
The Entangling Instruction Prefetcher

Alberto Ros , Senior Member, IEEE
and Alexandra Jimborean

Abstract—Prefetching instructions is a fundamental technique for designing

high-performance computers. There are three key properties to consider when

designing an efficient and effective prefetcher: timeliness, coverage, and accuracy.

Timeliness is an essential property, as bringing instructions too early increases the

riskof the instructions being evicted from the cache before their use while requesting

them too late can lead to the instructions arriving past their designated execution time.

Coverage is important to reduce the number of instruction cachemisses (there is

enough prefetching), and accuracy to ensure that the prefetcher does not pollute the

cache or interacts negatively with the other hardwaremechanisms (there is not too

much prefetching). This letter presents the Entangling instruction prefetcher that

entangles instructions to provide timeliness. The prefetcher works by findingwhich

instruction should trigger the prefetch for a subsequent instruction, accounting for the

latency of each cachemiss. The prefetcher is carefully adjusted to account for both

coverage and accuracy. Our evaluation shows that the Entangling I-prefetcher

increases performance by 29.3 percent on average, with a coverage of 94.9 percent

and accuracy of 77.4 percent.

Index Terms—Instruction prefetcher, timely prefetching, performance

Ç

1 INTRODUCTION

INSTRUCTION fetch stalls block the processor pipeline, causing sig-
nificant performance degradation. In particular, applications with
large working instruction sets that do not fit in the first level cache,
such as server applications or applications designed to run in the
Cloud, exhibit large instruction-cache miss rates and thus incur
more stalls. In such cases, instruction fetching represents a consid-
erable fraction of the memory stalls, together with data accesses.

As memory latency has been recognized as a critical factor for per-
formance, prefetching techniques have emerged to install the data or
instructions in the cache ahead of time, ready to be used when
demanded by the processor [1]. Driven by their impact on perfor-
mance, prefetchers have evolved from simple next line prefetchers, to
complex techniques, such as the Proactive Instruction Fetch pre-
fetcher [2] captures the blocks accessed by the committed instructions
and instructions from handlers for OS interrupts. The Return-address
stack-directed instruction prefetching (RDIP) [3] captures the context
of a miss caused by a function call as signatures which are then con-
sulted upon each call and return operations to trigger prefetching.
More recently, Ansari et al. [4] propose a lightweight prefetcher that
reduces storage demands.We propose the Entangling Instruction Pre-
fetcher,1 which, in contrast to its predecessors, is designed around the
notion of timeliness. The Entangling I-prefetcher estimates the latency
of the cache missing operations and entangles them with the instruc-
tions that should trigger the prefetch to ensure the timely arrival of the
requested instructions. In this way, the Entangling I-prefetcher is
robust and effective, agnostic to the application characteristics and
achieves a 99.3 percent I-hit rate, approaching the perfect L1-I.

2 THE ENTANGLING I-PREFETCHER

The Entangling I-prefetcher entangles distant and unrelated opera-
tions, which, intuitively, translates to pairing two instructions, the
instruction isrc upon whose execution should be triggered the pre-
fetch for the instruction idst. More precisely, we define as src-
entangled the cache line that should trigger the prefetch of the dst-
entangled cache line such that the requested line arrives timely.

To ensure timeliness, we first compute the latency of each cache
miss. To this end, the Entangling I-prefetcher starts by recording
the history of L1-I accesses and in-flight misses which are kept in a
condensed form in dedicated data structures, as explained below.
For each L1-I miss, we compute the latency of fetching the
requested cache line by subtracting the timestamp of the cache
miss from the time the requested cache block enters the cache.
Next, we track back in the recorded history the instruction which
was executed at least latency number of cycles earlier than the
requested instruction and entangles the cache lines corresponding
to the source and destination instructions.

As tracking each pair of entangled cache lines would require
considerable storage space, the Entangling I-prefetcher only entan-
gles heads of basic blocks, defined as follows. A basic block repre-
sents the set of consecutive cache lines (where consecutive refers to
the program order of instructions, grouped in cache lines [1]). The
head of a basic block is therefore the first non-consecutive cache
line that is accessed. The size of the basic block is the number of
consecutive lines being accessed. Furthermore, in order to reduce
the number of entangled lines, the Entangling I-prefetcher merges
“almost” consecutive basic blocks (see Section 2.6) and entangles
only the head of the first block.

