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   Article
Review

Abstract

T he capacitated arc routing prob-
lem is an important NP-hard 
problem with numerous real-

world applications. The capacitated arc 
routing problem with uncertainties 
refers to those instances where there 
are uncertainties in decision variables, 
objective functions and/or constraints. 
The capacitated arc routing problem 
with uncertainties captures real-world 
situations much better than a static 
capacitated arc routing problem 
because few real-world problems are 
static and certain. Uncertainties in the 
capacitated arc routing problem pose 
new research challenges. Algorithms 
that work well for a static and certain 
capacitated arc routing problem may 
not work on the version with uncer-
tainties. There have been increasing 
progresses in studying the capacitated 
arc routing problem with uncertainties 
during the past two decades. However, 
the papers on the capacitated arc rout-
ing problem with uncertainties have 
been scattered around in different 
journals and conferences in artificial 
intelligence, computer science, and 
operational research. Different defini-
tions and formulations of capacitated 
arc routing problem with uncertainties 
are used by different papers, making 
comparisons difficult. In order to better 
understand the state-of-the-art in solv-
ing the capacitated arc routing problem 
with uncertainties, this paper presents a 

comprehensive review of the problem 
and its key research issues. Not only has 
the paper summarized the progresses so 
far, key research issues are identified, 
including scalability of the algorithms, 
performance measures, common 
benchmarks, etc. Future research direc-
tions are also identified at the end of 
this review.

I. Introduction
The capacitated arc routing problem 
(CARP) [1], [2] is a NP-hard combina-
torial problem with numerous real-
world applications. Examples include 
the urban waste collection, snow remov-

al and street salting problems [3], [4]. 
The objective of the CARP is to effi-
ciently allocate a number of vehicles 
with limited capacities and select the 
optimal set of routes from a depot to 
serve a number of tasks while the total 
demand of tasks served on any route 
does not exceed the vehicle capacity. 
Different from the vehicle routing prob-
lem (VRP) [5], the tasks in CARP are 
located on the edges instead of vertices. 
However, a good understanding of 
CARP would benefit the study of VRP.

Motivated by the characteristics of 
different real-world applications, numer-
ous variants of CARPs have been pro-
posed, which differ in terms of vehicle 
capacity, demand, and service time win-
dows [2], [4], among which most of the 
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work assume that no uncertainty is 
involved in the CARP instances. How-
ever, uncertainty is everywhere in real 
life and makes the solutions optimized 
on deterministic CARP instances non-
optimal or even infeasible under the 
uncertain environment. For instance, in 
the snow removal and street salting prob-
lems [3], the amount of snow to be 
removed from a street and the amount of 
salt to be put on a street depend on the 
weather and are non-deterministic. In 
the urban waste collection problem [4], 
the amount of waste to be collected on a 
street depends on the daily consumption 
of food or goods, which is uncertain.

Stochastic CARP (abbreviated to 
“SCARP”), first proposed by Fleury 
et al. [6] in 2002, assumes the stochastic-
ity of demands in the urban waste col-
lection problem while all the other vari-
ables remain deterministic. Such 
problems have also been referred to as 
the CARP with stochastic demands 
(CARPSD) in some papers [7], [8]. 
Besides stochastic demands, stochastic 
costs are commonly observed in real life 
as well. In addition, an edge could be 
broken, thus not be present, due to 
heavy traffic or road maintenance. 
Uncertain CARP is then defined by [9], 
considering all the uncertainties men-
tioned above. Uncertain CARP [9] is 
abbreviated to “uCARP” in this paper 
to distinguish it from the general CARP 
with uncertainties (UCARP), which 
include all the possible uncertainties in 
decision variables, objectives functions 
and/or constraints.

There have been many variants of 
the UCARP in the past two decades. 
Most papers on the UCARP focus on 
the robust evaluation of solutions opti-
mized on a set of deterministic scenarios 
of the UCARP (Section V-B1). Only a 
few of them design algorithms for tack-
ling the UCARP directly (Section 
V-B2). However, all such work assumes 
the knowledge of variable distributions 
(Section III-C). In real-world applica-
tions, such knowledge is often unavail-
able; instead, only a finite set of deter-
ministic realizations of a UCARP is 
accessible [10]. As a result, scenario-
based robust optimization in the 

UCARP without assuming known dis-
tributions of variables has been investi-
gated (Section V-C). Very recently, 
machine learning techniques were 
applied to design routing heuristics for 
the UCARP (Section V-D).

In spite of much work on the deter-
ministic CARP, the UCARP has intro-
duced new research challenges that 
require further study. Many variants of 
the UCARP have been proposed in the 
literature, motivated by different real-
world applications. It is unclear whether 
these variants are fundamentally differ-
ent or whether they pose different 
research questions. Papers on the 
UCARP have been published in a 
diverse set of journals and conferences. 
To our best knowledge, there has been 
no comprehensive review on different 
variants of UCARP and the state-of-
the-art solutions to them. It is unclear 
what the key research challenges are for 
different UCARP variants and what 
future directions might be.

S. Wøhlk [2] reviewed the research 
on the CARP and its variations pub-
lished till 2007, when the studies on sto-
chastic CARP were very limited [6], 
[11]–[13]. Fadzli et al. [4] surveyed the 
applications of CARP and its extensions 
to waste collection problem published 
till 2011. There is no dedicated review 
of UCARP. The main objectives of this 
paper include reviewing different prob-
lem definitions and assumptions of the 
UCARP, the performance measures and 
approaches used for solving the problem 
instances, discussing the key research 
challenges, and pointing out possible 
future research directions.

The remainder of this paper is orga-
nized as follows. Section II clarifies the 
scope of this review and the methodol-
ogy used. Section III formalizes the 
deterministic CARP and reviews differ-
ent variants of CARP with uncertain-
ties. Section IV introduces the reliability 
and robustness metrics used for evaluat-
ing solutions. We present the techniques 
for handling uncertainties, solving 
CARP with uncertainties and designing 
routing policies in Section V. Section VI 
discusses in depth the most important 
research issues related to the CARP 

with uncertainties. Finally, Section VII 
concludes the paper and points out 
some future research directions.

II. Scope of the Review
To review the related work published till 
January 2020, search has been conduct-
ed in the databases of the following 
main publishers, IEEE Xplore, ACM, 
Springer and Elsevier, using the search 
term: (“capacitated arc routing problem”) 
AND (“stochastic” OR “uncertain” OR 
“random”). We then searched again with 
Google Scholar and Web of Science using 
the same search terms listed above.

Among the returned results, the 
papers are carefully screened as follows. 
(i) If a paper does not work on CARPs 
(this happens as the search term may 
appear in references or in the text body 
due to a citation to another work), then 
it’s not included in this survey. (ii) If a 
paper considers deterministic CARPs, 
then no uncertainty has been involved 
in the problem variables (presence of 
task, presence of edge, demand of task, 
cost of traversing edges, service cost, 
vehicle capacity, etc.), and it is therefore 
not included in this survey. It is notable 
that if the above keywords do not 
appear explicitly in the title or body of a 
publication, then the publication is not 
included in this survey. The study on the 
dynamic and deterministic CARP (e.g., the 
CARP with period- or time-dependent 
demands or costs) where the exact value 
of demand is computable and no uncer-
tainty is involved, is not included in this 
review. More discussions on the com-
parison of dynamic and stochastic 
CARP will be provided in Section III-
A2). The second column of Table V lists 
the articles on CARP with uncertainties 
that have been reviewed in this paper.

III. Capacitated arc routing 
problem with uncertainties
In order to facilitate the description and 
understanding of the problems, we for-
malize the static and deterministic ver-
sion of capacitated arc routing problems 
(CARPs) in Section III-A1). A taxono-
my of CARPs, similar to [14], is provid-
ed in Section III-A2) to distinguish 
between dynamics and randomness in 
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the CARP. Then, Section III-B briefly 
reviews CARPs with uncertainties. The 
modelling of uncertainties is described 
in Section III-C. Section III-D presents 
the benchmarks of problem instances 
used in the reviewed literature.

