillars of the
soundness proof are i) that our EVM CFG semantics satisfies
all conditions to be used with the slicing framework [29],
ii) that the EVM linearized bytecode semantics and the CFG
semantics are equivalent, iii) that our set of CHCs encodes
an over-approximation of dependencies in an EVM contract,
and iv) that the generic security pattern PCZ,f is a sound
approximation of trace noninterference. The proofs are valid
under assumptions that are clearly stated in this paper. For
Assumptions 1 and 2 we point out the existence of other sound
tools [3], [24] that can check these assumptions.

We assume that EVM smart contracts are provided in a
(stack-less) linearized form. Transforming into such a rep-
resentation from a stack-based one is a well-studied prob-
lem [19] and a standard step performed by most static analysis
tools [10], [27]. Up to this requirement, our analysis is
parametric with respect to other preprocessing steps. More
precisely, our analysis pipeline is sound for contracts with
sound preprocessing information, and hence, in particular,

257

contracts errors timeouts contracts ∅ time (ms)\(errors ∪ timeouts)

720 H 34 H 46 634 H 7055
S 34 S 30 S 3107

TABLE I
LARGE-SCALE EVALUATION OF HORSTIFY (H) AND SECURIFY (S).

for contracts without any preprocessing information but jump
destinations needed for the CFG (cf. Section VI-A). This
gives the flexibility, to enhance the precision of the analysis
through the incorporation of soundly precomputed values
and makes the design of sound preprocessing an orthogonal
problem. There exist already works on soundly precomputing
jump destinations for EVM bytecode [11], which are to be
complemented with other precomputing steps in the future.

VII. EVALUATION

The focus of this paper is on the theoretical foundations
of a sound dependency analysis of smart contracts. However,
we demonstrate the practicality of the presented approach by
developing the prototype analyzer HORSTIFY. We do not
implement the logical rules from Section VI-C directly in
Soufflé (as done by Securify), but encode them in the HORST
specification language [24]. The HORST language is a high-
level language for the specification of CHCs. By introducing
this additional abstraction layer, we get a close correspondence
between our theoretical rules and their actual implementation
and, hence, anticipate a lower risk of implementation mistakes
that may invalidate soundness claims in the implementation.

HORSTIFY accepts as input a set of dependency facts en-
coding the security patterns specified in the HORST language
and Ethereum smart contracts in the EVM bytecode format. It
first invokes Securify’s decompiler to transform the contract
into a linearized representation and does some lightweight
preprocessing to obtain the precomputable values (cf. Sec-
tion VI-A). Then, HORSTIFY uses our formal specification
of the CFG construction rules and the HORST framework to
create a Soufflé executable for the analysis and invokes it.

To reduce the risks of implementation mistakes, we pro-
ceeded in two steps. First, we encoded Securify’s RW violation
pattern in the HORST language to execute HoRStify with this
pattern and the contracts in Figures 4, 6 and 76. In contrast
to Securify, HORSTIFY correctly determines that these con-
tracts do not satisfy the RW violation pattern. In addition to
these corner cases, we successfully evaluated HORSTIFY on
Securify’s internal test suite involving 25 contracts.

Next, we conduct a large-scale evaluation of HORSTIFY
and Securify on real-world contracts. To this end, we use
the sanitized dataset from [24] that consists of 720 distinct
smart contracts from the Ethereum blockchain. We compare
the performance of Securify and HORSTIFY on this dataset
for both the RW pattern and for timestamp independence (TS)

6We did not consider the contract in Figure 3 since it concerns the must-
analysis and the contract in Figure 5, which violates Assumption 2.

Fig. 17. Classification of mismatching results of HORSTIFY (above) and
Securify (below) for the RW (left) and TS (right) property8. Ticks indicate
correct matches (tn) and crosses wrong matches (fn) of the respective tool.
tnHor/tnSec, fnHor/fnSec, tpHor/tpSec, fpHor/fpSec denote true negatives, false neg-
atives, true positives, and true negatives of HORSTIFY/Securify, respectively.

as defined in Section VI-D. We manually inspect all contracts
on which Securify and HORSTIFY report a different result.