The prefetching engine is then triggered upon every cache
access and prefetches the entire basic block of the current line and
of the entangled destinations (see Section 2.4).

2.1 Design

Fig. 1 shows the data structures employed by the Entangling
I-prefetcher, with the hardware extensions marked as gray. The
right-top part (Basic block) computes the size of the current basic
block and records its head (first) cache line. It also indicates when
the basic block ends (new).

History buffer, on the right-bottom part of Fig. 1, is a small circu-
lar queue that records the history of basic block heads together
with the timestamp of their first access to L1-I. This table is parsed
to identify potential src-entangled cache lines for each L1-I miss.
Basic block size table (BB size) is a small structure that records the
size of the youngest basic blocks in the History buffer. This table is
employed to merge consecutive and overlapping basic blocks.

Timing and src-entangled information are stored along with the
prefetch queue (PQ), the miss status holding register (MSHR), and
the L1-I cache (shown as gray areas in these structures). The timing
information is a timestamp stored only in the PQ and MSHR, hold-
ing the initial trigger time for in-flight prefetches (if they miss in
the L1-I cache) and L1-I misses. When the requested data is stored
in the cache, the latency of the miss is computed and a src-entangled
cache line from the History buffer is selected. The src-entangled infor-
mation consists of an access bit which indicates whether the line
has been accessed and the corresponding src-entangled line (when
applicable). Each request moves from one structure to another
as the request progresses (PQ!MSHR!L1-I). The src-entangled
information serves to add confidence to the entangled source-
destination pair.

Entangled table, depicted on the left part of Fig. 1, is the core
structure of this proposal and records the entangled basic block
heads used for deciding which cache lines to prefetch. Note that in

� The authors are with the Computer Engineering Department, University of Murcia,
30100 Murcia, Spain. E-mail: aros@ditec.um.es, alexandra.jimborean@um.es.

Manuscript received 20 May 2020; accepted 11 June 2020. Date of publication 16 June
2020; date of current version 22 July 2020.
(Corresponding author: Alberto Ros.)
Digital Object Identifier no. 10.1109/LCA.2020.3002947

1. A performance-oriented version of the Entangling Instruction Prefetcher
won the 1st Instruction Prefetch Championship (IPC1) [5].

84 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 2, JULY-DECEMBER 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5757-1064
https://orcid.org/0000-0001-5757-1064
https://orcid.org/0000-0001-5757-1064
https://orcid.org/0000-0001-5757-1064
https://orcid.org/0000-0001-5757-1064
https://orcid.org/0000-0001-8642-2447
https://orcid.org/0000-0001-8642-2447
https://orcid.org/0000-0001-8642-2447
https://orcid.org/0000-0001-8642-2447
https://orcid.org/0000-0001-8642-2447
mailto:aros@ditec.um.es
mailto:alexandra.jimborean@um.es

an effort to keep the structure within a limited size, entangling is
rather coarse-grain, i.e., only head basic blocks are entangled, not
all cache lines. An entry contains the src-entangled cache line, its
basic block size, a compressed array of dst-entangled cache lines (up
to 6 destinations), and their associated confidence. Each dst-entangled
is associated a confidence field initialized to the maximum value
(since it was just computed prior to inserting it in the table and
therefore expected to be accurate). The confidence is increased by
timely prefetches and decreased by late and wrong prefetches.
When confidence reaches 0, the dst-entangled becomes invalid (no
prefetch is triggered).

2.2 Updating the Basic Block Size

When a non-consecutive cache line accesses the cache, we start
tracking a new basic block. We store in the Entangled table the size
of the previous basic block (that has just completed). If the block to
be added is already recorded in the table, we update its size to the
maximum between the old size (of the already stored basic block)
and the new size.

2.3 Adding Dst-Entangled Cache Lines

To populate the Entangled table, we insert each new basic block head
together with its size, and add destinations as explained below.
Fig. 2 illustrates the actions taken upon each cache event and how
the tables are populated.

Prefetches. Upon each prefetch issued, the PQ stores along with
the currently allocated prefetch entry the current time and the src-
entangled cache line (if the prefetch is for a basic block head). The
access bit is not set. If the prefetch misses in cache, this information
is transferred to the MSHR entry allocated by the cache miss. Oth-
erwise the information in the PQ entry is discarded.