A. Capacitated Arc Routing Problem
The basic form of CARP [1], [5] can be 
described as follows. Let ,G V E= ^ h be 
an undirected graph where V and E 
denote the sets of vertices and edges, 
respectively. The vertex v V0 !  is the 
depot. Each edge e E!  has a cost  
c(e) > 0. If there is a task on this edge, a 
positive demand is associated to e. The 
task set T is the set of edges with posi-
tive demands. A fleet of vehicles with a 
given capacity Q > 0 are allocated to 
serve all the tasks in T, starting and ter-
minating at the identical depot .v0  The 
objective of CARP is to efficiently allo-
cate these vehicles and select the optimal 
set of routes to serve tasks while the 
total demand of tasks served on any 
route does not exceed Q.

1) General Formulation of CARP
Diverse extensions of CARP to the 
above have been proposed depending 
on the corresponding applications in the 
real-world, such as the CARP with sto-
chastic time and periodic CARP [2], the 
CARP with multiple depot [15] and the 
CARP with multiple vehicle capacities 
[16]. Their different formulations are 
outside the scope of this review as we 
focus on the CARP with uncertainties.

A solution of CARP can be repre-
sented by a set of routes { , , }x r rm1 f=  
served by m vehicles. Each route 

( , , )r t t, ,k k k l1 kf=  { , , }k m1 f!^ h  is a 
sequence of tasks served, where lk is the 
number of tasks served on this route and 

t ,k i  refers to the ith task on the kth route. 
We define the general formulation used in 
[17] as follows, given ( , ),G V E=  T, Q, 
cost ( )c t ,k i  and demand ( )d t ,k i  of ,t ,k i
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where ( )head t ,k i  and ( )tail t ,k i  denote the 
two endpoints of the task .t ,k i  When  
i = 1, ( )tail t ,k 0  is defined as the depot .v0  

( )inv t ,k i  denotes the reverse direction of 
.t ,k i  Besides the serving cost c(t) of each 

task t, the deadheading cost, defined as the 
cost of traversing the shortest path 
between a pair of tasks, is often consid-
ered as well. ( , )dist v vi j  denotes the 
shortest distance from vertex vi to vertex 
vj. Eq. (1) indicates the minimization of 

( ),xC  the sum of the serving and dead-
heading costs of the set of routes x. The 
domain of variables is defined in Eq. (2). 
Eq. (3) indicates that each route should 
start and end at the depot. Eqs. (4) and 
(5) ensure that each task will be served 
in one direction only, i.e., ( )k k= l  and 
( )i i= l  won’t hold simultaneously. 
Together with Eq. (6), Eqs. (4) and (5) 
further ensure that each task will be 

served exactly once. The constraint of 
vehicle capacity is implied in Eq. (7).

2) Taxonomy of CARP
Similar to the taxonomy of VRP [14], 
we propose a taxonomy of CARPs as 
follows:
1)	static and deterministic CARP;
2)	dynamic and deterministic CARP;
3)	static and stochastic CARP;
4)	dynamic and stochastic CARP.

A CARP instance can be dynamic, i.e., 
the variables are unknown a priori and 
may change over time; otherwise, it is 
static. A deterministic CARP assumes no 
random element involved in the prob-
lem, thus the variables are all determin-
istic. Only static input (e.g., edges, tasks 
and demands) is considered in the static 
and deterministic CARP, while in the 
dynamic and deterministic version, the 
input changes over time, such as an 
increasing travelling cost because of the 
increasing vehicle load. The stochastic 
CARP or CARP with uncertainties, in 
general, considers that the input vari-
ables are random and their exact values 
are only known at the time of execu-
tion. The use of terms dynamic and sto-
chastic is sometimes ambiguous. Table I 
lists some of the main differences 
between the static and stochastic CARP 
and the dynamic and stochastic version.

In this paper, we focus on the CARP 
with uncertainties, either static or 
dynamic. Studies on dynamic and deter-
ministic CARP are out of the scope of 
this paper. From the literature, we have 
observed that all review studies so far 
aimed at solving static and stochastic 
CARP, most of which were based on 
methods for solving static and determin-
istic CARP. Few treated a stochastic 
CARP as a stochastic problem. To focus 

TABLE I Comparison between static and stochastic CARP and dynamic and stochastic CARP.

STATIC AND STOCHASTIC CARP DYNAMIC AND STOCHASTIC CARP 

PLANNING A PRIORI SOLUTION IS COMPUTED BY OFFLINE PLANNING ONLINE PLANNING 

ONLINE REPAIRING IS APPLIED ACCORDING TO ACTUAL  
VARIABLE VALUES

RE-OPTIMIZATION WHILE TRAVELLING IN REAL TIME 

TASKS/ 
CUSTOMERS

ALL POTENTIAL CUSTOMERS ARE KNOWN IN ADVANCE, WHILE  
EACH HAPPENS WITH A PROBABILITY

SOME CUSTOMERS ARE KNOWN TO HAPPEN WITH A PROBABILITY 
NEW REQUESTS CAN BE MADE DURING EXECUTION

TIMING SOMETIMES TIME WINDOW IS CONSIDERED URGENCY OF TASK IS USUALLY CONSIDERED 
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on uncertainties in the CARP, from 
now on, the term “static” will be omit-
ted when referring to static and determin-
istic or static and stochastic CARP.

B. Variants of CARP with Uncertainties
In the past two decades, different vari-
ations of CARP with uncertainties were 
proposed and studied consider ing 
the non-deterministic factors in real-
world problems.

1) CARP with Stochastic  
Demands (CARPSD)
Motivated by the urban waste collection 
problem, Fleury et al. [6], [11] proposed 
the stochastic CARP (abbreviated as 
“SCARP”) in which only the demands 
are stochastic, i.e., (·)d  in Eq. (7) is a 
random variable rather than a constant, 
and follows normal distributions. Chris-
tiansen et al. [7] and Laporte et al. [8] 
used the abbreviation “CARPSD” for 
the CARP with stochastic demands (same 
as SCARP) but assumed Poisson distrib-
uted demands in their work.

2) Uncertain CARP (uCARP)
Besides stochastic demands, many other 
stochastic variables can be present in 
real-world applications, such as the sto-
chastic costs of tasks, the absence of 
edges and/or tasks [3], [4]. Factors that 
can affect the cost of traversing a path 
include, but are not limited to, the speed 
of a vehicle, the load of a vehicle, the 
traffic flow and the weather. Due to 
heavy traffic or road maintenance, an 
edge can be considered broken, thus it is 
not present. The above can be roughly 
summarized into the following 4 ran-
dom factors: presence of tasks, demand 
of tasks, presence of paths and deadhead-
ing costs. Mei et al. [9] proposed a more 
general case, uncertain CARP (uCARP), 
that considers all the above. In [9], Ber-
noulli and Gamma distributions were 
assumed for the stochastic variables.

However, in real life, some of the 
uncertainties, originating from nature 
or humans, cannot be modelled easily 
by stationary probabilities. Their distri-
butions are unknown a priori. Taking 
the urban waste collection problem as 
an example, family parties or Christmas 

often result in a higher food consump-
tion and a significant increase in the 
amount of waste, while zero waste col-
lection demand occurs occasionally 
during spring holidays. Variables in such 
scenarios can hardly be modelled by 
fixed probability distr ibutions. As 
pointed out by Wang et al. [10], in real-
ity, only a set of scenarios1 is likely to 
be available. Afterwards, research has 
been conducted on searching robust 
solutions for a set of deterministic sam-
ples of uCARP without assuming a 
priori known distributions for uncer-
tainty [10], [17].

The exact values of random variables 
are known only at the time of reaching a 
task or edge (road or street); therefore, 
solutions optimized a priori might be 
infeasible at the time of execution. Tech-
niques for avoiding constraint violation 
(summarized in Section V-A1) and repair 
operators for fixing solutions during exe-
cution (Section V-A2) are essential. For 
instance, if the amount of waste to collect 
exceeds the available capacity of a vehicle, 
the vehicle will need to return to the 
depot, empty its collection, then continue 
to serve the remained tasks. How to effi-
ciently adapt a solution to the actual sce-
nario while minimizing the cost and risk 
is an important topic for research.

3) CARP with Fuzzy  
Demand (CARPFD)
Instead of using probabilistic models, 
fuzzy numbers have been used to model 
demands in CARP [18], [19].