Table I shows the evaluation results. The average execution
time of HORSTIFY is approximately 2.3 times longer than
for Securify. Consequently, HORSTIFY suffers from more
timeouts than Securify; the execution of both tools is aborted
after one minute. Figure 17 visualizes the manual classification
for those smart contracts where HORSTIFY and Securify dis-
agree. There are only two contracts where HORSTIFY matches
the corresponding pattern, but Securify does not. Recall that
for a sound tool, a pattern match indicates the discovery of
provable independencies that imply either property violation
(RW) or compliance (TS). An erroneous pattern match by
HORSTIFY would present a soundness issue (false negative).
We carefully examined the two examples and could confirm
them not to constitute false negatives of HORSTIFY but
false positives of Securify (fpSec), unveiling an imprecision of
Securify. This seems surprising since our analysis generally
tracks more dependencies than the one of Securify. However,
while HORSTIFY implements standard control dependence to
encode control dependencies (e.g., to compute join points after
loops), Securify implements a less precise custom algorithm.

The contracts where Securify matches a pattern, but HORS-
TIFY does not, can either reveal soundness issues (false nega-
tives) of Securify (fnSec) or a precision loss (false positives) of
HORSTIFY (fpHor). Indeed, in the 29 contracts that are flagged
only by Securify, we find both cases (as shown at the bottom
of Figure 17), as we will illustrate with two examples:

Figure 18 shows a (slightly shortened) version of a contract
classified as safe for TS according to Securify, but that HoRS-
tify (correctly) reports as vulnerable. It is a lottery contract that
pays out a user who manages to guess a random number (func-
tion Guess). The random number is generated from blockchain
and transaction-specific values, including the timestamp (ac-
cessed via now in RandomNumberFromSeed). Hence, the payout in
line 16 is not independent of the timestamp. Securify fails to
detect this dependency due to its unsound memory abstraction
(as described in Section IV-B): As Ethreum’s hash function
(sha3) reads input from the local memory, the timestamp is
written to the memory where its dependencies are lost.

Figure 19 shows an example of a false positive for HORS-
TIFY. The contract implements a lottery where users can reg-
ister (via buyTicket) and whenever 5 users were registered, one

8For TS we only consider the 165 contracts from the dataset containing a
TIMESTAMP opcode, as Securify labels other contracts as trivially secure.
The manual classification is a conservative best-effort estimate.

258

1 contract RNG {
2 mapping (address => uint) nonces;
3 uint public last;
4 function RandomNumber() returns(uint) {
5 return RandomNumberFromSeed(
6 uint(sha3(block.number))ˆuint(sha3(now))
7 ˆuint(msg.sender)ˆuint(tx.origin)); }
8 function RandomNumberFromSeed(uint seed) returns(uint) {
9 nonces[msg.sender]++;

10 last = seedˆ(uint(sha3(block.blockhash(block.number),
11 nonces[msg.sender]))
12 *0x000b0007000500030001);
13 return last; }
14 function Guess(uint _guess) returns (bool) {
15 if (RandomNumber() == _guess) {
16 if (!msg.sender.send(this.balance)) throw;
17 RandomNumberGuessed(_guess, msg.sender);
18 return true; }
19 return false; } }

Fig. 18. Lottery Contract 0xaed5a41450b38fc0ea0f6f203a985653fe187d9c

1 contract lottery{
2 address[] public tickets;
3 function buyTicket(){
4 if (msg.value != 1/10) throw;
5 if (msg.value == 1/10)
6 tickets.push(msg.sender);
7 address(0x88a1e54971b31974b2be4d9c67546abbd0a3aa8e)
8 .send(msg.value/40);
9 if (tickets.length >= 5) runLottery(); }

10 function runLottery() internal {
11 tickets[addmod(now, 0, 5)].send((1/1000)*95);
12 runJackpot();}
13 function runJackpot() internal {
14 if(addmod(now, 0, 150) == 0)
15 tickets[addmod(now, 0, 5)].send(this.balance);
16 delete tickets; } }