Demand Cache Misses. Upon a demand cache miss, an entry is
allocated in the MSHR. The PQ is first checked for a matching pre-
fetch and, if found (i.e., the prefetch was not timely), the timing
and src-entangled information of the PQ entry is transferred to the
MSHR entry. Otherwise, the current time is set in the MSHR entry.
Demand misses also set the MSHR access bit and a pointer to the
entry for that access in the History buffer (if it is a basic block head).

Cache Fills. Upon a cache fill, if the access bit is set, it indicates
that a miss happened before the line was prefetched (either there
was no prefetch altogether or the prefetch was late). To fix this, the
Entangling I-prefetcher attempts to find a src-entangled cache line
for the newly cached line. The latency of the current memory
access is computed based on the timestamp of the MSHR. If the
entry has a valid pointer to the History buffer, we know when the

actual access for this cache line took place and that it is a basic
block head. The source is then selected among the accesses that
took place at least latency cycles before. If there is no pointer stored,
no action is taken. Such misses will be covered by prefetching the
full basic block starting from the head, as explained in the sum-
mary for triggering the prefetch.

Once a src-entangled cache line is found, the Entangled table is
updated by adding to the src-entangled entry the corresponding dst-
entangledwith the confidence set to the maximum value. If the array of
destinations is full, the dst-entangled with the lowest confidence is
replaced.

If in the time window between issuing the prefetch and the cor-
responding cache fill there has been no demand access to the cache
line, it means that the prefetch is either timely or wrong and no
entangled pair needs to be added.

When the MSHR entry is removed, the src-entangled information
is transferred to the corresponding L1-I entry.

Demand Cache Hits. Cache hits may find the access bit in the L1-I
unset, if the cache line was brought by a prefetch. This is the ideal
scenario indicating a timely prefetch. The access bit becomes set
upon the hit.

Cache Line Evictions. Upon a cache line evict, the src-entangled
entry is checked. If this is non-empty, it indicates that the evicted
cache line has been brought through an entangled prefetch.
Depending on the access bit:

� If it is not set, the linewas unnecessarily brought to the cache,
which indicates a wrong prefetch (early or unnecessary). The
Entangled table is updated by decreasing the confidence of the
dst-entangled corresponding to the evicted cache line.

� If it is set, it indicates a timely prefetch and in consequence
the confidence of the dst-entangled corresponding to the
evicted cache line is increased.

2.4 Triggering the Prefetches

For every cache access we check the Entangled table. If the current
cache line is recorded in the Entangled table (1) the entire basic block
that starts with that cache line is prefetched.(i.e., size-1 lines starting
from the second line in the basic block); (2) for each dst-entangled
with confidence > 0, prefetch the entire basic block starting from
dst-entangled.

2.5 Compressing Destinations

The Entangled table uses different modes for encoding the array of
dst-entangled entries (dst-entangled block and confidence) on 63 bits,
as follows: 3 bits for the mode + 60 bits of the dst-entangled block
and the confidence. The destination bits encode the least significant
bits (signifB) of the dst-entangled line, starting from the most signif-
icant bit that differs from the src-entangled. The most significant bits
can be inferred from the source. Since the distance between src-
entangled and dst-entangled is typically small, the destinations can
be highly compressed.

Fig. 1. Overview of the entangling I-prefetcher.

Fig. 2. Actions taken on various cache events.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 2, JULY-DECEMBER 2020 85

The mode is a value between 1 and 6 which indicating how
many destinations can be kept in the 60 bits of the array of dst-
entangled blocks and the associated confidence. Depending on how
many significant bits are required, the number of destinations can
vary. For the confidence we always use a 2-bit saturated counter.
Table 1 details the available modes.

All entries of the same dst-entangled array must be represented
in the same mode. Hence, every time a new dst-entangled entry is
inserted, we compute the maximum between its mode and the
mode of the previously recorded destinations. To improve com-
pression, upon the eviction of a dst-entangled we re-compute the
mode, to ensure that it is not unnecessarily set to a restricting value
due to a destination that no longer exists.

Finally, to maximize the utilization of the Entangled tablewe first
try to fill the dst-entangled arrays for the sources that are already
inserted. More precisely, if the selected src-entangled is not present
in the Entangled table, the prefetcher looks for the next best src-
entangled entry, namely a cache line with the timestamp earlier
than the one searched for. Up to six entries are checked and if there
is no free destination entry, one is evicted.

