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Abstract—Remote attestation (RA) is a primitive that allows
the authentication of software components on untrusted systems
by relying on a root of trust. Network protocols can use the
primitive to establish trust in remote software components they
communicate with. As such, RA can be regarded as a first-
class security primitive like (a)symmetric encryption, message
authentication, etc. However, current formal models of RA do
not allow analysing protocols that use the primitive without
tying them to specific platforms, low-level languages, memory
protection models, or implementation details.

In this paper, we propose and demonstrate a new model, called
πRA, that supports RA at a high level of abstraction by treating
it as a cryptographic primitive in a variant of the applied π-
calculus. To demonstrate the use of πRA, we use it to formalise
and analyse the security of MAGE, an SGX-based framework
that allows mutual attestation of multiple enclaves. The protocol
is formalised in the form of a compiler that implements actor-
based communication primitives in a source language (πActor)
in terms of remote attestation primitives in πRA. Our security
analysis uncovers a caveat in the security of MAGE that was left
unmentioned in the original paper.

Index Terms—remote attestation, secure compilation, π-
calculus

I. INTRODUCTION

Remote attestation (RA) is a security primitive that allows
authenticating software components on untrusted systems by
relying on a root of trust. This primitive exploits the root
of trust (a trusted hardware, firmware, or software entity) to
produce an attest for a given (software) component. An attest
is essentially an authenticated token from the root of trust and
vouches for the identity of its corresponding component. The
identity of a component is typically defined in terms of the
component’s executable code (e.g., it may include a hash of
the component’s machine code).

Once attested, a component can use its attest to prove its
identity to locally and remotely located third parties, allowing
them to establish trust in the code that the component is
executing. Crucially, this process is trustworthy only if the
code of the component has not been tampered with after the
attestation process. Indeed, if an attested piece of code is
changed by a third party, its identity may change, making the
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Research Foundation - Flanders (Research Project G030320N).

attest outdated. For this reason, attestation primitives are often
tied to isolation primitives (e.g., enclaves, virtual machines,
etc.) that separate the attested code from other, untrusted code
running on the same system. We will refer to these already
attested regions as attested components.

Support for RA has grown substantially in the last decade
with several mature implementations for full-fledged proces-
sors [1], [2], embedded processors [3], [4], and separate
chips supporting the processor [5]. Not all implementations
of RA take the form of low-level APIs supported by hardware
primitives. Examples include schemes for software-based RA
on resource-constrained devices [6] and RA APIs in high-level
languages, such as secureworker in JavaScript [7].

Software developers can reason about RA similarly to other
cryptographic primitives like (a)symmetric encryption, crypto-
graphic signatures, or secure hashes. Defining and reasoning
about protocols built on such cryptographic primitives is best
done in a setting where certain details are abstracted away,
like the choice of primitive instantiation and their security
parameters, or the distribution and communication model (e.g.,
communicate locally over IPC primitives or remotely over
a wireless network). For protocols built on RA, one should
abstract away the choice of RA implementation, the access
model used to isolate attested code from untrusted code, or the
fact that attestation primitives are usually offered at assembly
level on von Neumann machines.

To analyse protocols based on security primitives, such as
RA or (a)symmetric encryption, probabilistic and symbolic
methods are used. Although probabilistic methods are more
accurate, symbolic methods are often simpler as they assume
that primitives provide idealised guarantees. One popular
framework for constructing symbolic models of systems sup-
porting cryptographic primitives is the applied π-calculus [8],
an extension of the π-calculus that is well suited for mod-
elling communication and distributed systems. The applied
π-calculus adds support for an extensible equational theory,
which allows modelling idealised cryptographic primitives.
For example, symmetric encryption can be modelled as a
pair of functions encrypt(M,k) and decrypt(M,k), such that
decrypt(encrypt(M,k), k) = M . This model is idealised be-
cause brute forcing and lucky guesses are not just statistically
unlikely but simply impossible. Unfortunately, the applied π-
calculus cannot directly model remote attestation primitives
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since RA uses cryptographic values (attests) that depend on
the executable code of software components (see Section III).

This paper proposes a formal model for reasoning about
RA-based protocols at a high level of abstraction. The model
is a variant of the applied π-calculus, called πRA, where
attestation is handled as a cryptographic primitive. The model
abstracts away from details like the encapsulation model, com-
ponents’ low-level code, and the protocol used for attestation.
Note that the primary goal of πRA is to provide a tool for
reasoning about protocols that build upon the mechanisms of
RA, not for modelling RA implementations (see Section VI).

To demonstrate the use of πRA for reasoning about pro-
tocols, we study the MAGE protocol [9]. This protocol uses
RA primitives for mutually authenticating a group of compo-
nents (the problem and solution are explained in more detail
in Section II -c). We model the action of adding MAGE’s
mutual attestation features to any protocol as a compiler
that implements authenticated actor communication primitives
securely in terms of πRA’s RA primitives. We prove a secure
compilation result establishing that the translation accurately
preserves source language guarantees. Our security analysis
formalises the precise guarantees that MAGE offers, clarifying
a security caveat that went unmentioned in the original paper.

This paper makes the following contributions:
• πRA: an extension of the applied-π calculus that provides

RA as a set of hardware-independent primitives and
enables abstract reasoning about protocols using RA.

• A formal security analysis of the MAGE protocol, con-
sisting of (1) a source language πActor with secure actor-
based communication primitives, (2) a formal compiler
from πActor to πRA that defines the MAGE protocol in a
more abstract setting and (3) a secure compilation result
from πActor to πRA

1 establishing the security of MAGE.
• Our analysis clarifies a security caveat for using MAGE

that was left unmentioned in the original paper.
Structure of the paper: Section II introduces a few pre-

liminaries after which Section III introduces πRA. Section IV
defines πActor, models MAGE as a compiler from πActor

to πRA and discusses our formal statement of its security.
Section V reports on our proof of the security theorems.
Sections VI and VII overview-related literature and conclude.

II. BACKGROUND

a) Remote attestation: As mentioned in the introduction,
remote attestation is a security primitive that allows the authen-
tication of software components on untrusted systems by rely-
ing on a root of trust. The primitive can be implemented using
a static (S-RTM) or dynamic root of trust for measurement (D-
RTM). According to the Trusted Computing Group [11], an S-
RTM is a “chain of measurements of platform state that begin
at Host Platform Reset (e.g., power-on or system restart) (. . . ).
The measurement chain continues with components measuring

1To ease reading, we typeset elements of source languages, such as πActor,
in blue, sans− serif, target elements, such as πRA, in red,bold and
common ones in black [10].

subsequent components and configuration data before passing
control to them.” This results in a large trusted computing
base including the whole OS, hence one OS bug can break
security. S-RTM is notably used in the Trusted Platform
Module (TPM) [5]. A D-RTM [11] allows the measurement
chain to start at any time so that the entire OS does not
need to be trusted. Once an attest is generated with a D-
RTM, the attested code can only be changed by itself, which
prevents untrusted components from tampering with attested
ones. Systems using a D-RTM include Intel SGX [2], MIT
Sanctum [1], Sancus [3] and TrustLite [4].

The cryptography used to produce attests varies from system
to system. Some systems use relatively simple methods based
on symmetric encryption and pre-shared keys with a trusted
third party [3]. Others use asymmetric encryption or even
group cryptographic signatures to obviate the trusted third
party or obtain additional anonymity properties. We regard
these choices as orthogonal and will treat them abstractly in
our model.

b) The applied π-calculus: In this section, we only
present the parts of the applied π-calculus [8] that are featured
in this paper. In particular, we omit communication primitives
and active substitutions. Note that communication primitives
are required to make concurrency useful, but both πRA (cf.
Section III) and πActor (cf. Section IV) will add their own.

The terms in the applied π-calculus are either names of
channels, variables, or function applications on terms:

L,M,N, T, U, V ::= terms
a, b, c, . . . , k, . . . ,m, n, . . . , s names
x, y, z variables
f(M1, . . . ,Ml) function applications

All functions f are denoted in the signature Σ (not to be
confused with the cryptographic signature). The signature Σ is
a finite set of function symbols, along with equality rules, such
as f(a, b) = f(b, a) which denotes commutativity. If function
applications cannot be proven equal according to these equality
rules, then they are not equal in this framework.