Fig. 19. Lottery contract 0xe120100349a0b1BF826D2407E519D75C2Fe8f859

of them is selected as a winner. Despite the obvious timestamp
dependency, the contract shows RW violations, which HORS-
TIFY fails to prove.9 E.g., the tickets array is updated without
performing a check on the sender. HORSTIFY does not detect
this vulnerability due to its sound storage abstraction: In line 6,
the caller (msg.sender) is appended to the tickets array. Since
the array position to which msg.sender will be added cannot
be statically known, HORSTIFY needs to assume msg.sender

to be written to any position. When checking the size of
tickets in line 9, the condition is considered dependent on
msg.sender (because in the abstraction, msg.sender is considered
to potentially affect all storage locations, including the one
containing the array size). Thus, the delete operation in line 16
is considered dependent on msg.sender. One should notice, that
only the unsoundness of Securify’s storage abstraction, enables
Securify to correctly detect the RW violation in this case.

Overall, based on our evaluation results, we can bound the
precision loss of HORSTIFY w.r.t. Securify. More concretely,
when considering that Securify has a specificity10 of SSec on
the full dataset, then one can easily show that it holds for the

9Note that this is not a soundness issue since the soundness of HORSTIFY
ensures that independencies can be proven. In the case of violation patterns
as RW the independence constitutes an unwanted effect and hence, we can
only use it to prove the vulnerability of a contract, not its safety.

10The specificity is a standard precision measure and is calculated as tn
tn+fp

specificity SHor of HORSTIFY that SHor ≥ SSec + tnHor−tnSec
|dataset|

where tnHor are the true negatives for HORSTIFY, and tnSec

are the true negatives for Securify found within the man-
ually inspected mismatching contracts. Inserting the results
from Figure 17, we can show that SHor can be at most 0.5
percentage points less than SSec for RW on the given dataset
and at most 5.4 percent points less for TS.

We refer to horstify.org for more information about
HORSTIFY.

VIII. RELATED WORK

Existing approaches to enforce the correctness of Ethereum
smart contracts can be broadly categorized into analyses at de-
sign time and analyses at runtime. The latter include methods
like runtime monitoring [8], [28] or information flow control
mechanisms [5]. Such dynamic analysis approaches, however,
have limited applicability to the Ethereum blockchain, since
they either require fundamental updates to the workings of
the EVM or impose tremendous costs in terms of gas. Static
analyses, in contrast, verify smart contracts at design time be-
fore they become immutable objects on the blockchain. Most
static analyzers are bug-finding tools (such as Oyente [22],
EthBMC [9], and Maian [23]) that aim to reduce the number
of contracts that are wrongly claimed to be buggy (false
positives). To this end, these tools usually rely on the symbolic
execution of the contract under analysis. The dual objective
of bug-finding is to prove a smart contract secure. Analyzers
following this objective do not only aim at producing a low
number of false negatives in practice but to give provable guar-
antees for their analysis result, e.g., that a contract flagged as
safe is guaranteed to enjoy a corresponding security property.
The only example of a tool, which comes with a provable
soundness claim, so far, is the analyzer eThor [24], whose
analysis relies on abstract interpretation.

Symbolic execution and abstract interpretation have in com-
mon to target properties that can be decided for a finite
prefix of a single (yet arbitrary) execution trace of a smart
contract (so-called reachability properties). However, many
generic security properties for smart contracts (as defined
in [13]) require comparing two execution traces from different
initial configurations and fall into the broader category of
2-safety properties. To check 2-safety properties with tools
whose analysis is limited to reachability properties (such as
eThor) requires an overapproximation of the original property
in terms of reachability. But finding such a meaningful over-
approximation, which does not result in an intolerable preci-
sion loss, is not always possible. In [13], it is, e.g., shown how
to overapproximate the call integrity 2-safety property (char-
acterizing the absence of reentrancy attacks) by a reachability
property (single-entrancy) and two other properties, which are
captured by our notion of trace noninterference. However,
trace noninterference properties still concern two execution
traces and hence cannot be verified using eThor. HORSTIFY
(inspired by the unsound Securify tool [27]) devises a differ-
ent analysis technique, which immediately accommodates the
analysis of trace noninterference. As opposed to the analysis

