
Preimage Awareness in Linicrypt
Zahra Javar

Computer Science Department
University of Victoria

Victoria, BC, CANADA
z.javar@gmail.com

Bruce M. Kapron
Computer Science Department

University of Victoria
Victoria, BC, CANADA
bmkapron@uvic.ca

Abstract—We extend the analysis of collision-resistant hash
functions in the Linicrypt model presented by McQuoid, Swope
& Rosulek (TCC 2019) in order to characterize preimage
awareness, a security property defined by Dodis, Ristenpart &
Shrimpton (Eurocrypt 2009), who also demonstrate its utility in
the construction of indifferentiable hash functions. We present a
simple and efficiently-checkable property of Linicrypt programs
which characterizes preimage awareness. Finally, we show that
this characterization may be efficiently automated and as an
example, use it to enumerate all preimage-aware compression
functions which use two calls to the random oracle. This includes
several functions shown to be preimage aware by Dodis et. al.
using hand-crafted proofs.

Index Terms—hash function, compression function, preimage
awareness, Linicrypt, indifferentiability

I. INTRODUCTION

Hash functions are a fundamental cryptographic primitive
used as a building block in a large number of cryptographic
constructions [MF21]. Applications including domain exten-
sion for message-authentication codes [BCK96] and digital
signatures [Dam87], as well as hash-based signatures [BC92],
[EGM96], [Lam79], [Mer87], rely on collision resistance
properties for their security.

Given the utility of hash functions in cryptography, it is nat-
ural to investigate techniques for their systematic construction
and validation. A well-known systematic approach involves
the use of the Merkle-Damgård (MD) transform [Dam89],
[Mer89], which allows the construction of variable-length
hash functions from fixed-length hash functions (compression
functions). MD and its variants are known to preserve collision
resistance and so provide an approach based on focusing
attention on the construction of compression functions. On the
other hand, well-known attacks such as length-extension make
MD-based hash functions unsuitable for many applications,
and demonstrate the need for notions of security stronger than
collision-resistance apparent.

More broadly, following the work of [BR93], a large number
of constructions make heuristic use of hash functions under the
assumption that they behave as a random oracle. Although this
methodology is not sound in general [CGH04]., it has proven
useful as a means of providing evidence that a construction
does not have certain structural flaws.

At this point, a natural question is whether it is possible
to detect flaws in the design of a concrete hash function

Research supported in part by NSERC RGPIN-2021-02481

which renders it unsuitable as an instantiation of a random
oracle. For hash functions constructed via the MD transform
[CDMP05] propose an approach based on constructions which,
under the assumption that the underlying compression function
is a random oracle (or ideal cipher), produce a hash function
which is indifferentiable from a random function in the sense
of [MRH04]. They were able to show that, while strengthened
MD did not satisfy this criterion, straightforward modifications
did. However, this approach would not apply to the real-world
scenario of hash functions constructed using MD, and there-
fore did not provide an explanation for why such constructions
appear to work in practice, or a justification for the soundness
of the random oracle model in such settings.

This problem was addressed by [DRS09a], who define
a weaker property – preimage awareness (PrA) – that is
preserved by MD. Furthermore, they show that composing a
PrA function with a fixed-input-length (independent) random
oracle produces a function that is indifferentiable from a
random oracle. Informally, preimage awareness means that if
an adversary knows an image and later learns a preimage for
that image, it is presumed to already know that preimage —
a formal definition is given in Section II.

This suggests the following methodology for the construc-
tion of indifferentiable hash functions: (1) Define a compres-
sion function h using a random oracle and prove that it is
PrA. (2) Apply strengthened MD to this compression function
to produce a variable-input-length function Hh which is PrA.
(3) Define a variable-input-length indifferentiable function by
composing the result of (2) with an independent fixed-input-
length random oracle R.

Given this methodology for constructing indifferentiable
hash functions, an important goal is the design and analysis
of PrA compression functions, especially via methods which
support automated verification, or even automated generation
of such functions. This is the problem we address in this paper.
In particular, we propose an approach using the Linicrypt
framework [CR16], which allows constructions specified by
straight-line programs over a finite field, with access to a
random oracle. Informally, Linicrypt provides definitions of
hash functions which combine successive calls to a random
oracle, along with the formation of linear combinations (over
some finite field) of the results of these calls and the function
inputs. Outputs are also linear combinations of this form. In
a subsequent work [MSR19], Linicrypt is applied to collision-

33

2023 IEEE 36th Computer Security Foundations Symposium (CSF)

© 2023, Zahra Javar. Under license to IEEE.
DOI 10.1109/CSF57540.2023.00017

20
23

 IE
EE

 3
6t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

79
-8

-3
50

3-
21

92
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

75
40

.2
02

3.
00

01
7

Fig. 1. Preimage awareness game from [DRS09a]. Oracle P mediates access
to the ideal primitive, while recording all queries made, while Ex mediates
access to the extractor, while using Q,V to record the image/preimage pairs
involved in each call.

resistant hash functions, and it is shown that there is an
efficiently-checkable algebraic condition on programs which
may be used to characterize collision resistance and second-
preimage resistance. A detailed description of Linicrypt (spe-
cialized to our setting) is given in Section III. We build
on the approach of [MSR19] in order to characterize PrA
compression functions defined by Linicrypt programs.

A. Results

We give an algebraic characterization of PrA for hash
functions modeled as Linicrypt programs which have access
to a random oracle which is sound, complete and efficiently
checkable.

The intuition behind our result is the following: if the
result of at least one call to the random oracle is linearly
independent of the other calls as well as the output (in a sense
which will be made precise,) an adversary can carry out an
attack that breaks PrA as follows: produce an output without
making the independent call, and later, once the call is made,
produce an input consistent with the previously produced
output. We formalize this via the notion of PrA critical query
in Definition V.1 and show in Theorem V.8 that this syntactic
condition completely characterize preimage awareness. We
also show that the problem of finding critical queries is a
simple matter of solving a system of linear equations, and
so is solvable in polynomial time. Finally, as an example, we
show how this characterization may be used to enumerate all
PrA compression functions with two inputs and using two
independent random oracle calls.

Our results are significant from both theoretical and prac-
tical perspectives. We give a general characterization of PrA
compression functions with any number of inputs and ran-
dom oracle calls, demonstrating the utility and range of the
Linicrypt model. In general, the existence of a PrA critical
query may be automatically verified (in polynomial time.) We
contrast this with known proofs of PrA for the Shrimpton-Stam
and Dodis-Pietrzak-Puniya compression functions [DRS09a],
which are quite involved and specific to these particular
definitions. Practically, we can automatically generate low-
rate PrA compression functions, which are then suitable as
a component in the above-described pipeline for constructing
indifferentiable hash functions.

