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Abstract—Side-channel attacks impose a serious threat to
cryptographic algorithms, including widely employed ones, such
as AES and RSA. These attacks take advantage of the algo-
rithm implementation in hardware or software to extract secret
information via side channels. Software masking is a mitigation
approach against power side-channel attacks aiming at hiding
the secret-revealing dependencies from the power footprint of a
vulnerable implementation. However, this type of software miti-
gation often depends on general-purpose compilers, which do not
preserve non-functional properties. Moreover, microarchitectural
features, such as the memory bus and register reuse, may also
leak secret information. These abstractions are not visible at
the high-level implementation of the program. Instead, they are
decided at compile time. To remedy these problems, security
engineers often sacrifice code efficiency by turning off compiler
optimization and/or performing local, post-compilation trans-
formations. This paper proposes Secure by Construction Code
Generation (SecCG), a constraint-based compiler approach that
generates optimized yet protected against power side channels
code. SecCG controls the quality of the mitigated program by
efficiently searching the best possible low-level implementation
according to a processor cost model. In our experiments with
twelve masked cryptographic functions up to 100 lines of code
on Mips32 and ARM Thumb, SecCG speeds up the generated
code from 77% to 6.6 times compared to non-optimized secure
code with an overhead of up to 13% compared to non-secure
optimized code at the expense of a high compilation cost.
For security and compiler researchers, this paper proposes a
formal model to generate power side channel free low-level code.
For software engineers, SecCG provides a practical approach
to optimize performance critical and vulnerable cryptographic
implementations that preserve security properties against power
side channels.

Index Terms—compilation, power side-channel attacks, code
optimization, software masking, constraint programming

I. INTRODUCTION

Cryptographic algorithms, symmetric/shared key or asym-
metric/private key ones, rely on safeguarding the shared secret
key or the private key, respectively. The exposure of these
keys to unintended users compromises the security of these
algorithms. Unfortunately, the software implementation of
cryptographic algorithms may reveal information about their
secret/private keys [1]. In particular, the attacker may observe

what is termed side-channel information, notably observing
the execution time [1] or the power consumption [2, 3], during
the execution of the algorithm to extract information about the
secret keys. These attacks are attractive, especially because
usually they do not require expensive equipment. This paper
focuses on Power Side Channel (PSC) attacks.

Software masking is a widely-used approach to mitigate
PSC attacks [4, 5], hiding secret information by splitting
a secret into n randomized shares. The attacker has to re-
trieve all shares in order to acquire the secret value. While
software masking can be an effective mitigation, compiler
code generation may optimize it away. Moreover, Transition-
Based Leakage (TBL) sources, such as register reuse or
memory-access order, are decided at compile time by low-
level compiler transformations [6, 7, 8].

To mitigate these compiler-induced power side-channel
leaks at the binary level, there are techniques based on
compilation [7, 9, 10] and binary rewriting with hardware em-
ulation [11, 12, 13]. All these approaches mitigate compiler-
generated leakages using local transformations [13, 7, 11].
The methods that depend on hardware emulation are typically
accurate but may introduce significant overhead [11] and are
hardware specific. For example, Rosita [11], an emulation-
based approach, propose a mitigation that introduces an
overhead ranging from 21% to 64% for ARM Cortex M0.
Wang et al. [7] perform their mitigation using a standard
compiler with no high-level optimizations (-O0). This is a
common practice for security research to ensure the absence
of compiler-induced mitigation invalidation [6, 14]. However,
unoptimized code is highly inefficient, and may even introduce
additional leaks due to the heavy use of the program stack, as
discussed in Section II.

Vu et al. [14] present an approach that enables secure
optimization of masked code at a higher level [15]. This
approach applies high-level compiler optimizations by disal-
lowing secure-code removal and operand reordering (due to
associativity of some operations) and are able to generate
correctly masked code. However, they do not deal with TBLs.

Currently, the state-of-the-art approaches are unable to gen-
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erate code that is both efficient and secure in the face of TBLs
that enable PSC attacks. To address this challenge, this paper
proposes Secure by Construction Code Generation (SecCG),
an optimizing compiler approach that provably preserves secu-
rity properties against PSC. At the middle-end, SecCG handles
code generated using register promotion (promoting program
variables from memory to registers) as a high-level optimiza-
tion. Then, SecCG uses a constraint-based method to generate
code that is secure against PSC attacks. SecCG controls
the quality of the mitigated program by efficiently searching
the best possible low-level implementation according to a
processor cost model [16]. The security model of SecCG
is hardware agnostic and can be extended with additional
architectural constraints. SecCG is suitable for predictable
architectures with no advanced microarchitectural features,
such as caches or speculative execution. In our experiments
with twelve masked implementations on Mips32 and ARM
Thumb, SecCG improves the execution time of the generated
code from 77% to a speedup of 6.6 compared to non-optimized
code at an overhead of up to 13% compared to non-secure
optimized code. This comes at a cost on compilation time
and scalability, where SecCG optimizes successfully programs
up to 100 lines of code. In summary, this paper makes the
following contributions:
• a compiler approach to generate TBL-free, low-overhead

assembly code for high-level software-masked programs;
• a constraint model for optimized and PSC-secure code

generation;
• a proof that the constraint model guarantees the genera-

tion of secure code for a non-trivial leakage model; and
• experimental results on two architectures showing that

the performance overhead of our mitigation is low, and
its efficiency benefits are significant, compared to current
approaches.

II. MOTIVATING EXAMPLE

To motivate our approach, let us consider an example of a
first-order masked implementation. First-order masking splits a
secret value k into two shares, (m, mk), where m is a uniformly
distributed random variable sampled at every execution of the
algorithm; mk = m⊕k is also uniformly distributed (⊕ denotes
the exclusive OR operation). Fig. 1 shows a first-order masked
C implementation of exclusive OR, where key is a secret
value (red), mask is a uniformly random variable (brown),
and pub is a non-secret value (green). At line 2, the algorithm
creates the second share, mk, and at line 3, it performs the
exclusive OR operation with the secret-independent value,
pub. At a high-level, the code of Fig. 1 is secure against power
side channels however, a binary implementation generated by
a standard, security-unaware compiler may leak information
about key. For example, hardware-register reuse and memory-
bus access order may reveal secret information [7, 11, 6, 8].
These TBLs are a result of transitional effects, i.e., the power
effect of bits switching between one and zero and vice versa.

Fig. 3a shows the ARM Thumb assembly code generated by
the standard compiler LLVM [17] for the C code in Fig. 1. The

first three str instructions store the function arguments that
reside in registers r0-r2 to the stack (lines 3-5). Line 6 loads
(ldr) the value of mask from the stack into register r1. Line
7 performs the first exclusive OR (line 2 in Fig. 1) between
registers r1 and r2 (key) and stores the result in register r1.
Here, there is a transition for register r1 from value mask to
mk, which leaks the secret key (marked code at line 7). Line
8 stores the content of r1 to the stack, and the value of the
memory bus that contains the mask at line 6 transitions to
mk. This leads to another leak due to the transitional effect
in the memory bus (marked code at lines 6 and 8). The rest
of the code performs the second exclusive OR (line 10) and
stores the final result on the stack (line 11).

Fig. 3b shows the mitigated code that the security backend
of SecCG produces. This code eliminates leakages that appear
in the LLVM unoptimized code. The mitigation is based on
instruction scheduling and register allocation transformations.
In particular, changing the order of operands at line 7 results
in a transition from key to mk that leaks the value of mask,
which is not secret (marked code at line 7). Changing the
order of the instructions hides the memory-bus leakage. More
specifically, because there are no data dependencies between
lines 3-6, the ldr instruction that causes the leak in Fig. 3a
may be scheduled earlier (line 4 in Fig. 3b). Then, another
memory instruction that stores the secret value in memory
(line 6 in Fig. 3b) is scheduled just before the store instruction
at line 8. This causes a transition from key to mk in the
memory bus that leaks the value of mask (marked code at
lines 6 and 8). These transformations are global, considering
possible available memory instructions and register assign-
ments to mitigate transitional leakages in the whole program
and may (as in Fig. 3b) introduce no overhead.

However, unoptimized code leads to poor performance.
In general, compiler optimizations may invalidate high-level
software mitigations [14]. Fortunately, this is not the case
for register promotion (mem2reg in LLVM), a simple high-
level optimization that enables efficient register allocation by
promoting program variables from memory to registers. This
transformation replaces stack operations to register operations
and preserves the operand order. In particular, aggressive op-
timizations (-O1 to -O3 in LLVM) may take advantage of the
associativity property of ⊕ to change the order of the operands,
converting (mask ⊕ key) ⊕ pub to mask ⊕ (key ⊕ pub),
which invalidates masking. Equipped with improved high-level
code, the SecCG backend optimizes low-level transformations
and generates optimized code. Figures 2a and 2b show the
code of Fig. 1 compiled with register promotion. Fig. 2a leaks
the same secret information as Fig. 3a due to register reuse,
namely the first exclusive OR operation eors, but contains
no memory-bus secret leak. To mitigate the register-reuse leak
at line 2, SecCG changes the order of the arguments and the
result is now stored in register r2.