The processes have the following syntax:

P ::= processes
0 inactive processes
P1 | P2 parallel composition
!P replication
P +Q non-deterministic choice
new aP restriction
if M = N then P else Q conditional
print(M).P outputs M

userInput(z).P user input in variable z

The restriction new aP makes available a fresh (i.e., distinct
from all others) name as variable a in P . The constructs
print(M) and userInput(z) are shown in a different font
because they are not in the applied π-calculus but added by

2538



us to more easily reason about traces in the proofs.2 The
construct P1 | P2 denotes the parallel composition of two
programs, modelling concurrency. The replication !P allows
us to create non-terminating processes, e.g., recursion can
be emulated using replication and communication between
parallel programs.

Programs are equipped with a structural congruence rela-
tion, relating programs that should be treated as identical:

1) Programs that only differ up to a change of bound names
are structurally congruent

2) Programs that only differ up to a reordering of terms in
a summation are structurally congruent

3) P | 0 ≡ P , P | Q ≡ Q | P , P | (Q | R) ≡ (P | Q) | R
4) new u (P | Q) ≡ P | new uQ if u /∈ fv(P ) ∪ fn(P ),

new u 0 ≡ 0, new u (new v A ) = new v (new uA )
5) !P ≡ P |!P .

Here, P ≡ Q means P and Q are structurally congruent and
fv(P ) and fn(P ) denote the free variables and free names of
P .

Figure 1 defines some evaluation rules where ground term
denotes a term without free variables. The semantics of non-
deterministic choice, parallel composition, if-then-else, print
and userInput are given by rules TAU, PAR, THEN, ELSE,
PRINT and USERINPUT. Structurally congruent programs
behave the same (rule STRUCT) and rule RES defines that
programs under a new a evaluate as without the new a , as
long as a is not leaked in inputs or outputs.3 Note that choosing
Q in P +Q can be done by using TAU and STRUCT.

c) MAGE, an example protocol using remote attestation:
The MAGE protocol [9] aims to solve the circularity problem
in mutual attestation. This problem is depicted in Figure 2. If
programs A and B want to authenticate each other using RA,
then B must include the hash of A to verify A’s identity and
A similarly should contain the hash of B. Thus, the hash of
A indirectly depends on itself and its definition is circular.
MAGE breaks this loop by preprocessing some information
as shown in Figure 3. The protocol starts by calculating the
hashes of the code of each of the programs without the hashes
of other programs, see the magenta box around the code of
B. These hashes without other hashes are all calculated and
compiled in a table, called idT . This table is concatenated
with the program as depicted in Figure 3. If program A wants
to verify the identity of program B, it reads the corresponding
hash from the table. This is not yet the correct hash for B, as
it does not contain B’s copy of the table of hashes. However,
A can derive the correct hash of B from the preprocessed hash
of B and A’s copy of the table.

For this derivation, MAGE relies on the special form of
the hash function used on Intel SGX. Essentially, the hash of
A∥idT (idT concatenated to A) can be computed using the

2Alternatively, we could have used I/O on special-purpose channels, but
separate primitives allow us to more easily distinguish internal I/O (with other
processes in the system) from external I/O (with the outside world).

3Note that a can be renamed, so leaking a would result in undefined
behaviour.

hash of A and the contents of idT (for block-aligned A and
idT ).

Interestingly, Zheng and Arden [12] proposed a different
but very similar scheme to resolve the circularity in what
they called the Decent Application Platform. They also use
a preprocessed table, but they do not exploit the special form
of the hash function and instead let enclaves send the table
in use and check whether they are using the same table or
not. Orthogonally to this, they also implement delegation of
attestation, dynamic verifiers and revokers.

d) Fully abstract compilation and robust (relational)
hyperproperty preservation: For our analysis, we formalise
the intended security property of MAGE as a secure com-
pilation result. The idea is that the security of a compiler
implementing a protocol (e.g. MAGE) can be regarded as
a security property of the protocol. It establishes that the
protocol enforces certain guarantees, namely, the ones that
hold in the source language. Essentially, applications that are
securely implemented in terms of abstract source language
primitives against a source attacker model, remain secure when
the compiler implements the application using the protocol
in terms of target language primitives, against the target
language’s attacker model. This is similar to real/ideal style
proofs from cryptography (cf. [13] and [14]). For example, a
compiler representing MAGE is a compilation from a language
that takes mutual attestation for granted (ideal world) to πRA

(real world). If this compiler is subsequently shown to be
secure, then compiling a program/protocol with this compiler
corresponds to securely adding MAGE’s mutual attestation
features to that program/protocol. This also means that the
secure compilation result proves security under composition.
Also, note that the choice of source language (ideal world)
is just as much a part of the security property as the secure
compiler, because if the studied primitive is not trivially safe in
the source language, then the security of the studied protocol
is unclear.

Several secure compilation criteria exist in the literature,
each with its advantages and disadvantages. Two prominent
and fairly strict criteria of secure compilation are fully abstract
compilation (FAC) [15], [16] and robust relational hyperprop-
erty preservation (RrHP) [17].

To define these criteria, we must first define the behaviour
of a program and the concept of contextual equivalence. We
define the behaviour of a program as the set of all possible
traces with which the program can evaluate:

behav(P ) = {t | P ⇝ t}

where P ⇝ t means that P can evaluate to some program P ′

with trace t. We define contextual equivalence in terms of this
trace semantics (easing discussing RrHP and FAC together):

P ≃ctx Q ⇐⇒ ∀C : behav(C[P ]) = behav(C[Q])

The context C represents a (potentially adversarial) client and
C[P ] means that program P is linked with C. Thus, contextual
equivalence P ≃ctx Q means that P and Q behave the same
in every context or, in other words, no context can distinguish
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PAR :
P

a−→ P ′

P | Q a−→ P ′ | Q
RES :

P
a−→ P ′

new xP
a−→ new xP ′ if x /∈ a STRUCT :

Q ≡ P P
a−→ P ′ P ′ ≡ Q′

Q
a−→ Q′

PRINT : print(M).P
p(M)−−−→ P TAU : P +Q → P THEN : if M = M then P else Q → P

USERINPUT : userInput(x).P
ui(a)−−−→ P

{
a/x

}
ELSE : if M = N then P else Q → Q for M and N ground and Σ ̸⊢ M = N

Fig. 1: The evaluation rules of the applied π-calculus without communication

A
Send attest of A;
Receive attest;
Check attest contains
#(code of B);
Rest of code of A

B
Receive attest;
Check attest contains
#(code of A);
Send attest of B;
Rest of code of B

attest(#(code of A))

attest(#(code of B))

Fig. 2: Illustration of the circularity problem

A
Send attest of A;
Receive attest;
Check attest contains
idT(B) ++ idT;
Rest of code of A

idT

B
Receive attest;
Check attest contains
idT(A) ++ idT;
Send attest of B;
Rest of code of B

idT

attest(#(code of A ++ idT))

attest(#(code of B ++ idT))

Fig. 3: Illustration of MAGE

them. If there are different secret values embedded in the
source code of P and Q, then contextual equivalence implies
confidentiality of the secret, as no context C can distinguish
the two programs. We will often refer to contexts as attackers
instead.

We can now define FAC for a compiler J·K as follows:

∀P,Q : P ≃ctx Q ⇐⇒ JPK ≃ctx JQK

This means that if the two source programs P and Q are
indistinguishable to source-language contexts, then their com-
pilations are also indistinguishable to target-language contexts.
For example, specifically in the case of secrecy (as explained
briefly above), FAC shows that if the source program protects
a secret embedded in its code from an attacker, then its
compilation will as well.