II. PREIMAGE AWARENESS

We will briefly review the definition and some important
facts regarding preimage awareness as defined in [DRS09a].
Suppose H is a hash function built from an ideal primitive P

(e.g., a random oracle or ideal cipher.) Preimage awareness
formalizes the notion which states that an adversary who
knows a “later useful” output z of HP must “already know”
(be aware of) a particular corresponding preimage x. This
is formalized using an auxiliary function called an extractor
and the following experiment: After interacting with P , the
adversary A produces z in the range space of H . This z
and the sequence of (query, response) pairs made by A to
P called α are passed to the extractor E , which then produces
a value x in the domain of H (or ⊥.) Note that E does
not have access to P . Then A runs again and attempts to
output a preimage x′ such that HP (x′) = z but x ̸= x′.
If any adversary (from some class) has only a small chance
of winning in this experiment, H is preimage aware. In
the general definition of preimage awareness, the adversary
is allowed multiple adaptive rounds against the extractor. A
schematic depiction of the general game is given in Figure 1.
The more restrictive version we have described is called 1-
PrA. We give a formal definition of 1-PrA, for hash functions
defined by Linicrypt programs below in Definition IV.3. We
note that by [DRS09a], Theorem D.1, we may restrict attention
to 1-PrA, up to a loss in adversary advantage which is linear
in the number of calls to the extractor. So below we use the
term PrA synonymously with 1-PrA. We recall two important
facts (stated informally) which underlie the utility of PrA in
the construction of indifferentiable hash functions:

1) Suppose HP : Dom → Rng is a PrA hash function
defined using ideal primitive P , and R : Rng → Rng is
an independent fixed-input length random oracle. If we
define G using P and R by GP,R(m) = R(HP (m)),
then G is indifferentiable from a random oracle (
[DRS09a], Theorem 4.1)

2) Suppose hP : {0, 1}n+d → {0, 1}n is a PrA compres-
sion function defined using ideal primitive P , and H
is a hash function defined by applying the strengthened
Merkle-Damgård construction to hP . Then H is PrA. (
[DRS09a], Theorem 4.2)

As mentioned above, these facts explain the importance of
PrA as part of a methodology for constructing hash functions
with strong security properties. In particular, in order to
construct indifferentiable hash functions we only need to be
concerned with constructing PrA compression functions.

III. LINICRYPT PROGRAMS

The Linicrypt formalism, introduced in [CR16], provides
a model for the specification of cryptographic primitives
via straight-line programs over a finite field F, with access
to a random oracle. In [CR16], it was shown that via an
algebraic condition on programs, it is possible to efficiently
decide whether two programs induce computationally indis-
tinguishable distributions. The practical application of the
approach was demonstrated through the use of a SAT solver
to automatically synthesize programs used in a provably cor-
rect construction of garbled circuits.1 While [CR16] focused

1More recently ([HRR22]), Linicrypt was also used to characterize the
security of block cipher modes of operation.

34

on indistinguishability-based security for inputless Linicrypt
programs, subsequent work [MSR19] demonstrated the utility
of Linicrypt for characterizing collision resistance and second-
preimage resistance for fixed input-length hash functions con-
structed using a random oracle. Our presentation follows the
model of [MSR19], with some restrictions and slight variations
which are more suited to our proof techniques. We denote
elements of F by lower-case non-bold letters2, vectors over F
by lowercase bold letters and matrices over F by uppercase
bold letters. We treat vectors as column vectors, and write
a · b or a⊤b for the inner product and M × a or Ma for
matrix-vector product. Note that we will sometimes think of
matrices as a column vector of row vectors (so we may write
M = (m⊤

1 , . . . ,m
⊤
k)

⊤.)
A Linicrypt program is a straight-line program over a fixed

vector (v1, . . . , vm) of program variables, where the first k
are designated as inputs. A program is a sequence of lines
specifying assignments to (non-input) program variables where
the right-hand side of each assignment is either3

1) A call to the random oracle on a previously assigned
variable or input

2) A F-linear combination of previously assigned variables
and inputs

The program also specifies a vector of output variables. For a
given random oracle H , such a program computes a function
Fk → Fr for some k, r.

The following is an example of two-input Linicrypt program
with random oracle H

PH(v1, v2) :

v3 := H(t1, v1)

v4 := H(t2, v2)

v5 := v3 + v4

return v5

We allow the random oracle to take an extra input from a
designated set of strings or nonces (in this example, these
are t1 ̸= t2.) When F = GF(2λ), this program computes
the function f(x, y) = f1(x) ⊕ f2(y) where f1 and f2 are
two independent random oracles mapping F to F. This is the
Dodis-Pietrzak-Puniya function [DPP08], which is one of the
compression functions shown to be PrA in [DRS09a]). We will
return to this example after giving our characterization of PrA
and verifying that it satisfies the critical query condition. Other
examples of Linicrypt programs may be found in [CR16],
[MSR19].

We have noted that a program has access to a random oracle
H , that is, a random element of {F | F : nonce × F → F},
where nonce = {ti | i ∈ N}. As in [MSR19], we will require
that for i ̸= j, ti ̸= tj , so that all calls to the random
oracle in a program P are effectively to an independent

2We usually use Roman letters, but may also use Greek or script letters
depending on the setting.

3The Linicrypt model, introduced in [CR16], also allows the assignment of
a random field element to a variable. Here, as in [MSR19], we consider only
deterministic programs.

random function. We note that this restriction is equivalent to
assuming that functions are defined using a fixed collection
of independent random oracles, where each may be called
exactly once. This is adequate for defining a number of the
compression functions considered by [DRS09a]. While it is
not a general restriction for the Linicrypt model, we will
only consider random oracles that take a single input from F.
This will simplify the presentation and seems adequate for the
application to PrA hash functions. See [MSR19], Section 5.1,
for a discussion of extending the model to random oracles
with multiple field inputs.

As noted in [MSR19], the cryptographic power of this
model derives from the random oracle, and so we require a
field size |F| that is exponential in the security parameter λ.
Furthermore, since a program is specified by linear combi-
nations of elements with coefficients from F, programs may
also depend on the security parameter. On the other hand, we
could either consider a family of programs parameterized by
λ, or fix a subfield of F for the coefficients (e.g., if the field
is GF(pk), we take coefficients from GF(p)) and work with a
single program that can be instantiated over any field. Again
as noted in [MSR19], in the concrete setting of their work
(and ours), this choice is not significant. In all the examples
given in this paper, we work over GF(2λ) and assume that
programs work with coefficients from {0, 1}.