4) CARP with Stochastic  
Time (CARPST)
Different from the above work, Chen  
et al. [20], [21] considered the stochas-
ticity of time in the road network daily 
maintenance problem. In [20], the prob-
lem is formulated as a CARP with sto-
chastic service and travel times 
(CARP-SSTT) following a normal dis-
tribution, while in [21], the problem is 
formulated as an ARP with stochastic 

1 Different terms, such as “replication”, “sample” and 
“scenario”, have been used in the literature to refer to 
a deterministic realization of a random process.

service time without assuming (ARP-
SST) any known variable distribution.

5) Abbreviations
To be consistent with the existing publica-
tions, hereinafter, the abbreviation 
“DCARP” is used to refer to the deter-
ministic CARP and “UCARP” is used to 
refer to the CARP with uncertainties. The 
abbreviation “uCARP” stands for the 
uncertain CARP defined by [9] consider-
ing 4 random variables. Although 
“SCARP” is the first abbreviation used for 
the CARP with stochastic demands [6], 
the abbreviation “CARPSD” [7] will be 
used as it is more informative. It is notable 
that in some literature, the phrase “dynamic 
CARP” is used as an alternative to 
UCARP, such as [22]. However, we argue 
that the use of “dynamic CARP” is not 
suitable here, as discussed previously in Sec-
tion III-A2). “CARPFD” and “CARPST” 
stand for CARP with fuzzy demands and 
CARP with stochastic times, respectively.

C. Modelling Uncertainties
A number of work on CARP with 
uncertainties assumed certain distribu-
tions for non-deterministic variables. 
This section presents the assumptions 
considered in the reviewed work.

1) Cancelled/Unexpected Tasks
The presence of tasks is often modelled 
as a Bernoulli distribution [9]. Thus, 
given a set of potential tasks, the ith 
task is present with probability ( , )p 0 1i ! .  
The case that a task is not present can 
be considered as one with 0 demand. 
When executing a solution, if a task is 
no longer present, the vehicle will skip 
the task and travel to the next one via 
the shortest path. The presence of tasks 
will affect the set of tasks to be served, 
the domain of solution variables, Eqs. 
(6) and (2) in the model formulated in 
Section III-A1).

2) Edge Failure
The case in which an edge is not pres-
ent is called an edge failure, possibly due 
to a broken path or heavy traffic. When 
an edge failure occurs, the cost of this 
edge is set to 3. If there is a task on this 
edge, the vehicle will take it as a cancelled 
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task. The edge failure is also often 
assumed to follow a Bernoulli distribu-
tion [9]. The presence of edges is crucial 
for calculating the deadheading costs, 
which are terms of the total cost of a 
solution, as detailed in Section III-A1).

3) Random Demand
In real-world problems, the edge-
demand is often random. For instance, 
in the urban waste collection problem, 
the amount of waste on a street is non-
deterministic. In the parcel collection 
problem, an order could change sudden-
ly. A random demand needs to respect 
the following constraints: it should not 
be negative or exceed the vehicle capac-
ity Q. If the demand of a task exceeds 
the available capacity of a vehicle, then 
the vehicle fails to serve this task and a 
route failure occurs. The capacity con-
straint Eq. (7) formalized in Section III-
A1) is violated. As a consequence, an 
extra trip (i.e., returning to the depot and 
then going back to the task) is required. 
In most of the studied stochastic models 
for demands, their expectations are 
known. The most studied models are 
truncated normal, Poisson and Gamma 
models, while another important cate-
gory is the estimation of demands by 
sampling scenarios (e.g., [10]).

a) Uniform Distribution
In the waste collection problems consid-
ered in [37]–[39], random demands were 
generated using uniform distribution.

b) Truncated Normal Distribution
The urban waste collection problem has 
been formulated as a CARPSD and the 
demand of each task was assumed to be a 
random variable following a truncated 
normal distribution in [6], [11]–[13], 
[34], [35], ignoring the extremal case 
such as Christmas. The normal distribu-
tion is truncated to avoid exceeding the 
vehicle capacity Q and negative demand, 
and its standard deviation ( )vv  is set to 

( )d ti$a , where ( )d ti  is the mean of the 
demand of the ith task ti and a  is a posi-
tive control parameter. The demand of 
the ith task, ti with this truncated, multipli-
cative normal noise, is formalized as 

( )~ ( ) { , ( , )},maxD t d t 0 0Ni i i
2
v+  where 

( )d ti i$v a=  and the control parameter 
a  is usually set to 0.1.

c) Log-Normal Distribution
Log-normal distr ibuted stochastic 
demands have been used in [36].

d) Poisson Distribution
In [7], [8], the CARPSD is studied 
assuming that the stochastic demands 
follow Poisson distributions.

e) Gamma Distribution
Mei et al. [9] assumed that the perturba-
tion on demands follows a Gamma dis-
tribution with shape parameter k and 
scale parameter i  to avoid negative 
noises, denoted as ( , )G k i . As the ran-
dom presence of tasks is also considered 
in [9], the demand of the ith task, ti, is 
modelled as ( )~ ( , )D t G ki i ii  if ,prand i1  
otherwise, ( )D t 0i = . The probability of 
the presence of task i is denoted as pi 
and is set as 0.9 in [9]. The shape param-
eter is set as ki = 20 for all the tasks to 
make the Gamma distribution close to 
normal distr ibution and the scale 
parameter ii  is set to d p ki i i  so that the 
expected value of the random de
mands is equal to its static value [9]. A 
number of work, summarized in Table II, 
have used the UCARP instances 
designed by [9].

f) Fuzzy Demand
Eydi and Javazi [18] studied multi-com-
modity CARP and represented the 
demand of every commodity on a serv-
ing edge as a triangular fuzzy number 
[18]. Babaee Tirkolaee et al. [19] formu-
lated an urban solid waste management 
problem as the multi-trip CARPSD 
under fuzzy demands.

4) Random Deadheading Cost
Due to the speed limit, condition of 
roads, traffic and load, the deadheading 
costs are often non-deterministic. This 
can lead to different values of total cost if 
an identical solution is simulated more 
than once. Mei et al. [9] modelled the 
deadheading cost as a Gamma distribu-
tion, taking into account the probability 
of the presence of path between the ver-
tices i and j, q ,i j . The deadheading cost of 
the path between the vertices i and j is 
defined as ~ ( , )dc G k, , ,i j i j

c
i j
c
i  if ;qrand ,i j1  

otherwise dc ,i j 3= . In [9], the shape 
parameter k ,i j

c  and the probability q ,i j  are 
set to 20 and 0.95, respectively. The scale 
parameter ,i j

c
i  is set to dc k, ,i j i j

d  [9].

D. Benchmarks of CARP with 
Uncertainties
The most used technique to generate 
benchmark functions for CARP with 
uncertainties is by adding random per-
turbations to one or more variables of 
existing DCARP instances to model 
uncertainties or replace the deter-
ministic parameters by user-defined 
stochastic distr ibution presented in 
Section III-C.

To the best of our knowledge, the 
benchmark sets of CARPSD and 
UCARP are usually extended from 3 
well-known benchmark sets of static 
CARP, gdb [23], egl [40] and val [24]. 
The corresponding UCARP bench-
mark sets designed by [9] are referred 
to as ugdb, uegl and uval, respectively. 
In particular, ugdb and uval have been 
popular and are most used in recent 
years. Tables II summarizes the list of 
articles that have used ugdb and uval 
in their case studies and serves as a 
list of baselines.

TABLE II References that used ugdb and uval, two UCARP benchmark sets extended 
from the well-known static CARP benchmark sets, gdb [23] and val [24] 
respectively, designed by [9]. In ugdb and uval, the demands of tasks and costs of 
tasks follow Gamma distributions and the presences of task and edges are 
modelled as boolean variables, as detailed in Section III-C.

DISTRIBUTION UNCERTAINTIES

GAMMA DEMAND OF TASK COST OF EDGE

BOOLEAN PRESENCE OF TASK PRESENCE OF EDGE

REFERENCES [9], [10], [22], [17], [25], [26], [27] [28], [29],  
[30], [31], [32], [33]
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In some of the work, such as [6], 
[37], artificial instances have been used 
as test cases. Chen et al. [20], [21] 
designed instances based on real data of 
road network in Shanghai city. However, 
the artificial instances are often small- or 
medium-scale, and smaller than the big-
gest instance in ugdb and uval. To illus-
trate the popularity of stochastic vari-
ables and their distributions assumed in 
the self-designed instances, the list of 
articles that have used self-designed 
instances are provided in Table III, 
grouped by their assumptions.

