
Robust Safety for Move

Marco Patrignani
University of Trento

marco.patrignani@unitn.it

Sam Blackshear
Mysten Labs

sam@mystenlabs.com

Abstract—A program that maintains key safety properties even
when interacting with arbitrary untrusted code is said to enjoy
robust safety. Proving that a program written in a mainstream
language is robustly safe is typically challenging because it
requires static verification tools that work precisely even in the
presence of language features like dynamic dispatch and shared
mutability. The emerging Move programming language was
designed to support strong encapsulation and static verification
in the service of secure smart contract programming. However,
the language design has not been analysed using a theoretical
framework like robust safety.

In this paper, we define robust safety for the Move language
and introduce a generic framework for static tools that wish to
enforce it. Our framework consists of two abstract components:
a program verifier that can prove an invariant holds in a closed-
world setting (e.g., the Move Prover [16, 47]), and a novel
encapsulator that checks if the verifier’s result generalizes to
an open-world setting. We formalise an escape analysis as an
instantiation of the encapsulator and prove that it attains the
required security properties.

Finally, we implement our encapsulator as an extension to
the Move Prover and use the combination to analyse a large
representative benchmark set of real-world Move programs. This
toolchain certifies >99% of the Move modules we analyse, vali-
dating that automatic enforcement of strong security properties
like robust safety is practical for Move. Additionally, our results
tell that security-centric language design can be effective in
attaining strong security properties such as robust safety.

I. INTRODUCTION

Writing correct code is difficult. Writing code that maintains
key safety properties even when interacting with untrusted
code is harder still. Programs that have this property are said to
enjoy robust safety [6, 22, 43], which is important in a num-
ber of real-world settings such as: operating system kernels
running correctly in the presence of buggy or malicious user-
space apps; browsers isolating JavaScript programs running
on different websites; smart contracts exchanging funds with
authorized users while preventing theft from attackers.

There are many techniques for enforcing robust safety:
sandboxing [40], process isolation, programming patterns such
as object capabilities [35], and specialized hardware [45].
Alternatively, one can enforce robust safety at the language
level [1, 4, 6, 19, 22, 30, 39, 43]. The vision of this approach
is that first, the programmer writes code and specifies key
safety invariants (or, assertions). Then, the language semantics,
in concert with static tools (e.g., type systems or program
analyses), ensure that these invariants will hold even when
the code links against and interacts with untrusted code.
This approach is clearly appealing due to its lack of runtime
overhead and its treatment of security as a first class citizen.

Unfortunately, no real-world programming language attains
robust safety using this this approach, and we ascribe this to

two reasons. First, real-world languages typically have features
that frustrate writing robustly safe code. For example, dynamic
dispatch, shared mutability, and reflection are all common
language features that provide a broad attack surface for
violating safety invariants. Second, most practical languages
cannot be easily extended with safety-relevant static tools
(e.g., efficient program verifiers) or with expressive, integrated
specification languages. Both of these extensions are critical
because robust safety is only meaningful with respect to a set
of programmer-defined safety invariants that can be verified
by a practical tool.

Unlike many existing programming languages, the emerging
Move language [8] was designed to support both writing
programs that interact safely with untrusted code and static
verification. This design is due to Move being used to pro-
gram secure smart contracts on the Diem blockchain [3].
For example, Move has strong encapsulation primitives and
omits unsafe features such as dynamic dispatch that have led
to costly re-entrancy vulnerabilities in other smart contract
languages (e.g., the infamous DAO attack [11]). The language
is co-developed with the Move Prover [16, 47], a verification
tool that checks whether Move code complies with invariants
written in Move’s integrated specification language locally.

Unfortunately, the Prover and the design of Move are not
sufficient to ensure robust safety on their own (as we exemplify
in Listing 1). One important gap is the absence of a principled
characterisation of what it means for Move programs to
be robustly safe. In addition, it is not clear what security
properties must be satisfied by the tools used to enforce robust
safety for Move programs.

Thus, in this paper, we formalise robust safety for the Move
language, define the security properties required of tools that
wish to enforce it, and implement some concrete instantiations
of these tools, and evaluate them on a large representative
benchmark set of real-world Move programs. Our evaluation
lets us conclude that writing robustly-safe Move programs
is practical and achievable for ordinary programmers. This
conclusion comes from these contributions:

1) We formalise a parametric framework for defining ro-
bust safety on Move modules (i.e., partial programs)
of interest, which we call trusted code. Defining robust
safety on Move modules relies on two tools: a pro-
gram verifier (such as the existing Move Prover) and
an encapsulator (which is novel). Intuitively, the verifier
checks whether safety invariants of the trusted code hold
in a closed world containing only trusted code, while
the encapsulator is a static analysis that detects whether
the trusted code contains safety leaks that untrusted code

308

2023 IEEE 36th Computer Security Foundations Symposium (CSF)

© 2023, Marco Patrignani. Under license to IEEE.
DOI 10.1109/CSF57540.2023.00045

20
23

 IE
EE

 3
6t

h
Co

m
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

siu
m

 (C
SF

) |
 9

79
-8

-3
50

3-
21

92
-0

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CS
F5

75
40

.2
02

3.
00

04
5

can exploit to violate the invariants. We prove that the
combination of these two tools is sufficient to enforce
robust safety.
By building on top of the formal semantics for Move [8],
we give a precise characterisation of the security prop-
erties that verifiers and encapsulators must uphold in
order to attain robust safety; we call such verifiers and
encapsulators valid. Then, we prove that any trusted code
verified with a valid verifier and approved by a valid
encapsulator is robustly safe: its safety invariants cannot
be violated by any Move code the trusted code interacts
with.

2) We focus on the role of the encapsulator and formalise a
simple intraprocedural escape analysis that we prove to
be a valid encapsulator. The analysis overapproximates
the set of references pointing to internal state of the
trusted code and flags references that may leak to un-
trusted code.

3) We implement the escape analysis and evaluate both
its efficiency and precision on a large representative set
of Move benchmarks from a variety of sources. Our
results show that >99% Move modules pass the analysis
while the remaining <1% are easily identifiable false
positives. From this, we conclude that: 1) automatically
enforced robust safety is a practically achievable goal
for Move programmers and 2) security-centric language
design (such as Move’s) can be effective in attaining
strong security properties such as robust safety.

The paper proceeds by describing the main features of the
Move language and giving a high-level description of robust
safety (Section II). Then it recounts the semantics of Move
and formally defines robust safety as well as valid verifiers and
valid encapsulators (Section III). The paper then presents the
encapsulator implementation and evaluates it on the aforemen-
tioned benchmarks (Section IV). Finally, the paper discusses
related work (Section V) and concludes (Section VI).

For space constraints many formal details (e.g., some se-
mantics rules), auxiliary lemmas and proofs are elided, the
interested reader can find them in the companion techical
report [38]. Our implementation is open source as part of the
Move Prover tool (see Section IV).

II. OVERVIEW

We begin by introducing Move through a running example,
focussing on the language features that empower programmers
to enforce safety invariants even in the presence of adversarial
code (Section II-A, we defer the reader interested in a general
tour of the Move language to the work of Blackshear et al.
[8]). We then describe how the example is insecure: it respects
an invariant locally, but not in the presence of arbitrary code,
i.e., it is not robustly safe (Section II-B). To recover from
this insecurity, we show how our encapsulator analysis flags
the vulnerability in the example; addressing this issue would
make the code robustly safe (Section II-C).

A. Background: Move Language

This section describes the Move features that are relevant for
this paper by relying on the running example in Listing 1. The
example contains a Move module that implements a custom
currency NextCoin. Note that we defer presenting the security-
relevant details of Listing 1 until Section II-B.

1 module 0x1::NextCoin {
2 use 0x1::Signer;
3
4 struct Coin has key { value: u64 }
5 struct Info has key { total_supply: u64 }
6
7 const ADMIN: address = 0xB055;
8
9 // below is the definition of an invariant

10 spec { invariant: forall c: Coin, global<Info>(ADMIN).total_supply =
sum(c.value) }

11
12 public fun initialize(account: &signer) {
13 assert(Signer::address_of(account) == ADMIN, 0);
14 move_to<Info>(account, Info { total_supply: 0 })
15 }
16
17 // the next function temporarily violates
18 // and then restores the invariant
19 public fun mint(account: &signer, value: u64): Coin {
20 let addr = Signer::address_of(account);
21 assert(addr == ADMIN, 0);
22 let info = borrow_global_mut<Info>(addr);
23 info.total_supply = info.total_supply + value;
24 // invariant temporarily violated
25 Coin { value } // invariant restored
26 }
27
28 // this function violates the invariant
29 public fun value_mut(coin: &mut Coin): &mut u64 {
30 &mut coin.value // not safe!
31 }
32 }

Listing 1. Implementation of a coin asset in Move.

a) Modules: Each Move module consists of a list of
struct type and procedure definitions. A module can import
type definitions (e.g., use 0x1::Signer on Line 2) and call
procedures declared in other modules. The fully-qualified
name of a module begins with a 16 byte account address where
the code for the module is stored (here, we write an account
address like 0x1 as shorthand for a 16 byte hexadecimal
address padded out with leading 0s). The account address
acts as a namespace that distinguishes modules with the same
name; e.g., 0x1::NextCoin and 0x2::NextCoin are different
modules with their own types and procedures.

b) Structs: The module defines two data structures Coin

and Info. A Coin represents the currency allocated to users of
the module while Info records how much of that currency
exists in total. Both of these structs can be stored in the
persistent global key/value store since they define keys; this is
indicated by the has key syntax on the declaration.

c) Procedures: The code defines an initialization, a safe
procedure, and an unsafe procedure, which we now describe.

The initialize procedure must be called before any Coin

is created, and it initializes the total_supply of the singleton
Info value to zero. Here, signer is a special type that repre-
sents a user authenticated by logic outside of Move (similar
to e.g., a Unix UID). Asserting that the signer’s address is

309

equal to ADMIN ensures that this procedure can only be called
by a designated administrator account (0xB055, in this case).

Procedure mint lets the administrator create new coins of a
desired amount (Line 25); this is done after the total amount
of coins is updated (Line 23). Like initialize, this procedure
has access control to ensure that it can only be called by the
administrator account (Lines 20 and 21).