An important observation of [CR16] is that it is possible
to present programs in a purely algebraic fashion. In this
view, Linicrypt program P over a field F is given by a
set of base variables, corresponding to program inputs and
results of oracle queries, a sequence of oracle constraints
specifying the input and output of each query, and an output
matrix. The base variables are represented as canonical basis
vectors, so for a P with k inputs and n oracle queries
the base variables are e1, . . . , ek, ek+1, . . . , ek+n where, ei
denotes the ith canonical basis vector over Fk+n without
loss of generality, e1, . . . , ek correspond to the inputs and
ek+1, . . . , ek+n correspond to the results of oracle queries. As
program variables are linear combinations of base variables
with coefficients from F, they are represented as elements
of Fn+k. In fact, by a process of successive in-lining, we
may eliminate the notion of non-base variables altogether. So
we need only consider assignments of the first sort described
above, but where the second argument is given by a F-linear
combination of inputs and results of previous calls. With
this perspective, each oracle call is represented by an oracle
constraint c = (t, q,a) where t ∈ nonce and q,a ∈ Fk+n

(note that a here will in fact be some ej where k < j ≤ k+n).
Similarly, the output may be given as a vector of F-linear
combinations of program variables, and this may be specified
by a matrix M = (m⊤

1 , . . . ,m
⊤
r)

⊤, where mi ∈ Fk+n. In
[CR16], the underlying sequential structure of P is essentially
forgotten, and a program is represented by its output matrix
and (multi)set of oracle constraints. In order to simplify some
of our proofs, we will deviate slightly and remember the order
of oracle calls via a sequence C = ⟨ci | 1 ≤ i ≤ n⟩ of
constraints, where ci = (ti, qi,ai). In particular, this implies

35

that qi ∈ span(e1, . . . , ek,a1, . . . ,ai−1), i.e., the input to a
query depends only on the program inputs and answers to
previous queries. We note that retaining the ordering of queries
is not essential to our results, but we do so to simplify the
presentation.

We introduce the following notation (not used by [MSR19])
for matrices related to the base variables and queries of P:
A for (a⊤

1 , . . . ,a
⊤
n)

⊤, Q for (q⊤
1 , . . . , q

⊤
n)

⊤, and X for
(e⊤1 , . . . , e

⊤
k)

⊤. For any matrix M , we write rows(M) for
the multiset of vectors corresponding to the rows of M .

Viewing P as a straight-line program provides a simple
semantics defining PH : Fk → Fr. For an oracle H and
input x = (x1, . . . , xk)

⊤, a line whose right-hand side is a
linear expression evaluates to an element of F in a natural
way, using previously defined elements. For an oracle call
H(ti, vj), vj has already been assigned a value from F
and so the call returns a value in F. In both cases, the
resulting value is assigned to the left-hand side variable. The
final line outputs the vector of field elements assigned to
the corresponding variables, which is the value of PH(x).
Algebraically, for any input x = (x1, . . . , xk)

⊤ and oracle
H there is a corresponding vector vbase = (v1, . . . , vk+n) ∈
Fk+n which satisfies ei · vbase = xi for 1 ≤ i ≤ k and
ek+i · vbase = ai · vbase = H(ti, qi · vbase). In this view,
PH(x) = M × vbase. It is not hard to see that both views
give equivalent semantics.

In the algebraic presentation, the program given above is
specified by:

vbase = (v1, v2, v3, v4)
⊤

M =
[
0 0 1 1

]
C = ⟨(t1, q1,a1), (t2, q2,a2)⟩

where
q1 = (1, 0, 0, 0)⊤ q2 = (0, 1, 0, 0)⊤

a1 = (0, 0, 1, 0)⊤ a2 = (0, 0, 0, 1)⊤

A. Dealing with Constant Values

In practice, the definition of a hash function may depend
on the use of a constant value from the underlying field
or domain, typically referred to as an initialization vector
(IV). In their classification of rate-1 compression functions
in the ideal cipher model, Black et. al. [BRSS10] include
definitions that use a constant value. Such definitions involve
affine expressions and so, strictly speaking, are beyond the
model provided by Linicrypt. One approach to dealing with
this problem is to utilize some underlying algebraic property
of operations involving constant values. This is the approach
taken in the algebraic analysis of [Sta09], where it is noted that
translation by a constant preserves bijectivity. We take a more
general approach, treating constants parametrically. Namely,
a constant c used in a program P is treated as an additional
input and also as an output of the program, making it a fixed
parameter. In particular, P has base variables x1, . . . , xk+n

and inputs x1, . . . , xk the modified program has base variables

x1, . . . , xk+n+1 where P’s base variables xk+1, . . . , xk+n

are (respectively) renamed xk+2, . . . , xk+n+1, input xk+1 is
used to represent the constant c, and M and C are updated
appropriately. Finally, the single row e⊤k+1 is appended to
M (indicating that c is an output.) With this convention,
we can analyze security properties of hash functions defined
by Linicrypt programs using constants without any changes
to our definitions or proofs. Moreover, any property which
does not depend on a particular property (e.g., the bit-level
representation) of a constant value used in a program will
be preserved by this convention. While this does not capture
implementation-level details, it provides a level of analysis
consistent with works such as [BRSS10]. The following exam-
ple shows how a compression function with a constant value
c can be modeled in Linicrypt.

Example III.1. Consider compression function f(x1, x2) =
f1(x1+c)+f2(x2)+c, this can be presented as the following
Linicrypt program,

PH(v1, v2, v3) :

v4 := v1 + v3

v5 := H(t1, v4)

v6 := H(t2, v2)

v7 := v5 + v6 + v3

return v7

vbase = (x1, x2, c, v5, v6)
⊤

M =

[
0 0 1 1 1
0 0 1 0 0

]
C = ⟨(t1, q1,a1), (t2, q2,a2)⟩

where

q1 = (1, 0, 1, 0, 0)⊤ q2 = (0, 1, 0, 0, 0)⊤

a1 = (0, 0, 0, 1, 0)⊤ a2 = (0, 0, 0, 0, 1)⊤

IV. DEFINING SECURITY PROPERTIES OF PROGRAMS

Any P with k inputs and r outputs defines a distribution
on the set of functions from Fk to Fr which is sampled
by returning PH for a uniformly sampled H , and so we
can consider the security properties of P by considering the
property for the (randomized) function it defines. Here we
will give explicit definitions for standard collision-resistance
properties of P (originally defined in [MSR19],) as well as for
preimage awareness, using the 1-PrA formulation as discussed
in Section II.

In general, if we are working in a finite field Fλ, the field
size will be exponential in λ and we may take λ as our security
parameter. The adversary A is defined with respect to λ; in
particular, although we do not bound the running time of A,
there must be a polynomial p such that A makes at most p(λ)
queries. A program could be viewed as a uniform definition
of a family of functions indexed by λ. As our characterization
below is in the concrete setting (with respect to the advantage

36

probability and the number of queries) we do not need to
worry about these considerations.