Next, RrHP [17] is defined as follows:

∀R ∈ 2Behavsω : ∀P1, . . . ,Pk, . . . :

(∀CS : (behav(CS[P1]), . . . , behav(CS[Pk]), . . .) ∈ R) =⇒
(∀CT : (behav(CT[JP1K]), . . . , behav(CT[JPkK]), . . .) ∈ R) .

The set R ∈ 2Behavsω is a relational hyperproperty, which
is a relation between the behaviours of several programs. For
example, contextual equivalence is a relational hyperproperty
between two programs. RrHP states that the compiler pre-
serves relational hyperproperties, such as R, meaning that if

a set of programs satisfies the relation R then the set of their
compilations also satisfies R. RrHP comes with an equivalent
“property-free” characterisation called RrHC:

∀CT : ∃CS : ∀P : behav(CT[JPK]) = behav(CS[P])

where CT is a target context. In this paper, we will only use (a
variant of) RrHC. An interpretation of RrHC is that a compiled
program cannot be coerced to do more under the influence of
a target attacker than the source program could be coerced
to do under the influence of a source attacker. Contrary to
other properties like the non-relational RHC, which we do
not discuss in detail, RrHC requires that there exists a single
context CS that can accurately simulate the interaction of CT

with arbitrary programs P. The differences between FAC and
RrHC are subtle and discussed elsewhere in more detail [17],
but RrHC is more general: it does not only protect secrets
embedded in a program’s source code, but also implies the
preservation of other properties than indistinguishability.

Essentially, we chose these criteria because FAC is a well-
established criterion and RrHP is simply the strongest secure
compilation criterion proposed to date.

Note that the meaning of these definitions can vary greatly
based on what is considered a valid context, i.e., the set
of valid contexts should correspond to the chosen attacker
model. For example, in Section V we will carefully choose
the right contexts to correspond to the power that MAGE
allows attackers to have. The interested reader can explore
these concepts more in-depth in the survey by Patrignani,
Ahmed and Clarke [16] and the paper by Abate et al. [17].

III. THE MODEL OF REMOTE ATTESTATION

In this section, we present our model of RA, called πRA,
and motivate our choices. RA is not a traditional cryptographic
primitive, as it is usually supported by (a combination of)
hardware, software, and cryptography. Moreover, traditionally,
whether a component can obtain a secret value depends only
on whether it has the right inputs, while RA assumes a
form of secret values (attests) that can be obtained only by
specific components. However, in this paper, we choose to
study RA as if it were a cryptographic primitive, and we
model it in a variant of the applied π-calculus. This calculus’
focus on communication allows modelling representative RA
protocols and its equational theory allows guarantees to be

4540



easily idealised symbolically. RA requires some additions to
the applied π-calculus, but we restrict them to a minimum.

A. The πRA-calculus

In this section, we discuss the terms, constructs, and eval-
uation rules of πRA. First, we extend the signature with an
irreversible function attest( · ), modelling attests. Because one
should not be able to deconstruct an attest, there are no rules
for that in the equational theory and attest(h) = attest(h′)
only holds if h′ = h holds. The cryptographic hash is also
added to the signature and is denoted by #. It maps a program
or term to a term and the equational theory is again simple,
with only hashes of the same program (up to the renaming
of bound variables) being equal. When a hash of a program
is taken, the program is viewed as just a string without
operational relevance, hence only the syntax is relevant.

However, to model that attests can only be obtained by
the program having that hash, we need to do more than just
extending the signature. We assume that attests cannot appear
as terms initially and can only be generated by a specific
program construct, getAttest(x,d,D).P, that can read the
whole program, P, similar to the trusted processor reading
the whole program. Furthermore, we add some constructs that
make it easier to communicate using attests as authentication.
Specifically, the following constructs are added:

P ::= · · · | getAttest(x,d,D).P attested process

N
auth⟨M, a, h⟩.P authenticated send

Nauth(y, h, a).P authenticated receive.

The construct getAttest(x,d,D).P (where x and d are free
in P) evaluates to P

{
attest(#x,dP)/x

}{
D/d

}
(cf. Figure 4).

In other words, the attest is available as the variable x in
the program. There is no other way to obtain attests, so
only P can obtain an attest for P. Note that we could not
have modelled attests by just extending the signature because
they are secret values that are provided only to specific
syntactic components and the π-calculus does not support such
constructs. The third argument, D, represents data that P can
use but is ignored for computing the attest.

The notation #x,dP is shorthand for #new (x,d)P . We
use new to bind variables x and d in P when computing the
hash, such that equality of hashes can be taken up to renaming
of bound variables, making variable names irrelevant.

The other two constructs model an authenticated form of
communication. Given an attest and an expected identity,
these operations can send or receive information provided
that the attest of one party matches the identity the other
party expects. We call these operations N

auth⟨M, a, h⟩ and
Nauth(y, h, a) where N is the channel to send the message
on, M is the term that gets sent, y is the variable that gets
replaced by the received term, a is the attest or anon if no
attest is sent, and h is the expected identity of the other pro-
gram or any if no attestation from the other party is required.
The evaluation rules for this authenticated communication and
getAttest(x,d,D).P are shown in Figure 4.

The communication primitives are rather high-level: they are
assumed to take care of defending against man-in-the-middle
attacks and replay attacks so that protocols do not need to
deal with this themselves. We could have alternatively used
more low-level communication primitives from which we can
build N

auth⟨M, a, h⟩ and Nauth(y, h, a), but that would
only require us to prove the security of standard defences like
nonces. We believe that our primitives allow the modeller
to not have to deal with details that are irrelevant for the
study of their protocols and that they align with the level of
abstraction that the applied π-calculus normally operates at.
Our primitives authenticate separately for every message sent.
This inefficiency can be avoided by using an RA-authenticated
channel to establish a shared key for communicating securely
over unauthenticated channels.

B. Simple examples

In this section, we present two simple examples of programs
making use of RA in πRA. The first example demonstrates
Secure Remote Execution (SRE) of a simple function and the
second example demonstrates how RA could be used to make
(non-interactive) zero-knowledge proofs.

SRE can be used for applications like secure distributed
compilation [18], where computations are offloaded to other
computers without trusting their operating system. For this
example, we take a channel N and consider an attested
component getAttest(x,d,unit).P which performs a trivial
computation and always returns 42:

P = N
auth⟨42, x, any⟩.0.

A program Q that uses the services of P, can use RA to ensure
that the computation is executed correctly:

Q = Nauth(y, #x,dP, anon).print(y).0

where Q uses the hash #x,dP to make sure it communicates
with getAttest(x,d,unit).P. Together, P and Q execute as
follows:

Q | getAttest(x,d,unit).P
−→ Q | P

{
attest(#x,dP)/x

}{
unit/d

}
= Nauth(y, #x,dP, anon).print(y).0 |

N
auth⟨42, attest(#x,dP), any⟩.0

−→ print(42).0 | 0
p(42)−−−→ 0.

RA ensures that Q will only ever print 42, no matter what
other program it is linked to, effectively achieving SRE.

Another example shows that remote attestation can support
(non-interactive) zero-knowledge proofs for arbitrary criteria
(cf. [19, Chapter 21]). Suppose program P wants to prove to V
that it knows a secret value s that satisfies a criterion without
leaking (any information about) s. The idea is that P sends
s to a third party, R = getAttest(x,d,unit).R′: an attested
component that validates s and sends out true if s satisfies
the criterion or false otherwise. Because of RA, V can trust
R to know whether P has the secret, while P can trust R to
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ATTEST : getAttest(x,d,D).P −→ P
{
attest(#x,dP)/x

}{
D/d

}
if D is a ground term

AUTHCOMM :
∀R ∈ {P,Q} : (hR = any or attest(hR) = aR)

N
auth⟨M, aP, hQ⟩.P | Nauth(y, hP, aQ).Q −→ P | Q

{
M/y

}
Fig. 4: Extra evaluation rules of πRA.

forget the secret after validation. It does not even matter who
controls R (either P, Q or an untrusted third party), because
the attested component’s behaviour is fixed and independent
of who created or hosts the attested component.