As we see in Fig. 3a, unoptimized code may introduce
additional leaks due to the heavy use of the program stack.
Instead, SecCG uses register promotion to remove unnecessary
memory accesses that may cause additional leaks. Then,
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1 u32 Xor(u32 pub, u32 mask, u32 key) {
2 u32 mk = mask ˆ key;
3 u32 t = pub ˆ mk;
4 return t;
5 }

Fig. 1: Masked exclusive OR implementation in C

1 @ r0: pub, r1: mask, r2: key
2 eors r1, r2
3 eors r0, r1
4 ...

(a) Insecure (LLVM)

2 eors r2, r1
3 eors r0, r2
4 ...

(b) Secure (SecCG)
Fig. 2: Compilation of function Xor applying register
promotion

1 @ r0: pub, r1: mask, r2: key
2 ...
3 str r0, [sp, #16] @ mem: pub
4 str r1, [sp, #12] @ mem: mask
5 str r2, [sp, #8] @ mem: key
6 ldr r1, [sp, #12] @ mem: mask
7 eors r1, r2

@ proc: mask <- mask ˆ key
8 str r1, [sp, #4] @ mem: mask ˆ key
9 ldr r0, [sp, #16] @ mem: pub

10 eors r0, r1
@ proc: pub <- pub ˆ mask ˆ key

11 str r0, [sp]
@ mem: pub ˆ mask ˆ key

12 ...

(a) Insecure (LLVM)

1 @ r0: pub, r1: mask, r2: key
2 ...
3 str r1, [sp, #12] @ mem: mask
4 ldr r1, [sp, #12] @ mem: mask
5 str r0, [sp, #16] @ mem: pub
6 str r2, [sp, #8] @ mem: key
7 eors r2, r1

@ proc: key <- key ˆ mask
8 str r2, [sp, #4] @ mem: key ˆ mask
9 ldr r0, [sp, #16] @ mem: pub

10 eors r0, r2
@ proc: pub <- pub ˆ key ˆ mask

11 str r0, [sp]
@ mem: pub ˆ mask ˆ key

12 ...

(b) Secure (SecCGwith no register promotion)

Fig. 3: Compilation of function Xor with no optimizations

SecCG’s backend generates low-level optimized code that does
not expose secret information through transitional leakages
and does not introduce significant overhead compared to non-
secure code.

III. THREAT MODEL AND MODELING BACKGROUND

This section describes the Hamming Distance (HD) model
(Section III-A), the threat model (Section III-B), an HD-
based type-inference algorithm (Section III-C), a constraint-
based compiler backend model (Section III-D), and the run-
ning example for the constraint-based compiler backend (Sec-
tion III-E),

A. Hamming-Distance Model

The Hamming Weight (HW) model [18, 2, 19] corresponds
to the number of active bits in a data word. We assume the
following encoding of the binary data, d =

∑N−1
i=0 2idi, where

di is one, if the ith bit of an N-bit word is set and zero,
otherwise. The HW of this data is the number of bits that are
set: HW (d) =

∑N−1
i=0 di. The HD leakage model assumes

that the observed leakage when flipping the bits of a memory
element from a value d1 to a value d2 is HW (d1 ⊕ d2),
where ⊕ denotes the exclusive OR operation. If one of the
values d1 is a uniform random variable, then d1⊕d2 is also a
uniform random variable and HW (d1⊕d2) has the same mean
and variance as HW (d1) [19]. This means that by masking
(exclusive bitwise OR) a secret value k with a uniform random
variable m, the HD of the new variable has the same mean
and variance as m. In this way, masking hides the information
of k from the power consumption traces.

We assume a program P (IN) = i1; i2; ..., in that takes
as input a set of variables IN and consists of a sequence
of n instructions ij . We assume that the program has a
leakage at every execution step when there is bit flipping in
the hardware registers or the memory bus. We will use the
terms by Papagiannopoulos and Veshchikov [13] and refer to
the hardware-register transition leakage as Register-Overwrite
Transition (ROT) and the memory-bus transition leakage as
Memory-Remnant Effect (MRE). For MRE, we assume that
both read and write operations make use of the same memory
bus and that the source of the leakage is the transitional effect
when writing the data to the memory bus. In our model, the
memory address of the operations does not affect the leakage.

We represent the leakage as a set of observations in the
power trace. To calculate the observed leakage L(P (IN ))
for an instance IN of the input variables, we use the HD
leakage model. We write P = P ′; in to denote a program
P = i1; i2; ...; in−1; in, with a prefix P ′ = i1; i2; ...; in−1 (IN
is omitted for simplicity). Equations 1-4 present a recursive
definition of the leakage model, where for every point in the
execution trace, the attacker observes the HW of any ROT
or MRE transitions. In the formulas, an expression e is e :=
r | v | bop(e1, e2) | uop(e1) | mem(ea), where r is a register,
v is a constant value, bop is a binary operation, uop is a unary
operation, and mem(ea) is a memory load operation that loads
data from address ea. An instruction is i = r ← e | mem(ea, e),
where r ← e denotes that an expression is assigned to register
r, and mem(ea, e) is a store memory operation that stores data
e at memory address ea. To simplify the leakage equations,
we transform the load operation from r ← mem(ea) to a
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L(P ′; r ← e2;P
′′; r ← e1) =L(P ′; r ← e2;P

′′) ∪ {HW (e1 ⊕ e2)},@i ∈ P ′′. i = r ← e3 (1)
L(P ′; i1;P

′′;mem(eb, e2)) =L(P ′; i1;P
′′) ∪ {HW (e1 ⊕ e2)}, (i1 = mem(ea, e1)) ∧ @i ∈ P ′′. i = mem(ec, e3) (2)

L(P ′; r ← e) =L(P ′) ∪ {HW (e⊕ rIN )},@i ∈ P ′. i = r ← e3 (3)
L(P ′;mem(ea, e1)) =L(P ′) ∪ {HW (e1)},@i ∈ P ′. i = mem(eb, e3) (4)

sequence mem(ea, vmem(ea)); r ← vmem(ea), where vmem(ea) is
the value in memory at address ea. Equation 1 describes
the leakage when two instructions write the value of their
result to the same register and no other instruction between
them writes to the same register. Note that the first equation
deals also with instructions in the form r1 ← bop(r2, r3),
where bop is a binary operation and r1 = r2. These two-
address instructions are common in ARM Thumb and x86
architectures. Equation 2 describes the memory-bus leakage
of a memory instruction that writes a value to the memory,
given that another memory instructions precedes this memory
instruction. Equation 3 describes the leakage of the first
instruction that writes to register r. In this case, the leakage
is equal to the HD between the new value and the initial
value in register r, rIN . Similarly, Equation 4 describes the
leakage of the first memory operation. Here, we assume that
the initial memory-bus content, mbIN , is a constant value.
For example, after executing the last instruction of program
P = r1 ← v1;mem(va, v2); r1 ← v3;mem(vb, r1), the
leakage is equal to L(P )

Eq.2
== L(r1 ← v1;mem(va, v2); r1 ←

v3) ∪ {HW (v3 ⊕ v2)}
Eq.1
== L(r1 ← v1;mem(va, v2)) ∪

{HW (v3⊕v2), HW (v3⊕v1)}
Eq.4
== L(r1 ← v1)∪{HW (v3⊕

v2), HW (v3⊕v1), HW (v2)}
Eq.3
== {HW (v3⊕v2), HW (v3⊕

v1), HW (v2), HW (v1 ⊕ r1,IN )}, where r1,IN is the initial
value of register r1.

Here, we consider that a program is a straight-line function.
Additional checks at the call site are necessary for ensuring
the absence of leakage during function calls, for example to
make sure that the initial memory-bus value is constant.

B. Threat Model

We assume that the software runs on a non-speculative
hardware architecture. The attacker has access to the software
implementation and the public data but not the secret data. The
goal of the attacker is to extract information about the secret
data by measuring the power consumption of the device that
the code runs on. The attacker may accumulate a number of
traces from multiple runs of the program and perform statis-
tical analysis, such as Differential Power Analysis (DPA) [2].
At every execution, new random values are generated, and the
attacker has no knowledge of the values of these variables.
Our goal is to eliminate any statistical dependencies between
the secret data and the measured power traces.

We assume that input variables are Secret, Public,
or Random. Secret variables contain sensitive values
(e.g. cryptographic keys), which the attacker wants to retrieve

information about. Public variables contain values that the
attacker knows or may learn without causing a leakage.
Finally, Random variables follow the uniform distribution in
the domain of the corresponding program variable. We define
the Leakage Equivalence security condition for the generated
programs as follows:

Definition 1 (Leakage Equivalence). Given a program P (IN)
that has a set of secret input variables, INsec ⊆ IN, a set
of random input variables, INrand ⊆ IN, and a set of public
input variables, INpub ⊆ IN. We assume two instances of the
input variables, IN and IN ′. These two instances differ with
regard to the set of secret variables IN sec and IN ′sec , i.e. for
all public variables, ∀v ∈ IN pub and ∀v′ ∈ IN ′pub we have
v = v′. Let r ∈ IN rand and r′ ∈ IN ′rand be sampled from a
uniform random distribution. Let Lp = L(P (IN )) and L′p =
L(P (IN ′)). Then, we say that a program is leakage equivalent
if the distributions of the leakage of the two executions do not
differ, i.e.∑

l∈Lp

E[l] =
∑
l′∈L′

p

E[l′] ∧
∑
l∈Lp

Var(l) =
∑
l′∈L′

p

Var(l′),

where E[l] and Var(l) are l’s expected value and variance.