Procedure value_mut takes a mutable reference to a Coin as
input (thus the type &mut) and returns a mutable reference that
points to the value field of the coin.

d) Persistent Global Store: The global store allows Move
programmers to store persistent data (e.g., Coin balances) that
can only be programmatically read/written by the module that
owns it, but is also stored by a public ledger that can be viewed
by users running code in other modules.

Each key in the global store consists of a fully-qualified
type name (e.g., 0x1::NextCoin::Coin) and an account address
where a value of that type is stored (account addresses store
both module code and struct data). Although the global store
is shared among all modules, each module has exclusive
read/write access to keys that contain its declared types. Thus,
only the module that declares a struct type such as Coin can:

• Publish a value to global storage via the move_to<Coin>

instruction (e.g., Line 14);
• Remove a value from global storage via the

move_from<Coin> instruction;
• Acquire a reference to a value in global storage via the

borrow_global_mut<Coin> instruction (e.g., Line 22).

Since a module “owns” the global storage entries keyed by its
types, it can enforce constraints on this memory. For example,
the code in Listing 1 ensures that only the ADMIN account
address can hold a struct of type 0x1::NextCoin::Info. It does
this by only defining one procedure (initialize) that uses
move_to on an Info type and enforcing the precondition that
that move_to is called on the ADMIN address (Line 13).1 These
constraints are unlike invariants (which we describe next) since
they require runtime checking. In this case, since parameter
account is supplied at runtime, the programmer cannot enforce
statically that it will always be ADMIN, hence the check on
Line 13.

e) Invariants: The module contains an invariant to be
checked statically on Line 10: the amount stored in Info

correctly tracks how many Coins have been allocated. This
is described more in depth in Section II-B.

f) Move Bytecode Verifier: Safe Type Reuse and Lin-
earity: Although other modules cannot access global storage
cells keyed by 0x1::NextCoin::Coin, they can use this type
in their own procedure and struct declarations. For example,
another module could expose a pay function that accepts a
0x1::NextCoin::Coin as input or a Bank struct with a balance

field whose type is 0x1::NextCoin::Coin.

1Note that Move has transactional semantics—any program that fails an
assertion or encounters a runtime error (e.g., integer overflow/underflow,
move_to<T>(a) on an account address a that already stores a T) will abort
and have no effect on the global storage.

At first glance, allowing sensitive values like Coins to flow
out of the module that created them might seem dangerous –
what stops a malicious client module from creating counterfeit
Coins, artificially increasing the value of a Coin it possesses,
or copying/destroying existing Coins? Fortunately, Move has a
bytecode verifier (a type system enforced at the bytecode level,
as in the JVM [29] and CLR [32]) that allows module authors
to prevent these undesired outcomes. In particular, only the
module that declares a struct type Coin can:

• Create a value of type Coin (e.g., Line 25);
• “Unpack” a value of type Coin into its component field(s)

(value, in this case);
• Acquire a reference to a field of Coin via a Rust-style [31]

mutable or immutable borrow (e.g., &mut coin.value at
Line 30).

This allows the module author to enforce invariants on the
creation and field values of the structs declared in the module.

The verifier also enforces structs to be linear by default [7,
20, 44]. Linearity prevents copying and destruction (e.g., via
overwriting the variable that stores the struct or allowing it
to go out of scope) outside of the module that declared the
struct.2 Although the bytecode verifier of Move enforces many
useful properties such as type safety, memory safety, and
resource safety [9, 10], it is not powerful enough to enforce
robust safety. We now explain why by describing Move code
invariants.

B. Invariants and Vulnerability

A safety invariant of the module is described on Line 10:
the sum of the value fields of all the Coin objects in the system
must be equal to the total_value field of the Info object
stored at the ADMIN address. We refer to this invariant as the
“conservation property”. We want the conservation property to
hold for all possible clients of the module (including malicious
ones): any violation undermines the integrity of the currency.
As such, the invariant talks about not just on a single object,
but on a collection of them (i.e., all the Coins). We now show
how the conservation property is established and maintained
using the encapsulation features of Move before explaining
how procedure value_mut allows the property to be violated
(despite the module being well-typed according to the verifier).

a) Establishing the Conservation Property: Calling
initialize sets up the module with the invariant: no Coin

exists and thus the total_supply in Info is set to 0.
After initialization, the mint procedure can be invoked to

create Coins. Note that this procedure temporarily violates the
conservation property! The invariant is not required to hold at
every program point (which would be overly strict [13]); only
at the beginning (precondition) and at the end (postcondition)
of every public procedure of the module. And indeed the final
line of the procedure restores the invariant by creating and
returning a Coin with the corresponding value.

2The programmer can choose to override these defaults by declaring a struct
with the copy (e.g., struct S has copy) ability to allow copying or the
drop ability to allow unconditional destruction.

310

b) Violating the Conservation Property: For procedures
initialize and mint, the conservation property always holds
at the postcondition under the assumption that it holds at the
precondition. However, an attacker (Listing 2) can violate the
property by leveraging procedure value_mut. Note that this
procedure does not violate the conservation property on its
own, but an attacker can use it to break the property:

1 fun attacker(c: &mut Coin) {
2 let value_ref = Coin::value_mut(c);
3 *value_ref = *value_ref + 1000; // violates conservation!
4 }

Listing 2. An attacker to the code of Listing 1.

Although our Coin example is somewhat artificial (a realistic
coin implementation would have no need for a procedure like
value_mut), it illustrates the difficulty of writing robustly safe
code. It is not enough for the module code to establish and
maintain key safety invariants internally; it must also ensure
that no possible client can violate the invariant.

The way to ensure no client of Coin can violate the conser-
vation property is to show that it is robustly safe, so we now
describe how to enforce this property in practice.

C. Detecting Robust Safety Violations With Encapsulator
Analysis

At an intuitive level, leaking references to fields of declared
structs is the only way Move programs can fail to be robustly
safe. Stated differently: if a Move module establishes its key
invariants locally and avoids leaking references to structs
involved in these invariants, then these invariants also hold
globally for all possible clients of the module. Making this
statement precise (and true) is the goal of the formalisation of
robust safety in Section III.

We detect leaks of structs involved in programmer-specified
safety invariants with an intraprocedural escape analysis.
When the analysis begins analysing a procedure, it binds all
mutable reference parameters to the abstract value OkRef.
Borrowing an invariant-relevant field from OkRef produces
the abstract value InvRef, indicating a pointer into module-
internal state. The analysis flags a leak if an InvRef flows
into the return value of the function; such a flag means that
sensitive writes to module-internal state may occur outside of
the module. Because Move structs cannot store references and
the global storage only holds struct values, this is the only
way such a leak can occur.

If we apply this analysis to the problematic function
value_mut, the coin parameter is initialized to OkRef. Borrow-
ing the invariant-relevant value field (Line 30) consumes the
OkRef and produces an InvRef. This value is subsequently re-
turned by the function, which is flagged by the analysis. None
of the other functions return references, so the analysis flags
only this vulnerable function. Deleting the function makes the
module robustly safe with respect to the conservation property,
and the analysis will recognize this.

a) Is Robust Safety so Simple?: Our running example
may leave the reader with the impression that it is trivial to
enforce robust safety: just avoid leaking internal state! We
emphasize that this principle is also sufficient to ensure robust
safety in other languages (e.g., Solidity, C++). However, lan-
guages typically provide many ways to “leak” (e.g., returning
references, references stored in data structures, re-entrancy,
memory safety violations, . . .), and precisely identifying such
leaks with an intraprocedural analysis (or even a much more
sophisticated analysis) is not practical. The difference between
existing languages and Move is that it possible to state
sufficient conditions for robust safety and design an efficient,
local analysis that checks whether these conditions hold. This
enables the development of a generic developer tool that
checks robust safety, i.e., the escape analysis that we present
in Section IV. Thus, our work validates the fact that Move’s
careful design enables efficient, precise verification of robust
safety. We recap the benefits of our approach in more detail
in Section III-D2, after providing more details.

Despite this intuitive simplicity, formalising what robust
safety means precisely for Move (and what security properties
that tools such as the escape analysis must uphold) is non-
trivial – that is what the next section discusses.

III. FORMAL RESULTS: ROBUST SAFETY FOR Move

This section provides a formalisation of the key security
property the Move language attains: robust safety. For this,
it first provides a brief definition the semantics of the Move
language (Section III-A), as taken from the work of Blackshear
et al. [9]. Then, it describes the threat model we consider
(Section III-B): this includes the attacker formalisation, the
trace model used to capture security-relevant behaviour, and
the invariants that define robust safety. As robust safety is
attained by virtue of three tools (the bytecode verifier, the
prover, and the encapsulator) this section describes the formal
properties such tools must fulfil (Section III-C). Finally, this
section proves that any Move module certified by tools that
satisfy these properties is robustly safe (Section III-D).

Due to space constraints, this section contains a subset of
the formal rules, no auxiliary lemmas, and no proofs; the
interested reader can find the full formalisation and proofs
in the companion technical report [38].

A. Move Language Excerpts

Move programs are functions that execute on a stack
machine whose peculiarity is the treatment of the storage.
Formally, the global store mentioned in Section II-A is split
into two parts: the memory and the globals [9]. The memory
is a first-order store and as such its cells cannot be used
to store pointers (which we call locations) to memory cells.
Globals are instead used to store pointers to memory cells,
but they are indexed differently from the memory. In order
to access a global, the code provides an address (a literal)
and a type bound to that address (this is akin to the type
structs mentioned in Section II-A). This division simplifies
formalising the semantics of moving values on the operand

311

stack. In the Move language, any value can be destructively
moved (invalidating the storage location that formerly held the
value), but only certain values (e.g., integers) can be copied.

Move programs are organised in modules (Ω), which contain
lists of functions declarations (P), which in turn contain input
and output types as well as their list of instructions ([i]). Move
programs run on a stack machine whose state (σ) is a tuple
⟨C,M,G, S⟩ composed of: the call stack, the memory, the
globals and the operand stack. The state of the stack machine
also maintains a function table (the module Ω itself) to resolve
the instructions comprising the bodies of functions.