We take distinct channels N1 and N2 and define R′ as:

R′ = Nauth
1 (y, any , x).N2

auth⟨checkCrit(y), x, any⟩.0

where checkCrit(s) is a function in the signature that is equal
to true if s satisfies the criterion and false otherwise. The
prover P and verifier V are defined as:

P = N1
auth⟨s, anon, #x,dR

′⟩.0
V = Nauth

2 (y, #x,dR
′, anon).

if y = true then SUCC else FAIL.

Together the components evaluate as follows:

V | P | getAttest(x,d,unit).R′

−→ V | P |
(Nauth

1 (y, any , attest(#x,dR
′)).

N2
auth⟨checkCrit(y), attest(#x,dR

′), any⟩.0)

−→ V | 0 | N2
auth⟨checkCrit(s), attest(#x,dR

′), any⟩.0
−→ if checkCrit(s) = true then SUCC else FAIL | 0 | 0.

The last line of this evaluation will further evaluate to SUCC
if s satisfies the criterion and to FAIL otherwise. Note that
checkCrit(s) is a function in the signature and the equational
theory defines it to be equal to true if s satisfies the criterion
and to false otherwise. So, when checkCrit(s) is sent, it
is actually either true or false that is sent and no other
information about s is included. This shows that, after a
successful evaluation, V can trust that P has a suitable value,
but has learned nothing else about the value. Also, R erased
its copy of the value when it ends in an inactive program.

This shows that RA can be used to implement other cryp-
tographic primitives like zero-knowledge proofs. We expect
that RA could similarly be used to implement, e.g., secure
multi-party computation.

C. Relation to concrete platforms

The primitives, N
auth⟨M, a, h⟩, Nauth(y, h, a) and

getAttest(x,d,D) from πRA, do not directly correspond to
the primitives offered by systems with support for remote
attestation. In this section, we argue that our model is re-
alistic by explaining how primitives like getAttest(x,d,D),

N
auth⟨M, a, h⟩ and Nauth(y, h, a) correspond to primi-

tives that are present in real systems.

The getAttest(x,d,D) construct generates an attestation
token that they can use to prove their identity in authenticated
sends and receives. In our calculus based on rewrite rules, this
allows us to remember what the attested component looks like
at initialisation time. Many platforms never generate such a
token, but as long as the components do not leak their attests,
the attestation token can be regarded as a conceptual value
that never leaves the component and hence doesn’t require a
runtime representation.

The N
auth⟨M, a, h⟩ and Nauth(y, h, a) constructs are

quite abstract: as they combine attestation with communication
and automatically protect against man-in-the-middle and re-
play attacks. Many systems do not offer secure communication
primitives but provide more basic functionality, often a pair of
primitives that allow (i) packaging a value with an attestation
proof of its sender, and (ii) checking the authenticity of the
package without direct access to the attest. Primitives behaving
this way are mostly found in real systems at the moment of
creating an attest and in these cases, unpackaged attests are
never created. Some examples of functions on real platforms
that have the same behaviour as a packaging function included
in the attest request are “EREPORT” in Intel SGX [20], the
“attest(d)” command with operand “d” in TAP [21], “ATTES-
TATION” in AMD SEV [22], “attest” in Keystone, “Attest”
in the Komodo paper [23], “TPM2 Quote()” in the TPM [5],
and the VRASED paper [24, p. 1431] describes a mechanism
that has the properties of packaging. Sancus [3] uses a model
based on symmetric keys and the attest is a key derived from
the measurement of the attested component to communicate
with the software provider. Since the key is not leaked during
communication, the symmetric key also works as a packaged
attest if the software provider is trusted, which is a necessary
assumption to get RA between attested components in Sancus.

Instead of our authenticated sends and receives, we could
have added such primitives to πRA instead. The packaging
and checking can be expressed in the equational theory of
the applied π-calculus as the functions package(M,b) and
check(pa,h,b), such that

check(package(attest(h),b),h,b) = true,

while everything else yields false . However, such primitives
are more low-level and they would require typical RA-based
protocols to take additional measures to prevent replay and
man-in-the-middle attacks. Because we consider such prob-

6542



lems to be standard and orthogonal to the use of remote attes-
tation, we chose to use our more high-level N

auth⟨M, a, h⟩
and Nauth(y, h, a) in πRA, allowing protocols to focus on
the use of RA and assume these more standard and well-
understood problems to be dealt with in the background.

To implement the extra features that the Decent paper [12]
uses, such as delegating authentication, dynamic verification
and revocation, we also need to be able to create a token that
shows that some enclave endorses something without being
able to retrieve the attest from this. To support these features,
we just need to add package(M,b) and check(pa,h,b) to
the signature. Also, keeping both authenticated receives and
sends and packaging and checking at the same time gives the
advantages of both simplicity and expressivity.

Lastly, πRA allows some things that are not possible on
some platforms supporting RA, such as nested attested com-
ponents like

getAttest(x,d,D).getAttest(y,d′,D′).P.

Furthermore, πRA allows attestation tokens to be passed
around, transmitted, and printed. A lot of systems do not allow
nested attestation or transmission of attestation tokens, but
protocols can support such systems by avoiding the use of
these features. For example, our model of MAGE that will
be demonstrated in the next section does not send attests
across attested component boundaries. In fact, our proof shows
that MAGE is even secure against attackers who can transmit
attestation tokens.

IV. A DEMONSTRATION: FORMAL ANALYSIS OF MAGE

To demonstrate how πRA can be used to reason about proto-
cols using RA primitives, we formally define in our model the
action of adding MAGE’s mutual attestation features to any
protocol. Specifically, we define MAGE as a compiler from
πActor (cf. Section IV-A) to πRA (cf. Section III-A) that uses
the ideas of MAGE to resolve the circularity problem that oc-
curs in mutual attestation. By proving that this compilation is
correct and secure (in the sense of adapted versions of FAC and
RrHC) and remarking that πActor can communicate securely
along authenticated channels without circularity issues, we
prove that the MAGE protocol succeeds at securely resolving
the mutual authentication issues. Note here that πActor and its
support for circular authenticated communication, are just as
much a part of the security definition as the chosen secure
compilation criteria. Our actor-based approach enables an
approach similar to that of frameworks like EActors [25] that
allow programmers to construct secure RA-based programs
by programming in the comfort of a secure actor language
without the manual use of RA.

A. The source language

The source language is an actor language inspired by the
EActors framework [25] and the authentic execution frame-
work of Noorman, Mühlberg and Piessens [26] where each
actor contains a program and has a name. In this language,
it is assumed that all programs know which name belongs to

which program. It is also assumed that if two actors have the
same name, then they must contain the same program. The
source language πActor extends the applied π-calculus with
actors:

P ::= · · · | actor(n, P) actor
(with P closed)

runAct(n, P, Pstart) initialised/running actor

Nid1→id2
⟨M⟩.P output with identification

Nid2→id1
(x).P input with identification

with id1 := self | anon and id2 := n | any

The construct actor(n, P) represents an actor that has not yet
started execution and runAct(n, P, Pstart) denotes an actor
that is already initialised with name n and starting program
Pstart and currently contains the program P. Programs in
πActor do not contain running actors in the beginning; these
are obtained by evaluating actor(n, P). Additionally, we have
the safe output and input, Nid1→id2

⟨M⟩.P and Nid2→id1
(x).P,

where the id1 is the identity the program uses and id2 is the
expected identity of the other party. The program’s identity
id1 can be self (referring to the name of the running actor)
or anon (anonymous). Safe inputs and outputs outside actors
can not use id1 = self , hence they are always anonymous.
The identity id2 is either the expected name of the other party
or any , allowing any party.

There are also some extra congruence rules for πActor:

runAct(n, P | Q, Ps) ≡ runAct(n, P, Ps) | runAct(n, Q, Ps)

P ≡ P′

runAct(n, P, Pstart) ≡ runAct(n, P′, Pstart)
.

The first rule makes sure that communication within a single
actor can go through. The second rule states that actors with
the same name and starting program containing congruent
programs are congruent, as expected. A similar rule is not
present for the starting program Ps in runAct(n, P, Ps) or
actor(n, Ps) because RA will attest a specific syntactic iden-
tity of the program.