Definition IV.1 ([MSR19] Definition 2). Program P is (q, ϵ)-
collision resistant if any oracle adversary A making at most q
queries has probability of success at most ϵ in the following
game:

(x,x′)← AH(λ); return (x ̸= x′) and PH(x) = PH(x′)

Definition IV.2 ([MSR19] Definition 3). Program P is (q, ϵ)-
2nd-preimage resistant if any oracle adversary A making at
most q queries has probability of success at most ϵ in the
following game:

x← Fk;x′ ← AH(x); return (x ̸= x′) and PH(x) = PH(x′)

To define preimage awareness we first need the notion of
extractor, which we will take it to be a (deterministic) function
E : (F2)∗ × Fr → Fk ∪ {⊥}.

In the current setting (as in [MSR19]) where we only
consider the query complexity of adversaries, we do not
restrict extractors to be computationally efficient. What is
important is that E does not have access to the random oracle
H . Note that we allow E to return the “undefined” value ⊥.

Definition IV.3. Program P is (q, ϵ)-PrA if there is an
extractor E such that any oracle adversary A = (A1,A2)
making at most q queries has probability of success at most ϵ
in the following game:

(qs, ℓ, st)← AH
1 (λ); x := E(qs, ℓ); x′ ← AH

2 (x, qs, ℓ, st);

return (x ̸= x′) and PH(x′) = ℓ

where qs = (α1, β1), . . . , (αs, βs) is the sequence of queries
made by A1 to H and their corresponding responses, ℓ is a
purported output of PH and st is a state variable (hidden from
E .)

In each definition, the probability is over the random choices
of A and random choice of H : nonce× F→ F.

Intuitively, the definition of 1-PrA captures an experiment
which has three phases. In the first, the adversary A first makes
a sequence qs of queries to H , and produces a purported
output ℓ of P . This output, as well as qs is then passed to the
extractor E , which returns a pre-image x, or ⊥, indicating
failure. At this point, A is given x, its previous outputs,
and encoding of its previous state st, resumes execution. A
succeeds if it can return a pre-image x′ of ℓ such that x′ ̸= x.
When x =⊥ this reduces to A returning some pre-image of
ℓ.

A. Normalized Programs

On the way to characterizing programs that define PrA hash
functions, we first note that some programs fail to be PrA
trivially, due to easily checked conditions, and for the sake of
a more straightforward characterization, we begin by ruling
out such programs.

For any matrix M = (m⊤
1 , . . . ,m

⊤
k)

⊤ and 1 ≤
i ≤ k, M−i denotes M with its ith row removed, i.e..

(m⊤
1 , . . . ,m

⊤
i−1,m

⊤
i+1, . . . ,m

⊤
k)

⊤. This generalizes in the
natural way to M−I for any I ⊆ [k]. In particular M−∅ =
M .

A query is useful if its result is used as part of a query
to another useful query, or as part of the final output of the
program. We formalize the notion of useless query as follows:

Definition IV.4. Define the inductive operator useless : 2[n] →
2[n] by

useless(I) = {i | ai /∈ span(rows(Q−I) ∪ rows(A−I′)∪
rows(M) ∪ rows(X))}

where I ′ = I ∪ {i}. Query i in program P is useless if i ∈⋃n
j=1 useless

j(∅).

Remark. The definition of useless query corresponds to that
of [CR16] but extended to the case of programs with inputs.

Lemma IV.5. Let P ′ be obtained by removing all useless
queries from P . Then P ′ is (q, ϵ)-PrA iff P is (q, ϵ)-PrA.

Proof. It suffices to show the result for the case that P ′

is obtained by removing a single query i for some i ∈
useless(∅). To begin we note that for any H and any x,
PH(x) = P ′H(x). But then any adversary A has the same
PrA-advantage against P as it does against P ′.

We also recall the following definition.4

Definition IV.6. Program P is degenerate if

span({e1, . . . , ek+n}) ̸⊆ span(rows(Q)∪rows(A)∪rows(M))

It is the case that if P is degenerate, second preimages may
be found with probability 1 [MSR18], Lemma 5 and so such
programs trivially fail to be PrA. We can also prove this
directly:

Lemma IV.7. If P is degenerate, then there is a PrA adversary
A against P that succeeds with probability 1.

Proof. The adversary A first picks an arbitrary input x and
runs the program P on it, computing the corresponding base
vector vbase and output value ℓ and returns (qs, ℓ, st), where
qs is the sequence of queries made by P and st = vbase.
Assume that on input (qs, ℓ) the extractor E returns x — if
it returns ⊥ or x′ ̸= x, the adversary will return x and win.
So the adversary must return a valid preimage x′ ̸= x.

Define the matrix P =

 Q
A
M

 where Q,A,M are the

matrices defining P . Then P × vbase is a vector consisting
of P’s queries and their answers and its final output. Suppose
A can find a base vector v′

base ̸= vbase where P × v′
base =

P × vbase. Then, if x′ = X × v′
base, it must be the case that

x′ ̸= x, since the values of the remaining base variables are
fixed for a given input. Since program P is degenerate, the
rows of P cannot span all k + n basis vectors which means

4Our definition corresponds to the version given in revision 2 of [MSR18],
correcting an earlier version (which is the version appearing in [MSR19])

37

rank(P) < k+n, and thus, for some v ̸= 0, P ×v = 0. The
advesary can solve for this v and set v′

base = vbase+v. Then
P × (v′

base − vbase) = 0, so v′
base ̸= vbase and P × v′

base =
P × vbase. In particular, this allows A to compute x′ ̸= x
such that P(x′) = P(x)

Henceforth, we will assume (without loss of generality) that
programs have no useless queries. Note that for any P , useless
queries may be removed in polynomial time (in the size of P),
using a standard reachability algorithm. We will also assume
that programs are non-degenerate, a condition which can also
be checked in polynomial time.

V. CHARACTERIZING PREIMAGE AWARENESS

The main result of [MSR19] gives an algebraic condition on
Linicrypt programs which can be used to characterize collision
and 2nd-preimage resistance. We will do the same for PrA:
in Definition V.1 we define the notion of PrA-critical query,
and in Theorem V.8 we use this to characterize preimage
awareness. We begin by presenting a motivating example.

PH(v1, v2) :

v3 := H(t1, v1)

v4 := H(t2, v1)

return v3 + v4 + v2

(this defines the function f(x, y) = f1(x) + f2(x) + y where
f1, f2 : F → F are independent random oracles.) Consider a
PrA adversary (A1,A2) that does the following: A1 chooses
α1 and ℓ at random from F, calls H(t1, α1) to obtain β1, and
outputs st = α1, qs = (α1, β1) and ℓ. Let x′ = (γ1, γ2),
where γ1 = α1 and γ2 = β1 +H(t2, α1) + ℓ. Then

PH(x′) = H(t1, γ1) +H(t2, γ1) + β1 +H(t2, α1) + ℓ

= H(t1, α1) +H(t2, α1) + β1 +H(t2, α1) + ℓ

= β1 +H(t2, α1) + β1 +H(t2, α1) + ℓ

= ℓ

Moreover, given st = α1, A2 can call H(t2, α1) to obtain
β2 and so is able to return (α1, β1 + β2 + ℓ) = (γ1, γ2).
Thus, unless the extractor can return x′, A has a successful
PrA attack. Suppose the extractor can compute x′. Since E is
given (α1, β1), ℓ, this means the E can compute γ2 + β1 + ℓ,
which is H(t2, α1). Since E does not have access to H , its
probability of success is at most 1/|F|.