The call stack C contains a stack of triples that record which
function is executing. Each triple ⟨P,pc, L⟩ contains the name
of the function and the program counter (P and pc, which
are used to find the current instruction in the lookup table),
and a stack of locals (L), which are bindings (x 7→ v) from
local variables (x) to arbitrary values (v). Values (v) can either
be locations (ℓ) or storable values (r); the latter can either
be ground values (z, which include addresses a) or records
(whose id we indicate as s). The memory (M) is a map from
locations to storable values (ℓ 7→ r) while the globals (G) map
resource identifiers to locations (⟨a, ρ⟩ 7→ ℓ) that only contain
records. Resource identifiers (⟨a, ρ⟩) are a pair of an address
(a) and a type (ρ), the latter is used to identify the function
that defined that global and the type of the record the global
points to (and for this, technically, ρ contains a module id
and a struct id s). The shared operand stack (S) contains all
values consumed (and produced) by instructions as well as
those passed to (and returned by) functions. Given the presence
of records, Move uses paths (p) i.e., lists of field names (f) to
traverse nested records and look up or update part of a record.
For simplicity we assume all field names are distinct.

1) Move Operational Semantics: The stack machine has a
small-step semantics whose judgement is Ω, P, i ⊢ σ → σ′ and
it is read “in module Ω, instruction i in function P modifies
state σ into σ′”. This semantics relies two additional kinds
of reductions for global and local reductions. The first ones
follow this judgement: P, i ⊢ ⟨M,G, S⟩ →glob ⟨M ′, G′, S′⟩
and they describe the semantics of instructions i in function
P that only modify globals (either via the operand stack S or
via the memory M). The second ones follow this judgement:
i ⊢ ⟨M,L, S⟩ →loc ⟨M ′, L′, S′⟩ and they describe the seman-
tics of instructions i that only modify locals (again, either
via the operand stack or via the memory). The list of Move
instructions is in Figure 1, they include calling, returning,
branching conditionally and unconditionally, moving a value
from memory to the stack (and back), borrowing a global,
checking the existence of a global, packing and unpacking a
record, moving a value to the local stack (and back), copying
it, borrowing it, popping a value, loading a constant, binary
operations, reading (and writing) to memory and accessing a
record field.

Most of the rules are unsurprising and therefore omitted, we
only provide the most interesting ones in Figure 2, i.e., those
that deal with the moving of resources. Notation-wise, we
indicate accessing a map (such as the memory) as M(ℓ) and

instrs. Call ⟨P ⟩ | Ret | BranchCond ⟨pc⟩
| Branch ⟨pc⟩

global instrs. MoveTo ⟨s⟩ | MoveFrom ⟨s⟩ | Exists ⟨s⟩
| BorrowGlobal ⟨s⟩ | Pack ⟨s⟩ | Unpack ⟨s⟩

local instrs. MvLoc ⟨x⟩ | StLoc ⟨x⟩ | CpLoc ⟨ℓ⟩
| BorrowLoc ⟨x⟩ | Pop | LoadConst ⟨a⟩ | Op

| ReadRef | WriteRef | BorrowFld ⟨f⟩

Figure 1. Instructions of the Move language.

updating its content as M [ℓ 7→ v]; we use the same notation
for locals, globals and for looking up functions in a module.
We indicate the domain of a map M as dom (M). A list of
elements K is denoted with [K], and its length as ||[K]||.
We use dot notation to access sub-parts of procedures P ,
namely P .mid is the module identifier of the procedure and
P .inty and P .rety are the lists of inputs and return types
of P respectively. Function instr (Ω, σ) returns the current
instruction by looking it up in the codebase Ω given the current
function and the pc from the top of the call stack in σ.

([MoveLoc])

L(x) = ℓ ℓ ∈ dom (M)

MvLoc ⟨x⟩ ⊢ ⟨M,L, S⟩ →loc ⟨M \ ℓ, L \ x,M(ℓ)::S⟩
([StoreLoc])

v ∈ StorableValue ℓ /∈ dom (M)
M ′ = M \ L(x) if L(x) ∈ dom (M) else M

StLoc ⟨x⟩ ⊢ ⟨M,L, v::S⟩ →loc〈
M ′

C\ℓ [ℓ 7→ v] , L [x 7→ ℓ] , S
〉

([MoveFrom])

ρ = ⟨P .mid, s⟩ G(⟨a, ρ⟩) = ℓ M(ℓ) = v

P,MoveFrom ⟨s⟩ ⊢ ⟨M,G, a::S⟩ →glob

⟨M \ ℓ,G \ ⟨a, s⟩, v::S⟩
([MoveTo])

ρ = ⟨P .mid, s⟩ ⟨a, ρ⟩ /∈ dom (G) ℓ /∈ dom (M)
M ′ = MC\ℓ [ℓ 7→ v] G′ = G [⟨a, ρ⟩ 7→ ℓ]

P,MoveTo ⟨s⟩ ⊢ ⟨M,G, a::v::S⟩ →glob ⟨M ′, G′, S⟩
([Step-Loc])

instr (Ω, σ) = i i ⊢ ⟨M,L, S⟩ →loc ⟨M ′, L′, S′⟩
Ω ⊢ ⟨⟨P,pc, L⟩::C,M,G, S⟩ →

⟨⟨P,pc+ 1, L′⟩::C,M ′, G, S′⟩
([Step-Glob])

instr (Ω, σ) = i P, i ⊢ ⟨M,G, S⟩ →glob ⟨M ′, G′, S′⟩
Ω ⊢ ⟨⟨P,pc, L⟩::C,M,G, S⟩ →

⟨⟨P,pc+ 1, L⟩::C,M ′, G′, S′⟩

Figure 2. Semantics of the Move language (excerpts).

Rule [MoveLoc] performs a destructive read of local vari-
able x by removing it from the domain of L and placing
the value of its content in memory (M(L(x))) on the stack.

312

Rule [StoreLoc] places the top of the stack in variable x,
and that variable in a fresh memory location ℓ, deleting any
location that x pointed to from memory. This rule also shows
the memory allocator C, which is a set of (fresh) locations
that allocation can draw from, for simplicity we often omit
C and report it only when necessary. Rule [MoveFrom] starts
from an address (a) and the type ρ of the currently-executing
function P to look up a memory location ℓ and then push
its content v on the operand stack, removing the memory and
global locations just read. Rule [MoveTo] publishes a value
v to a fresh memory location ℓ that is itself published to a
fresh global ⟨a, ρ⟩ whose type is defined by the currently-
executing function P . The role of ρ is key here: note that it is
not programmer-supplied, but it is computed by the semantics
(i.e., by the Move abstract machine) which ensures that any
resource being moved belongs to the code that is moving it.
This rules out certain attacks (as resources defined in a module
cannot be accessed outside it, as mentioned in Section II-A),
but it still leaves the door open for confused deputy attacks,
where external code tricks trusted code into insecure behaviour
(similar to Listing 2). Finally, Rules [Step-Loc] and [Step-
Glob] show how the local and global steps affect the top-level
reduction judgements.

2) Static Semantics: As we mentioned in Section II any
Move code that is executed must pass through a bytecode
verifier [9] to ensure that all Move code is well-typed, meaning
that, e.g., operations that require a N are supplied a N and
values that cannot be copied are not copied but only moved.
We indicate a module Ω to be well-typed as: ⊢ Ω : wt. In
order to typecheck instructions, the verifier uses a stack of
local types (L̃) and of operand types (S̃), which are analogous
to their semantics counterpart save that instead of tracking
values they track types (τ). The typing of Move instructions
follows the judgement Ω, P, i ⊢ L̃, S̃ → L̃′, S̃′, which reads
“instruction i (in function P , in module Ω) requires locals
typed L̃ and operands typed S̃ and returns locals typed L̃′

and operands typed S̃′”. As for the semantics, typing is
unsurprising and therefore omitted.

B. Threat Model

The start of our threat model is the element whose security
we are interested in, and that is some Move module of interest
that we call the trusted code and that we denote as Ω†.
We now describe what are the attackers to the trusted code
(Section III-B1) and invariants, i.e., the specific formula-
tion of security properties that must hold on trusted code
(Section III-B2). We conclude this section by describing the
trace model used to formalise the trace semantics captur-
ing the security-relevant behaviour of the trusted code (Sec-
tion III-B3).

1) Attacker: An attacker is code that is linked against the
trusted code so that they call each other’s function (and return
to each other after said calls). We can thus identify a boundary
that separates between attacker code and trusted code and that
some of the notions described below rely on.

Currently, Move programs are smart contracts deployed on
blockchains, and as such we focus on a blockchain-based
attacker; this affects how code interacts and what security
we can enforce on data, as we now discuss. We identify two
main classes of attackers based on whether the dependencies
of trusted code with attacker code is immutable or not and
call them the immutable attacker and the mutable one.

When the trusted code is deployed with an immutable
attacker, it knows that any existing code cannot change, so
the attacker is any code that gets deployed temporally after the
trusted code. This attacker can call the trusted code and the
trusted code can return to it, but any code that the trusted code
calls is not attacker. In fact, the publisher of the trusted code
can verify both the trusted code and any of its dependency
before publishing. On the other hand, when trusted code is
deployed with a mutable attacker, verifying existing code is
not helpful, since it can change in the future. In this case,
the attacker can both call and return to the trusted code. The
mutable attacker exists also beyond blockchain settings, it is
the typical attacker considered in robust safety works, since
typically one does not know what code the trusted code will
link against, only their signatures [40, 43]. In this paper we
focus primarily on immutable attackers, though we demon-
strate how to attain robust safety for immutable ones too in
Section III-C2b.

All blockchain data being public suggests that data confi-
dentiality is not a security goal, but data integrity is (i.e., we
are not interested in hiding how much money there is, but
we are interested in nobody getting more money than they
should).3

To clearly capture the power of attackers (A), we formalise
them as pairs consisting of a code environment (Ω) and a
main function (Pmain). We impose minimal constraints on
attackers, namely that they are well-typed (i.e., ⊢ A : wt)
and that they define functions that do not overlap with those
defined in the trusted code Ω†. Any attacker function can
call trusted code, then immutable attacker functions cannot
be called by trusted code, while mutable attacker functions
can be. We call these attackers valid and denote this fact as:
Ω† ⊢ A : atk.

Linking some trusted code Ω† against attacker A is denoted
as Ω† + A and it returns a module comprising all functions
defined in both Ω† and in the module part of A. With a
small abuse of notation we use metavariable A for both an
attacker and for just its code environment to differentiate it
from the code of interest. When an attacker is linked against
the trusted code, we assume execution starts from the function
Pmain defined in A. We call that the starting state of the stack
machine (i.e., memory, globals and stacks are all empty) and
indicate it as Ω0

(
Ω† +A

)
.

2) Invariants: Invariants contain the list of globals that
point to memory locations with a logical invariant as well
as the list of memory locations with a logical invariant, so

3We leave considering a different attacker and thus devising an encapsulator
that enforces confidentiality of data for future work.