E. Summary of Uncertainty Modelling
The study on CARP with uncertainties 
has a short history, despite its impor-
tance in real life. Different variants have 
been proposed based on the actual 
non-deterministic variables in the cor-
responding real-world applications. 
Modelling the uncertainties is important 
both for the problem formulation and 
the generation of scenarios for testing 
solutions or solvers, as the uncertain 
variables affect the feasibility of solutions 
and the actual total cost. The assumption 
on models relies on the knowledge of 
the actual problem and accessible data, 
e.g., the amount of snow on each street 
during the past month in the snow 
removal problem and amount of waste 
in the urban waste collection problem. 
When the historical data of uncertain 
variables are available, the prediction of 
variables is feasible in some of the cases 
or at least the bounds for the variables 
can be determined. Additional forecast 
information will be beneficial for 
adjusting the model, a distr ibution 

controlled by one or more parameters, 
which are called stochastic control 
parameters in this paper. In most work, 
the demand of tasks is assumed to fol-
low a Gamma or normal distribution 
(cf. Tables II and III) controlled by 
given static parameters. However, some 
of the uncertainties do not follow a 
Gamma or normal distribution, or even 
cannot be modelled as known probabil-
ity distributions. Additionally, rarely 
occurring events are often ignored 
while designing the model. Building 
more realistic variable distributions and 
scenario-based optimization methods 
without assuming variable models are 
two valuable directions for research.

IV. Reliability and Robustness  
of Solutions
In the deterministic CARP, the com-
monly used performance measure of a 
solution x is the total cost ( ),xC  defined 
in Eq. (1). Solvers for DCARP aim at 
minimizing ( )xC  while satisfying the 
constraints, as formulated in Section III-
A1). In the non-deterministic versions, 
due to the random variables, the exact 
value of the total cost of a given solution 
x is computable only after serving all the 
available tasks. The lower bound of solu-
tion costs are unknown. In the determin-
istic CARP, the number of trips, ( )xT , is 
deterministic, while in the uncertain ver-
sion, it may be higher than the number 
of vehicles due to route failures. Thus, 
one or more vehicles may route extra 
trip(s) due to route failures as described 
previously in Section III-C3), which 
implies higher total cost. Therefore, spe-
cial performance measures should be 
designed for evaluating the reliability and 
robustness of solutions optimized for the 
CARP with uncertainties, and special 
repairing operators should be designed 
for handling the violation of constraints. 
The performance of solvers or repairing 
operators in robust optimization of 
CARP with uncertainties can be evaluat-
ed by the quality of their recommended 
solutions. When evaluating a solution, a 
number of evaluations is often needed in 
an uncertain environment in order to 
obtain a good estimation of the solution’s 
quality. The expected performance or 

average performance over the tested sce-
narios is widely used to measure the 
quality of a solution, while the worst-case 
performance and the variance are often 
used to measure its robustness.

The performance measures proposed 
so far in the literature are summarized as 
follows, some of which have been 
directly utilized as optimization objec-
tives (Tables IV and V).

A. Performance Measures Using 
Known Variable Distributions
As presented in Section III-D, the instanc-
es of CARP with uncertainties are gener-
ated based on a benchmark of DCARP 
instances, by replacing the deterministic 
edge-cost with a stochastic model. If the 
expected values are calculable (e.g., ran-
dom demand respecting a normal distri-
bution), the expected values and standard 
deviations of performance indicators can 
be used to measure the reliability of a 
solution, such as in [6], [8], [36], [37].

1) Expected Cost &  
Deterministic Cost
The expectation of variables was set as 
the deterministic var iables of the 
DCARP used for generating CARPSD 
in [6], [12]. Given a solution x, the deter-
ministic cost of the DCARP, denoted as 

( ),xCd  is used to model the expected 
cost of the corresponding CARPSD or 
uCARP, denoted as [ ( )]xCE  [6], [9].

2) Expected Number of Trips
The number of trips influences the cost 
of returning to the depot. Minimization 
of the expected number of trips [11], 

[ ( )],xTE  implicitly leads to the mini-
mization of cost.

3) Expected Makespan
The cost of the longest trip in a solution x is 
called makespan [34]; its expectation is denoted 
as [ ( )] .xME  Fleury et al. [34] applied bi-
objective optimization considering both the 
total cost of the trips and the makespan.

4) Variability
The measure variability [6], [12] is 
defined as [ ( )] [ ( )]x xC CEv  and cal-
culated for evaluating the robustness of 
any given solution x. In [6], [12], it was 

TABLE III References that used self-
designed benchmarks, grouped by 
their assumptions.

DISTRIBUTION UNCERTAINTIES 

DEMAND  
OF TASK TIME

NORMAL [6], [11], [13], 
[12], [34], [35]

[20], [21]

LOG-NORMAL [36] 

POISSON [7], [8] 

UNIFORM [37], [38], [39] 

FUZZY [18], [19] 
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observed that taking into account the 
standard deviation of costs in the objec-
tive function led to lower variability, 
thus producing more robust solutions.

Using expectation as objectives or 
measures is easy to execute and methods 
for handling DCARPs can be applied 
directly. However, it is less realistic in 
real-world applications as the probability 
distributions of random variables are 
usually unknown.

B. Performance Measures Over 
Multiple Simulations
When the exact distr ibutions are 
unknown or the expectation and vari-
ance cannot be computed directly, mul-
tiple simulations over different scenarios 
often have to be carried out in order to 
estimate expectations and variances.

1) Average Performance
In practice, expectations of variables are 
sometimes unknown and it is not possi-
ble to sample all the scenarios of a 
CARPSD or uCARP. Statistics collect-
ed during n N! +  independent simula-

tions of x can be used to estimate some 
performance measures (e.g., [6], [12]).

a) Estimation of Cost
The empirical average of the total cost 

[ ( )],xCEn  as well as the empirical stan-
dard deviation [ ( )],xCnv  have been 
widely used for estimating the expected 
cost [ ( )]xCE  and standard deviation 

[ ( )],xCv  respectively. Examples include 
[6], [10], [12], [17].

b) Estimation of Number of Trips
Similar to the above, the empirical aver-
age of the number of trips [ ( )],xTEn  as 
well as the empirical standard deviation 

[ ( )],xTnv  have been used for estimating 
[ ( )]xTE  and [ ( )],xTv  respectively. 

Examples also include [6], [10], [12], [17]

c) Robustness Estimator
The variability can also be estimated by 

[ ( )] [ ( )]x xC CEn nv  [11].

2) Best-Case Performance
The best-case performance, defined as 
the cost of the best solution and the 

number of trips in the best solution 
found, is used as a performance measure 
by Fleury et al. [6]. Such evaluation is 
optimistic but it gives a brief idea of 
how low the cost could possibly be.

3) Worst-Case Performance
A pessimistic measure is the worst-case 
performance, i.e., simulating a solution on 
random realizations of a UCARP 
instance and its worst performance (high-
est total cost or highest number of trips) 
used as the performance metric. Then, the 
solution with the best worst-case perfor-
mance is recommended. This is the classic 
Wald’s maximin model [41] for decision 
making. Such a performance measure is 
also called a robustness measure.

C. Other Robustness Measures
The performance measures presented 
above are used most often in the literature. 
This section summarizes some other met-
rics for measuring robustness of solutions 
other than the worst-case performance 
measures, variability [6], [12] and the 
robustness estimator [11]. These measures 

TABLE IV Performance measures of solutions for the CARP with uncertainties. The notations used in this table and detailed 
description of each measure are explained in Section IV. The t in measures (2), (8), (11), (16) and (19) is a user-specified constant 
for a linear combination of expectation/average and standard deviation.