The evaluation rules of πActor can be found in Figure 6 and
they depend on the labelled transition rules in Figure 5. The
rule INITACTOR initialises an actor (emitting an empty label)
and EVALACTOR makes transition rules apply within actors
as well. The most interesting rule is SAFECOMM which deals
with communication. This rule uses

l
↪−→ (cf. Figure 5) to

handle things like replacing self by the correct name (done
by labelOut(a, n) in ACTOROUT) and getting input or outputs
requests through some layers of actors. The rules reflect our
earlier explanation about the identities in Nid1→id2

⟨M⟩.P and
Nid2→id1

(x).P.

To demonstrate πActor, we reconsider the Secure Remote
Execution example from Section III-B, this time in πActor. Take
a channel N and define P = Nself→any⟨42⟩.0 (a program that
computes 42) and Q = Nn→anon(y).print(y) (a program that
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SAFEOUTPUT : Nid1→id2
⟨M⟩.P

Nid1→id2
⟨M⟩

↪−−−−−−−→ P

SAFEINPUT : Nid2→id1
(y).P

Nid2→id1
(M)

↪−−−−−−−→ P
{
M/y

}
ACTOROUT :

P
a
↪−→ P′

runAct(n, P, Pstart)
labelOut(a,n)
↪−−−−−−−−→ runAct(n, P′, Pstart)

with

selfToName(self , n) = n

selfToName(id , n) = id

labelOut(Nid1→id2
⟨M⟩, n) = NselfToName(id1,n)→id2

⟨M⟩
labelOut(Nid2→id1

(M), n) = Nid2→selfToName(id1,n)
(M)

Fig. 5: The labelled transitions denoted by
l

↪−→ and the
function selfToName(id , n) and labelOut(label , n).

INITACTOR : actor(n, P) −→ runAct(n, P, P)

EVALACTOR :

P
a−→ P′

runAct(n, P, Pstart)
a−→ runAct(n, P′, Pstart)

SAFECOMM :

P
NidP1→idP2

⟨M⟩
↪−−−−−−−−−→ P′ Q

NidQ2
→idQ1

(M)

↪−−−−−−−−−→ Q′

(idP2 = any or idP2 = idQ1)
(idQ2 = any or idQ2 = idP1)

P | Q −→ P′ | Q′ .

Fig. 6: The extra rules of the transition relation of πActor.

wishes to makes use of these services). The program Q can
safely make use of a protected version of P in an actor n:
Q | actor(n, P). It will evaluate as follows:

Nn→anon(y).print(y) | actor(n, P) −→
Nn→anon(y).print(y) | runAct(n, Nself→any⟨42⟩.0, P) −→

print(42) | runAct(n, 0, P)
p(42)−−−→ 0 | runAct(n, 0, P).

Again, notice that the program Nn→anon(y).print(y) will only
ever print 42, even if the channel N is public. This is because
contexts cannot define actors with the same name n but a
different program, so whichever actor Q communicates with
will have P as its starting program. Note that Q is assumed to
know the link between n and P, so actor(n, P) is part of the
trusted code base but may be running on an untrusted system.

B. The compiler

We can now formalise MAGE as a compiler from πActor to
πRA. Recall from Section II -c that MAGE relies on some
properties of the specific implementation of the hash used
in Intel SGX, namely that the hash of the concatenation

Jprint(M).PKidT,x = print(M).JPKidT,x

Jactor(n, P)KidT,x = getAttest(y,d,unit).JPKidT,y

with y and d fresh
q
Nid1→id2

⟨M⟩.P
y
idT,x =

N
auth⟨M, slfToA(id1, x ), ext(idT(id2), idT)⟩.JPKidT,xq

Nid2→id1
(y).P

y
idT,x =

Nauth(y, ext(idT(id2), idT), slfToA(id1, x )).JPKidT,x

with slfToA(id1,a) =

{
a if id1 = self

anon otherwise
.

Fig. 7: The compiler, parametrized by idT and k.

of A and the preprocessed table of identities, idT , can be
calculated from the hash of A and the content of idT . To
model this property, we add a function ext((h,D)) to the
signature of πRA with ext(#new zP , idT) = #P

{
idT/z

}
and ext(any ,D) = any as extra equational theory. This
function can take a hash of a program and a term and return
the hash of the program with the term substituted. This is
similar to the hash of concatenated programs mentioned in
Section II -c.

Recall from Section II -c that MAGE relies on the table of
identities that was concatenated at the end. However, before
showing how we calculate these preprocessed identities, we
define the first phase of the compilation which is parametric
on this identities table (cf. Figure 7). This is parametric which
means that we can use identities of this kind of compilation
for the table of identities and by replacing the placeholder idT
by the preprocessed table we get a compiled program that can
use idT.

Most of the rules in this compiler are fairly straightforward
and not mentioned in Figure 7. The first rule is an example
of what the omitted rules look like. There is no rule for
running actors because programs in πActor do not contain
running actors initially. Uninitialised actors are compiled to
getAttest(x,d,D)-regions. Output and input are compiled to
authenticated sends and receives with the right identities table
and the attest is either x for self (to be replaced later by the
actual attest) or anon for anon .

Next, this first phase parametric in idT is used to create the
identities table with the function cH (P) (cf. Figure 8) where
using a variable in the place of idT disregards the hashes of
other programs in the code (just remembers the names). The
function cH (P) then collects the hashes of these compilations
without the identities table in a dictionary mapping names of
actors to hashes of their code.

Using these concepts the actual compilation can then be
defined as using the compilation dependent on the identities
table with the preprocessed identities table as an argument or
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cH (P) =


∅ if P = 0
{(n,#z,x,dJPstartKd,x)} ∪ cH (Pstart) if P = actor(n, Pstart) or P = runAct(n, P′, Pstart)

cH (Q) if P = Nid1→id2
⟨M⟩.Q or P = Nid2→id1

(x).Q or . . .

cH (Q) ∪ cH (R) if P = Q | R or P = Q+ R or P = if M = N then Q else R

.

Fig. 8: The function cH (P) compiles a table of the hashes of compiled actors in P.

in symbols:

JPK = JPKcH (P),■

where ■ denotes a fixed choice of variable, but ■ is never
used as a variable name by other programs.

Despite the high-level nature of our source and target
languages, our model still faithfully captures MAGE’s vital
parts: the preprocessed table of identities which is generated at
compile time and the reconstruction of counterparty identities
at runtime by combining the preprocessed identities with the
full table. Furthermore, communication in the source which
is done with authenticated communication primitives without
circularity problems is compiled to communication primitives
that use attests to obtain authentication and MAGE’s solution
to solve the circularity.

As explained before, our compiler does not model the
MAGE protocol as a standalone (set of) communication steps
but as a procedure that translates an existing program from
an abstract idealised setting into a more concrete setting. The
compiler does this by implementing idealized communication
primitives (that natively allow circular attestation) in terms of
more elementary primitives and using the MAGE protocol to
resolve the circularity. This is a good way to model the MAGE
protocol because (1) the protocol is parametric in a program-
specific value (the identities table), so it is natural to consider it
as a translation/compiler, (2) the two languages are very close
but differ precisely in how they deal with circular attestation,
the central issue that MAGE addresses, (3) the compiler does
not perform any interesting form of translation, except for
applying MAGE to implement circular attestation in terms of
the target language’s more elementary primitives and (4) this
model allows us to analyse the MAGE protocol’s security by
connecting security properties of the original and translated
version of an abstract program, i.e. as a secure compilation
result. This approach is similar to existing approaches in the
field of cryptography that connect real/ideal implementations
of a protocol (like the universal composability approach [14])
and has been used before to model and analyse cryptographic
protocols [27].