313

they contain all of the objects with an invariant on (in the
sense of Section II-B). For each memory location, invariants
define a logical condition that must hold for the content
of that location (as in Listing 1). Invariants can describe
relationships between structs or global storage locations in
distinct modules as long as the modules have a dependency
relationship. Some invariants describe a dynamic footprint
(e.g., all values of type Coin, the storage location of type Bank

under every possible address) that the verification process must
approximate statically [16].

We indicate invariants as ι and leave their formal details
abstract to avoid binding our formalisation to a specific
implementation. For this reason, we work with invariants
axiomatically, via the functions described below. Function
domG (ι) returns the globals for which invariants are defined,
i.e., the pairs a, ρ that identify globals for which an invariant is
defined. We indicate whether some field f belongs to a global
with an invariant as f ∈ ι. Function cond (ι,M) evaluates the
condition for all locations in memory M and returns true if
the condition is satisfied or false otherwise.

With these functions we can define whether a memory and
a global satisfy some invariant (M,G ⊢ ι). This holds if
restricting all memory locations to those mapped by a global
yields a memory that contains values that satisfy the conditions
the invariant imposes on them. We use notation M |ℓ to restrict
memory M (and similarly for globals and other elements) to
the element ℓ, which is in the domain of M .

(Invariant Satisfaction)

Gi = G|domG(ι) Mi = M |Gi
cond (ι,Mi) = true

M,G ⊢ ι

This abstract characterisation lets us model invariants such
as the one on Line 10 in Listing 1. In fact the M |Gi

returns all the memory locations that contain structs with
an invariant on, i.e., the Info struct as well as all all
minted Coin structs. With cond (ι,Mi), we express in an
abstract fashion the condition that the first field of the former
(Info.total_supply) equals the sum of all the first fields of the
latter ones (Coin.value).

Invariants are defined for a code environment, which can be
obtained from ι as follows: codeof (ι) = Ω. A code environ-
ment Ω and an invariant ι are in agreement if the former is
the code of the latter. Formally: Ω⌢ι

def
= codeof (ι) = Ω.

Dually, given a code environment, we can identify its subset
wrt an invariant as follows: Ω|ι. This operation returns the
code environment Ω′ that is contained in Ω and that only talks
about the code mentioned in ι, without any other code that
has an invariant. This is used to identify the sub-part of a code
environment that needs to be encapsulated, as we discuss later
in Section IV-B2.

Invariants uphold a key property: none of the types men-
tioned in their globals (i.e., in domG (ι)) are attacker types, i.e.,
all of those types are defined in the code that the invariant
refers to.

Property 1 (Invariants are not on Attacker-Typed Globals).

∀ ⟨a, ρ⟩ ∈ domG (ι), ρ ∈ declaredtypes (codeof (ι))

3) Trace Model and Trace Semantics: Having defined
invariants, we need to collect all security-relevant events
produced as computation progresses in order to check whether
those invariants hold or not. Choosing when events are pro-
duced is crucial in order to assess safety of trusted code and
in this work we record events where any control is passed
from trusted code to the attacker and back. This way the
trusted code can internally violate the invariants, but so long as
they are reinstated before control is passed to the attacker, no
safety violation is detected. This is intuitively ok, as explained
in Section II-B. The only missing bit is that we need to ensure
that the attacker does not tamper with our invariants – or that
if she does, this will be recorded – and this is discussed later,
in Section III-D1.

Formally, observable events (also called actions, α), follow
this grammar and they are concatenated in traces (α).

α ::= [] | α :: α

α ::= call P M,G? | call P M,G! | ret M,G! | ret M,G?

Actions include calling function P into trusted code, calling
function P into attacker code, returning to attacker code and
returning to trusted code. We borrow decorators ? and ! from
process calculi literature in order to indicate the “direction”
of the action i.e., from attacker to trusted code (?) or back
(!) [41]. Crucially, all actions record elements of the stack
machine state that are relevant from a security perspective:
the globals G and the memory M . Given an action α, we
indicate its M and G elements as mg (α). This lets us apply
the invariant verification (i.e., Rule Invariant Satisfaction) to
the globals and memory sub-part of an action and then to a
trace as:

(Action-check)

mg (α) ⊢ ι

α ⊩ ι

(Trace-check)
∀α ∈ α. α ⊩ ι

α ⊩ ι

a) Trace Semantics: We now define a big-step trace
semantics on top of the small-step operational semantics
of Section III-A1 in order to obtain the traces of some
trusted code of interest. The trace semantics is structured on
three levels and selected rules are presented in Figure 3.
First, there is a single-step, single-labelled semantics that is
responsible of generating the single actions, its judgement is
Ω† ▷ Ω, P, i ⊢ σ

α−−→ σ′. The trace semantics is defined for
whole programs, i.e., for trusted code that is linked against
some attacker and then run. However, the trace semantics
needs to remember the perspective from which the trace is
being generated, i.e., which one is the trusted code of interest.
This gets reflected in the judgement of the trace semantics
which extends the one of the operational semantics with this
information (the Ω† on the left). Second, there is a big-step,
single-labelled semantics that is the reflexive-transitive closure
of the previous one, its judgement is Ω† ▷ Ω, P ⊢ σ

α
==⇒ σ′.

Third, there is the big-step, trace-labelled semantics that

314

concatenates all big-step single-labelled steps into a trace,
its judgement is Ω† ▷ Ω, P ⊢ σ

α
==⇒⇒ σ′. Lastly, in order to

decorate the generated actions with ? or !, we rely on function
Ω† ⊢ C :?/!/same . This function analyses the top two
elements of the call stack C and tells whether they belong to
functions defined by trusted code Ω† and attacker (?), attacker
and trusted code (!), or by the same entity (same).

(Action-No)

instr (Ω, σ) = i Ω ⊢ σ → σ′ σ = ⟨C,M,G, S⟩
(i ̸= Call and i ̸= Ret) or

(i = Call ⟨P0⟩ and Ω† ⊢ C :: ⟨P0, 0,∅⟩ : same) or
(i = Ret and Ω† ⊢ C : same)

Ω† ▷ Ω ⊢ σ
[]−−→ σ′

(Action-Call)

instr (Ω, σ) = Call ⟨P0⟩ Ω ⊢ σ → σ′

σ = ⟨C,M,G, S⟩ Ω† ⊢ C :: ⟨P0, 0,∅⟩ : ?

Ω† ▷ Ω ⊢ σ
call P0 M,G?−−−−−−−−−−→ σ′

(Action-Return)

instr (Ω, σ) = Ret Ω ⊢ σ → σ′

σ = ⟨C,M,G, S⟩ Ω† ⊢ C : !

Ω† ▷ Ω ⊢ σ
ret M,G!−−−−−−−→ σ′

(Single)

Ω† ▷ Ω ⊢ σ
[]

==⇒ σ′′

σ′′ = ⟨P,pc, L⟩ :: C,M,G, S Ω† ▷ Ω ⊢ σ′′ α−−→ σ′

Ω† ▷ Ω ⊢ σ
α

==⇒ σ′

(Trace-Both)

Ω† ▷ Ω ⊢ σ
α

==⇒⇒ σ′′

Ω† ▷ Ω ⊢ σ′′ α?
===⇒ σ′′′ Ω† ▷ Ω ⊢ σ′′′ α!

===⇒ σ′

Ω† ▷ Ω ⊢ σ
α::α?::α!

=======⇒⇒ σ′

(Trace-Single)

Ω† ▷ Ω ⊢ σ
α

==⇒⇒ σ′′

Ω† ▷ Ω ⊢ σ′′ α?
===⇒ σ′′′ ¬(Ω† ▷ Ω ⊢ σ′′′ α!

===⇒ σ′)

Ω† ▷ Ω ⊢ σ
α::α?

=====⇒⇒ σ′

Figure 3. Trace semantics for Move programs (excerpts).

Rule Action-No says that no action is produced if the
underlying small-step reduction is caused by an instruction that
is not a Call, nor a Ret, or the jump caused by the Call or
by the Ret does not cross the boundary between trusted code
and attacker. Rule Action-Call generates a call action in case
of the attacker calls a function defined by the trusted code
while Rule Action-Return generates a return action when the
trusted code returns to the attacker. Rule Single concatenates a
series of empty steps followed by an action as a single action
that is then used by Rules Trace-Both and Trace-Single to
generate a trace.

Let us now explain which of these rules apply to ex-
ternal code calling the mint function of Listing 1. First,

Rule Action-Call is triggered when calling mint, producing
action call mint M,G?. Rule Action-No handles the body
of mint until it returns, where Rule Action-Return produces
action ret M ′, G′!. The globals G′ now contain a new address
pointing to a memory location in M ′ where the newly-minted
coin (the one being allocated and returned on line Line 25) is
stored. All these single actions are concatenated into a trace
by Rule Trace-Both.

Given a trusted code Ω† and an attacker A, we indicate the
trace α of Ω† generated according to the rules above, starting
from the starting state as:

Ω0

(
Ω† +A

)
⇝α

C. Tools to Attain Robust Safety
Security of the trusted code is attained via three tools: the

bytecode verifier ensuring all code is well-typed (as presented
in Section III-A2), a prover that checks whether invariants hold
locally for trusted code (Section III-C1) and an encapsulator
ensuring trusted code does not leak globals that have an
invariant (Section III-C2). This section focusses on the two
tools whose job is purely security-oriented, as the goal of the
already-presented verifier pertains to more general functional
correctness.

As mentioned, the prover and the encapsulator verify two
different properties on some trusted code Ω† to asses whether
it respects invariants ι. Given an execution state σ, the prover
checks that the globals G and the memory M respect ι, we
call this the local property (Rule Weak Property - Locality).

(Weak Property - Locality)

σ = ⟨C,M,G, S⟩ M,G ⊢ ι

Ω† ⊢ σ ∝ ι : local
On the other hand, the encapsulator takes a state and checks
that the memory and globals that are reachable from the
attacker do not intersect (̸ ∩) with those with an invariant,
we call this the unreachability property (Rule Weak Property
- Unreachability). We rely on judgement Ω†, σ ⊢ Ma, Ga :
attackerpart to traverse state σ and extract the parts of
globals (Ga) and memory (Ma) that belong to the attacker,
i.e., that do not belong to code defined in Ω†.