259

underlying eThor, this technique does not allow for verifying
general reachability properties, but a special class of 2-safety
properties (including trace noninterference). HORSTIFY and
eThor, hence, can be seen as complementing tools that target
incomparable property classes. The call integrity property
falls neither in the scope of eThor nor HORSTIFY, but its
overapproximation decomposes it into trace noninterference
properties (within the scope of HORSTIFY) and a reachability
property (within the scope of eThor). Other generic security
properties from [13] for characterizing the independence of
miner-controlled parameters (including timestamp indepen-
dence) immediately constitute trace noninterference properties
and as such can be analyzed by HORSTIFY but not by eThor.

More complex properties involving both universal and ex-
istential quantification of execution traces [6], [7] cannot be
checked by either HORSTIFY or eThor.

IX. CONCLUSION

In this work, we present the first provably sound static
dependency analysis for EVM bytecode. Taking up the ap-
proach of the state-of-the-art static analyzer Securify [27],
we uncover conceptual soundness issues of the tool, so we
replace the underlying analysis and spell out formal soundness
guarantees. Even though we need to tighten the scope of the
Securify analysis (removing the must-analysis) for achieving
soundness guarantees, we can show that the resulting analysis
is flexible enough to soundly characterize a generic class of
non-interference-style properties, such as timestamp indepen-
dence. We demonstrate the practicality of the approach by
providing the prototypical analyzer HORSTIFY. We show that
it can verify real-world smart contracts, and even though being
provable sound, shows performance comparable to Securify.

REFERENCES

[1] Solidity programming language. https://soliditylang.org/, https://
github.com/ethereum/solidity. Accessed: 2022-02-05.

[2] Filip Adamik and Sokol Kosta. Smartexchange: Decentralised trustless
cryptocurrency exchange. In International Conference on Business
Information Systems, pages 356–367. Springer, 2018.

[3] Elvira Albert, Jesús Correas, Pablo Gordillo, Guillermo Roman-Diez,
and Albert Rubio. Don’t run on fumes—parametric gas bounds for
smart contracts. Journal of Systems and Software, 176:110923, 2021.

[4] Moritz Andresen. The biggest smart contract hacks in history or how
to endanger up to us $2.2 billion. https://medium.com/solidified/the-
biggest-smart-contract-hacks-in-history-or-how-to-endanger-up-to-us-
2-2-billion-d5a72961d15d, 2016.

[5] Ethan Cecchetti, Siqiu Yao, Haobin Ni, and Andrew C Myers. Com-
positional security for reentrant applications. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 1249–1267. IEEE, 2021.

[6] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In
CSF’08, pages 51–65, 2008.

[7] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner,
and Holger Hermanns. Is your software on dope? - formal analysis of
surreptitiously ”enhanced” programs. pages 83–110. Springer, 2017.

[8] Joshua Ellul and Gordon J Pace. Runtime verification of ethereum smart
contracts. In 2018 14th European Dependable Computing Conference
(EDCC), pages 158–163. IEEE, 2018.

[9] Joel Frank, Cornelius Aschermann, and Thorsten Holz. Ethbmc: A
bounded model checker for smart contracts. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2757–2774, 2020.

[10] Neville Grech, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis.
Gigahorse: thorough, declarative decompilation of smart contracts. In
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pages 1176–1186. IEEE, 2019.

[11] Ilya Grishchenko. Static Analysis of Low-Level Code. PhD thesis,
Technische Universität Wien, 2020.

[12] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. Foundations
and tools for the static analysis of ethereum smart contracts. In
Proceedings of the 30th International Conference on Computer-Aided
Verification (CAV), pages 51–78. Springer, 2018.