TRAGET WITH DISTRIBUTION ASSUMPTIONS 

SCENARIO-BASED

AVERAGE BEST-CASE WORST-CASE 

COST (1) EXPECTED COST: ([ )]xCE

(2) [ ( )] [ ( )]x xC CE tv+  OR [ ( )]xCv  

(3) VARIABILITY: 
[ ( )]
[ ( )]

x
xC

C
E
v

 

(4) � [ ( )]xCE  WITH UPPER BOUNDED 
PROBABILITY OF AN EXTRA RETURN

(5) � [ ( )]xCE  WITH UPPER BOUNDED 
PROBABILITY OF #TRIPS

(6)� [ ( )]xCE  WITH UPPER BOUNDED 
VARIANCE OF COST

(7) EXPECTED MAKESPAN: [ ( )]xME  

(8) [ ( )] [ ( )]x xM ME tv+  OR [ ( )]xMv  

(9) �THRESHOLD-BASED ROBUSTNESS 
INDICATOR 

(10) AVERAGE COST ([ )]xCEn  WITHOUT 
ADDITIONAL CONDITION 

(11) [ ( )] [ ( )]x xC CEn ntv+  OR [ ( )]xCnv  

(12) ROBUSTNESS ESTIMATOR: 
[ ( )]
[ ( )]

x
xC

C
En

nv  

(13) ( )min xC
{ , , }

( )

i n

i

1f!
 (14) ( )max xC

{ , , }

( )

i n

i

1f!
 

TRIP (15) EXPECTED #TRIP: [ ( )]xTE

(16) [ ( )] [ ( )]x xT TE tv+  OR [ ( )]xTv  

(17) �PROBABILITY OF TRIP INTERRUP-
TION 

(18) AVERAGE #TRIPS: [ ( )]xTEn  

(19) [ ( )] [ ( )]x xT TEn ntv+  OR [ ( )]xTnv  

(20) PERCENTAGE OF INTERRUPTED TRIPS 

(21) ( )min xT
{ , , }

( )

i n

i

1f!
 (22) ( )max xT

{ , }

( )

i n

i

1f!
 

CONSTRAINTS (23) RELIABILITY-BASED ROBUSTNESS MEASURE 

(24) REPAIR-BASED ROBUSTNESS MEASURE

OTHER MEASURES (25) �RELATIVE PERFORMANCE MEASURES (APPLICABLE TO MOST OF THE ABOVE MEASURES) 

(26) �MULTIOBJECTIVE MEASURES (APPLICABLE TO A SET OF DIFFERENT MEASURES)
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are designed to quantify the feasibility of 
solutions under uncertainties (e.g., the 
overflow of capacity on a route) or serve 
as additional objectives [9].

1) Interrupted trips
A trip may be interrupted due to an 
augmented demand or the absence of 
an edge. This induces an increase in the 
number of trips. Fleury et al. [11] con-
sidered directly the percentage of sim-
ulations with interrupted trips among 
n simulations of a given solution x to 
estimate the probability of trip inter-
ruption, which is also the probability 
of introducing extra trip(s) into the 
solution x.

2) Threshold-Based  
Robustness Measure
In real-world applications, optimizing 
the worst-case performance can be 
conservative and the expected perfor-
mance is sometimes not computable as 
the true model of uncertainties is 
unknown or difficult to compute. The 
probability of reaching a given quality 
threshold, specified by decision makers 
with their affordability, was introduced 
as a measure in [9], but not actually 
used in their study.

3) Reliability-Based  
Robustness Measure
The feasibility of a solution cannot always 
be guaranteed due to the possible uncer-
tainties in the constraints. The reliability of 
a solution can be measured by the proba-
bilities of satisfying constraints. Mei et al. 
[9] discussed a reliability-based robustness 
measure which requires a lower bound P0 
(i.e., confidence probability), for the 
probability of satisfying a given con-
straint g: [ ( ) ] .xg P0P 0# $

4) Repair-Based Robustness Measure
The repair-based robustness measure 
defines repair operators to change an 
infeasible solution to a feasible one [9]. 
The repair-based robustness measure is 
more favourable than the reliability-
based one because, in UCARP, the con-
straints are hard constraints and an 
infeasible solution should be repaired to 
be feasible [9].

D. Measures Under Conditions  
on Confidence Probability
In addition to the minimization of aver-
age cost and the number of trips, more 
sophisticated measures have been used as 
optimization objectives [12].

1) With an Upper Bounded 
Probability of an Extra Return  
to the Depot
Minimization of [ ( )]xCE  under the 
condition pi # e  for any i with a fixed 

02e  [12], where pi is the probability 
of returning to the depot during the 
ith route.

2) Upper Bounded Probability of 
Number of Trips
Minimization of the empirical average 
cost of solution x over n simulations, 
under the condition [ ]T tP 2 # e  with 

,02e  where T is the actual number of 
trips and t is a given upper bound [12].

3) With Upper Bounded  
Variance of Cost
Minimization of the empirical average 
cost of solution x over n simulations, 
under the condition [ ( )]xC #v e  with 
a fixed 02e  [12].

E. Relative Performance Measures
In the deterministic case, if the lower 
bound of cost (LBC) is known, it is 
straightforward to evaluate a solution by 
computing the distance of its cost to 
LBC and to evaluate an algorithm by 
measuring how fast it converges to LBC. 
However, in the uncertain case, there is 
no fixed optimal solution due to the 
random aspect. Therefore, the relative 
performance measure is also used for 
evaluating a given algorithm A, realized 
by comparing the solutions computed 
by A to some baseline solutions [6], 
[11], [13], [36], [38]. For instance, Fleu-
ry et al. [6] calculated the percentage of 
simulations with a higher number of 
trips than a baseline solution computed 
by a hybrid genetic algorithm. The stud-
ies of [11], [13] compared the empirical 
average cost of solutions computed by 
their proposed stochastic memetic algo-
rithm (detailed later in Section V-B2a) 
against the ones computed by a deter-

ministic memetic algorithm on a set of 
CARPSD instances.

F. Multiobjective Measures
All the performance measures presented 
in Sections IV-A–IV-D can be set as 
objectives for solvers. Sometimes, more 
than one metric should be optimized 
depending on the actual needs of the 
real-world applications. Multiple objec-
tives can be optimized simultaneously 
using some multiobjective optimization 
(MOO) approaches or be considered as 
a single objective using a linear combi-
nation of them. In [11], [12], both the 
average cost and its variance are com-
bined by a linear combination of these 
two objectives, [ ( )] [ ( )]x xC CE tv+  
with a constant .t  Bi-objective optimi-
zation approaches have been applied to 
CARP with uncertainties in [18], [34], 
[35], [39].

G. Computation Time
The run time performance is important 
for applications in reality. Most of the 
published work did not report the com-
putation time; only a few of them did.

The run time for finding the optimal 
solution of DCARP instances, trans-
formed from CARPSD assuming known 
variable expectations, was reported in 
[8], [11], [12], [35]. In [37]–[39], the run 
time performance of solving the robust 
models of CARPSD was evaluated using 
different solvers. When the variable distri-
butions of UCARP are unknown, the 
run time is defined as the execution 
duration till certain stopping criteria are 
met, such as when a given number of 
generations elapses or when a robust 
solution dominates for a given number of 
iterations [10], [17]. Chen et al. [20] stud-
ied the average run time of solving some 
CARP-SSTT instances optimally, while 
the run time of finding e-optimal solu-
tions is studied in [7]. Instead of the run 
time of (approximately) solving UCARP 
instances, Maclachlan et al. [28] reported 
the computational time for training rout-
ing policies.

Due to different UCARP variants, 
the computation time is often very dif-
ficult to compare directly among differ-
ent studies.
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H. Discussion
The performance measures of solutions 
for CARP with uncertainties can be 
categorized into different groups, con-
sidering the objectives, constraints, sce-
narios and the dependence on variable 
distribution assumptions, as summarized 
in Table IV. The measures used in each 
publication reviewed in this survey are 
given in Table V.

Measures for evaluating solutions are 
usually defined or selected by human 
decision makers. A solution to UCARP 
with low risk of extremely high cost can 
be too conservative and leads to low 
reward or high cost. Sometimes, solu-
tions with high expected or average per-
formance are preferred, while solutions 
with low risk are favourable in the cases 
that failure leads to high cost. Balancing 
the trade-off between risk and cost is not 
trivial. Given a set of solutions (deci-
sions), the human decision makers need 
to determine the optimal solutions using 
pre-defined decision-making criteria 
based on the practical consideration.