(Weak Property - Unreachability)

σ = ⟨C,M,G, S⟩ Gi = G|domG(ι) Mi = M |Gi

Ω†, σ ⊢ Ma, Ga : attackerpart
Gi ̸ ∩Ga dom (Mi) ̸ ∩ dom (Ma)

Ω† ⊢ σ ∝ ι : unreachable
We call these properties weak because them alone are not

sufficient to entail security of trusted code. However, a state
σ that satisfies both properties is strong enough to be secure
(Rule Strong Property).

(Strong Property)

Ω† ⊢ σ ∝ ι : local Ω† ⊢ σ ∝ ι : unreachable

Ω† ⊢ σ ∝ ι : strong

These properties are the key to the robust safety theorem
(Theorem 3 later on), as well as to defining the properties that
the prover and the encapsulator must uphold.

315

1) Prover: The prover (Λ) is a tool that statically veri-
fies that some trusted code Ω† satisfies invariants ι locally.
That is, a programmer can run the prover on her code (and
its dependencies) before deploying that code and linking it
against attacker code. We denote the prover running on the
trusted code Ω† as: Λ(Ω†).

Ideally, the prover statically shows that invariants hold in a
closed world containing a fixed set of modules, but we want to
ensure that invariants will continue to hold in an open world
with arbitrary modules that may be written by attackers. Infor-
mally, we want trusted code that has gone through the prover
to have this property: if the trusted code code starts executing
in some state σ, then when control is given back to the attacker,
the memory and globals there respect the invariant. Formally,
this is denoted with Λ ⊢loc Ω† : ι, as captured by Definition 1
below. Given an execution in trusted code that starts from a
state satisfying the strong property and producing a visible
action, the ending state satisfies the local property.

Definition 1 (Local Invariant Satisfaction).

Λ ⊢loc Ω† : ι
def
= let σ = ⟨C,M,G, S⟩

if Ω† ⊢ σ ∝ ι : strong and Ω† ▷ Ω, P ⊢ σ
α!

===⇒ σ′

and Λ(Ω†) then α! ⊩ ι and Ω† ⊢ σ′ ∝ ι : local

What we mentioned this far is an abstract prover Λ. A
concrete prover instance would be the Move Prover [16, 47],
which processes a module by assuming global invariants
specified by the programmer hold at the entry of each public
function and ensuring that they continue to hold at the exit.
The Move Prover translates both invariants and Move bytecode
into Boogie [5], which uses Z3 [15] to prove that the invariants
hold or find a counterexample. We believe the Move Prover
fulfils Definition 1, but since it is not the focus of this work,
we leave that result for future work.

2) Encapsulator: The encapsulator is a static analysis that
verifies that no mutable reference to a global is passed to
attacker code. We first reason about an encapsulator (Ξ) as
an abstract entity in order to define what property it must
uphold (Definition 2); we discuss a concrete encapsulator that
satisfies this property later in this section. We denote the
encapsulator analysing the trusted code Ω† as: Ξ(Ω†). Since
we formulate the encapsulator as a static analysis, these are
all the parameters it needs, if it were a dynamic analysis we
would have to supply runtime states.

Informally, we want trusted code that is encapsulated to
have this property: if the trusted code code starts executing in
some state σ, then when control is given back to the attacker,
she has no access to globals or memory with an invariant.
Formally, this is denoted with Ξ ⊢enc Ω† : ι, as captured by
Definition 2. Given an execution in trusted code that starts
from a state satisfying the strong property, the state when
control is passed to the attacker satisfies the unreachability
property.

Definition 2 (Encapsulated Code Satisfaction).

Ξ ⊢enc Ω† : ι
def
= let σ = ⟨C,M,G, S⟩

if Ω† ⊢ σ ∝ ι : strong and Ω† ▷ Ω, P ⊢ σ
α!

===⇒ σ′

and Ξ(Ω†|ι) then Ω† ⊢ σ′ ∝ ι : unreachable

Here we restrict the encapsulator to only run on the subset of
Ω† that is invariant-defined (i.e., Ω†|ι) since it is sometimes the
case that only part of the codebase needs to be encapsulated,
as we discuss later in Section IV-B2.

We now describe a concrete encapsulator, denoted with
Ξimm , that satisfies Definition 2 under the immutably attacker
of Section III-B1 (Section III-C2a). This is fulfilled in practice,
since currently, most Move programs are smart contracts
deployed on blockchains. Afterwards, we describe a slightly-
different encapsulator, denoted with Ξmut , that satisfies Defi-
nition 2 with respect to the mutable attacker of Section III-B1
(Section III-C2b).

a) A Concrete Encapsulator for Blockchain Move Code:
Ξimm is a static intraprocedural escape analysis that formalises
the intuition presented in Section II-C. The analysis abstracts
the concrete values bound to local variables and stack lo-
cations using a lattice with three abstract values: NonRef,
OkRef, InvRef. We indicate abstract values as v̂ and abstract
locals (resp. globals) as L̂ (resp. Ŝ). The lattice ordering is
NonRef ⊑ InvRef and OkRef ⊑ InvRef. Intuitively, NonRef
represents any non-reference value, OkRef represents a refer-
ence that does not point to resource defined in trusted code,
and InvRef represents a reference that may point to a resource
defined in trusted code. The goal of the analysis is to prevent
an InvRef from “leaking” to a caller of the trusted code via a
Ret. Since Move records cannot store references, this is the
only way such leaks occur.

Applying Ξimm to a module Ω (still denoted as Ξimm(Ω))
makes Ξimm traverse all the functions in the module of
interest, and in each function it verifies all instructions that
make up their bodies (Figure 4). Formally, the analysis follows
this judgement Ω, P, ι, i ⊢

〈
L̂, Ŝ

〉
⇝

〈
L̂′, Ŝ′

〉
, which reads

“under invariant ι, instruction i (in function P , in module
Ω) consumes abstract locals L̂ and abstract globals Ŝ and
produces L̂′ and Ŝ′”.

Rule Ξimm -BorrowFld-Relevant states that when borrowing
a field that has an invariant on, it may point to a resource de-
fined in trusted code and thus InvRef. Rule Ξimm -BorrowFld-
Irrelevant propagates the abstract values when the field has
no invariant on itself. Rule Ξimm -BorrowGlobal applies to
globals, since one such reference should never be leaked,
the borrowed global is InvRef. Rule Ξimm -BorrowLoc, on
the other side, applies to locals, which cannot outlive the
current function, so any value retrieved this way is OkRef.
Crucially, Ret cannot return InvRef (Rule Ξimm -Return).
Finally, as mentioned, the analysis is intraprocedural, so we
conservatively assume that each value returned by a call is the
join of all function inputs of that call–i.e., if any function input
is InvRef, we assume any function output is alos InvRef.

316

(Ξimm -BorrowFld-Relevant)
f ∈ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢
〈
L̂, v̂::Ŝ

〉
⇝

〈
L̂, InvRef::Ŝ

〉
(Ξimm -BorrowFld-Irrelevant)

f /∈ ι

Ω, P, ι,BorrowFld ⟨f⟩ ⊢
〈
L̂, v̂::Ŝ

〉
⇝

〈
L̂, v̂::Ŝ

〉
(Ξimm -BorrowGlobal)

Ω, P, ι,BorrowGlobal ⟨s⟩ ⊢
〈
L̂, v̂::Ŝ

〉
⇝

〈
L̂, InvRef::Ŝ

〉
(Ξimm -BorrowLoc)

Ω, P, ι,BorrowLoc ⟨x⟩ ⊢
〈
L̂, Ŝ

〉
⇝

〈
L̂,OkRef::Ŝ

〉
(Ξimm -Return)

||Ω(P).rety|| = n ∀i ∈ 1..n. v̂i ̸= InvRef

Ω, P, ι,Ret ⊢
〈
L̂, v̂1 :: v̂n::Ŝ

〉
⇝

〈
L̂, v̂1 :: v̂n::Ŝ

〉
Figure 4. Ξimm escape analysis (excerpts).

As mentioned, we have proven that Ξimm is a valid encapsu-
lator, i.e., it satisfies Definition 2 (as captured by Theorem 1).
We describe the implementation of Ξimm in Section IV.

Theorem 1 (Ξimm is a Valid Encapsulator).

Ξimm ⊢enc Ω† : ι

Intuitively, this holds because code that is encapsulated with
Ξimm cannot leak references to globals with invariants to
attacker code. The reason is that the only way to leak those
references is through returns, and Rule Ξimm -Return prevents
that so long as the reference is InvRef. To ensure that any
reference to a global with invariants that we load in the stack
is InvRef, Ξimm ensures that any way to load those references
tags them as InvRef. This is exactly what Rules Ξimm -
BorrowFld-Relevant and Ξimm -BorrowGlobal do.

Technically, the statement of Theorem 1 contains concrete
states, yet applying Ξimm (i.e., Ξimm(Ω†|ι)) operates on
abstract ones. To connect the two, we rely on two functions:
γ
(
L̂, Ĝ,Ω†

)
and absty (v). The first is a concretisation

function that returns all possible concrete states whose locals
and globals match their abstract counterparts. The latter is
an abstraction function used to generate abstract locals and
globals by abstracting any value v contained in their concrete
counterparts.

b) A Concrete Encapsulator for Mutable Attackers: We
now discuss how to devise an escape analysis that lets us attain
robust safety in the case of a mutable attacker, as defined
in Section III-B1. Recall that the mutable attacker consists
of code that cannot be verified, and whose functions can be
called by the trusted code. Thus, to define Ξmut , the only
change we need to introduce is that calls cannot send InvRef
on function calls to functions defined outside the trusted code
(Rule Ξmut -Call). In the same rule, the expected returned
values are obtained from calculating the abstract value from
the concrete types returned by the function (Ω(P).rety). This

is done via function absty (·), which maps non-reference
types to NonRef and reference types to OkRef. Since these
values are returned by an attacker, they cannot be InvRef.

(Ξmut -Call)

||Ω(P0).type|| = n ∀i ∈ 1..n. v̂ai ̸= InvRef
v̂r1 · · · v̂rj = absty (Ω(P).rety) P0 /∈ Ω†

Ω, P,Call ⟨P0⟩ ⊢
〈
L̂, v̂a1 · · · v̂an::Ŝ

〉
⇝

〈
L̂, v̂r1 · · · v̂rj ::Ŝ

〉
Figure 5. Ξmut escape analysis (excerpts).