2.6 Merging Spatio-Temporal Basic Blocks

Finally, to further reduce the number of entangled blocks in the
Entangled table we perform a merge of quasi-consecutive basic
blocks and prefetch the entire block. Merging is also aimed to
address scenarios such as the sequence of accessed cache lines:
ABCECD, in which a basic block head C always hits in the cache
because it was prefetched as part of another basic block (ABC) and
was not evicted. However, D may lead to a substantial number of
misses that would not be covered by the Entangling I-prefetcher
since D is not a basic block head. To address this issue, we inspect
the last four recorded basic block sizes, and if the current block can
be merged with one of the previous blocks (i.e., they are consecu-
tive or overlapping), then we update the size of the previous basic
block (size of block starting with A would become 4 and prefetch
ABCD) and do not record the current basic block (starting with C

in the History buffer).

3 EVALUATION

We evaluate our instruction prefetcher using the ChampSim simu-
lator [6]. We model an out-of-order processor and a memory hier-
archy similar to the latest Intel’s Sunny Cove machine. The main
configuration parameters of our baseline system are shown in
Table 2.

We evaluate our prefetcher on the public traces provided by the
1st Instruction Prefetching Championship, which includes a set of
client and server traces as well as applications from the SPEC CPU
2017 benchmark suite (gcc, gobmk, perlbench, and x264). Applica-
tions run for 50M instructions after a 50M instructions warm-up.

3.1 Configurations and Memory Overhead

The History buffer is a 16-entry circular queue, with a 58-bit tag field
and a 20-bit timestamp field. A 4-bit register points to the head of
the queue. The Basic Block Size table keeps the size of the last four
basic blocks inserted in the History buffer. The basic block size is
represented on 7 bits, allowing a maximum block size of 127 cache
lines. The total memory required by both structures is 160 bytes.

Timing and src-entangled information is stored along with PQ (64
entries), MSHR (10 entries) and L1-I cache (512 entries). The timing
information consists of the time the request was issued (12 bits)
and the position of the access in the History buffer (4 bits). The src-
entangled information includes the position of the source in the
Entangled table (8 bits for the set and 4 bits for the way) and an
access bit. Once the miss is resolved, the timing information is no
longer necessary, thus the L1-I cache only records the src-entangled
information. The total memory required to store the timing and
src-entangled information is about 1KB (1100.25 bytes).

The Entangled table is a large set-associative cache that stores
sources alongwith theirmaximumbasic block size and destinations.
It employs a FIFO replacement policy. It has 256 sets and 12ways per
set (next section performs a sensitivity analysis with respect to the
number of ways). The tags are encoded using 34 bits, the basic block
is encoded with 7 bits, and the format, destinations, and confidence
bits are encoded on a total of 63 bits. This is the largest structure
employed by our prefetcher and requires 39.1KB.

3.2 Performance Results

We compare our prefetcher to a baseline system without any L1-I
prefetcher (No-IPref) and a system with an L1-I pure next-line pre-
fetcher (NextLine) [7]. We evaluate several configurations of the
Entangling I-prefetcherwith anEntangled table of 256 sets and the num-
ber of ways ranging from 4 (Entangling-4w) to 32 (Entangling-32w).

Fig. 3 shows the instructions per cycle (IPC) normalized to No-
IPref. Table 3 offers a sensitivity analysis of the number of ways of
the Entangled table presenting the memory requirements of the pre-
fetcher, the geometric mean of the normalized IPC, and the arithme-
tic mean for coverage (ratio of misses that became hits), accuracy
(ratio of useful prefetches), and percentage of L1-I misses, across all

TABLE 1
Compression Modes of Dst-Entangled Blocks

Mode Destinations signifB bits Size (bits)

1 1 [29, 58] ð58þ 2Þ � 1 ¼ 60
2 2 [19, 28] ð28þ 2Þ � 2 ¼ 60
3 3 [14, 18] ð18þ 2Þ � 3 ¼ 60
4 4 [11, 13] ð13þ 2Þ � 4 ¼ 60
5 5 [9, 10] ð10þ 2Þ � 5 ¼ 60
6 6 [1, 8] ð8þ 2Þ � 6 ¼ 60