C. HD-based Vulnerability Detection
In our approach, we need a technique to identify whether

two values result in a ROT or and MRE leak. There are
different ways to identify whether there is a leak at some part
of the code. One approach is to use symbolic execution [6, 8].
Symbolic execution executes different paths of a program
symbolically and verifies or invalidates specific properties
with the help of Satisfiability Modulo Theory (SMT) solvers.
Symbolic execution is accurate but has scalability issues
when the number of problem variables or program paths
increases. On the other end, type-based approaches [20, 7] are
typically efficient but at the price of accuracy. In particular,
Wang et al. [7] consider a hierarchy of three types based
on the properties of the distribution they follow: uniformly
random distribution, secret independent distribution, or finally
unknown distribution. We call these, Random, Public, and
Secret, respectively. The type-inference algorithm assigns a
type to each program variable. To infer the program variable
types, Wang et al. [7] define a logic model and solve it using an
SMT solver. The complexity of this approach is low compared
to symbolic execution, at the price of lower accuracy. However,
the accuracy is sufficient for loop-free, linearized programs, a
format to which many masked and cryptographic implemen-
tations can be transformed [7]. Because of this, our approach
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adapts the aforementioned type-inference analysis, with some
accuracy improvements (see supplementary material [21]).

D. Constraint-based Compiler Backend

A compiler backend performs three main low-level trans-
formations to generate low-level code: instruction selection,
instruction scheduling, and register allocation. A combinatorial
compiler backend [16, 22, 23] uses combinatorial solving
techniques to optimize software using the aforementioned
transformations. Different approaches may implement one
or more low-level transformations. This section focuses on
Constraint Programming (CP) [24] as a combinatorial solving
technique.

1) Constraint Model: The constraint-based compiler back-
end generates a constraint model that captures the program
semantics, the low-level compiler transformations, and the
hardware architecture. This paper focuses on two compiler
transformations, register allocation and instruction scheduling,
that are crucial for our mitigation.

Compilers typically model the code using an unbounded
number of virtual registers until the register allocation stage.
Register allocation assigns each virtual register to a hardware
register, when possible, or a memory slot on the stack (spill),
otherwise. The latter has a negative effect on code efficiency.
Therefore, register allocation transformations attempt to min-
imize this effect, while conforming to constraints, such as the
number of hardware registers and the calling conventions.

Instruction scheduling decides on the order of the instruc-
tions in a program. A valid instruction schedule satisfies
the data dependencies among instructions and the processor
resource constraints.

A constraint-based compiler backend may be modeled as
a Constraint Optimization Problem (COP), P = 〈V,U,C,O〉,
where V is the set of decision variables of the problem, U is
the domain of these variables, C is the set of constraints among
the variables, and O is the objective function. A constraint-
based backend aims at minimizing O, which typically models
the code’s execution time or size.

A program is modeled as a set of basic blocks B, pieces of
code with no branches apart from the exit. Each block contains
a number of optional operations, o ∈ Operations , that may be
active or not. Inso denotes the set of hardware instructions that
implement operation o. Each operation includes a number of
operands p ∈ Operands , each of which may be implemented
by different, equally-valued temporaries, t ∈ Temps . Tempo-
raries are either not live or assigned to a register (hardware
register or the stack).

Fig. 4 shows a simplified version of the constraint-based
compiler backend model for Fig. 1. Temporaries t0, t1,
and t2 contain the input arguments pub, mask, and key,
respectively. Copy operations (o2, o3, o4, o6, o8) en-
able copying program values from one register to another (or
to the stack) and are critical for providing flexibility in register
allocation. For example, o2, allows the copy of the value pub
from t0 to t3. In the final solution, a copy operation may
not be active (shown by the dash in the set of instructions:

[ -, copy]). The two xor operations (o5, o7) take two
operands each, and each of these operands may use different
but equally-valued temporary variables, e.g. t1 and t4.

o1: in [t0 ← pub, t1 ← mask, t2 ← key]
o2: t3 ← [-, copy] t0
o3: t4 ← [-, copy] t1
o4: t5 ← [-, copy] t2
o5: t6 ← xor [t1,t4] [t2,t5]
o6: t7 ← [-, copy] t6
o7: t8 ← xor [t0,t3] [t6,t7]
o8: t9 ← [-, copy] t8
o9: out [t10 ← [t8,t9]]

Fig. 4: Simplified model of the function in Fig. 1

Fig. 5 shows a valid solution to the register allocation of the
constraint model in Fig. 4. All copy operations are deactivated
and t0, t1, and t2 are assigned to registers R0, R1, R2.
Temporary t6 is assigned to R1 and temporary t8 is assigned
to R0. This register assignment is problematic because it
induces a transition in register R1 from the initial value that
holds the mask to the masked value mask ⊕ key, which
leads to a leakage L(R1 ← R1 ⊕ R2;R0 ← R0 ⊕ R1)

Eq.3
==

L(R1← R1⊕R2)∪{HW (pub⊕(pub⊕mask⊕key))} Eq.3
==

{HW (mask ⊕ (mask ⊕ key)), HW (mask ⊕ key)} =
{HW (key), HW (key ⊕ mask)}. The first element of the
leakage reveals information about key.

The model of instruction scheduling assigns issue cycles to
each operation. This assignment imposes an ordering of the
operation and is constrained by the program semantics. For
example, in Fig. 4, scheduling o6 before o5 is not allowed
because o6 depends on o5 but scheduling o4 before o3
is possible. In Fig. 3b, the store instruction at line 6 (that
corresponds to line 5 in Fig. 3a) is scheduled after the load
instruction at line 4 (line 6 in Fig. 3a). This is allowed because
there is no data dependency between these two instructions.

o1: in [t0:R0, t1:R1, t2:R2]
o5: t6:R1 ← xor t1:R1 t2:R2
o7: t8:R0 ← xor t0:R0 t6:R1
o9: out [t10:R0]

Fig. 5: Solution of the model in Fig. 4

The decision variables of the constraint problem are:

• r(t) ∈ Regst, t ∈ Temps denotes the hardware register
or stack slot assigned to temporary t;

• a(o) ∈ [false,true], o ∈ Operations denotes
whether operation o is active or not;

• i(o) ∈ Inso, o ∈ Operations is the instruction that
implements operation o;

• c(o) ∈ [0,maxc], o ∈ Operations is the cycle at
which an operation o is scheduled, bounded by maxc,
a conservative upper bound of the execution time;
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• y(p) ∈ Tempsp, p ∈ Operands is the selected temporary
among all possible temporaries for operand p.

In addition to these, l(t) ∈ [false,true], t ∈ Temps
represents whether a temporary is live or not, ls(t) ∈
[0,maxc], t ∈ Temps represents the cycle at which t becomes
live, and le(t) ∈ [0,maxc], t ∈ Temps represents the last
cycle at which t is live. An important constraint of register
allocation is that the register live ranges of a specific hardware
register ri do not overlap:

∀t1, t2 ∈ Temps . l(t1) ∧ l(t2) ∧ r(t1) = r(t2) =⇒
ls(t1) ≥ le(t2) ∨ ls(t2) ≥ le(t1). (5)

Moreover, when a temporary is live, its last live cycle (le)
is strictly greater than its live start (ls):

∀t ∈ Temps . l(t) =⇒ ls(t) < le(t). (6)

2) Objective Function: A typical objective function of a
constraint-based backend minimizes different metrics such as
code size and execution time. These can be captured in a
generic objective function that sums up the weighted cost of
each basic block: ∑

b∈B

weight(b) · cost(b).

The cost of each basic block consists of the cost of the
specific implementation and is a variable, whereas weight is a
constant value that represents the contribution of the specific
basic block to the total cost. This cost model is accurate for
simple hardware architectures. However, in the presence of
advance microarchitectural features, such as complex cache
hierarchy, branch prediction, and/or out-of-order execution, the
cost model is not accurate.

E. Example in a Constraint-based Compiler Backend

Low-level transformations, like register allocation and in-
struction scheduling, affect the security of programs. Fig. 6a
shows the high-level masked implementation of exclusive OR
in C (same as Fig. 1). The code takes three inputs: p (a
Public value), k (a Secret value), and m (a Random
variable). The code computes first the exclusive OR of m and
k and stores it in mk. Then, it computes the exclusive OR of
mk with p and stores it in rs, which the function returns.

Fig. 6b shows a register allocation of function Xor that
leads to a HD vulnerability. Both m and mk are stored in the
same register, hence the content of mk replaces the previous
value m in register R1. According to the leakage model,
the attacker observes the exclusive OR between the initial
and updated value of a hardware register. Using the register
allocation of Fig. 6b, the leakage reveals information about the
secret: HW(mk⊕ m) = HW((m⊕ k)⊕ m) = HW(k). Value k
is a secret value, and thus, a leak occurs (circled in Fig. 6b).