In Table IV, measures (1)-(9) and 
(15)-(17) are not very practical as they 
are calculated based on known variable 
distributions, which are usually not 
accessible in real-world applications. 
Instead, measures (10)-(12) and (18)-
(20) over a set of given scenarios can be 
calculated and then used. (14) and (22) 
indicate how bad a situation the evalu-
ated solution could lead to, while (13) 
and (21) indicate how good the situa-
tion could be. They could be regarded as 
pseudo lower or upper bounds. It is pos-
sible in a solution that a large number of 
vehicles or trips are involved with a low 
travel cost, which will lead to a high cost 

of vehicle usage. In such cases, the mea-
sures related to the number of trips, 
(15)-(22), are crucial. Measures (23) and 
(24) help to handle stochastic con-
straints. As the actual lower bound of 
cost is unknown in the CARP with 
uncertainties, the relative performance 
measure (25) assists the understanding of 
solution quality. The multi-objective 
measure (26) generally refers to any 
measure which considers more than one 
measure presented above.

V. Solution Approaches
After reviewing uncertainty models and 
performance measures, this section cate-
gorizes different solution approaches to 
robust optimization for the CARP with 
uncertainties. CARPs can be trans-
formed into VRPs. However, the num-
ber of vertices of the resulting VRP 
triples the number of tasks of the origi-
nal CARP [42], which implies an 
increase in the computation time. 
Therefore, the methods for solving (sto-
chastic) VRPs [43]–[45] are often not 
suitable to be applied to solving (sto-
chastic) CARPs. Section V-A presents 
the uncertainty handling techniques 
designed specially for avoiding the trip 
interruptions (Section V-A1) and repair-
ing failed solutions (Section V-A2). Pub-
lished work around robust optimization 
in CARP with uncertainties will be 
briefly divided into two categories: eval-
uating the robustness of solutions opti-
mized for the deterministic CARP 
transformed from the UCARP, and 
approaches for directly searching for 
robust solutions for UCARP. As 
approaches of these two categories usu-
ally overlap, we propose a new taxono-

my as shown in Figure 3 (Sections V-B 
and V-C) to facilitate our understanding 
of different approaches. Finally, recent 
advances in learning routing policies are 
presented in Section V-D.

A. Handling Uncertainties
Uncertainties in CARP usually lead to 
re-planning of routes. There are four 
major sources of uncertainties: a can-
celled task, an absent edge, a task on an 
absent edge and a violation of vehicle 
capacity. The first one is easy to under-
stand. The second and third ones may be 
due to a temporal maintenance or an 
accident on a road (with a task), which 
is difficult to forecast at the time of 
planning. The last one is due to the per-
turbation of demands. A vehicle may 
exhaust its capacity before completing a 
trip, then a trip interruption, sometimes 
called route failure, occurs. A prior and 
posterior techniques (Figure 1) have 
been proposed to reduce the probability 
of route failure or increase the ability to 
react optimally in such situations.

1) A Prior Techniques
To reduce the probability of route fail-
ure due to a violation of vehicle capaci-
ty, two a prior techniques by editing the 
problem constraint [6] and objective 
function [12] have been proposed, 
respectively.

a) Slack Approach—Conservative 
Constraint
To avoid solutions in which the total load 
is close to the vehicle capacity Q, Fleury 
et al. [6] reduced the vehicle capacity by 
%k  before the deterministic optimization 

process. This technique is named as a slack 

V-A Handling
Uncertainties

V-A1 A Prior
Techniques

V-A1a Slack
Approach

V-A1b
Law Approach

V-A2 Posterior
Techniques-Repair Operators

V-A2a
Skip-and-Jump

V-A2b Alternative
Shortest Path

V-A2c
Recourse Strategy

V-A3 Resampling
for Evaluation

FIGURE 1 Techniques for handling uncertainties.
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approach in [6], while the regular con-
straint on capacity without reduction, as 
in classic DCARP, is called the tight 
approach. In [6], a pseudo capacity 90% Q 
is used during optimization, while the 
actual capacity Q is used when evaluating 
the solutions. The slack approach is capa-
ble of avoiding some violation of capacity 
constraint due to stochastic demands, 
however it may increase the number of 
trips, which implies an increase in the 
solution cost. Moreover, the control 
parameter k is difficult to set. A similar 
approach was used by [36] to generate 
DCARP instances.

b) Law Approach—Bi-Objective Function
Different from revising the vehicle 
capacity as in the slack approach, the law 
approach [12] varies the objective func-
tions to handle uncertainties. Instead of 
minimizing the cost of solutions, the law 
approach considers the minimization of a 
weighted sum of the cost and its stan-
dard deviation.

2) Posterior Techniques— 
Repairing Operators
Several operators have been designed for 
repairing infeasible solutions during 
execution [9].

a) Skip-and-Jump
In case of a cancelled task or when its 
actual demand is 0 at the time of serving, 
as well as when a task is on an absent 
edge, the vehicle skips the task and 
jumps to the next one.

b) Alternative Shortest Path
If an edge without task is absent, namely 
no longer being present on the map, this 
absent edge is replaced by the shortest 
path between its two vertices.

c) Recourse Strategy—Return  
and Continue
In case of a violation of vehicle capacity 
before serving a task t, the vehicle must 
return to the depot via the shortest path, 
refill goods or unload goods, go back to 
the task t and serve it, then continue its 
planned trip (e.g., [7], [11]). At least one 
supplementary trip will be induced 
depending on the number of times of 

capacity violation of a planned trip 
occurred, which implies an increase in 
the total cost. Note that this repairing 
technique is applied under the assump-
tions that (i) a task’s actual demand is 
known before it is served and (ii) assign-
ing another vehicle is impossible or 
inefficient. Techniques like this are called 
recourse strategies [11]. For instance, in the 
waste collection problem, a vehicle may 
be fully filled in the middle of a road 
(edge), thus cost has already been caused. 
For a better understanding of recourse 
strategies, we translate the recourse strat-
egy used by [9] into Algorithm 1, 
which also facilitates its reproduction.

3) Resampling for Evaluation
Techniques for handling uncertainties 
are important in optimization under 
uncertainties, among which sampling is 

the most discussed for reducing the 
probability of mis-ranking two solutions 
due to uncertain test scenarios [46], 
[47]. In [10], the solutions for uCARP 
were evaluated on an identical set of 
scenarios for a fair comparison. Wang  
et al. [17] resampled uCARP instances 
for evaluating each solution and used its 
maximal cost obtained on the sampled 
instances (thus worst-case cost) for 
ordering the solutions. Chen et al. [20], 
[21] used Monte Carlo simulations to 
evaluate the robustness of solutions.

These techniques for handling un
certainties are often integrated into the 
robust optimization approaches for 
approximately solving CARPs with 
uncertainties. Sections V-B and V-C will 
present the approaches when assuming 
known or unknown distributions of 
variables, respectively.

Algorithm 1  The recourse strategy used in [9], translated into pseudo-code by us.

Require: Planed route of tasks ( , , , , )r v t t tl0 1 2 f=

Require: Current location v
Require: Current available capacity Ql

  1:  Locate the next task t
  2:  if Next task t exists then
  3:      if [ ( )]Q d tE$l  then
  4:          Traverse to head(t) through the original path
  5:      else
  6:          Return to the depot and empty, Q Q=l

  7:          Traverse to head(t) through the shortest path
  8:      end if
  9:    while tail(t) not reached do	 2 t is not completed
  10:          Loop 1
  11:              Serve t progressively and update Ql

  12:              if Arrive at tail(t) then	 2 t is completed
  13:                  break while
  14:              end if
  15:              if Q 0=l  then	 2 Capacity is exhausted on the way of service
  16:                  Return to the depot and empty, Q Q=l

                        2 Neglect the remaining demand
  17:                  Traverse to head(t) through the shortest path
                      from current location
  18:                  break Loop 1
  19:              end if
  20:          End Loop
  21:      end while
  22:  else
  23:      Return to the depot
  24:  end if
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B. Robust Optimization With Variable 
Distribution Assumptions
This section presents the work on robust 
optimization in CARP with uncertain-
ties when known variable distributions 
are assumed.