Similarly to Ξimm , we have proven that Ξmut is a valid
encapsulator (as captured by Theorem 2).

Theorem 2 (Ξmut is a Valid Encapsulator).

Ξmut ⊢enc Ω† : ι

D. Robust Safety for Move

We now have all the technical setup to state (Definition 3)
and prove robust safety for trusted code (Theorem 3). After
presenting and discussing the definition, we analyse the ro-
bust aspect from a security perspective (Section III-D1) and
compare ours to existing robust safety definitions and proofs
(Section III-D2).

Any trusted code Ω† that is verified (in the sense of Sec-
tion III-A2), proved (in the sense of Section III-C1) and
encapsulated from Ξ (in the sense of Section III-C2), can
interact with any attacker A and its invariants ι cannot be
violated. This means that the trusted code is robustly safe,
and it is indicated as ▷RS Ω† : ι,Ξ,Λ.

Definition 3 (Robust Safety for Move).

▷RS Ω† : ι,Ξ,Λ
def
=∀A. if Ω† ⊢ A : atk and Ω† ⌢ι

and ⊢ Ω† : wt and Λ ⊢loc Ω† : ι

and Ξ ⊢enc Ω† : ι and Ω0

(
Ω† +A

)
⇝α

then α ⊩ ι

The first premise of the definition ensures that only valid
attackers are considered while the second ensures that the
invariants are specified for the trusted code. The third, fourth
and fifth premise ensure that the trusted code is verified,
proved by Λ and encapsulated by Ξ. Note that the result is
general, no matter what prover and encapsulator are used, so
long as those prover and encapsulators are valid in the sense
of Definitions 1 and 2. The final premise introduces the trace
yielded by the interaction of the trusted code with the attacker
and the conclusion of the definition confirms that the trace does
not violate the invariants.

Theorem 3 (Move Modules are Robustly-Safe).

▷RS Ω† : ι,Ξ,Λ

1) Robustness: What makes Theorem 3 relevant for secu-
rity is the universal quantification over attackers A, since that
differentiates robust safety from closed-world safety. That uni-
versal quantification ensures that we are considering arbitrary

317

code as attacker, so that includes e.g., the code of Listing 2.
Crucially, that code needs not be present at verification time.
This is particularly relevant for blockchain-deployed Move
code, since attacker code is written (and published) temporally
after the trusted code. Closed-world safety requires the entire
codebase for verification, which is not possible for an evolving
system such as a public blockchain.

2) Comparison with Existing Robust Safety Statements and
Proofs: To the best of our knowledge, Move is the first large
language with tools that provide robust safety, early work on
robust safety [1, 4, 6, 19, 22, 30, 39] focussed on formal calculi
without a real-world implementation. Moreover, existing work
on robust safety ties the robust safety result to the verification
of trusted code with a specific tool. In the more modern robust
safety results [40, 43] (which apply to calculi with complex
features not amenable to smart-contract programming), this
tool comes in the form of a semantic type systems built on
top of the Iris separation logic [27] – a non-trivial tool to
understand and master.

In contrast, our definition of robust safety identifies the
requirements of multiple tools, and singles out the individual
guarantees of each one tool. By performing such separation
of requirements, our work requires less complexity from
each tool individually, which can build upon simple, well-
established techniques (such as the escape analysis). Moreover,
as tools (and languages) evolve, this separation makes it
simpler to provide new tools for robust safety, maximising
proof reuse. For example, if a new version of Move relies
on a different logic of invariants, it is sufficient to change
the Move Prover, and thus re-prove it fulfils Definition 2,
without changing the escape analysis, nor its proofs. Finally,
the proof reuse makes is easier to prove robust safety for
different attacker models, as we do with the Ξimm and Ξmut

escape analyses.

IV. EVALUATION

In this section, we present an implementation of the escape
analysis Ξimm described in Section III-C2 (Section IV-A).
Then, we measure its performance on a large set of Move
benchmarks (Section IV-B).

We evaluate the Ξimm analysis according to two criteria:
Performance. We claim the escape analysis is fast: it adds

negligible overhead over the companion verifier (Sec-
tion IV-B1);

Precision. We claim the escape analysis is precise: it rarely
flags Move code that is robustly safe w.r.t its safety
invariants (Section IV-B2).

A. Implementation

We have implemented the escape analysis in approximately
300 lines of Rust code on top of the Move Prover analysis
framework.4 The framework has libraries for parsing Move
bytecode, control-flow graph construction, and fixed point
computation that are not included in the total above.

4Our escape analysis is available at: https://github.com/diem/diem/blob/
03c30e1/language/move-prover/bytecode/src/escape_analysis.rs

We use the Move Prover specification language5 as the
invariant language ι. This specification language lets program-
mers write source code invariants similar to our example in
Section II-B. The invariants are converted to SMT and checked
by the Move Prover against the compiled Move bytecode.

Unlike our minimalistic formalism in Section III, the Move
bytecode languages distinguishes between mutable (&mut T)
and immutable (&T) references. A mutable reference can be
either written or read, whereas an immutable reference can
only be read. In the public blockchain Move code we consider
in our evaluation, attacker-controlled reads are not concern-
ing because the entire blockchain state is world-readable by
external users for auditing. Thus, our implementation only
flags functions that may return a mutable reference to a field
involved in a prover spec for the module under analysis. If the
module does not have any invariant, we conservatively flag all
such functions.

B. Benchmarks

We ran our analysis on the benchmarks shown in Figure 6.
The benchmarks fall roughly into three categories: blockchain
management logic implemented in Move (starcoin, diem,
bridge), utility libraries (taohe, stdlib), and applications (mai,
blackhole, alma, starswap, meteor). All of the benchmarks
contains some Move Prover specs, though we note that not
all modules have specs and the density of specification varies
across benchmarks. Although our benchmark set is small,
it represents a substantial fraction of the publicly available
Move code on GitHub. Move is a young language that it only
beginning to gain transaction, so these benchmarks contain a
representative sample of production Move code.

Bench Mod Fun Rec Instr Err Tp Te

starcoin 60 431 88 8243 2 3178 10
diem 13 102 19 1830 0 1651 1
mai 45 411 77 7881 0 4209 12
bridge 36 352 85 8060 0 2428 8
blackhole 36 324 72 6030 0 2289 7
alma 35 333 67 6318 0 2102 8
starswap 33 335 67 6617 0 14993 7
meteor 32 323 69 5981 0 1641 7
taohe 11 40 7 305 0 1022 1
stdlib 9 66 5 933 1 1151 1
Total 310 2717 556 52198 3 34664 62

Figure 6. Checking for robust safety with the escape analysis encapsulator.
The Mod, Fun, Rec, and Instr columns show the number of modules,
declared functions, declared record types, and bytecode instructions in each
project and its dependencies. The Err column shows the number of functions
flagged by the escape analysis. The Tp and Te columns show the time taken
to run the prover and escape analysis in milliseconds on a 2.4 GHz Intel Core
i9 laptop with 64GB RAM.

1) Evaluating Performance: The results in Figure 6 support
our claim that the analysis is fast; it takes well under a second
on all benchmarks and under 10ms on most benchmarks. As
we can see, this time is a tiny fraction of the time taken to

5https://github.com/diem/diem/blob/03c30e1/language/move-prover/doc/
user/spec-lang.md

318

run the prover (which is several orders of magnitude slower)
on each benchmark.

Thus, we can use the escape analysis to strengthen the
prover’s closed-world guarantees to open-world ones with
no user-visible performance degradation. In the future, we
plan to do this by incorporating the escape analysis into
the prover’s pipeline of pre-analyses (e.g., liveness analysis,
invariant instrumentation). This will improve performance of
the escape analysis even more by sharing the steps of parsing
bytecodes and building control-flow graphs with the other
analyses in the pipeline. Anecdotally, these steps take roughly
half of the escape analysis running time.

2) Evaluating Precision: The results also support our claim
that the analysis is precise. Only three functions (0.1% of the
total analysed) in three distinct modules (0.9% of the total
analysed) were flagged as potentially containing robust safety
violations.

We manually investigated each finding to determine whether
it indicated a genuine robust safety issue. In all three cases,
the function does leak a mutable reference to module-internal
state, but the reference cannot point into memory used by the
module’s invariants (and thus, all three are false positives).

The following code captures the essence of two reports from
starcoin and stdlib (which both contain variants of the
Option module).
module 0x1::OptionVariant {
struct Option<T> { v: vector<T> }

// Typically, Options are defined as None | Some (x)
// Move does not have sum types, so encode None as an
// empty vector and Some(x) as a vector of length 1 containing x
spec Option { invariant len(v) ≤ 1; }

// False positive flagged by analysis as unsafe, but safe
public fun get_mut<T>(t: &mut Option<T>): &mut T {
Vector::borrow_mut(&mut t.v, 0)

}
}

In this code, the get_mut function does indeed leak an internal
reference, but this is intentional–Option is a collection intended
to be instantiated by clients who need to mutate the contents
of the Option in-place using this function. The analysis sees
that the invariant contains the field v and conservatively reports
leaks not only of v, but also of references that extend from v

(&v[0], in this case). We note that it would be a robust safety
violation to leak a reference to Option.v, since an attacker
could use this reference to violate the invariant len(v)≤ 1

(e.g., by adding extra elements to the vector).
The third case (from starcoin) is somewhat similar: a

module implementing a collection type leaks a reference to
its internal vector, but does so intentionally to allow client
modules to add elements to the vector.
module 0x1::OwnedVector {
struct OwnedVec<T> { v: vector<T>, owner: address }

// flagged by analysis
public fun get_mut<T>(c: &mut OwnedVec<T>, i: u64): &mut T {
&mut c.v

}
}

This module does not contain any invariant, so the analysis
conservatively flags all leaks of internal references.

a) Discussion: These examples demonstrate an interest-
ing and perhaps counter-intuitive point–although encapsulation
is generally a good idea, it is not desirable to fully encapsulate
all modules. Modules like OptionVariant and OwnedVector are
utility modules that are intended to be specialized by clients
who need the flexibility to write the internal state of these
modules. For example, clients of OwnedVector would not be
able to add/remove elements from the vector without the
get_mut function. Thus, although it is tempting to suggest
integrating the escape analysis into Move’s bytecode verifier
(and thus make all Move code robustly safe by construction),
there is evidence that this would remove expressivity used by
real Move programmers.