A constraint-based compiler backend is able to generate
all legal register allocations for a program. Fig. 6c shows an
alternative register allocation for function Xor. Here, the result
of mk is written in hardware register R2, giving a HD leakage
HW(mk ⊕ k) = HW((m ⊕ k) ⊕ k) = HW(m). The leakage

here corresponds to the value of m, which is not a sensitive
value. Similarly, instruction scheduling may be able to remove
leakages, as seen in Fig. 3. By changing the schedule of the
instructions, the model is often able to generate a PSC-free
solution with no code quality overhead.

This example shows that low-level transformations can be
responsible for the introduction of HD vulnerabilities and have
thus to be taken into account to provide effective mitigations.

IV. SECCG

This section introduces SecCG, an approach to optimize
code that is secure against PSC attacks. Fig. 7 shows the high-
level view of SecCG. SecCG is a constraint-based optimizing
secure compiler, i.e. it extends a constraint-based compiler
backend with security constraints. It takes two inputs: 1) a
C or C++ program, and 2) a security policy denoting which
variables are Secret, Random, or Public. SecCG enables
register promotion at the compiler middle end because this
optimization preserves the high-level properties of the pro-
gram and, at the same time, creates substantial opportunities
for register allocation. Then, the constraint-based compiler
backend, extended with security constraints, takes as input
the program in a machine-level Intermediate Representation
(IR) and the security policy. Next, SecCG performs a security
analysis (see Section III-C). The results are used to impose
constraints that prevent HD vulnerabilities. Given the secure
model, the approach generates an optimized solution.

Section IV-A presents the security analysis. Section IV-B
presents the secure constraint model that extends the
constraint-based compiler backend. Finally, Section IV-C
presents the solving enhancements of SecCG.

A. Security Analysis

SecCG performs a security analysis to extract the security
types of each program variable and, subsequently, generates
constraints that prohibit insecure low-level implementations.
The security analysis identifies the security type (Random,
Public, or Secret) of each intermediate variable. In the
compiler constraint model, the program variables correspond
to the input arguments, the operands and the result of each
operation. This is equivalent to the temporary variables, i.e. the
virtual registers. Each operand can use a number of alternative
temporary values, t ∈ Temps , and each temporary value is
assigned to a register (see Section III-D). The type-inference
rules do not handle loops or conditional statements. However,
cryptographic implementations that are free from PSCs are
often linearizable [7].

The security analysis uses a type-inference algorithm based
on the work of Wang et al. [7]. We extend this algorithm with
additional definitions that improve the accuracy of the type
inference (see supplementary material [21]). In particular, we
extend the type-inference algorithm with rules that consider
additional properties of GF(2n), like distributivity between
exclusive or (⊕) and multiplication in GF(2n) (�). At the
end of the analysis, all temporary variables have an inferred
type. Fig. 8 shows the inferred security types for each of the
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u32 Xor(u32 p, u32 m,
u32 k) {

u32 mk = m ˆ k;
u32 rs = mk ˆ p;
return rs;

}

R0 R1 R2

p

rs

k

m

mk

R0: p, R1: m,
R2: k

R1 = R1 ⊕ R2
R0 = R0 ⊕ R1

R0 R1 R2

p

rs

k

m
mk

R0: p, R1: m,
R2: k

R2 = R2 ⊕ R1
R0 = R0 ⊕ R2

(a) Exclusive OR in C (b) Vulnerable register assignment (c) Secure register assignment

Fig. 6: The exclusive OR example, illustrating a HD vulnerability and alternative register assignments
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Fig. 7: High-level view of SecCG

temporaries in our running example. Temporaries t0 and t3
are Public (green), t2 and t5 are Secret (red), and t1,
t4 and t6-t10 are Random (brown).

o1: in [t0:Public, t1:Random, t2:Secret]
o2: t3:Public ← [-, copy] t0
o3: t4:Random ← [-, copy] t1
o4: t5:Secret ← [-, copy] t2
o5: t6:Random ← xor [t1,t4] [t2,t5]
o6: t7:Random ← [-, copy] t6
o7: t8:Random ← xor [t0,t3] [t6,t7]
o8: t9:Random ← [-, copy] t8
o9: out [t10:Random ← [t8,t9]]

Fig. 8: Typed intermediate representation

The type-inference algorithm is conservative. Function
type(t) : Temps → {R,S, P} returns the type assigned to
temporary variable t. This section abbreviates the types as
follows: type R corresponds to Random, S corresponds to
Secret, and P corresponds to Public.

In the following, we define the data that the security analysis
provides to the constraint model, which the latter requires to
impose security constraints. According to the leakage model,
when a hardware register changes from one value to another,
the exclusive OR of the two values is exposed. Rpairs is
the set of temporary variable pairs that when xor:ed together
reveal secret information:

Rpairs = {(t1, t2) | t1, t2 ∈ Temps ∧
type(t1), type(t2) ∈ {R,P} ∧
type(t1 ⊕ t2) = S}. (7)

In the running example (Fig. 8), Rpairs = {(t1,t6),
(t1,t7), (t1,t8), (t1,t9), (t4,t6), (t4,t7), (t4,t8),

(t4,t9), (t6,t7), (t6,t8), (t6,t9), (t7,t8), (t7,t9),
(t8,t9)}. For every pair of temporaries in Rpairs,
a constraint prohibits the contiguous assignment of the
temporaries to the same register (m and mk in Fig. 6b).
Rpairs do not consider secret values. Instead, if the type

of temporary variable t is Secret, we impose a different
constraint because the secret information will always result
in a leak. In this case, we impose the constraint that another
random variable should precede and follow the definition of
the secret variable to mask the secret information. Spairs is
a set of pairs, each of which consists of a secret temporary
variable t and a set of random temporary variables ts that hide
the secret information, i.e. ∀t′ ∈ ts . type(t′ ⊕ t) = R:

Spairs = {(t, ts) | t ∈ Temps ∧ type(t) = S ∧
ts = {t′ | t′ ∈ Temps ∧ type(t′) = R ∧

type(t′ ⊕ t) = R}}. (8)

In the running example (Fig. 8), Spairs = {(t5, {t4,t6,
t7,t8,t9})}.

Memory operations may also reveal secret information. We
assume the same leakage model (HD model) for the memory
bus as for the register-reuse transitional effects. This means
that the leakage corresponds to the exclusive OR of two
subsequent memory operations. Mmpairs includes the pairs
of memory operations that result in memory-bus transitional
leakage, i.e. pairs of memory operations that when scheduled
subsequently lead to a secret leakage:

Mmpairs = {(o1, o2) | o1, o2 ∈ MemOperations ∧
type(tm(o1)), type(tm(o2)) ∈ {R,P} ∧
type(tm(o1)⊕ tm(o2)) = S}. (9)

Here, tm(o) ∈ Temps is the temporary that corresponds to the
memory data of the operation. In the running example (Fig. 8),
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Mmpairs = {(o3,o6), (o3,o8), (o6,o8)}, in case o3, o6,
o8, are memory spills. Note that, for simplicity, Fig. 8 does
not include all copies for memory spilling as we would need
to duplicate the copies for first storing and then loading the
variables.

The same leakage as in the case when a secret value was
written to a register applies here. If a memory operation
stores/loads a secret value to/from the memory, a random
memory operation that is able to hide the secret information
should precede and follow this operation. Mspairs is a set
of pairs, each of which consists of the memory operation that
accesses secret data, o, and a set of memory operations that
access random data and are able to hide the secret information,
i.e. type(tm(o′)⊕ tm(o)) = R:

Mspairs = {(o, os) | o ∈ MemOperations ∧
type(tm(o)) = S ∧
os = {o′ | o′ ∈ MemOperations ∧

type(tm(o′)) = R ∧
type(tm(o′)⊕ tm(o)) = R}}. (10)

In the example (Fig. 8), Mspairs = {(o4, {o3,o6,o8})},
in case o4, o3, o6, and o8 are spilled in memory.

The security analysis provides Rpairs, Spairs, Mmpairs,
and Mspairs to the constraint model, which enables con-
straining code generation to generate secure implementations.

B. Constraint Model

The constraint model takes as input the four sets computed
by the security analysis (Rpairs, Spairs, Mmpairs, and
Mspairs) and uses them to generate appropriate constraints
that prohibit insecure solutions.

Predicate samereg tells whether the two input temporaries
are active (l(t) = 1) and are assigned to the same register.

pred samereg(t1,t2):
l(t1) ∧ l(t2) ∧ (r(t1) = r(t2))

In Fig. 5, samereg(t0,t8) = l(t0) ∧ l(t8) ∧
(r(t0) = r(t8)) = true, samereg(t2,t6) = false
(r(t2) 6= r(t6)), and samereg(t1,t7) = false (t7
is not live).

1) Rpairs Constraints: The following constraint ensures
that a pair of temporaries in Rpairs are either not assigned
to the same register or they are not subsequent (subseq
constraint, defined in Section IV-B5).

forall (t1,t2) in Rpairs:
samereg(t1, t2) =⇒
(¬subseq(t1,t2) ∧ ¬subseq(t2,t1))

In Fig. 5, this constraint is not satisfied for t1 and t6
because samereg(t2,t6) = true and subseq(t2,t6)
= true.