1) Deterministic Optimization, 
Stochastic Evaluation—Solving 
transformed DCARP
A number of existing work did not 
design algorithms for solving CARP 
with uncertainties directly, but addressed 
UCARP as transformed DCARP and 
solved it using DCARP solvers, then 
evaluated the solutions on realizations 
(samples) of the corresponding UCARP. 
They focused more on the evaluation of 
solutions for selecting optimal heuristics 
for the UCARP. A two-phase framework, 
deterministic optimization phase and 
stochastic evaluation phase (DOSE), has 
been widely used in the robust optimiza-
tion of UCARP. We illustrate this two-
phase framework, DOSE, in Figure 2. 
During the optimization phase, algo-
rithms for solving DCARP are applied 
directly to the static version of the corre-
sponding UCARP, where they solve the 
UCARP instances by utilizing the 
expectation of the random variables. In 

some work, the evaluation phase is also 
called the replication phase because each 
solution is performed on a number of 
replications of UCARP. Each replication 
of a UCARP is a DCARP instance as 
the random variables are replaced by 
their deterministic realizations, usually via 
Monte Carlo simulations. This technique 
is also called “resampling” in noisy opti-
mization aiming at reducing the proba-
bility of mis-ranking solutions [48], [49]. 
This framework assumes that the model 
of the random variables, or at least, the 
expectation of the random variables, per-
fectly reflects the true one in real life. In 
other words, it assumes that the expecta-
tions of the random variables are known.

❏❏ Deterministic optimization pro-
cess: During this stage, the given 
UCARP with stochastic models for 
demands of known expectations is 
transformed to a DCARP instance 
of which the demands are determin-
istic and equal to the expectations of 
the stochastic demands. Then, the 
resulting DCARP instance can be 
solved by existing heuristics for the 
DCARP.

❏❏ Stochastic evaluation process: 
Then, the heuristics are evaluated 
and selected based on some pre-

defined performance metrics, computed 
using the simulation results of their 
optimized, deterministic solutions on 
a set of sampled instances of 
UCARP. Some repairing techniques 
may be applied during simulation if 
the actual demand of a task to serve 
next exceeds the vehicle’s available 
capacity. Section IV gives a compre-
hensive review of different measures 
that have been used in the literature.

Core components involved in the 
above framework are: (i) the stochastic 
models for demands; (ii) the heuristics 
for the DCARP, (iii) the performance 
metrics for evaluating heuristics and 
(iv) the repairing techniques. Com-
plete lists of previously studied (i), (iii) 
and (iv) have been introduced in Sec-
tion III-C, Sections IV and V-A2), 
respectively. Although all the heuristics 
for the DCARP can be used in this 
two-stage framework, we will not 
cover all of them but only the ones 
used by the publications with a focus 
on UCARP. The cor responding 
demand model and performance 
metric(s) will also be discussed.

The algor ithms designed for 
DCARP that have been used in this 
framework are summarized as follows.

UCARP I

Apply a Prior Techniques

Replace Random Variables

DCARP IE

DCARP I1 DCARP I2 DCARP Ir

Optimise by Solver for DCARP

Solution x

Sample r Deterministic Realisations

· · ·

Simulate x Simulate x Simulate x· · ·

C (x, I1) and T (x, I1) C (x, I2) and T (x, I2) C (x, Ir) and T (x, Ir)· · ·

Failure? Failure? Failure?Repair Repair Repair

Compute User-Specified Metrics for Evaluating x

Yes Yes Yes

No No No

Phase 1: Optimisation Phase 2: Evaluation

FIGURE 2 Two-phase framework: deterministic optimization—stochastic evaluation (DOSE). DCARPE denotes the DCARP instance generated by 
replacing the random variables of the given UCARP by their expectations. , ,I Ir1 f  denote the r deterministic realizations (samples) of UCARP. 

( , )xC Ii  and ( , )xT Ii  denote the resulted cost and number of trips of simulating a solution x on a deterministic realization .Ii
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a) Meta-Heuristics
Meta-heuristics have been widely used 
for handling DCARP [2], some of which 
have been used in the DOSE framework. 
CARPSD with truncated normal ran-
dom demands was considered in [11]–
[13] and this two-stage framework was 
used. In [12], [13], a hybrid genetic algo-
rithm (HGA) is used as the DCARP 
solver. Besides the average performance 
measures presented in Section IV as opti-
mization objectives, the study of [12] also 
considered the average cost and its 
variance simultaneously by a linear 
combination of these two objectives, 

n[ ( )] [ ( )]x xC CEn vt+ , where t is a con
stant. The empirical average of solution x 
over n simulations, [ ( )]xCEn , is used to 
estimate the expectation of the cost of x. 
In [11], a deterministic memetic algo-
rithm (MA) [50] is used as the DCARP 
solver. This heuristic is referred to 
a s  deterministic MA (DMA). In its 
comparison and selection steps, the solu-
tions are evaluated on the associate 
DCARP only. We translate the procedure 
into a more general deterministic generate-
and-test process as in Algorithm 2. In the 
“generate” step, an algor ithm for 
DCARP generates one or more solu-
tions, and then the generated solution is 
evaluated and tested if it is better than the 
current recommendation. Fleury et al. 
[11] evaluated a DMA (denoted as MA1) 
and another DMA with slack approach 
(denoted as MA2) on CARPSD with 
the minimization of deterministic cost 
as objective, and concluded that the use 
of slack approach increased the deter-
ministic cost of the associate DCARP 
but provided robust solutions to 
CARPSD. MA was further extended to 
stochastic MA (SMA) in [11] for solving 
CARPSD instead of DCARP, detailed 
later in Section V-B2a. During the sto-
chastic evaluation, Fleury et al. [11] 
assumed that (i) a trip can be interrupt-
ed for at most once and (ii) if it occurs, 
with a high probability the point of fail-
ure is just before the last task. [12] min-
imized both the average cost and 
variance by a linear combination of 
these two objectives.

Mei et al. [9] also used the DOSE 
framework. During the deterministic 

optimization phase, an MA with 
extended neighbourhood search 
(MAENS) [51] and )RTS , which is a 
repair-based tabu search (RTS) with an 
adjusted stopping criterion [52], were 
used to solve the gdb instances, based on 
which their uCARP instances are gen-
erated. A core feature of [9] is that, 
instead of recording only the best-so-far 
solution, all the best feasible solutions 
updated during the search process (line 
18 of Algorithm 3) are recorded. Dur-
ing the stochastic evaluation phase, each 
solution is simulated on 30 realizations 
of the corresponding uCARP and the 
lowest empirical average cost of the 
recorded solutions is used as the robust-
ness indicator [9]. Mei et al. [9] 
observed that (i) for a DCARP instance, 
there could be more than one globally 
optimal solution of different robustness 
levels; (ii) the optimal solution for 
uCARP, in terms of the empirical aver-
age cost, may not be the optimal solu-
tion for DCARP, and concluded that 
solving uCARP instances by applying 
DCARP solvers to its associate 
DCARP instance will make finding 
highly robust solutions difficult.

The arc routing problems with sto-
chastic demands (ARPSDs) are con-
sidered by [36] and the procedure 

shown in Algorithm 4 is used. Ran-
domized savings heuristic was applied 
to the arc routing problem (Rand-
SHARP) for solving the DCARP 
instances sampled using the slack 
approach ( ),sr  and the reliability and 
robustness of the obtained solution 
were estimated via Monte Carlo simu-
lations ( )er  to decide whether to con-
tinue or stop searching [36].

b) Bi-Objectivity
The above work only considered single 
objectives, either minimizing the total 
cost or minimizing the total number of 
trips. Lacomme et al. [53] incorporated 
a local search to a NSGA-II [54] for 
solving DCARP with the minimiza-
tion of the cost and the duration of the 
longest trip of a solution as its two 
objectives. Then, a bi-objective NSGA-
II with local search was used as solver 
during the deterministic optimization 
phase for solving CARPSD [34], [35]. 
In [18], the total cost and the total 
number of vehicles were minimized 
simultaneously.

c) Other Algorithms
In [7], DCARP was formulated as a set 
partitioning problem and solved using a 
branch-and-price algorithm.

Algorithm 2 Deterministic generate-and-test process, generalized from [11]. At its comparison  

and selection steps, the solutions are evaluated on the associate DCARP only.