[13] Ilya Grishchenko, Matteo Maffei, and Clara Schneidewind. A semantic
framework for the security analysis of ethereum smart contracts. In
International Conference on Principles of Security and Trust, pages 243–
269. Springer, 2018.

[14] Samer Hassan and Primavera De Filippi. Decentralized autonomous
organization. Internet Policy Review, 10(2):1–10, 2021.

[15] Sebastian Holler, Sebastian Biewer, and Clara Schneidewind. HoRS-
tify: Sound security analysis of smart contracts. https://arxiv.org/abs/
2301.13769, 2023. Extended version.

[16] Vanita Jain, Akanshu Raj, Abhishek Tanwar, Mridul Khurana, and Achin
Jain. Coin drop—a decentralised exchange platform. In Cyber Security
and Digital Forensics, pages 391–399. Springer, 2022.

[17] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On syn-
thesis of program analyzers. In International Conference on Computer
Aided Verification, pages 422–430. Springer, 2016.

[18] Sukrit Kalra, Seep Goel, Mohan Dhawan, and Subodh Sharma. Zeus:
Analyzing safety of smart contracts. NDSS, 2018.

[19] Allen Leung and Lal George. Static single assignment form for machine
code. ACM SIGPLAN Notices, 34(5):204–214, 1999.

[20] Yinsheng Li, Xu Liang, Xiao Zhu, and Bin Wu. A blockchain-based
autonomous credit system. In 2018 IEEE 15th International Conference
on e-Business Engineering (ICEBE), pages 178–186. IEEE, 2018.

[21] Ning Lu, Bin Wang, Yongxin Zhang, Wenbo Shi, and Christian Esposito.
Neucheck: A more practical ethereum smart contract security analysis
tool. Software: Practice and Experience, 2019.

[22] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas
Hobor. Making smart contracts smarter. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
pages 254–269. ACM, 2016.

[23] Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas
Hobor. Finding the greedy, prodigal, and suicidal contracts at scale.
In Proceedings of the 34th annual computer security applications
conference, pages 653–663, 2018.

[24] Clara Schneidewind, Ilya Grishchenko, Markus Scherer, and Matteo
Maffei. ethor: Practical and provably sound static analysis of ethereum
smart contracts. In Proceedings of the 2020 ACM SIGSAC Conference
on Computer and Communications Security, pages 621–640, 2020.

[25] Clara Schneidewind, Markus Scherer, and Matteo Maffei. The good, the
bad and the ugly: Pitfalls and best practices in automated sound static
analysis of ethereum smart contracts. In International Symposium on
Leveraging Applications of Formal Methods, pages 212–231. Springer,
2020.

[26] Alexandra Sims. Decentralised autonomous organisations: Governance,
dispute resolution and regulation. Dispute Resolution and Regulation
(May 31, 2021), 2021.

[27] Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Buenzli, and Martin Vechev. Securify: Practical security analysis
of smart contracts. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 67–82, 2018.

[28] Haijun Wang, Yi Li, Shang-Wei Lin, Lei Ma, and Yang Liu. Vultron:
catching vulnerable smart contracts once and for all. In 2019 IEEE/ACM
41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), pages 1–4. IEEE, 2019.

[29] Daniel Wasserrab, Denis Lohner, and Gregor Snelting. On pdg-based
noninterference and its modular proof. In Proceedings of the ACM
SIGPLAN Fourth Workshop on Programming Languages and Analysis
for Security, pages 31–44, 2009.

[30] Gavin Wood et al. Ethereum: A secure decentralised generalised
transaction ledger. Ethereum project yellow paper, 151(2014):1–32,
2014.

[31] Lanfranco Zanzi, Antonio Albanese, Vincenzo Sciancalepore, and
Xavier Costa-Pérez. Nsbchain: a secure blockchain framework for
network slicing brokerage. In ICC 2020-2020 IEEE International
Conference on Communications (ICC), pages 1–7. IEEE, 2020.

[32] Michal Zima. Coincer: Decentralised trustless platform for exchanging
decentralised cryptocurrencies. In International Conference on Network
and System Security, pages 672–682. Springer, 2017.

260