2) Spairs Constraints: The following constraint ensures
that for each pair (ts,trs) ∈ Spairs, if ts is live, one of the
random temporaries tr ∈ trs precedes the secret temporary
ts and another random temporary succeeds ts.

forall (ts,trs) in Spairs:
exists tr in trs:

l(ts) =⇒ (l(tr) ∧ subseq(tr,ts)) ∧
exists tr in trs:

l(ts) =⇒ (l(tr) ∧ subseq(ts,tr))

Fig. 9 shows a solution to the model in Fig. 4, where
both the Rpairs and the Spairs constraints are satisfied. t5
is active but is assigned to the same register as t4, which
precedes t5 and thus eliminates the leakage. Similarly, t6
follows the assignment of t5 and thus hides the secret value.

o1: in [t0:R0, t1:R1, t2:R2]
o3: t4:R3 ← t1:R1
o4: t5:R3 ← t2:R2
o5: t6:R3 ← xor t1:R1 t5:R3
o7: t8:R0 ← xor t0:R0 t6:R3
o9: out [t10:R0]

Fig. 9: Solution of the model in Fig. 4

3) Mmpairs Constraints: The following constraint ensures
that a pair of non-secret memory operations in Mmpairs,
are either not active or not subsequent memory operations
(msubseq constraint). Constraint msubseq (defined in Sec-
tion IV-B5) is similar to subseq but considers consecutive
memory operations instead of temporaries.

forall (o1,o2) in Mmpairs:
a(o1) ∧ a(o2) =⇒

(¬msubseq(o1,o2) ∧ ¬msubseq(o2,o1))

4) Mspairs Constraints: Finally, the following constraint
ensures that for each pair (os,ors) ∈ Mspairs a random
memory operation or ∈ ors precedes the secret-dependent
memory operation os.

forall (os,ors) in Mspairs:
exists or in ors:

a(os) =⇒ (a(or) ∧ msubseq(or,os)) ∧
exists or in ors:

a(os) =⇒ (a(or) ∧ msubseq(or,os))

This constraint works similarly as the equivalent register
constraint, where instead of register operations, we have
memory operations. In our example, we need to have memory
spilling, i.e. store to the stack, and then load from the stack
(only one of the operations is shown in Fig. 9).

5) Modeling subseq: To define the subseq constraint,
we first define an auxiliary predicate is_before and a set of
auxiliary problem variables lk. Predicate is_before(t1,
t2) tells whether t1 is assigned to the same register as t2

and t1’s life range ends (le(t1)) before the beginning of
the life range of t2 (ls(t2)).

pred is_before(t1,t2): same_reg(t2, t1) ∧
(le(t2) ≤ ls(t1))

Variable lk(t) captures the end live cycle of the temporary
that occupied the same register as t (r(t)) right before t
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was assigned. If t’ = lk(t), then the values of t and t’
result in a transitional effect that may reveal information to
the attacker.
forall t in Temps: lk(t) = max(
[ite(is_before(t′,t),le(t′),-1)

| forall t′ in Temps])

Then, the definition of the subseq predicate is as follows:

pred subseq(t1,t2):
samereg(t1,t2) ∧ (lk(t2) = le(t1))

Theorem 1 (Subseq Constraint). The subseq constraint is
true only for pairs of temporary variables that are subse-
quently assigned to the same register:
subseq(t1,t2) ⇐⇒ P = P ′; t1 ← e1;P

′′; t2 ← e2;P
′′′ ∧

r(t1) = r(t2) ∧ ∀i ∈ P ′′ . i = t← e =⇒ r(t) 6= r(t1).

Proof. (⇐) Assume P = P ′; t1 ← e1;P
′′; t2 ← e2;P

′′′ ∧
r(t1) = r(t2) ∧ ∀i ∈ P ′′ . i = t = e ∧ r(t) 6= r(t1). We con-
sider all register assignments in P : P = ...; ti ← ei; ...; t1 ←
e2; ...; t2 ← e2; ...; tj ← ej ...; all these assignments are live
because they appear in the final program. For all assignments
tj following t2 (and thus also ti) we have that le(tj) > ls(t2),
which implies that is_before(tj , ti) = false, and thus
all tj contribute with -1 to max in lk(t2). The same applies
for all registers that are assigned to a different register, they
contribute with -1 because is_before(tj , ti) = false.
Then, lk(t2) = max(le(t)|t ∈ {ti1 , ti2 , .., t1}), where all
{ti1 , ti2 , .., t1} are assigned the same register, r(t2). Be-
cause these temporaries are assigned to the same register,
their live ranges do not overlap (Equation 5), i.e. ∀t, t′ ∈
{ti1 , ti2 , .., t1} . ls(t) ≥ le(t′) ∨ ls(t′) ≥ le(t). Because
t1 ← e1 is scheduled last ∀t ∈ {ti1 , ti2 , .., tin , t1} . ls(t1) ≥
le(t). Also, from Equation 6, le(t1) > ls(t1). This implies
that ∀t ∈ {ti1 , ti2 , .., tin} . le(t1) > le(t), hence, we have
lk(t2) = le(t1) and ∀t ∈ {ti1 , ti2 , .., tin} . lk(t2) > le(t).
Therefore, only for t1, subseq(t1, t2) = true.
(⇒) Assume subseq(t1, t2). This implies that

samereg(t1, t2) ∧ lk(t2) = le(t1). Constraint
samereg(t1, t2) implies that r(t1) = r(t2) and l(t1) ∧ l(t2),
which means that they appear in the final code, P , and are
assigned to the same register. Because lk(t2) = le(t1), t1 is
scheduled before t2 or P = P ′; t1 ← e1;P

′′; t2 ← e2;P
′′′.

Now, we only need to prove that there is no other assignment
of r(t1) in P ′′, i.e. ∀i ∈ P ′′ . t ← e ∧ r(t) 6= r(t1).
If ∃i ∈ P ′′ . t ← e ∧ r(t) = r(t1), then, because live
ranges do not overlap, le(t) > le(t1), which means that
lk(t2) = le(t), 6= le(t1), which is invalid.

For the definition of msubseq, we define an auxiliary
predicate is_before_mem and auxiliary problem variables
ok. Predicate is_before_mem(o1, o2) tells whether o1

is scheduled before o2.

pred is_before_mem(o1,o2):
a(o1) ∧ (c(o1) ≤ c(o2))

In Fig. 9, is_before_mem(o4, o3) is true.
Variable ok(o) captures the issue cycle of memory oper-

ation o′ ∈ MemOperations that was issued before o.

forall o in MemOperations: ok(o) = max(
[ite(is_before_mem(o′, o), c(o′), -1)

| forall o′ in MemOperations])

Similar to predicate subseq, msubseq is as follows:

pred msubseq(o1,o2):
a(o1) ∧ a(o2) ∧ ok(o2) = c(o1)

Theorem 2 (Msubsec Constraint). The msubseq constraint is
true only for two instructions that are subsequently accessing
the memory: msubseq(o1,o2) ⇐⇒ P = P ′; o1;P

′′; o2;P
′′′

∧ @o ∈ P ′′ . o = mem(e′′, e3), where o1 and o2 are memory
operations, o1 = mem(e, e1) and o2 = mem(e′, e2).

Proof. Similar to Theorem 1.

Theorem 3 shows that SecCG generates secure code for our
threat model.

Theorem 3 (Secure Modeling). A program P, generated by
SecCG, satisfies the leakage equivalence condition in Defini-
tion 1. This means that given two input instances IN , IN ′ that
differ only with regard to the secret variables, IN sec ⊆ IN ,
IN ′sec ⊆ IN ′, the distributions of the leakages do not differ.

Proof. We assume that the type-inference algorithm overap-
proximates the actual distribution of each variable. Then, we
perform structural induction on the program P to prove that
security constraints we introduce lead to secure programs. The
proof is available as supplementary material [21].

C. Solving Enhancements

Large problems in combinatorial solving can quickly be-
come difficult to handle due to state-space explosion. A solu-
tion to this problem is structural decomposition of the problem
into subproblems. In code generation, a natural structural
decomposition scheme consists of splitting the problem into
basic blocks [16]. However, SecCG’s security analysis [7]
requires linearized code that corresponds to one large basic
block. There are already approaches on splitting large code
blocks into smaller artificial code blocks for improving the
scalability of the solver [16]. Typically, in decomposition
schemes, the solver first solves each partial solution (basic
blocks) and then composes a full solution consisting of the
partial solutions. However, this solution becomes challenging
with the addition of security constraints that relate different
parts of the code, introducing new inter-block dependencies.
These dependencies may lead to conflicts between the partial
solutions, resulting in the rejection of the full solution. To deal
with this problem, SecCG propagates only part of the partial
solutions, leaving some parts of the full solution unsolved. In
particular, SecCG does not propagate the register assignments
to temporaries that correspond to earliest and latest assigned
hardware registers in each basic block, as well as their
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corresponding issue cycles. Subsequently, SecCG solves the
unsolved parts as part of the full problem.

The second main enhancement to the solving procedure
concerns the final step of the solving process. In SecCG, we
make use of Large Neighborhood Search (LNS) [25], a form
of local search for constraint programming. In particular, at the
end of the decomposition phase, SecCG uses the best found
solution to perform local search and locate better solutions.