C. Attacker models

As mentioned in the introduction of Section IV, the secure
compilation results for this compiler constitute a security
property for the MAGE protocol. However, the chosen attacker
models of the source and target are also an integral part of
what these results mean, so we define attackers in the source
and the target language next. In the target, it is assumed that

initially neither context nor program contains any attests which
makes sure that attests can only be obtained by evaluating
getAttest(x,d,D).P which is realistic because RA systems
only hand out attests for a program’s own code.

In the source, there are initially no running actors present
and it is assumed that the context cannot add more distinct
actors. The context can only add extra copies of actors that
are already present in the program. For example, the context of
actor(n, P) cannot contain actor(m, Q) or actor(n, Q) with
P ̸= Q, but it can contain another actor(n, P).

The fact that source contexts can contain copies of actors
in the program being compiled formally reflects an important
caveat in the attacker model of MAGE. This caveat was not
mentioned in the original paper and was uncovered by us
during our formal analysis. In section IV-E, we will explain
this in more detail.

Currently, we do not allow actors with different names but
the same program because our current compiler would not
be able to distinguish them. This could be resolved easily
by making the compiler include the name of the actor in the
compiled actor’s code.

D. Security results

In this section, we present the security theorems that were
shown. We chose FAC because it is a well-established cri-
terion, however, FAC still allows some bugs and sometimes
obscures which security is actually provided [17]. For this
reason, we also proved a variant of RrHC. RrHC is not as well
established as FAC, but it is the strongest secure compilation
criterion proposed to date, the resulting security is clearer and
the preservation side of FAC directly follows from RrHC.
On top of that, a strong criterion like our variant of RrHC
allows us to conclude that our model, and thus the existing
MAGE framework [9], provides strong security guarantees to
its users. Intuitively, these secure compilation criteria show
that MAGE works securely because the source language πActor

has authenticated mutual communication built-in yet attackers
against compiled programs do not have more power (in the
sense of RrHC or FAC), hence the way authenticated mutual
communication is implemented in the target is secure.

We now present our variant of RrHC:

Theorem 1. Suppose τk is defined as in Figure 9 and τk maps
traces pointwise, then

∀idT, k,C : ∃CS : ∀P : idT = cH (P) ∧ k /∈ C,P

=⇒ τ k(behav(CJPK)) = behav(CS[P]).
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τk(M) =


#P if M = #P

#(k, τ k(h)) if M = attest(h)

f(τ k(M1), ..., τ k(Mn)) if M = f(M1, ...,Mn)

M otherwise

where p and ui are treated as functions in the signature.

Fig. 9: Definition of τk

The map J·K denotes the compiler defined in Section IV-B.

Here k /∈ C,P means that the variable k is not present
in C or P. Intuitively, the theorem states that given only
the target context C and the identities of the actors in the
linking program (or the identities table of the linking program),
cH (P), there exists a context in the source language, CS, such
that C[JPK] and CS[P] have the same behaviour. Note that
this is a weaker criterion than robust relational hyperproperty
characterisation (RrHC) because in RrHC no knowledge of
the linking program, P, is used to construct the source context
whereas here cH (P) can be used. Abate et al. [16] also
present a weaker non-relational criterion similar to RrHC
where the source context can depend on the linked program.
This property is called RHC and it is implied by our property
(cf. Theorem 1). We interpret our property (cf. Theorem 1) as a
variant of the robust relational hyperproperty characterisation
(RrHC) and it essentially means that the choice of CS may
depend on cH (P), but not on other knowledge about P. The
reason for this criterion will be explained below. The quan-
tification over k works similarly but is not a real limitation:
our back-translation simply requires a name k which does not
appear in either C and P, but it is clear that such a k always
exists.

The map τk is needed to solve the problem that the target
language can print attests, meaning print(attest(h)) is pos-
sible in a target program, but attests are not defined in the
source language. This is a problem because RrHC depends on
the equality of traces, but a source program can never have
the same trace as a target program that prints an attest. To
solve this, we state RrHC up to an injective mapping of traces,
τk, that maps attest(h) to #(k,h) and acts as the identity
otherwise. To ensure the injectivity of τk, the variable k is
chosen such that it is not present in the source program or
the target context that is defined in the definition of RrHC.
Because τk is an injective map, this variant of RrHC still
yields a useful result, although it is weaker than actual RrHC.
Intuitively, it is clear that the context can print more things,
but that the actual security is not weakened by this adaptation.

Our adaptation of RrHC also allows the choice of CS to
depend on idT = cH (P) (making it weaker than the original
RrHC), such that communication with compiled actors in JPK
can be faithfully modelled in CS. This condition is needed
because the set of valid attackers in the source depends on
the actors present in the linked program, P (the only actors
in the source contexts have to be copies of actors in P). It

is important to make sure that CS is a valid source context,
hence the actors in P have to be known when choosing
CS. Related to this problem is the problem in the target
that the content of attested components at initialisation is
known by everyone (through the identities table in the target)
which means any attacker can distinguish whether an attested
component is initialised with a certain hash. We show an
example of this in Section 6.3 of the supplementary material.
This means that asking RrHC for these actors is unreasonable
because communication of a compiled actor with the context
might behave differently based on the hash of the resulting
attested component. The property is still very useful despite
this limitation because this can be interpreted as a security
result about programs (clients) communicating with specific
actors and not a security theorem about the actors themselves.
The goal of the compilation should be that these clients stay
secure, meaning their secrets do not leak and they get back
the expected values from the actors they interacted with.

The second theorem is the adapted FAC:

Theorem 2. If P and Q are source programs with cH (P) =
cH (Q), then

P ≃ctx Q ⇐⇒ JPK ≃ctx JQK

holds, where J·K is the compiler defined in Section IV-B.

This theorem is an adapted version of FAC because we
assume cH (P) = cH (Q) for similar reasons as before. This
means that P and Q contain the same actors initially. Note that
contextual equivalence, P ≃ctx Q, is only a useful concept if
the actors in P and Q are the same because then the valid
contexts are the same for both programs. The fact that the
hashtables are known (similarly to the problem with RrHC)
also makes distinguishing actors trivial (cf. Section 6.3 of
the supplementary material). We could also state this theorem
as regular FAC by using a different definition for contextual
equivalence in the source, but this notation is clearer on the
limitations.

E. Copy attack

In Section IV-C, we mention a caveat in the security of
MAGE, namely that MAGE does not distinguish copies of
enclaves. We call an attack that is possible by using such
copies a copy attack. Below we demonstrate in our formalism
why not allowing copies of actors in the source attacker (the
formalisation of this attack) can break full abstraction by
mounting such a copy attack. Take R to be an actor that outputs
5 once and 6 on every subsequent time:

R = actor(n, Nself→any⟨5⟩.! (Nself→any⟨6⟩.0)).

Take Q to be a program that accepts two messages from the
actor n and diverges if they are both 5:

Q = Nn→anon(y
′).Nn→anon(y

′′).if y′ = y′′ = 5 then ω else 0.

Here, ω denotes the diverging program. Take P =
Nn→anon(y

′).Nn→anon(y
′′).0. The author of Q might believe

that Q | R and P | R are contextually equivalent because all
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communications can only happen with R and there is only
one R, so the equality check in Q will always fail, resulting
in Q converging every time. However, this is only true if the
attacker model in the source does not allow copies of existing
actors (so the attacker cannot contain any actor).

Now, we compile R | Q and R | P to get the following
programs:

JR | QK =
getAttest(x,d,unit).

N
auth⟨5, x, any⟩.! (Nauth⟨6, x, any⟩) |

Nauth(y′, ext(idT(n), idT), anon).

Nauth(y′′, ext(idT(n), idT), anon).

if y′ = y′′ = 5 then ω else 0
with idT = cH (R | Q) = cH (R)

and

JR | PK =
getAttest(x,d,unit).

N
auth⟨5, x, any⟩.! (Nauth⟨6, x, any⟩) |

Nauth(y′, ext(idT(n), idT), anon).

Nauth(y′′, ext(idT(n), idT), anon).0
with idT = cH (R | P) = cH (R).