We believe it would be possible to eliminate the false
positive in the OptionVariant example by using a more
sophisticated abstract domain that tracks the set of access
paths [26] associated with each reference. The analysis could
compare the leaked access paths to the access paths mentioned
in specifications and only complain if there is an overlap
between the paths or their possible suffixes. For example,
the analysis could determine that the get_mut function leaks
the path Option.v[0], but the specification only mentions
the incomparable path Option.v.length. The analysis would
also need to flag a leak of a path like Option.v[0] if the
specification mentions a prefix of the path (e.g., invariant v

== vec[1,2]).
However, this analysis would be somewhat more complex

than our straightforward three-value abstract domain; e.g., we
would need to introduce a widening operator [14] because
the access path domain is not finite height. Furthermore, our
results suggest that the precision gain from this improvement
would be fairly small because the existing analysis is already
quite precise in practice.

Finally, we note that a simpler analysis that flags any
return of a (mutable) reference would be too restrictive to be
practical. Returning references is common in real-world Move
code because of the ubiquity of non-copyable types.

C. Security Conclusions

Thus, all of the Move modules we looked are robustly safe
w.r.t their specified invariants, and the Move Prover augmented
with our escape analysis can automatically prove this for
>99% of the modules. This indicates that language-supported
robust safety is indeed a practically achievable goal for Move
programmers.

V. RELATED WORK

a) Smart Contract Languages: Ensuring that key safety
invariants hold even in the presence of attackers is a challeng-
ing and important task for all smart contract programmers.
The Solidity [18] source language and its executable Ethereum
Virtual Machine (EVM) [46] bytecode language are the most
popular smart contract languages and have been studied the
most extensively with security in mind .

The primary barrier to writing encapsulated code in these
languages is dynamic dispatch. When the target of a callback

319

is determined by the contract C’s caller (which is common, e.g.,
every payment operation fits this pattern), the contract author
cannot know statically how it will change the global state. This
is particularly pernicious when the callback supplied by the
caller is re-entrant–that is, the callback invokes one or more
functions from C. Attackers can leverage this to change the
state of C in ways that the author did not anticipate. and/or to
observe (and exploit, by injecting code via dynamic dispatch)
the interval when a key safety invariant is violated. For
example, in the DAO [11] attack, the vulnerable contract made
a dynamic dispatch call while a key conservation invariant is
violated, which the attacker leveraged to steal funds from the
contract.

Many approaches to mitigating re-entrancy have been pro-
posed, including design patterns [12], dynamic analysis [23],
and static analysis [2]. Although absence of re-entrancy facili-
tates proving robust safety, we are not aware of any work that
attempts to define robust safety of EVM code, or any tools
that can prove EVM code robustly safe.

The problem of ensuring robust safety is quite different in
Move and the EVM. While Move does not have dynamic
dispatch (and thus also does not have re-entrancy), it does
have mutable references that can escape from the module
that created them. In the EVM, references are represented as
indexes into a sequential memory that is only accessible by a
single contract, so they cannot escape. We note that precisely
and efficiently verifying the absence of re-entrancy for EVM
code is challenging, whereas our escape analysis for verifying
the absence of leaked mutable references is precise, efficient,
and relatively straightforward.

Scilla [42] is a newer smart contract language that shares
some design goals with Move. Scilla restricts dynamic dis-
patch by requiring a dynamic function call to be the last
instruction in a procedure, which largely mitigates the re-
entrancy issues afflicting the EVM. Scilla was also designed
to support automated static analysis; its toolchain includes
an abstract interpretation framework that supports both built-
in (e.g., determining where monetary values can flow) and
user-defined analyses. Finally, recent work [34] proposes a
proof methodology and programming discipline for addressing
the challenges of verifying class invariants in the presence
of common smart contract features such as callbacks. The
emphasis on avoiding “reference leaks” is directly related to
the properties enforced by our escape analysis.

b) Language Design for Isolation: Language design to
support safe interaction with untrusted code is not unique
to smart contract languages or Move. Typed assembly lan-
guage [36] and capability machines like CHERI [45] are low-
level approaches to isolating memory from untrusted code
running in the same process. The Singularity OS project [28]
used the type system of Sing# (a variant of C#) to enforce
strong ownership of memory that crosses trust boundaries. The
Joe-E [33] language defines a secure subset of Java to enable
capability-based programming patterns.

WASM [25] is designed to isolate untrusted applications
from the trusted host system. Recent work on WASM has

studied a variety of mechanisms [17, 25] (e.g., static and
dynamic checks) to enhance the system with the ability to
isolate untrusted applications from each other as well as from
the host.

Broadly speaking, an important difference between these
previous systems and Move is that they do not satisfy key
requirements for smart contract programming such as de-
terminism, metered execution, and first-class currency. In
addition, these systems are typically concerned with low-level
isolation to ensure generic safety properties (such as memory
safety) rather than enforcing application-specific, programmer-
specified properties like the those specified/verified using the
Move Prover toolchain.

c) Robust Safety: The robust safety property originated
in the context of modular model checking [24] and has then
been widely applied to reason about security protocols that
interact with adversaries [1, 4, 6, 19, 22, 30, 39]. In this setting,
security protocols are written in concurrent languages (often
process calculi) and given a type system that enforces robust
safety and therefore ensures safe interaction with untyped
adversaries. The type system of these works is analogous to
the encapsulator of this paper: it is a static analysis whose goal
is to prevent leaks. In order to model the security invariants,
some of these languages have explicit assertions, which are
proven to never fail because of robust safety.

Swasey et al. [43], instead, use robust safety to verify
object capability patterns, a programming pattern that enables
programmers to protect the private state of their objects from
corruption by untrusted code [35]. Their language is richer
than Move (and thus not amenable for safe smart contract
programming) and lets programmers define custom assertions,
which robust safety ensures to never fail. To ensure this,
their code is verified with a powerful mechanism built on
top of the Iris logic [27]. Their (static) verification step is
analogous to our encapsulator but it relies on user-defined
logical assertions to describe invariants that are more complex
than Move assertions, as the underlying language is also more
complex.

Sammler et al. [40] use robust safety to demonstrate the
end-to-end security property of sandboxing. Sandboxing is a
common technique that allows trusted and untrusted compo-
nents to interact safely [21, 37]. This work defines invariants
outside of the language, as a system call policy, and robust
safety means that any program execution respects the policy.
To enforce robust safety, they rely on a type system: any
well-typed program can be linked with untyped code and the
resulting program is robustly-safe.

VI. CONCLUSION

We have formalised robust safety for the Move language
and gave a precise characterisation of the security properties
needed of the tools used to attain it in practice. One of these
tools is an encapsulator, which ensures no sensitive references
are leaked to attacker code. We have also implemented a
valid encapsulator and evaluated its precision and performance
on a representative set of Move benchmarks. Our evaluation

320

confirms that the encapsulator can augment existing tools like
the Move prover to enable practical enforcement of robust
safety for Move programmers.

The authors would like to thank John Mitchell for useful feedback
and discussions. This work was partially supported by a gift from
Novi; the Office of Naval Research for support through grant N00014-
18-1-2620, Accountable Protocol Customization; the Italian Ministry
of Education through funding for the Rita Levi Montalcini grant (call
of 2019).

REFERENCES

[1] Martín Abadi. Secrecy by typing in security protocols.
J. ACM, 46(5):749–786, September 1999. ISSN 0004-
5411. doi: 10.1145/324133.324266. URL https://doi.org/
10.1145/324133.324266.

[2] Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara
Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv. Tam-
ing callbacks for smart contract modularity. Proc. ACM
Program. Lang., 4(OOPSLA):209:1–209:30, 2020. doi:
10.1145/3428277. URL https://doi.org/10.1145/3428277.

[3] Zachary Amsden, Ramnik Arora, Shehar Bano, Mathieu
Baudet, Sam Blackshear, Abhay Bothra, George Cabrera,
Christian Catalini, Konstantinos Chalkias, Evan Cheng,
Avery Ching, Andrey Chursin, George Danezis, Ger-
ardo Di Giacomo, David L. Dill, Hui Ding, Nick Doud-
chenko, Victor Gao, Zhenhuan Gao, François Garillot,
Michael Gorven, Philip Hayes, J. Mark Hou, Yuxuan
Hu, Kevin Hurley, Kevin Lewi, Chunqi Li, Zekun Li,
Dahlia Malkhi, Sonia Margulis, Ben Maurer, Payman
Mohassel, Ladi de Naurois, Valeria Nikolaenko, Todd
Nowacki, Oleksandr Orlov, Dmitri Perelman, Alistair
Pott, Brett Proctor, Shaz Qadeer, Rain, Dario Russi,
Bryan Schwab, Stephane Sezer, Alberto Sonnino, Her-
man Venter, Lei Wei, Nils Wernerfelt, Brandon Williams,
Qinfan Wu, Xifan Yan, Tim Zakian, and Runtian Zhou.
The Libra Blockchain. https://developers.libra.org/docs/
the-libra-blockchain-paper, 2019.

[4] Michael Backes, Catalin Hritcu, and Matteo Maffei.
Union, intersection and refinement types and reasoning
about type disjointness for secure protocol implemen-
tations. Journal of Computer Security, 22(2):301–353,
2014. doi: 10.3233/JCS-130493. URL http://dx.doi.org/
10.3233/JCS-130493.

[5] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine,
Bart Jacobs, and K. Rustan M. Leino. Boogie: A mod-
ular reusable verifier for object-oriented programs. In
Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf,
and Willem P. de Roever, editors, Formal Methods for
Components and Objects, 4th International Symposium,
FMCO 2005, Amsterdam, The Netherlands, November
1-4, 2005, Revised Lectures, volume 4111 of Lecture
Notes in Computer Science, pages 364–387. Springer,
2005. doi: 10.1007/11804192_17. URL https://doi.org/
10.1007/11804192_17.

[6] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Four-
net, Andrew D. Gordon, and Sergio Maffeis. Refine-

ment types for secure implementations. ACM Trans.
Program. Lang. Syst., 33(2):8:1–8:45, February 2011.
ISSN 0164-0925. doi: 10.1145/1890028.1890031. URL
http://doi.acm.org/10.1145/1890028.1890031.

[7] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R.
Newton, Simon Peyton Jones, and Arnaud Spiwack.
Linear haskell: Practical linearity in a higher-order poly-
morphic language. Proc. ACM Program. Lang., 2
(POPL), December 2017. doi: 10.1145/3158093. URL
https://doi.org/10.1145/3158093.