V. EVALUATION

For the evaluation of SecCG, we pose the following research
questions:

RQ1: What is the overhead in execution time for the
generated code using SecCG? Here, we want to evaluate
the introduced overhead of secure solutions compared to
optimized but insecure solutions. To do that, we compare the
best known solution [16] with our approach SecCG.

RQ2: What is the improvement in execution time of the
generated code over non-optimized code and other TBL-secure
approaches? Here, we compare our results with LLVM-3.8
with no optimization (-O0) and the work by Wang et al. [7].

RQ3: What is the overhead in compilation time using
SecCG? Here, we want to evaluate the introduced compilation
overhead of secure solutions compared to insecure solutions.
To do that, we compare the compilation time for retrieving the
best known solution [16] with SecCG’s compilation time.

A. Preliminaries

The following sections describe the implementation details
and the experimental setup of the evaluation of SecCG. The
implementation of SecCG and the experiments and bench-
marks for the evaluation are available at https://github.com/
romits800/seccon experiments.git.

1) Implementation Details: SecCG is implemented as an
extension of Unison [16], a constraint-based compiler backend
that uses CP to optimize software functions with regard to code
size and execution time. In particular, Unison combines two
low-level optimizations, instructions scheduling and register
allocation, and achieves optimizing medium-size functions
with improvement compared to LLVM. Unison uses two
global constraints for modeling the backend transformations;
1) the geometric packing constraint for register allocation and
2) the cumulative constraint for instruction scheduling. The
type-inference implementation is written in Haskell and is
based on Wang et al. [7] with precision improvements (see
supplementary material [21]).

2) Experimental Setup: All experiments run on an
Intel®Core™i9-9920X processor at 3.50GHz with 64GB of
RAM running Debian GNU/Linux 10 (buster). We use LLVM-
3.8 as the front-end compiler for these experiments. To
preserve the high-level security properties of the compiled
programs, we apply only one optimization, register promo-
tion, (-mem2reg in LLVM), which lifts program variables
from the stack to registers. We evaluate our method on two
architectures: ARM Thumb, targeting processor ARM Cortex

M0, a highly predictable processor targeting small embedded
devices; and Mips32, a widely-used embedded architecture.

We implemented the constraint model both as part of the
specialized Gecode [26] constraint model and the Miniz-
inc [27] model that Unison provides. The Minizinc model
allows for solving the problem using multiple solvers. In total,
we tried four solvers, Chuffed v0.10.3 [28], OR-Tools [29],
Elsie Geas1, and the specialized model written in Gecode
v6.2. We ran the former three solvers, activating the free-
search option. For the specialized model in Gecode, apart from
the security model, SecCG includes the modified search en-
hancements that we describe in Section IV-C. Among all these
solvers, Gecode and Chuffed performed best. None of them
was able to solve all the problems, but together they could
solve most of the problems. In the smaller benchmarks, P0-
P6, we run a portfolio solver including Gecode and Chuffed.
For the larger benchmarks, we run every solver separately for
reducing the risk of out-of-memory errors when running both
solvers in parallel. The presented results are the result of five
runs for SecCG and Unison, whereas for the calculation of the
execution time for LLVM -O0, we run the compilation 1000
times to account for possible fluctuations in the compilation
time on the evaluation machine.

3) Benchmarks: To evaluate our approach, we use a set of
small benchmark programs, up to 100 lines of C code and
one program exceeding 900 lines of C code. Table I provides
a description of these benchmarks, including the number of
lines of code (LoC), and the program variables, i.e. the input
variables (IN ) and the number of secret (IN sec), public
(IN pub), and random (IN rand) input variables. Benchmarks
P1 to P6 and P8 to P11 were made available by Wang
et al. [7]2, whereas P0 and P7 are implemented by the
authors of this paper. These benchmark programs constitute
different masked implementations from previous work and are
linearized. Wang et al. [7] use a larger number of benchmarks
to evaluate their approach. However, our approach depends
on a combinatorial optimizing compiler, Unison, which scales
to up to medium size functions, namely, up to approximately
200 intermediate instructions for ARM Cortex M0 and Mips32
architectures [16]. In addition to this, SecCG adds additional
constraints that increase the complexity of the model (see
Section V-D). Therefore, we selected the smallest benchmarks
for our experiments. As a future work, we plan to investigate
non-linearized implementations, but this comes at the expense
of analysis precision and potentially increased performance
overhead.

B. RQ1: Optimality Overhead

SecCG builds on a constraint-based compiler backend to
generate a program that satisfies security constraints for soft-
ware masking. This means that our approach might compro-
mise some of the code quality of the non-mitigated optimized
code to mitigate the software masking leaks. To evaluate

1Elsie Geas: https://bitbucket.org/gkgange/geas/src/master/
2FSE19 tool: https://github.com/bobowang2333/FSE19
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TABLE I: Benchmark Description

Prg Description LoC Input Variables (IN)
pub sec rand

P0 Xor (Listing 1) 5 1 1 1
P1 AES Shift Rows [6] 11 0 2 2
P2 Messerges Boolean [6] 12 0 1 2
P3 Goubin Boolean [6] 12 0 1 2
P4 SecMultOpt wires 1 [4] 25 1 1 3
P5 SecMult wires 1 [4] 25 1 1 3
P6 SecMultLinear wires 1 [4] 32 1 1 3
P7 Whitening [6] 58 16 16 16
P8 CPRR13-lut wires 1 [5] 81 1 1 7
P9 CPRR13-OptLUT wires 1 [5] 84 1 1 7
P10 CPRR13-1 wires 1 [5] 104 1 1 7
P11 KS transitions 1 [30] 964 1 16 32

the overhead of our method compared to non-secure opti-
mization, we compare the execution time of the optimized
solution (optimal or suboptimal solution) that Unison [16]
generates compared with SecCG’s optimized and TBL-secure
code. The overhead is computed as (cycles(SecCG) −
cycles(Unison))/cycles(Unison).

Table II shows the mean execution time for each of the
benchmark programs and architectures. In particular, for each
of the architectures, we compare the execution time in number
of cycles of the solution that Unison produces against SecCG’s
solution. The final column shows the overhead of SecCG
compared to Unison.

The results show zero overhead for Mips32, and a maximum
13% overhead in ARM Cortex M0. The zero overhead for
most of the benchmarks shows that the Pareto front of optimal
solutions synthesized by Unison includes code variants that are
secure. This result is in agreement with previous work [31],
which shows the existence of multiple optimal (or best found)
solutions. For ARM Cortex M0, programs P1, P7, and P9 have
a non-zero positive overhead. The observed overhead in ARM
Cortex M0 is due to three main reasons: 1) the mitigation
itself that may require the introduction of redundant operations
in the generated code, 2) the scalability issue that appears in
larger functions due to the addition of new security constraints
in the order of |Temps|2, and 3) the decomposition mode
that may fail to compose solutions (Section IV-C). Program
P10 shows a slight improvement. This improvement is due
to the introduction of LNS at the end of the solving stage
(see Section IV-C), which is not present in Unison. The last
benchmark program, P11, demonstrates the scalability limits
of our approach. The operating system terminates the solving
process because the process attempts to allocate more than the
available memory (out-of-memory error).

To summarize, SecCG does not introduce significant over-
head over the non-secure optimized solution that Unison
generates. This means that in most cases, there is space for
generating secure code without affecting the quality of the
generated code.

C. RQ2: Execution-Time Improvement

To evaluate the execution-time speedup of our approach, we
compare SecCG with the code generated by LLVM without

TABLE II: Optimal solution by Unison and SecCG (SCG) in
cycles; Oh stands for overhead; OM stands for out of memory

Prg ARM Cortex M0 Mips32
[16] SCG Oh (%) [16] SCG Oh (%)

P0 6 6 0 3 3 0
P1 8 9 13 5 5 0
P2 10 10 0 7 7 0
P3 13 13 0 9 9 0
P4 28 28 0 75 75 0
P5 28 28 0 75 75 0
P6 30 30 0 73 73 0
P7 125 128 2 184 184 0
P8 85 85 0 151 151 0
P9 79 82 4 151 151 0
P10 85 81 -5 281 281 0
P11 2635 OM - 1335 OM -

optimizations (-O0). We also compare SecCG with the work
by Wang et al. [7], who identify and mitigate ROT leaks
on non-optimized LLVM-generated code. This is a common
approach by different security mitigations, because compila-
tion passes may violate the security properties of a program.
During their mitigation, Wang et al. [7] may remove unused
code, which reduces the overhead.

We compare SecCG with the approach by Wang et al. [7]
for three main reasons, 1) their tool is available freely, 2)
they propose an architecture-agnostic approach that applies
to both Mips32 and ARM Thumb, and 3) they mitigate
transitional effect caused by register reuse, a subset of our
mitigation. Table III compares the execution time in number
of cycles (based on a LLVM-derived cost model) of LLVM,
the mitigated code by Wang et al. [7] and SecCG, for each
of the programs and architectures. Speedup is computed as
cycles(SecCG)/cycles(LLVMO0 ).