Here, you see that the compilation starts by making a table
of all the preprocessed identities of the present actors (this is
cH (R | Q) in the first and cH (R | P) in the second case which
are both equal to cH (R)). Subsequently, an actor is replaced
by an attested region, getAttest(x,d,D) and communication
in the source is replaced by authenticated communication
where x is used to be replaced by the attest if the source
communication referred to self . The last important part of
this compilation is the fact that if the source communication
referred to n, then the authenticated communication demands
the hash, ext(idT(n), idT) with idT being the preprocessed
table of identities. This corresponds to how in MAGE the
actual hash of a program n which uses the common hashtable
is constructed from the nth entry of idT and idT itself.

Now, we note that these compiled programs, JR | QK and
JR | PK, can be distinguished by the following attacker:

getAttest(x,d,unit).

N
auth⟨5, x, any⟩.! (Nauth⟨6, x, any⟩) | [·]

This attacker can distinguish them because in the first case
JQK can diverge by communicating once with JRK and once
with the attacker to get y′ = y′′ = 5, while the JPK can
only converge. Distinguishing these compiled programs works
because the attested region in the attacker produces exactly
the same attest as the compilation of R, so there is no
way to distinguish these attested regions. This means that
the subsequent communications might each be with another
instance of the compilation of R, so both queries might return 5
which makes the check in the compilation of Q succeed, hence

it diverges. On the other hand, the second program can never
diverge, so the attacker can distinguish them. This example
shows that the compiler is not fully abstract if the attacker
model in the source does not allow the attacker to use copies
of actors from the linked program.

In this case, we can easily fix the problem by setting up
a session (e.g., by Diffie-Hellman key exchange) before we
start communicating. However, the solution is not as simple
if more than two actors are involved. Take R to be the same
as before and take Q and Q′ to be actors, with names m and
m′, that accept a message from actor n, add 2 to the messages
and send it on to our client:

Q = actor(m, Nn→anon(y).print(1).Nself→any⟨y + 2⟩)
Q′ = actor(m′, Nn→anon(y).print(2).Nself→any⟨y + 2⟩)

where the print makes sure these actors do not contain the
same program. We look at the programs

P = Nm→anon(y).Nm′→anon(y
′).if y = y′ = 7 then ω else 0

and P′ = Nm→anon(y).Nm′→anon(y
′).0. If the attacker can-

not use copies of actors, specifically copies of R, then
R | Q | Q′ | P cannot be distinguished from R | Q | Q′ | P′,
because the equality check in P will always fail as all values
need to come from R. However, if copies are allowed, then
the attacker R | [·] can distinguish the two programs because
now Q and Q′ can get their value from different instances of
R, so both messages can be 5 and this makes the equality
in P succeed, hence R | R | Q | Q′ | P can diverge, while
R | R | Q | Q′ | P′ cannot. This shows that the attacker can
indeed distinguish the two programs.

In the case of one actor, the solution was quite simple,
however, making sure that no copies are allowed in a system
with several actors is more complicated than simply setting
up a session as before. If several parties are using the same
enclave, then they need to coordinate to make sure that they
are using the same enclave and not different copies. There
are some solutions to do this, for example, an authenticated
group key exchange [28] or letting every program keep a table
of public keys associated with private keys in each actor, but
those are all non-trivial and MAGE does not seem intended
to prevent such attacks.

V. PROOF

This section discusses our proofs of Theorem 1 and 2 and
some of the technical difficulties encountered. This section is
not essential to understand the concepts and can be skipped.
We refer the interested reader to the supplementary material
for the full proof.

A. Equivalence reflection for FAC

The equivalence reflection of Theorem 2 (‘⇐=’) depends
on the correctness of the compiler rather than the security. We
show the correctness of the compiler by constructing a bisim-
ulation R such that PR JPK holds for all compiled programs.
The appropriate bisimulation is presented in the supplementary
material along with a proof that it is a bisimulation, but will
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P1
?≃ctx P2

behav(C[P1])
?

==== behav(C[P2])

(a)

(b)

(c)
JC[P1]K =

JCKcH (P1),■ [JP1K]
JC[P2]K =

JCKcH (P2),■ [JP2K]

behav(JCKcH (P1),■ [JP1K]) === behav(JCKcH (P2),■ [JP2K])

JP1K ≃ctx JP2K
cH (P1) = cH (P2)

re
fle

ct
io

n
di

re
ct

io
n

Fig. 10: Diagram of the proof of equivalence reflection of FAC.
This diagram is adapted from the diagram in [29].

not be discussed here. The existence of this bisimulation shows
that behav(P) = behav(JPK) holds for each source program
P, because if P evaluates with a label, then JPK can also
evaluate with the same label (because they are related by a
bisimulation) and the results of the evaluations are still related
by the bisimulation. This reasoning holds for any trace, hence
JPK can evaluate with each of the traces that P can evaluate
with and vice versa.

To derive equivalence reflection from this behavioural equal-
ity, the condition cH (P) = cH (Q) is needed because these
identities tables limit the set of valid source contexts and they
dictate how the context should be compiled (that is with which
identities table as an argument). The scheme of this proof
can be seen in Figure 10 where it is still important to note
that JC[P]K = JCKcH (P),■ [JPK] holds for each source program
P because we know that J·KidT,x compiles piece by piece,
we know that JPK = JPKcH (P),■ holds and lastly it holds
that cH (C[P]) = cH (P) since the context C does not add
any new actors. We describe briefly what equalities are used
in the steps indicated in Figure 10. In step (a) and (c) of
Figure 10, we use the following identities for P = P1 or
P = P2 respectively:

behav(C[P]) = behav(JC[P]K)
JC[P]K = JCKcH (P),■ [JPK]

while step (b) relies on JP1K ≃ctx JP2K and cH (P1) =
cH (P2).

B. RrHC

To prove RrHC, we make use of a back-translation of
contexts. The equivalence preservation of FAC (‘⇐=’) will
also follow from the existence of the back-translation as
shown later. A back-translation is a mapping from contexts
in the target to contexts in the source. The back-translation
should be defined such that a target context, C, linked with a
compiled program, JPK, results in the same evaluation as the
back-translated context, bcktr(C) linked with P. Our back-
translation, bcktridT,k(·), should only depend on cH (P), and
the term k which should neither be present in P nor in C.
The existence of such a back-translation then exactly shows
the existence of the source context CS from Theorem 1.

The construction of the back-translation is a particularly
hard part of the proof because the back-translation needs to
imitate certain behaviour of the target context without relying
on actors since no new actors can be added to the context. This
means that all authenticated communication that is not done
by compiled versions of exact copies of actors in P should be
imitated by communication from anon . To imitate this authen-
ticated communication, we use anonymous communication
over channels with specific names that incorporate every ar-
gument from N

auth⟨M, a1, h1⟩ or Nauth(M, h2, a2). Un-
fortunately, these channels do not offer the same flexibility as
authenticated send and receive. More specifically, such a way
of communicating requires the send/receive channels to have
exactly the same name, whereas authenticated communication
allows a1 and attest(h2) to differ when h2 = any . This
can be emulated by back-translating authenticated sends and
receives not to one secure channel, but to a non-deterministic
choice of both a channel with the correct attest or a channel
with anon instead of the attest. This way, a back-translation of
functional communication will still be able to communicate in
both ways by only using the exact equality of channel names.

As mentioned before, there are no attests in the source
language, hence we use τk from Theorem 1 as a back-
translation on the terms. Due to the mapping of terms and
the fact that there is no exact bisimulation relation4 as in the
case of the correctness, there is no exact behavioural equality,
but

behav(bcktrcH (P),k(C)[P]) = τ k(behav(CJPK)) (1)

holds up to subtraces of silent steps of finite length, where
bcktrcH (P),k(C) is the back-translation of the context assum-
ing k does not appear in C and P.

The back-translation of the context is dependent on the
identities table of the linked program P because the back-
translation has to be able to identify the sends or receives
that can communicate with compiled actors in JPK. If a
getAttest(x,d,D) is applied to a compiled program, then the
back-translation is an actor containing exactly the correspond-
ing source program. If a program requests to communicate
with a program with a hash from the table but it was not
getAttest(x,d,D) of a compiled program, then we compile
it to an anonymous communication with the right actor. If
communication happens anonymously (i.e., anon → any in
P), then back-translation should produce a process capable of
communicating with an actor from an anonymous source.