This attack succeeds because a2 = (0, 0, 0, 1)⊤ is in-
dependent of {a1,m1} where a1 = (0, 0, 1, 0)⊤, m1 =
(0, 1, 1, 1)⊤ so the adversary may returns an image without
making this query. On the other hand, under the assumption
that all queries are useful, a preimage cannot be determined
without knowing the value of this query. Thus the extractor,
without access to the random oracle, could at best guess its
value. On the other hand, A2 is given st = α1 and so is able
to make the query, and by non-degeneracy is guaranteed to
obtain a preimage.

This suggests the following condition on program queries.

Definition V.1. Let 1 ≤ i∗ ≤ n. We say that i∗ is PrA-critical
(or just critical) for P

ai∗ /∈ span(rows(Q) ∪ rows(A−i∗) ∪ rows(M)) (†)

Theorem V.8 characterizes PrA for non-degenerate Linicrypt
programs using this simple algebraic condition. Before pro-
ceeding to this result, we give the algebraic characterization
of collision and 2nd-preimage resistance given by [MSR19].
Recall that in the presentation of [MSR19], constraints are
treated as an (unordered) set. We then have:

Definition V.2 ([MSR19], Definition 6). A collision structure
for P is an ordering c′1, · · · , c′n of the (multiset of) constraints
of P and 1 ≤ i∗ ≤ n such that

1) q′
i∗ /∈ span({q′

1, . . . , q
′
i∗−1} ∪ {a′

1, . . . ,a
′
i∗−1} ∪

rows(M))
2) For j ≥ i∗, a′j /∈ span({q′

1, . . . , q
′
j}∪{a′

1, . . . ,a
′
j−1}∪

rows(M))

Remark. We have denoted the ith constraint in the collision
structure ordering by c′i = (t′i, q

′
i,a

′
i) to avoid confusion with

our notation in which ci = (ti, qi,ai) is the ith constraint
in the ordering given by program P . Note that we may view
(q′

1, . . . , q
′
n) and (a′

1, . . . ,a
′
n) respectively as permutations of

the rows of Q and of A. In particular, viewed as multisets,
{q′

1, . . . , q
′
n} = rows(Q) and {a′

1, . . . ,a
′
n} = rows(Q)

The Main Theorem of [MSR19] implies that P is
(q, (q/n)2n/|F|)-collision resistant iff it is (q, (q/n)n/|F|)-
2nd-preimage resistant iff it does not have a collision structure.
We also note the following connection between collision
structures and critical queries:

Lemma V.3. If program P has a collision structure, then it
has a critical query.

Proof. Suppose (i∗, c′1, . . . , c
′
n) is a collision structure for P .

Then, according to Definition V.2 for j ≥ i∗,

a′j /∈ span({q′
1, . . . , q

′
j} ∪ {a′

1, . . . ,a
′
j−1} ∪ rows(M)).

In particular, for j = n,

a′
n /∈ span({q′

1, . . . , q
′
n} ∪ {a′

1, . . . ,a
′
n−1} ∪ rows(M)).

Suppose a′
n corresponds to ai† (i.e., the i†th row of A.)

We then have rows(Q) = {q′
1, . . . , q

′
n} and rows(A−i†) =

{a′
1, . . . ,a

′
n−1}, so

ai† /∈ span(rows(Q) ∪ rows(A−i†) ∪ rows(M)),

and so i† is a critical query.

This connection becomes significant in combination with
the characterization of second-preimage resistance given by
[MSR19], in particular the following

Lemma V.4 ([MSR19], Lemma 10). Let P be a Linicrypt
program making n oracle queries, and A an adversary that
makes at most N oracle queries. If A finds second-preimages

38

with probability at least (Nn)n/|F| then P has a collsion
structure.

We use these two results as part of the proof of Lemma V.7
below. While a direct proof would be possible, the use of
Lemmas V.3 and V.4 makes things considerbly simpler.

We note (not surprisingly) that the notion of critical query
is conceptually (and computationally) simpler than the corre-
sponding notion of collision structure, and in particular does
not require re-ordering of constraints as they appear in the
underlying program.

Lemma V.5. Suppose i∗ is critical for P . Then there is a
randomized A1 that, given H , generates values

α1, . . . , αn, β1, . . . , βi∗−1, βi∗+1, . . . , βn, ℓ1, . . . , ℓr

such that
1) The only queries made by A1 are H(ti, αi), 1 ≤ i ≤ n,

i ̸= i∗.
2) βi = H(ti, αi), 1 ≤ i ≤ n, i ̸= i∗.
3) If βi∗ = H(ti∗ , αi∗), then the system Q

A
M

× v =

 α
β
ℓ

where α = (α1, . . . , αn)

⊤, β = (β1, . . . , βn)
⊤, ℓ =

(ℓ1, . . . , ℓr)
⊤, has a unique solution (γ1, . . . , γk+n)

⊤ ∈
Fk+n.

4) PH(γ1, . . . , γk) = (ℓ1, . . . , ℓr)
5) If qi∗ /∈ span(rows(Q−i∗) ∪ rows(A−i∗) ∪ rows(M)),

then αi∗ is a random element of F.

Proof. For 1 ≤ i ≤ n, suppose A1 has determined

α1, . . . , αi−1, β1, . . . , βi∗−1, βi∗+1, . . . , βi−1.

It then does the following: determine whether

qi ∈ span({q1, . . . , qi−1}∪{a1, . . . , ai∗−1, ai∗+1, . . . , ai−1}).

If it is, use the values determined previous queries to determine
αi, otherwise, it chooses αi uniformly from F. If i ̸= i∗, it
then sets βi = Hi(ti, αi). Finally, for 1 ≤ j ≤ r, if mj ∈
span(rows(Q) ∪ rows(A)), A1 uses the values obtained in
the preceding steps to determine ℓj ; otherwise it chooses ℓj
uniformly from F. Note that by (†), no qi or mj depends on
ai∗ , so αi and ℓj may be determined as described.

It is immediate that (1), (2) and (5) are satisfied by this
construction. Letting P denote the matrix in (3) first note that
the values α,β, ℓ are chosen to respect any dependencies in
P , so that a solution exists. Non-degeneracy ensures that P
is full rank, so the solution is unique. Once (3) is established,
(4) follows from the fact that the βi’s are chosen using the
corresponding calls to H .

Lemma V.6. Suppose that P is a program with n query
constraints. If there is a critical i∗ for P then for any E there
is a PrA adversary A = (A1,A2) that makes n queries and
succeeds with probability at least 1− 1/|F|.