For ARM Cortex M0, the speedup ranges from 2.9 for
P5 to 6.3 for P2 and a geometric mean of 3.9 speedup. We
notice that for all benchmarks, SecCG achieves significant
improvement over the baseline. The main reason for this, is
that the increased size of the program under analysis reduces
the ability of the solver to find optimal solutions.

For Mips32, the improvement ranges from 77% to 6.6
speedup and a geometric mean of 3.15 speedup. The im-
provement is larger for smaller benchmarks due to the large
overhead of load and store instructions that are present
in the absence of optimizations in the baseline. In contrast
to the non-optimized code, the code generated by SecCG
reduces memory spilling. In particular, the generic cost model
for Mips32 that we use (derived from LLVM) has one cycle
overhead compared to linear instructions. For larger programs,
P4-P10, the speedup is smaller but still significant.

This experiment shows that for both architectures SecCG
achieves improvement ranging from 77% up to a speedup
of 6.6 with geometric-mean speedups 3.9 and 3.15 for ARM
Cortex M0 and Mips32, respectively. Although not completely
comparable with SecCG because of the use of different bench-
marks and mitigations, Vu et al. [15] show an improvement
over non-optimized code (-O0) that ranges from 20% to a
speedup of 12.6, with a geometric mean of 2.8. Compared
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to the approach by Wang et al. [7], the speedup that SecCG
achieves ranges from 1.95 (24%) to 7.6 for ARM Cortex M0
and from 1.36 (36%) to 7.7 for Mips32. The geometric-mean
speedups are 3.52 for ARM Cortex M0 and 2.9 for Mips32.

To summarize, for both Mips32 and ARM Cortex M0,
SecCG improves the non-optimized LLVM code. We notice
large improvements for both Mips32 and ARM Cortex M0
ranging from 77% to 6.6 speedup. SecCG generates also
improved code compared to the work by Wang et al. [7].

TABLE III: Execution-time comparison between the non-
optimized baseline and SecCG (SCG); Su is the speedup of
SecCG with LLVM with -O0 as baseline; OM stands for out
of memory

Prg ARM Cortex M0 Mips32
O0 [7] SCG Su O0 [7] SCG Su

P0 20 22 6 3.33 19 23 3 6.33
P1 39 32 9 4.33 33 21 5 6.60
P2 63 76 10 6.30 43 43 7 6.14
P3 52 56 13 4.00 47 47 9 5.22
P4 87 96 28 3.11 139 139 75 1.85
P5 81 90 28 2.89 133 133 75 1.77
P6 112 69 30 3.73 189 188 73 2.59
P7 609 786 128 4.76 382 430 184 2.08
P8 293 166 85 3.45 371 253 151 2.46
P9 301 303 82 3.67 371 371 151 2.46
P10 333 176 81 4.11 593 383 281 2.11
P11 4504 6742 OM - 3688 3237 OM -

D. RQ3: Compilation Overhead

To evaluate the compilation overhead of our approach, we
compare SecCG with Unison [16] and non-optimized LLVM.
The main reason for the compilation overhead of SecCG
compared to LLVM is the combinatorial nature of the backend
compiler. Compared to Unison, SecCG introduces compilation
overhead due to the security constraints among temporaries
and operations in the combinatorial model. In particular, the
subseq constraint introduces a large number of constraints
and variables that are in the order of |Temp|2. The constraints
between memory operations (msubseq) are typically fewer
because memory operations are a subset of all operations. In
general, the actual overhead depends on the program logic and
the security policy. The compilation slowdown is computed as
comp time(SecCG)/comp time(Unison).

Table IV compares the compilation time of SecCG, Unison,
and LLVM -O0. The last column for each architecture in
Table IV presents the slowdown of SecCG compared to
Unison. In Mips32, we can see an increasing overhead in
the compilation time of SecCG compared to Unison with the
increase of the function size. The largest compilation overhead
is for P10 and corresponds to 57.4 slowdown compared
to Unison. The compilation time for non-optimized LLVM
ranges from 0.01 to 0.04 seconds. Comparing SecCG with
LLVM, the slowdown ranges from 300 for P0 to 300K for
P10 (the slowdown does not appear in Table IV)

In the case of ARM Cortex M0, we observe a similar trend.
We observe the largest slowdown for P9, which corresponds
to 27.9 slowdown. However, the compilation time increases

faster than for Mips32. Compared with LLVM, SecCG results
in a slowdown that ranges from 29 for P0 to 400K for P9
(does not appear in Table IV). The main reasons for the
observable difference between the two architectures are 1)
the ARM Thumb architecture is more constrained3 and 2)
interestingly, most instances for Mips32 are solved quickly
by Chuffed, whereas most instances for ARM Cortex M0 are
only solved by Gecode.

To summarize, the compilation time for SecCG is multiple
times slower than Unison because of the introduction of
security constraints. In addition to this, SecCG is slower than
LLVM. Therefore, we believe that SecCG is mostly suitable
for compiling small cryptographic kernels that are both critical
for the performance and the PSC security, such as secure field
multiplication for AES [4].

TABLE IV: Compilation overhead for SecCG (SCG) com-
pared to Baseline (Unison) in seconds; Sd stands for slowdown
of SecCG compared to Unison [16]; OM stands for “out of
memory”

Prg ARM Cortex M0 Mips32
O0 [16] SCG Sd O0 [16] SCG Sd

P0 0.01 0.17 0.29 1.7 0.01 0.43 2.9 6.6
P1 0.01 0.23 3.4 14.7 0.01 0.52 5.1 9.9
P2 0.01 0.32 1.2 3.7 0.01 0.69 6.5 9.5
P3 0.01 7.7 22.9 3.0 0.01 0.84 8.9 10.6
P4 0.01 1K 1K 1.0 0.01 1.2 16.0 13.5
P5 0.01 1K 1K 1.0 0.01 1.2 16.0 13.7
P6 0.01 1K 1K 1.0 0.01 1.3 18.6 14.3
P7 0.02 1.0K 4K 4.7 0.02 6.3 0.1K 17.2
P8 0.01 0.1K 3K 19.4 0.01 35.0 1K 31.3
P9 0.01 0.1K 4K 27.9 0.01 37.0 1K 27.6
P10 0.02 0.4K 7K 18.0 0.01 47.8 3K 57.4
P11 0.04 5K OM - 0.04 52K OM -

E. Threat to Validity

Our model considers the HD leakage model and generates
code that mitigates these leakages. The security guaranties for
our model depend on the HD leakage model. The HD model
has been used both for designing defenses [7] and attacks [19].
However, the HD model does not express precisely the actual
leakage model for some devices [32]. Moreover, an HD-based
mitigation at the assembly level may not hold in the presence
of advance microarchitectural features, such as out-of-order
execution and write buffers. In addition to this, SecCG does
not handle transitional effects through value interaction in the
pipeline stage registers and in the memory. We leave further
improvement of the hardware model as a future work.

SecCG is not a verified compiler approach like Com-
pCert [33]. Unison, the constraint-based backend that SecCG
depends on, is based on a formal model that implements
standard optimizations but the external solvers and the tool
implementation are not verified. Verification of constraint
solvers is an active research topic [34].

3ARM Cortex M0 has fewer general-purpose registers than MIPS32 and
includes two-address instructions, which restrict register allocation.
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VI. RELATED WORK

The following sections discuss the related work, with regard
to mitigations against side-channel attacks, mitigations against
TBLs, and combinatorial compilation approaches. Athana-
siou et al. [35] consider two types of PSC leakage sources,
Value-Based Leakage (VBL) and Transition-Based Leakage
(TBL). VBL occur due to the absence or compiler-induced
removal of masking. For example, a compiler transformation
may convert a masked expression pub ⊕ (mask ⊕ key) to
mask ⊕ (pub ⊕ key), which preserves the code semantics
but breaks the masking mitigation. On the other end, TBL is a
result of low-level microarchitectural features such as register
reuse, memory overwrite, or interactions between values in
the hardware. In the following, we will use these two terms
to describe different mitigations.

TABLE V: Mitigation approaches against side-channel at-
tacks; SCG stands of SecCG, FE, ME, BE stands for front
end, middle end, and back end, respectively; ASM stands for
assembly

Pub. Mitigation Transf. InL OutL ML Avail.
[36] VBL FE, ME DSL - Custom

[37] TSC, MS,
RS - DSL ASM Custom

[38] TSC, MS - DSL ASM Custom
[39] TSC, MS - DSL C Flow

[40] TSC ME DSL C Custom
[13] TBL BE AVR AVR Binary
[41] IFL BE C ASM CompCert ?

[7] TBL BE C, C++ ASM LLVM
[35] TBL - ARM ARM Binary

[15] VBL,
TSC, FI ALL C, C++ ASM LLVM

[11] TBL - ARM ARM Binary
SCG TBL ME, BE C, C++ ASM LLVM

Side-Channel Compiler Mitigation Approaches: General
purpose optimizing compilers perform transformations that
may invalidate high-level security mitigations or introduce
security flaws [42]. Table V presents a non-exhaustive list of
related work that present compiler-based or binary-rewriting
approaches against side-channel attacks. For each publication
(Publication), Table V, shows the mitigations of each approach
(Mitigation), the compiler level that each approach perform
the mitigation (Transformation), the input language (InL), the
output language (OutL), the Mitigation Level (ML) of each
approach that is either a compiler or binary. The last column
(Avail.) denotes with that the artifact is not available, with

that the artifact is available, with that part of the artifact
is available, and finally, with ? where it is not clear whether
the artifact is available or not.