[8] Sam Blackshear, Evan Cheng, David L. Dill, Victor Gao,
Ben Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer,
Rain, Dario Russi, Stephane Sezer, Tim Zakian, and
Runtian Zhou. Move: A language with programmable
resources. https://developers.libra.org/docs/move-paper,
2019.

[9] Sam Blackshear, David L. Dill, Shaz Qadeer, Clark W.
Barrett, John C. Mitchell, Oded Padon, and Yoni Zohar.
Resources: A safe language abstraction for money, 2020.

[10] Sam Blackshear, John Mitchell, Todd Nowacki, and Shaz
Qadeer. The move borrow checker, 2022.

[11] Vitalik Buterin. Critical update re DAO, 2016.
URL https://ethereum.github.io/blog/2016/06/17/
critical-update-re-dao-vulnerability.

[12] Consensys. Smart contract best practices, 2021. URL
https://consensys.github.io/smart-contract-best-practices/
known_attacks.

[13] Devin Coughlin and Bor-Yuh Evan Chang. Fissile type
analysis: modular checking of almost everywhere invari-
ants. In Suresh Jagannathan and Peter Sewell, editors,
The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14,
San Diego, CA, USA, January 20-21, 2014, pages 73–
86. ACM, 2014. doi: 10.1145/2535838.2535855. URL
https://doi.org/10.1145/2535838.2535855.

[14] Patrick Cousot and Radhia Cousot. Abstract interpre-
tation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints.
In Proceedings of the 4th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages, POPL
’77, page 238–252, New York, NY, USA, 1977. Associ-
ation for Computing Machinery. ISBN 9781450373500.
doi: 10.1145/512950.512973. URL https://doi.org/10.
1145/512950.512973.

[15] Leonardo Mendonça de Moura and Nikolaj Bjørner.
Z3: an efficient SMT solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the
Construction and Analysis of Systems, 14th Interna-
tional Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29-
April 6, 2008. Proceedings, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer,
2008. doi: 10.1007/978-3-540-78800-3_24. URL https:
//doi.org/10.1007/978-3-540-78800-3_24.

[16] David Dill, Wolfgang Grieskamp, Junkil Park, Shaz

321

Qadeer, Meng Xu, and Emma Zhong. Fast and reliable
formal verification of smart contracts with the move
prover. In Dana Fisman and Grigore Rosu, editors, Tools
and Algorithms for the Construction and Analysis of Sys-
tems, pages 183–200, Cham, 2022. Springer International
Publishing. ISBN 978-3-030-99524-9.

[17] Craig Disselkoen, John Renner, Conrad Watt, Tal
Garfinkel, Amit Levy, and Deian Stefan. Position pa-
per: Progressive memory safety for webassembly. In
Proceedings of the 8th International Workshop on Hard-
ware and Architectural Support for Security and Pri-
vacy, HASP@ISCA 2019, June 23, 2019, pages 4:1–
4:8. ACM, 2019. doi: 10.1145/3337167.3337171. URL
https://doi.org/10.1145/3337167.3337171.

[18] Ethereum Foundation. Solidity documentation, 2018.
URL http://solidity.readthedocs.io.

[19] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis.
A type discipline for authorization policies. ACM Trans.
Program. Lang. Syst., 29(5), August 2007. ISSN 0164-
0925. doi: 10.1145/1275497.1275500. URL http://doi.
acm.org/10.1145/1275497.1275500.

[20] Jean-Yves Girard. Linear logic. Theor. Comput. Sci.,
1987.

[21] Google. Sandboxed api, 2019.
https://github.com/google/sandboxed-api.

[22] Andrew D. Gordon and Alan Jeffrey. Authenticity by
typing for security protocols. J. Comput. Secur., 11(4):
451–519, July 2003. ISSN 0926-227X. URL http://dl.
acm.org/citation.cfm?id=959088.959090.

[23] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan
Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni
Zohar. Online detection of effectively callback free
objects with applications to smart contracts. Proc.
ACM Program. Lang., 2(POPL):48:1–48:28, 2018. doi:
10.1145/3158136. URL https://doi.org/10.1145/3158136.

[24] Orna Grumberg and David E. Long. Model checking
and modular verification. ACM Trans. Program. Lang.
Syst., 16(3):843–871, May 1994. ISSN 0164-0925. doi:
10.1145/177492.177725. URL https://doi.org/10.1145/
177492.177725.

[25] Andreas Haas, Andreas Rossberg, Derek L. Schuff,
Ben L. Titzer, Michael Holman, Dan Gohman, Luke
Wagner, Alon Zakai, and J. F. Bastien. Bringing the web
up to speed with webassembly. In Albert Cohen and
Martin T. Vechev, editors, Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017, pages 185–200. ACM, 2017. doi:
10.1145/3062341.3062363. URL https://doi.org/10.1145/
3062341.3062363.

[26] Neil D. Jones and Steven S. Muchnick. Flow analysis
and optimization of LISP-like structures. In POPL, 1979.

[27] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan,
Ales Bizjak, Lars Birkedal, and Derek Dreyer. Iris
from the ground up: A modular foundation for higher-
order concurrent separation logic. Journal of Func-

tional Programming, 28:e20, 2018. doi: 10.1017/
S0956796818000151.

[28] James R. Larus and Galen C. Hunt. The singularity
system. Commun. ACM, 53(8):72–79, 2010. doi:
10.1145/1787234.1787253. URL https://doi.org/10.1145/
1787234.1787253.

[29] Tim Lindholm and Frank Yellin. The Java Virtual
Machine Specification. Addison-Wesley, 1997.

[30] Sergio Maffeis, Martín Abadi, Cédric Fournet, and An-
drew D. Gordon. Code-Carrying Authorization, pages
563–579. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2008. ISBN 978-3-540-88313-5. doi: 10.1007/
978-3-540-88313-5_36. URL http://dx.doi.org/10.1007/
978-3-540-88313-5_36.

[31] Nicholas D. Matsakis and Felix S. Klock, II. The rust
language. Ada Lett., 34(3):103–104, October 2014. ISSN
1094-3641. doi: 10.1145/2692956.2663188. URL http:
//doi.acm.org/10.1145/2692956.2663188.

[32] Erik Meijer, Redmond Wa, and John Gough. Technical
overview of the common language runtime, 2000.

[33] Adrian Mettler, David A. Wagner, and Tyler Close.
Joe-e: A security-oriented subset of java. In Proceed-
ings of the Network and Distributed System Security
Symposium, NDSS 2010, San Diego, California, USA,
28th February - 3rd March 2010. The Internet Society,
2010. URL https://www.ndss-symposium.org/ndss2010/
joe-e-security-oriented-subset-java.

[34] Bertrand Meyer, Alisa Arkadova, Alexander Kogtenkov,
and Alexandr Naumchev. The concept of class invariant
in object-oriented programming. CoRR, abs/2109.06557,
2021. URL https://arxiv.org/abs/2109.06557.

[35] Mark Miller, Ka-Ping Yee, and Jonathan Shapiro. Capa-
bility myths demolished. Technical report, 2003.

[36] J. Gregory Morrisett, Karl Crary, Neal Glew, and
David Walker. Stack-based typed assembly language.
J. Funct. Program., 13(5):957–959, 2003. doi: 10.
1017/S0956796802004446. URL https://doi.org/10.1017/
S0956796802004446.

[37] Mozilla. Script security, 2019. Techni-
cal Report. https://developer.mozilla.org/en-
US/docs/Mozilla/Gecko/Script_security.

[38] Marco Patrignani and Sam Blackshear. Robust safety
for move. CoRR, abs/2110.05043, 2021. URL https:
//arxiv.org/abs/2110.05043.

[39] Marco Patrignani, Dave Clarke, and Davide Sangiorgi.
Ownership Types for the Join Calculus. In FMOODS/-
FORTE 2011, volume 6722 of LNCS, pages 289–303,
2011.

[40] Michael Sammler, Deepak Garg, Derek Dreyer, and
Tadeusz Litak. The high-level benefits of low-level
sandboxing. PACMPL, 4(POPL):32:1–32:32, 2020. doi:
10.1145/3371100. URL https://doi.org/10.1145/3371100.

[41] Davide Sangiorgi and David Walker. PI-Calculus: A
Theory of Mobile Processes. Cambridge University
Press, USA, 2001. ISBN 0521781779.

[42] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Am-

322

rit Kumar, Anton Trunov, and Ken Chan Guan Hao. Safer
smart contract programming with scilla. Proc. ACM
Program. Lang., 3(OOPSLA):185:1–185:30, 2019. doi:
10.1145/3360611. URL https://doi.org/10.1145/3360611.

[43] David Swasey, Deepak Garg, and Derek Dreyer. Robust
and compositional verification of object capability pat-
terns. In Proceedings of the 2017 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2017.
October 22 - 27, 2017, 2017.

[44] Philip Wadler. Linear types can change the world! In
PROGRAMMING CONCEPTS AND METHODS, 1990.

[45] Robert N. M. Watson, Jonathan Woodruff, Peter G. Neu-
mann, Simon W. Moore, Jonathan Anderson, David Chis-
nall, Nirav H. Dave, Brooks Davis, Khilan Gudka, Ben
Laurie, Steven J. Murdoch, Robert M. Norton, Michael
Roe, Stacey D. Son, and Munraj Vadera. CHERI: A
hybrid capability-system architecture for scalable soft-
ware compartmentalization. In 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA,
May 17-21, 2015, pages 20–37. IEEE Computer Society,
2015. doi: 10.1109/SP.2015.9. URL https://doi.org/10.
1109/SP.2015.9.

[46] Gavin Wood. Ethereum: A secure decentralised gener-
alised transaction ledger. 2014. URL https://ethereum.
github.io/yellowpaper/paper.pdf.

[47] Jingyi Emma Zhong, Kevin Cheang, Shaz Qadeer, Wolf-
gang Grieskamp, Sam Blackshear, Junkil Park, Yoni
Zohar, Clark W. Barrett, and David L. Dill. The move
prover. In Shuvendu K. Lahiri and Chao Wang, edi-
tors, Computer Aided Verification - 32nd International
Conference, CAV 2020, Los Angeles, CA, USA, July 21-
24, 2020, Proceedings, Part I, volume 12224 of Lecture
Notes in Computer Science, pages 137–150. Springer,
2020. doi: 10.1007/978-3-030-53288-8_7. URL https:
//doi.org/10.1007/978-3-030-53288-8_7.

323