Proof. The adversary A proceeds as follows:
1) A1 generates the values specified in Lemma V.5 and

outputs st = αi∗ , ℓ = (ℓ1, . . . , ℓr) and

qs = ⟨(α1, β1), . . . , (αi∗−1, βi∗−1),

(αi∗+1, βi∗+1), . . . , (αn, βn)⟩.

2) When E returns, A2 computes βi∗ := H(ti∗ , αi∗), solve
the system given in condition (3) of the Lemma, and
returns (γ1, . . . , γk).

Unless E returns (γ1, . . . , γk), A will win the PrA-game
(Definition IV.3) with probability 1. So the only way that E
can defeat A is by returning (γ1, . . . , γk). We will show that
E can do this with probability at most 1/|F|.

Write the system in Lemma V.5 (3) as Pv = b. Since all
the queries in P are useful, P must have at least one row
other than ai∗ which is nonzero in its (k + i∗)th entry. We
note that, for any Linicrypt program, this cannot be row qi∗ ,
because in general, the input to a query cannot depend on its
output. Supposing that this row is the jth row, there exists j,
0 ≤ j ≤ 2n+ r, j ̸= n+ i∗, i∗ such that

γk+i∗ +
∑

1≤i≤k+n,i ̸=k+i∗

νiγi = bj

where bj ∈ F, νi ∈ {0, 1} and γk+i, 1 ≤ i ≤ n, i ̸= i∗, are all
known to E (in particular, for i ̸= i∗, γk+i = βi.) Thus, if E
can determine (γ1, . . . , γk), it can solve the above equation and
determine the only unknown, namely γk+i∗ = Hi∗(ti∗ , αi∗).
Since E does not have access to H , and the fact that i∗ satisfies
(†), the probability of determining the correct H∗

i (ti∗ , αi∗) is
at most 1/|F|.

Lemma V.7. If for any E there is a PrA adversary A for
Linicrypt program P making at most N oracle queries with
success probability > (N

n+1

nn)/|F| then there is an i∗ which is
critical for P .

Proof. We begin by making some standard assumptions about
A. Before returning a preimage γ, AH makes all the queries
made by PH(γ), and never repeats any queries made to H .

Based on these assumptions, there is a mapping T : [n]→
[N] such that the T (i)th query made by AH corresponds to
constraint ci in the computation of PH . Letting Ni denote
the number of queries made by AH using nonce ti, 1 ≤ i ≤
n, we have that there are

∏n
i=1 Ni possible mappings. Since∑n

i=1 Ni ≤ N , the product is maximized when Ni = N/n, so
that there are at most (N/n)n possible mappings. Furthermore,
there are at most N choices for t such that AH calls the
extractor after making its tth query. So there must be a specific
T and t such that the success probability of AH conditioned
on its use of T and t is greater than 1/|F|. We may fix T
and t and assume the successful adversary A uses them by
modifying A so that it fails if this is not the case.

Let i1, . . . , in be a permutation of [n] with the property that
1 ≤ j < k ≤ n implies T (ij) < T (ik), and let s ∈ [n] be
such that T (is) ≤ t and T (is+1) > t.

39

In particular, before calling E , AH makes the queries
corresponding to ci1 , . . . , cis in P . If any of i1, . . . , is are
critical, we are done. Otherwise, if E successfully returns a
preimage, then by the assumption that A is a successful PrA
adversary, it returns a second preimage with the probability
(N

n+1

nn)/|F| ≥ (Nn)n/|F|, so it follows by Lemma V.4 that P
has a collision structure, which by Lemma V.3 implies that it
has a critical i∗.

It remains to consider the case when E returns ⊥. In this
case, AH must produce a preimage of the output ℓ1, . . . , ℓr
to which committed in its call to E . Assume that none of
is+1, . . . , in are critical. In particular, in is not critical, so that

ain ∈ span(rows(Q) ∪ rows(A−in) ∪ rows(M)). (∗)

By the assumptions about A stated above, we may assume
that a successful AH returning a preimage (γ1, . . . , γk) may
also determine the vector γ = (γ1, . . . , γk, γk+1, . . . , γk+n)

⊤

corresponding to values of all the base variables for PH . It
follows by (∗) that ain must satisfy the equation

ain · γ =
∑

1≤i≤n

ρiqi · γ +
∑

1≤i≤ni ̸=in

σiai · γ +
∑

1≤j≤r

τjℓj .

Note that all the values on the right-hand side of the equation
are fixed, but ain · γ is determined by choosing a random
element of F. This means that AH succeeds with probability
at most 1/|F|, a contradiction.

Combining Lemmas V.6 and V.7 gives our main result:

Theorem V.8. Suppose P is a Linicrypt program making n
queries, and q ≥ n. For sufficiently large λ, the following are
equivalent

• P is (q, (qn+1/nn)/|F|)-PrA
• P does not have a critical query
• P is (n, 1− 1/|F|)-PrA

Proof. Suppose that P is (q, (qn+1/nn)/|F|)-PrA. Since q ≥
n, this means that it is also (n, (qn+1/nn)/|F|)-PrA. Choose λ
so that |F|−1 ≥ qn+1/nn. Then P is (n, 1−1/|F|)-PrA. The
remaining implications follow by Lemmas V.6 and V.7

A. Examples

Returning to the Dodis-Pietrzak-Puniya function given
above, recall that M = m⊤

1 = (0, 0, 1, 1) and C =
⟨(t1, q1,a1), (t2, q2,a2)⟩ where

q1 = (1, 0, 0, 0)⊤ q2 = (0, 1, 0, 0)⊤

a1 = (0, 0, 1, 0)⊤ a2 = (0, 0, 0, 1)⊤

Then a1 = m1 + a2 and a2 = m1 + q2, so that neither
queries are critical.

As another example, we consider the Shrimpton-Stam hash
function [SS08]. In [DRS09a] this function, defined for in-
dependent random oracles f1, f2, f3 : F → F as f(c,m) =

f3(f1(m)+ f2(c))+ f1(m), is proven to be PrA. In Linicrypt
we have the following program:

PH(v1, v2) :

v3 := H(t1, v1)

v4 := H(t2, v2)

v5 := H(t3, v3 + v4)

return v3 + v5

In the algebraic presentation, we have:

M = m⊤
1 =

[
0 0 1 0 1

]
C = ⟨(t1, q1,a1), (t2, q2,a2), (t3, q3,a3)⟩

where

q1 = (1, 0, 0, 0, 0)⊤ q2 = (0, 1, 0, 0, 0)⊤ q3 = (0, 0, 1, 1, 0)⊤

a1 = (0, 0, 1, 0, 0)⊤ a2 = (0, 0, 0, 1, 0)⊤ a3 = (0, 0, 0, 0, 1)⊤

Here we have a1 = m1 +a3, a2 = q3 +a1, a3 = m1 +a1,
so none of the queries are critical.