TABLE 2
Baseline System Configuration

Processor width
ROB, LQ, and SQ

6 fetch, 6 decode, 6 execute, 4 retire
352 entries, 128 entries, and 72 entries

L1I cache 32KB, 8-way, 4 hit cycles, no prefetcher
L1D cache 48KB, 12-way, 5 hit cycles, next-line prefetcher
L2 cache 512KB, 8-way, 10 hit cycles, spp-dev prefetcher
L3 cache 2MB, 16-way, 20 hit cycles, no prefetcher
DRAM 4 GB, one 8-byte channel, 1600MT/s

Fig. 3. IPC normalized to a configuration without L1-I prefetcher.

86 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 2, JULY-DECEMBER 2020

applications. The Entangling I-prefetcher achieves 29.3 percent
speedup with respect to the baseline configuration when using
105.56 KB (Entangling-32w). More interestingly, with just 40.36 KB
overhead, Entangling-12w offers a good area-performance balance
obtaining 28.1 percent speedup and reducing the average cache
miss rate from 32 percent to just 1 percent.

4 CONCLUSION

The entangled prefetcher for instructions offers an alternative pre-
fetching direction driven by timeliness. The Entangling I-prefetcher
entangles source cache lines that trigger prefetches for destination
cache lines in a timely manner. The design does not require access
to the branch prediction structures, does not add contention to the
critical structures, and does not entail large associative searches.
Thus, the Entangling I-prefetcher’s implementation is highly effi-
cient without being intrusive in the processor design.

ACKNOWLEDGMENTS

This work was supported by the European Research Council under
the European Union’s Horizon 2020 research and innovation pro-
gramme (Grant agreement No 819134) and by the Ram�on y Cajal
Research Contract (RYC2018-025200-I).

REFERENCES

[1] B. Falsafi and T. F. Wenisch, A Primer on Hardware Prefetching. San Rafael,
CA, USA: Morgan & Claypool, 2014.

[2] M. Ferdman, C. Kaynak, and B. Falsafi, “Proactive instruction fetch,” in Proc.
44th Annu. IEEE/ACM Int. Symp. Microarchit., 2011, pp. 152–162.

[3] A. Kolli, A. G. Saidi, and T. F. Wenisch, “RDIP: Return-address-stack
directed instruction prefetching,” in Proc. 46th Annu. IEEE/ACM Int. Symp.
Microarchit., 2013, pp. 260–271.

[4] A. Ansari, P. Lotfi-Kamran, and H. Sarbazi-Azad, “Divide and conquer
frontend bottleneck,” in Proc. 47th Int. Symp. Comput. Archit., 2020, pp. 65–78.

[5] A. Ros and A. Jimborean, “The entangling instruction prefetcher,” in Proc.
1st Instruction Prefetching Championship, 2020. [Online]. Available: https://
research.ece.ncsu.edu/ipc/

[6] ChampSim simulator, May 2020. [Online]. Available: http://github.com/
ChampSim/ChampSim

[7] J.-L. Baer, Microprocessor Architecture: From Simple Pipelines to Chip Multiproc-
essors, 1st ed. Cambridge, U.K.: Cambridge Univ. Press, 2009.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TABLE 3
Sensitivity Analysis and Detailed Results

Prefetcher Size (KB) Norm. IPC Coverage Accuracy Misses (%)

No-IPref 0.00 1.000 0.000 0.000 23.055
NextLine 0.00 1.085 0.244 0.307 17.754
Entangling-4w 14.15 1.155 0.639 0.736 8.575
Entangling-8w 27.25 1.253 0.850 0.764 2.540
Entangling-12w 40.36 1.281 0.921 0.773 1.084
Entangling-16w 53.36 1.288 0.941 0.774 0.805
Entangling-20w 66.46 1.290 0.946 0.774 0.736
Entangling-24w 79.46 1.291 0.947 0.774 0.717
Entangling-28w 92.46 1.292 0.949 0.774 0.705
Entangling-32w 105.56 1.293 0.949 0.774 0.697

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 2, JULY-DECEMBER 2020 87

https://research.ece.ncsu.edu/ipc/
https://research.ece.ncsu.edu/ipc/
http://github.com/ChampSim/ChampSim
http://github.com/ChampSim/ChampSim

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