Multiple approaches present compiler-based mitigations
against Timing Side Channels (TSCs) [37, 38, 39, 40, 15],
proof of Memory Safety (MS) [37, 38, 39], or Residual
Program State (RS) [37]. Besson et al. [41] present the notion
of Information-Flow Leakage (IFL) in compiler optimizations
that guarantees that the compiler does not introduce new

vulnerabilities. They evaluate their approach on two passes
of CompCert, dead-store elimination and register allocation,
using a threat model that considers observation points at
function boundaries. In contrast, the SecCG backend gener-
ates a program secure against ROT and MRE leaks at each
execution point. In addition to this, SecCG does not guarantee
the preservation of the property but rather the absence of
TBLs. If that is not possible, the model is unsatisfiable and
SecCG fails to generate a program. The latter outcome has not
appeared in our experiments4 but there is no guarantee that it
will not happen. For remedying this problem, one may try
to activate a pass in SecCG that introduces additional copies
of masked values, deactivate some high-level optimizations,
and/or deactivate the ROT or MRE constraints.

A recent approach [14, 15] generates high-quality code that
deals with VBLs, Fault Injection (FI), and TSC attacks. To
achieve this, Vu et al. [14] introduce the concept of opaque
observations that disallows the compiler to remove security
mitigations or rearrange operands in instructions, such as
masking instructions. In their later work [15], they improve
the performance of their optimizing compiler by reducing the
requirement for serialization. To achieve this, they require
source-code annotation that may be challenging for non-trivial
programs [15]. Eldib and Wang [36] propose a high-level
program synthesis approach to automatically generate masked
implementations free from VBLs. Both approaches generate
code that mitigates VBLs and, thus, do not protect against
TBLs.

TABLE VI: TBL-aware approaches

Pub. Mitigation Target Processor
[13] ROT, MOT, MRE, RNL AVR ATMega163
[7] ROT * *

[35] ROT ARM ARM Cortex-M3
[11] ROT, MOT, MRE, IPI, OT ARM ARM Cortex-M0
SecCG ROT, MRE * *

Code Hardening Against Transition-Based Leakages: There
are several approaches that deal with different types of TBL-
related PSCs [13, 7, 35, 11]. Table VI shows the mitigation
approaches against TBLs. For each of the related works,
Table VI, presents the leakage types each of them mitigates
(Mitigation), the target architecture (Target), and the target
processor (Processor). In the last two columns * denotes
that these approaches may target multiple architectures and
processors.

Papagiannopoulos and Veshchikov [13] perform experi-
ments to identify possible sources of leakage in binary AVR
code on a ATMega163. They identify sources of leakage
including ROT, Memory-Overwrite Transition (MOT), which
occurs when overwriting a value in memory, MRE, which
occurs when overwriting a value in the memory bus, and
Register Neighbor Leakage (RNL), which occurs when the
values of neighboring registers interact with each other. Pa-
pagiannopoulos and Veshchikov [13] observe that ROT and

4There were unsatisfiable instances due to associativity-related VBLs when
using aggressive high-level compiler optimizations (O1, O2, and O3)
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MRE leakages may be exploited with a small number of runs,
500, whereas MOT requites much more (40K). Rosita [11]
is a recent approach to mitigate transitional effects that may
lead to power side-channel attacks using an emulation-based
technique. Rosita performs an iterative process to identify
power leakages in software implementations for ARM Cortex
M0 and identifies transitional effects due to ROT, MOT,
MRE, Instruction-Pair Interaction (IPI), and Other Transitions
(OT). IPI occurs when pairs of instructions interact with each
other and OT corresponds to interactions between data of
different instructions. The mitigation introduces a performance
overhead of 21% to 64%. In comparison, SecCG is a generic
compiler-based approach that may be applied to multiple hard-
ware architectures and introduces smaller overhead. However,
a direct comparison would be unfair because Rosita mitigates
more leakage sources.

Wang et al. [7] uses a rule-based system [20, 7] to identify
leaks in a masked implementation and perform local register
allocation and instruction selection transformations to mitigate
these leaks in LLVM. They identify transitional effects due
to register reuse, ROT. Their approach is scalable, while the
mitigation introduces small performance overhead compared
to non-optimized code. However, they depend on a non-
optimized compilation in order to preserve the security proper-
ties of the high-level program, which leads to code generation
that is secure against ROT but not optimized. Athanasiou et al.
[35] use the same rule-based system to mitigate ROT leakages
on binary ARM code targeting the ARM Cortex M3 processor.
They are able to reduce the number of potentially vulnerable
register pairs given the instruction order. Athanasiou et al. [35]
confirm that aggressive compiler optimization passes introduce
VBLs. SecCG uses a rule-based system but models a constraint
model that is able to generate optimized code that is secure.

Other approaches perform mitigations at whole-system de-
sign time [43, 44]. The availability of open hardware architec-
tures and, more specifically, RISC-V, has enabled approaches,
such as Coco, which apply software-hardware co-design tech-
niques to mitigate power side-channel attacks [44].

In summary, there are compiler-based and binary rewriting
approaches to mitigate TBLs but all these approaches perform
local transformations that introduce performance overhead.
Instead, SecCG trades quality for compilation time and is
suitable for performance critical and vulnerable cryptographic
functions.

Combinatorial Compiler Approaches: Compiler back-
end optimizations, such as instruction selection, instruction
scheduling, and register allocation, are known to be hard com-
binatorial problems. Hence, solving such problems completely
does not scale for large program sizes. Therefore, popular
compilers, like GCC [45] and LLVM [17], use heuristics that
throughout the years have proved to improve program perfor-
mance. However, these heuristics do not guarantee finding the
optimal solution to these backend optimizations.

For critical code and code aimed for compiler-demanding
architectures, combinatorial methods may find an optimized
version of the code that leads to reduced power consumption

and/or high performance benefits. Different works [46, 16,
22, 23] aim to optimize critical code at different levels, like
loops [22], locally [23] or at function level [16]. The optimiza-
tion goals range from execution time, code size, or estimated
energy consumption [22, 16, 23]. The main drawback of
these approaches is scalability [46]. However, a recent work,
Unison [16], allows the optimization of functions of up to
almost 1000 instructions.

A different combinatorial approach for generating opti-
mal program code is superoptimization [47]. Given a code
sequence, superoptimization approaches attempt to find an
equivalent code sequence that reduces the overall execu-
tion time and is provably equivalent to the initial code.
Souper [48], a state-of-the-art superoptimization approach,
performs middle-end optimizations to LLVM IR code. Middle-
end optimizations typically do not take decisions on the
register allocation or the instruction scheduling. Instead, they
enable algorithmic-level code optimizations. Crow [49] is an
approach based on Souper that performs software diversifica-
tion as a security mitigation approach.

To summarize, many combinatorial compiler backend tech-
niques allow low-level code optimization but, to our knowl-
edge, none of them considers the preservation of security
properties against TBLs.

VII. LIMITATIONS

This paper proposes an architecture-agnostic method to
generate high quality code against register-reuse and memory-
bus transitional effects. We aim specifically at small-size
embedded devices that have a predictable cost model and
implement single-issued, non-speculative architectures. Our
approach has clear scalability issues, however, we plan to
investigate its use in non-linearized functions.

Secondly, our approach is limited to two optimizations,
namely register allocation and instruction scheduling. Other
backend optimizations, such as instruction selection, may
be beneficial for removing HD leakages for CISC architec-
tures like x86. Another useful optimization for mitigating
optimized implementations may be expression reassociation
(-reassociate in LLVM).

SecCG generates programs that are MRE- and ROT-leak
free. The generated code is straight-line code and thus satisfies
the constant-time programming discipline (in the absence of
caches). However, analyzing programs that contain operations
with operand-dependent latencies (e.g. division) may violate
this property. In addition to this, the generated code may
contain other types of TBLs, which depends on the actual
processor implementation [13].

VIII. CONCLUSION AND FUTURE WORK

This paper proposes a constraint-based compiler backend
to generate code that is both optimized and secure against
power side-channel attacks. We prove that the generated code
is secure according to a non-trivial leakage model, and show
that our approach achieves high code improvement against
non-optimized approaches ranging from 77% to a speedup of
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6.6 for two embedded architectures, Mips32 and ARM Cortex
M0. At the same time, our approach introduces a maximum
overhead of 13% from the optimal code. This comes at the
expense of increased compilation time and reduced scalability.

There are several future directions for our work. We are
planning to work on extending the type-inference algorithm
to include function calls and loops. Moreover, by improving
the accuracy of the hardware model of SecCG to model
precisely a specific device, we will be able to improve the
leakage model and compare our approach to approaches like
Rosita [11]. Finally, we believe that combining our approach
with optimizing high-level approaches [14, 15] may further
improve the quality of the generated code.
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B. Grégoire, and P.-Y. Strub, “Verified Proofs of Higher-
Order Masking,” in Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques. Springer, 2015, pp. 457–485.

[31] R. M. Tsoupidi, R. Castañeda Lozano, and B. Baudry,
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