Finally, we give an example of a collision-resistant com-
pression function which is not PrA. The program

PH(v1, v2) :

v3 := H(t1, v1)

v4 := H(t2, v1)

return (v3 + v2, v4)

defines the function f(x, y) = (f1(x) + y, f2(x)). Here we
have

q1 = (1, 0, 0, 0)⊤ q2 = (1, 0, 0, 0)⊤

a1 = (0, 0, 1, 0)⊤ a2 = (0, 0, 0, 1)⊤

m1 = (0, 1, 1, 0)⊤ m2 = (0, 0, 0, 1)⊤

It is clear by inspection that this function is collision-resistant
due to the second component of the output. In terms of
collision structures, we see that no such structure is possible
as a2 = m2. On the other hand,

a1 /∈ span(q1, q2,a2,m1,m2),

so i∗ = 1 is a critical query, giving rise to an attack where the
adversary queries ℓ2 = f2(x), sets ℓ1 arbitrarily, and outputs
(ℓ1, ℓ2) ∈ rng(f). However, the extractor responds, in the
second phase the adversary may compute y = ℓ1 + f1(x)
and return (x, y), winning with probability at least 1− 1/|F|.

Finding critical queries: Algorithmically, determining the
existence of a critical query is straightforward: each ai is
checked by solving a (2n − 1 + r) × (n + k) linear system
(or, more accurately determining the existence of a solution)
– overall this is polynomial in the size of P . We leave a more
refined analysis of the algorithmic complexity of finding a
critical query as future work.

40

B. Preimage aware compression functions
In this section we use our characterization to generate an

enumeration of all preimage aware compression functions
f : F × F → F with two inputs and two calls to a random
oracle (where F = GF(2λ) and programs are restricted to
having coefficients from {0, 1}.) To do this we generated all
212 binary matrices with 3 rows and 4 columns, corresponding
to constraint vectors q1, q2 and output vector m respectively
(a1 and a2 are fixed.) The first and second columns correspond
to inputs x and y and the last two to the random oracle calls
f1 and f2. After removing programs with useless queries and
applying constraints that rule out programs that are degenerate
or contain critical queries, we obtain 76 preimage aware
compression functions. This can be done very directly in a
language which supports matrix operations.5 Here we list 38
of them — the other 38 are obtained by switching the random
oracle calls f1 and f2. These may be divided into three groups
based on the general form of the function.

The first 12 functions are among those the form
f(x, y) = f1(a) + f2(b) + c or f(x, y) = f1(a) + f1(b),
where a, b, c ∈ {x, y, x+ y}:

1) f1(x) + f2(y) + y
2) f1(x) + f2(y) + x
3) f1(x) + f2(y) + x+ y
4) f1(x) + f2(y)
5) f1(x) + f2(x+ y) + y
6) f1(x) + f2(x+ y) + x
7) f1(x) + f2(x+ y) + x+ y
8) f1(x) + f2(x+ y)
9) f1(y) + f2(x+ y) + y

10) f1(y) + f2(x+ y) + x
11) f1(y) + f2(x+ y) + x+ y
12) f1(y) + f2(x+ y)

The next 14 PrA functions have the form f(x, y) = f1(a+
f2(b)) + f2(b) + c or f(x, y) = f1(a+ f2(b)) + f2(b) where
a, b, c are as above:

13) f1(x+ f2(y)) + f2(y)
14) f1(x+ f2(y)) + f2(y) + y
15) f1(x+ f2(x+ y)) + f2(x+ y)
16) f1(x+ f2(x+ y)) + f2(x+ y) + x
17) f1(x+ f2(x+ y)) + f2(x+ y) + x+ y
18) f1(y + f2(x)) + f2(x)
19) f1(y + f2(x)) + f2(x) + x
20) f1(y + f2(x+ y)) + f2(x+ y)
21) f1(y + f2(x+ y)) + f2(x+ y) + x
22) f1(y + f2(x+ y)) + f2(x+ y) + x+ y
23) f1(x+ y + f2(x)) + f2(x)
24) f1(x+ y + f2(x)) + f2(x) + x
25) f1(x+ y + f2(y)) + f2(y)
26) f1(x+ y + f2(y)) + f2(y) + y

The remaining 12 functions have the form f(x, y) = f1(a+
f2(b)) + c where a, b, c are as above:

5A sample implementation in Octave is available at https://github.com/
zahrajavar/PrACompressionFunctions.git

27) f1(x+ f2(y)) + x
28) f1(x+ f2(y)) + x+ y
29) f1(x+ f2(x+ y)) + x
30) f1(x+ f2(x+ y)) + y
31) f1(y + f2(x)) + y
32) f1(y + f2(x)) + x+ y
33) f1(y + f2(x+ y)) + x
34) f1(y + f2(x+ y)) + y
35) f1(x+ y + f2(x)) + y
36) f1(x+ y + f2(y)) + x
37) f1(x+ y + f2(y)) + x+ y
38) f1(x+ y + f2(x)) + x+ y

We also considered compression functions which are con-
structed using a pre-defined constant, as discussed in Sec-
tion III-A. Without any additional structural restrictions, this
results in an additional 532 possible PrA compression func-
tions.

VI. CONCLUSION

We have given a characterization of preimage awareness for
hash functions defined by Linicrypt programs using a random
oracle. This is based on a simple and poly-time checkable
algebraic condition which may be easily implemented. Our
method supports automated verification and generation of PrA
hash functions. This is in contrast to existing approaches to
proving PrA [DRS09a] which are ad hoc and not obviously
amenable to automation. Our approach to PrA provides a
uniform and potentially automatable method for constructing
indifferentiable hash functions, following the methodology of
[DRS09a].

Our work adds to existing results [CR16], [MSR19],
[HRR22] that demonstrate the utility of Linicrypt for providing
a uniform and potentially automatable framework for security
proofs in the random oracle model, using a language that is
powerful enough to capture many well-known constructions.

With respect to hash functions, an interesting question is
whether a Linicrypt-based characterization of indifferentiabil-
ity is possible. Given the methodology for constructing indif-
ferentiable hash functions using PrA compression functions,
and the fact that Linicrypt is particularly suited to the fixed-
input-length setting, this question seems to be of a more
technical nature than the one we have addressed in this paper.
Also, the problem of extending Linicrypt to the ideal cipher
model, already suggested in [MSR19], remains an interesting
question.