We note that although the proof is somewhat complicated,
we believe that the hardest and most interesting challenges are
inherent to the problem and independent of the chosen model.

To understand this in more detail and see the technical
execution of this argument, we refer the interested reader to
the accompanying technical document.

4The back-translation introduces some extra silent steps, so a simulation
relation with skipping [30] is used.
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P1 ≃ctx P2

cH (P1) = cH (P2)

behav(bcktrcH (P1),k(C)[P1])==behav(bcktrcH (P2),k(C)[P2])

(a)

(b)

(c)

(d)

τ k(behav(CJP1K)) ==== τ k(behav(CJP2K))

behav(CJP1K)
?

===== behav(CJP2K)

JP1K
?≃ctx JP2K

preservation
direction

Fig. 11: Diagram of the proof of equivalence preservation of
FAC. This diagram is adapted from the diagram in [29].

C. Equivalence preservation for FAC

Similarly to RrHC, also the equivalence preservation for
FAC (‘=⇒’) is implied by Equation 1, following the reasoning
shown in Figure 11. Below, the equalities used in each of the
indicated steps in Figure 11 are briefly described. In step (a)
of Figure 11, the injectivity of τ k(·) is used where τ k(·) is
injective because k is taken such that C, P1 and P2 do not
contain the term k. In step (b) and (d) of Figure 11, Equation 1
is used respectively with P = P1 and P = P2. In (c) in
Figure 11, the assumptions P1 ≃ctx P2 and cH (P1) = cH (P2)
are used.

VI. RELATED WORK

In this section, we discuss work related to this paper. First,
we discuss several models of RA that are meant to verify the
correctness of RA implementations. Then, we discuss the ver-
ification of cryptographic protocols using RA. Subsequently,
we discuss another paper that proposes solutions to obtain
mutual authentication. Next, works that use the π-calculus and
RA in the context of access control policies are discussed.
Finally, we discuss actor frameworks that inspired πActor and
we discuss other instances where secure compilation is used
to prove the security of protocols given some primitives.
There is also some research on verifying the correctness of
distributed systems [31], [32], verified designs for RA [24]
and the hardware security requirements of systems supporting
RA [33], but we will not discuss it here. Furthermore, the
paper that introduced the MAGE protocol [9] is discussed in
Section II -c and will not be discussed again here.

Sardar, Musaev, and Fetzer [34] proposed a model to verify
an implementation of RA written in ProVerif (which is based
on the applied π-calculus) which is tailored to the TDX design
based on Intel’s official documentation. Their model contains
several processes by default, such as the quoting enclave, the
guest trust domain, the TDX module, and the CPU hardware.
The model is also used to verify Intel’s description of the
TDX design. Examples of platform-independent frameworks
to reason about implementations of RA are TAP [21] and
the framework of Xu et al. [35]. Both frameworks are meant
specifically for enclave platforms and both their abstractions

are more low-level than those in our model. For example,
TAP requires reasoning at assembly level and both frameworks
assume an enclave memory access model, in contrast to our
model that tries to abstract away these details. Subramanyan
et al. [21] also showed that TAP supports secure remote
execution and that formalisations of both Intel SGX and MIT
Sanctum are refinements of TAP. The main goal of these
models is to verify that RA works properly and is secure,
whereas the goal of our model is to model protocols that use
RA.

Next to models about implementations, there is also research
into verifying protocols using RA, similarly to our verification
of MAGE. One such example is the research by Barbosa et
al. [36], which discusses attested computation, key exchange
for attestation, and secure outsourced computation. They used
probabilistic methods, such as security games, and they model
the system at a lower level than our model, e.g., they initialise
the hardware and explicitly build all attestation on top of
digital signatures and secret information from the initialisation
of this hardware. Fotiadis et al. [37] have also proposed a
method using the SAPiC calculus of the Tamarin prover (akin
to the applied π-calculus) to model RA. The paper presents a
method to verify protocols using RA and shows one example
instantiating the method for the TPM, by adding idealised
versions of each of the commands in the TPM that are integral
to support RA. They also assume an S-RTM and establish a
chain of trust.

Another solution for mutual attestation was proposed by
Zheng and Arden [12] with their Decent framework. In this
work, mutual attestation is also resolved by preprocessing a
list of authenticated enclaves and comparing the list at runtime
before communicating. This is very similar to MAGE, but they
do not use the properties of the hash resulting in a somewhat
more complicated communication. Orthogonally to the mutual
attestation solution they also provide a solution to dynamically
authenticate and revoke enclaves and to delegate authentication
for performance reasons. Specifically, to delegate authentica-
tion they let enclaves create attested tokens using RA and
using these tokens they can sign digests of other components
that they in turn checked using local attestation. This signed
digest can then be used as an attest for that component.
Verification can similarly be obtained. These things can be
modelled in πRA, but for example to model the generation
of the tokens we need the functions, package(M,b) and
check(pa,h,b), mentioned in Section III-C and public key
cryptography techniques. This is just an extension of the
signature of πRA. Additionally, Zheng and Arden [12] proved
the security and authenticity of the Decent framework in
the case of communication between enclaves from the list
of authenticated components and the case of communication
between enclaves verified by the verifier. The first of these
proofs overlaps with our proof. However, the proof only
applies to a specific case and any compositionality can only
be assumed by the simplicity of the studied case. In contrast,
our proof shows the compositionality for any program by
using secure compilation which uses similar reasoning to the
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real/ideal framework [13], [14]. We also show more than
secrecy and authenticity as any security property (relational
hyperproperty) that holds for programs of πActor (or at least
for any given set of actors) also holds for their compilations.

Two frameworks supporting RA based on the π-calculus are
presented in the extended abstract by Pitcher and Riely [38]
and the paper by Cirillo and Riely [39]. Contrary to our model,
these frameworks deal with S-RTM, thus putting a lot of effort
into maintaining the chain of trust. Moreover, in the paper by
Cirillo and Riely, the framework is an extension of a higher-
order π-calculus, i.e., a version of the π-calculus where terms
can contain programs. These frameworks [38], [39] are both
typed and the type system is used to specify access policies
based on the remote attestation primitive. In these frameworks
one cannot use attestation to identify a program, only to prove
that it satisfies the type system.

Our language πActor with actors is inspired by the EActors
framework [25]. The EActors framework is specifically de-
signed for Intel SGX and it is not a formal framework, but a
high-level language aiming to make programming with remote
attestation easier. Noorman, Mühlberg and Piessens [26] dis-
cuss a framework of modules that are all event-handlers with
fixed input and output channels and this is fairly similar to
a language using actors. In their supplementary material, they
also prove secure compilation from this language with modules
to an enclave architecture that uses attestation in a way inspired
by Sancus [3] and they solve circularity by relying on a trusted
third party.

Some works have used secure compilation to prove the
security of certain primitives. For instance, Abadi, Fournet,
and Gonthier [27] used two variants of the join-calculus,
a process calculus, and showed secure compilation between
the two. This secure compilation showed how authenticated
communication can be provided by using constructs from
cryptography. Lastly, Laud [40] established a secure compila-
tion result to show that asynchronous method calls and futures
can be built-up from explicit communication primitives and
cryptographic operations.

VII. CONCLUSION

This paper presented a novel model for systems supporting
remote attestation that is platform-independent and sufficiently
abstract to allow modelling protocols relying on RA without
coupling to a specific memory protection model or the use of
a low-level language. This model is a variant of the applied
π-calculus and is called πRA.

Moreover, we have used πRA to formally verify the security
of the MAGE protocol [9] which offers a solution for circular
references in mutual attestation. The security of MAGE is
shown by a secure compilation result from a source language
(πActor) that uses named actors and secure communication
based on these names, to the target language, πRA. Lastly,
the proof of secure compilation and related work is presented.
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