REFERENCES

[BC92] J. N. Bos and D. Chaum, “Provably unforgeable signatures,” in
CRYPTO ’92, ser. Lecture Notes in Computer Science, E. F.
Brickell, Ed., vol. 740. Springer, 1992, pp. 1–14. [Online].
Available: https://doi.org/10.1007/3-540-48071-4 1

[BCK96] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash
functions for message authentication,” in CRYPTO ’96, ser.
Lecture Notes in Computer Science, N. Koblitz, Ed., vol.
1109. Springer, 1996, pp. 1–15. [Online]. Available: https:
//doi.org/10.1007/3-540-68697-5 1

41

[BR93] M. Bellare and P. Rogaway, “Random oracles are practical:
A paradigm for designing efficient protocols,” in CCS ’93,,
D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and
V. Ashby, Eds. ACM, 1993, pp. 62–73. [Online]. Available:
https://doi.org/10.1145/168588.168596

[BRSS10] J. Black, P. Rogaway, T. Shrimpton, and M. Stam, “An
analysis of the blockcipher-based hash functions from PGV,” J.
Cryptol., vol. 23, no. 4, pp. 519–545, 2010. [Online]. Available:
https://doi.org/10.1007/s00145-010-9071-0

[CDMP05] J. Coron, Y. Dodis, C. Malinaud, and P. Puniya, “Merkle-
damgård revisited: How to construct a hash function,” in
CRYPTO 2005, ser. Lecture Notes in Computer Science,
V. Shoup, Ed., vol. 3621. Springer, 2005, pp. 430–448.
[Online]. Available: https://doi.org/10.1007/11535218 26

[CGH04] R. Canetti, O. Goldreich, and S. Halevi, “The random oracle
methodology, revisited,” J. ACM, vol. 51, no. 4, pp. 557–
594, 2004. [Online]. Available: https://doi.org/10.1145/1008731.
1008734

[CR16] B. Carmer and M. Rosulek, “Linicrypt: A model for practical
cryptography,” in CRYPTO 2016, Part III, ser. Lecture Notes
in Computer Science, M. Robshaw and J. Katz, Eds., vol.
9816. Springer, 2016, pp. 416–445. [Online]. Available:
https://doi.org/10.1007/978-3-662-53015-3 15

[Dam87] I. Damgård, “Collision free hash functions and public key
signature schemes,” in EUROCRYPT 1987, ser. Lecture Notes
in Computer Science, D. Chaum and W. L. Price, Eds.,
vol. 304. Springer, 1987, pp. 203–216. [Online]. Available:
https://doi.org/10.1007/3-540-39118-5 19

[Dam89] ——, “A design principle for hash functions,” in CRYPTO
1989, ser. Lecture Notes in Computer Science, G. Brassard, Ed.,
vol. 435. Springer, 1989, pp. 416–427. [Online]. Available:
https://doi.org/10.1007/0-387-34805-0 39

[DPP08] Y. Dodis, K. Pietrzak, and P. Puniya, “A new mode of operation
for block ciphers and length-preserving macs,” in EUROCRYPT
2008, N. P. Smart, Ed., vol. 4965. Springer, 2008, pp. 198–219.
[Online]. Available: https://doi.org/10.1007/978-3-540-78967-3
12

[DRS09a] Y. Dodis, T. Ristenpart, and T. Shrimpton, “Salvaging Merkle-
Damgard for practical applications,” IACR Cryptol. ePrint Arch.,
p. 177, 2009, full version of [DRS09b]. [Online]. Available:
http://eprint.iacr.org/2009/177

[DRS09b] ——, “Salvaging Merkle-Damgård for practical applications,”
in EUROCRYPT 2009, A. Joux, Ed., vol. 5479. Springer,
2009, pp. 371–388. [Online]. Available: https://doi.org/10.1007/
978-3-642-01001-9 22

[EGM96] S. Even, O. Goldreich, and S. Micali, “On-line/off-line digital
signatures,” J. Cryptol., vol. 9, no. 1, pp. 35–67, 1996. [Online].
Available: https://doi.org/10.1007/BF02254791

[HRR22] T. Hollenberg, M. Rosulek, and L. Roy, “A complete
characterization of security for linicrypt block cipher modes,” in
IEEE 35th Computer Security Foundations Symposium (CSF).
Los Alamitos, CA, USA: IEEE Computer Society, 2022, pp.
423–438. [Online]. Available: https://doi.ieeecomputersociety.
org/10.1109/CSF54842.2022.00028

[Lam79] L. Lamport, “Constructing digital signatures from a one-way
function,” SRI International, Tech. Rep. CSL 98, 1979.

[Mer87] R. C. Merkle, “A digital signature based on a conventional
encryption function,” in CRYPTO 1987, ser. Lecture Notes in
Computer Science, C. Pomerance, Ed., vol. 293. Springer,
1987, pp. 369–378. [Online]. Available: https://doi.org/10.1007/
3-540-48184-2 32

[Mer89] ——, “One way hash functions and DES,” in CRYPTO 1989,
ser. Lecture Notes in Computer Science, G. Brassard, Ed.,
vol. 435. Springer, 1989, pp. 428–446. [Online]. Available:
https://doi.org/10.1007/0-387-34805-0 40

[MF21] A. Mittelbach and M. Fischlin, The Theory of Hash Functions
and Random Oracles - An Approach to Modern Cryptography,
ser. Information Security and Cryptography. Springer, 2021.
[Online]. Available: https://doi.org/10.1007/978-3-030-63287-8

[MRH04] U. M. Maurer, R. Renner, and C. Holenstein, “Indifferentiability,
impossibility results on reductions, and applications to the
random oracle methodology,” in TCC 2004, ser. Lecture Notes
in Computer Science, M. Naor, Ed., vol. 2951. Springer,

2004, pp. 21–39. [Online]. Available: https://doi.org/10.1007/
978-3-540-24638-1 2

[MSR18] I. McQuoid, T. Swope, and M. Rosulek, “Characterizing
collision and second-preimage resistance in linicrypt,” IACR
Cryptol. ePrint Arch., p. 458, 2018. [Online]. Available:
https://eprint.iacr.org/2018/458

[MSR19] ——, “Characterizing collision and second-preimage resistance
in linicrypt,” in TCC 2019, Part I, ser. Lecture Notes in
Computer Science, D. Hofheinz and A. Rosen, Eds., vol.
11891. Springer, 2019, pp. 451–470. [Online]. Available:
https://doi.org/10.1007/978-3-030-36030-6 18

[SS08] T. Shrimpton and M. Stam, “Building a collision-resistant
compression function from non-compressing primitives,” in
ICALP 2008, L. Aceto, I. Damgård, L. A. Goldberg, M. M.
Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, Eds., vol.
5126. Springer, 2008, pp. 643–654. [Online]. Available:
https://doi.org/10.1007/978-3-540-70583-3 52

[Sta09] M. Stam, “Blockcipher-based hashing revisited,” in Fast Software
Encryption, 16th International Workshop, FSE 2009, Leuven,
Belgium, February 22-25, 2009, Revised Selected Papers, ser.
Lecture Notes in Computer Science, O. Dunkelman, Ed.,
vol. 5665. Springer, 2009, pp. 67–83. [Online]. Available:
https://doi.org/10.1007/978-3-642-03317-9 5

42