Require: I: A UCARP with stochastic models of variables of known expectations
Require: SD: A DCARP solver, e.g., a memetic algorithm
 � 1:  IE !  Transform I to its associate DCARP by replacing the stochastic variables to their 

expectations
  2:  x SD!  generates a solution for IE

  3:  ( , )xy C IE!    2 Evaluate x once on ,IE  other measures
                              2 in Table IV can be used
  4:  while Stopping criteria not met do
  5:      x SD!l  generates a solution for IE  from x
             by perturbation
  6:      ( , )xy C IE! ll             2 Evaluate x l once on IE
  7:      if y y1l  then                 2 Test and replace
  8:          x x! l

  9:      end if
  10:  end while
  11:  return x
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2) Stochastic Optimization, Stochastic 
Evaluation—Solving Sampled DCARP

a) Adaptation of Meta-Heuristics
MA is adapted to CARPSD by using the 
empirical average objective value com-
puted over a number of simulations (as in 
the Evaluation phase of Figure 2) for 
comparing and selecting solutions, 
instead of using the deterministic value 
(Algorithm 2) [11], [12]. The resulting 
algorithm is called stochastic MA (SMA) 
due to the stochastic evaluation of solu-
tions (Algorithm 3), which is exactly the 
same as the stochastic evaluation phase of 
the optimization-evaluation framework; 
thus, repairing operations may occur [11]. 
SMA with different objectives have been 
considered; one aims at minimizing the 
expected total cost (denoted as MA3) 
while the other aims at minimizing the 

expected number of trips (denoted as 
MA4) [11]. Fleury et al. [11] compared 
two SMAs, a DMA with slack approach 
and a DMA without slack approach on a 
set of CARPSDs to the LBCs of corre-
sponding DCARPs. The SMAs were 
more robust than the DMAs on the con-
sidered CARPSDs.

In [6], [12], only the average perfor-
mance was used for evaluating solutions, 
while Mei et al. [9] concluded that such 
statistics were not enough to indicate 
highly robust solutions.

b) Stochastic Path Scanning with Adaptive 
Large Neighbourhood Search
The study of [8] considered CARPSD 
with Poisson distributed demands. In [8], a 
mathematical analysis of the probability of 
route failure and the expected cost was 
given under the assumptions that a trip 

could be interrupted for at most once and 
the demand was uniformly distributed on 
the corresponding edge. A stochastic path 
scanning method was proposed to con-
struct solutions considering the above anal-
ysis as additional constraints and an 
adaptive large neighbourhood search 
(ALNS) heuristic with a removal-insertion 
operation was designed to iteratively 
improve the solutions [8]. At each iteration 
of ALNS, a removal heuristic destroys the 
current solution by removing served edges 
and then an insertion heuristic reinserts the 
removed edges differently [8]. It is notable 
that the used removal (or insertion) heuris-
tic is selected from a set of removal (or 
insertion) heuristics using a roulette-wheel 
selection with weights updated adaptively 
according to the quality of newly con-
structed solutions by the removal-insertion 
operation [8]. The stochastic path scanning 
method with ALNS is also applied to 
CARP with stochastic service and travel 
times (CARP-SSTT) [20].

3) Robust Optimization Modelling

a) Stochastic Programming  
Model with Recourse
CARP-SSTT following normal distri-
butions was formulated as stochastic 
programming models with recourse 
(SPM-R), minimizing the serving cost 
and the expected recourse cost [20].

b) Chance Constrained  
Programming Model
CARP-SSTT following normal distribu-
tions was also formulated as a chance-
constrained programming model 
(CCPM) [20]. A branch-and-cut algo-
rithm was used for solving the CCPM of 
small size, aimed at minimizing the total 
serving cost with an upper bounded 
probability of extra trips for each vehicle 
[20]. The solutions found by the branch-
and-cut algorithm were used as referenc-
es for evaluating the quality of solutions 
found by the ALNS algorithm [20]. Eydi 
and Javazi [18] studied multi-commodity 
CARP with fuzzy demands (MOMC-
CARPFD) and formulated it as a fuzzy 
chance constrained program (fuzzy CCP) 
by representing the demand of every com-
modity on a serving edge as a triangular 

Algorithm 3 Stochastic generate-and-test process assuming known expectations of random  

variables, summarized by us.

Require: I: A UCARP with stochastic models of variables of known expectations
Require: r: Resampling number
  1: � IE !  Transform I to its associate DCARP by replacing the stochastic variables to their 

expectations
  2:  x !  Generate a solution for IE

  3:  y 0!
  4:  for { , , }i r1 f!  do
  5:      Ii !  Sample a deterministic realization of I
  6:      ( , )xy y C Ii! +       2 Evaluate x once on Ii  and
                                  2 cumulate the cost
  7:  end for
  8:  /y y r!         2 Average cost of x over r simulations,
                2 other measures in Table IV can be used
  9:  while Stopping criteria not met do
  10:      x !l  Generate a solution for IE  from x
            by perturbation
  11:      y 0!l

  12:      for { , , }i r1 f!  do
  13:          Ii !  Sample a deterministic realization of I
  14:          ,( )xy y C Ii! + ll l  2 Evaluate xl once on Ii  and
                              2 cumulate the cost
  15:      end for
  16:      /y y r!l l    2 Average cost of xl over r simulations
  17:      if y y1l  then               2 Test and replace
  18:          x x! l

  19:      end if
  20:  end while
  21:  return x
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fuzzy number. The proposed model was 
solved by a multi-objective GA [18].

c) Solving the Robust Counterpart
Babaee Tirkolaee et al. [37] proposed 
a robust optimization model for 
CARPSD based on Bertsimas and Sim’s 
method [55] assuming known deviation 
of demands and solved it approximately 
using a hybrid simulated annealing 
algorithm. The work of [37] was further 
extended by taking into account the 
working time of drivers [38]. More 
recently, Babaee Tirkolaee et al. [39] 
formulated a bi-objective multi-trip 
periodic CARP (PCARP) with sto-
chastic demands and used an invasive 
weed optimization algorithm to solve it 
approximately.

C. Scenario-Based Robust 
Optimization
In the work mentioned above, at each 
iteration of search, a new solution is 
generated for the transformed or sam-
pled DCARP, in which the variables are 
set to the expectations of random vari-
ables of the corresponding UCARP or 
sampled values following some distribu-
tion assumptions, respectively. Wang et al. 
[10] pointed out that in real-world 
applications, the random variables rarely 
follow a specific well-formed distribu-
tion; instead, only a finite set of random 
realizations of a uCARP (i.e., DCARP 
instances) is accessible. The problem is 
transformed into the search of robust 
solutions to a given set of n DCARP 
instances, { , , , },A I I Id d

n
d

1 2 f=  also called 
scenarios in decision making problems.

1) Adaptation of Meta-Heuristics
Wang et al. [10] adapted MAENS to the 
scenario-based uCARP by adding an 
instance selection mechanism and designing 
a new fitness function. At the beginning 
of search, a population is initialized for 
each realization, thus | |A  populations 
are initialized. Then, at each iteration of 
search of the improved MAENS [10], 
the instance selection mechanism operates as 
follows: (i) an realization, Ip, is selected 
from A  following a probability distri-
bution ;pr  and (ii) two distinct solu-
tions are selected from the population of 

Ip as the parents for reproduction. pr  
is updated periodically using the cur-
rent best normalized evaluations 
searched for each realization. The 
normalized evaluation of a solution s 
on the realization Ip is defined as the 

) )( , ) ( , ) ( ) ( ),E s I E s I C I C IN p p p p= -^ h  
where ) ( )C Ip  is the cost of all tasks in 
Ip and ( , )E s Ip  is the evaluation of solu-
tion s on Ip:

	 ( , ) ( , ) ( , ),E s I TC s I TV s Ip p p$a= + � (8)

where a  is a user-specified parameter 
and is adapted during the searching pro-
cess. ( , )TV s Ip  is the total capacity viola-
tion of s and ( , )TC s Ip  is the total cost of 

s simulating on the instance Ip. The new 
fitness function [10] is defined as

	 ( ) ( , ),s E s Ifitness
A

p
I

n p
p

$r=
!

/ � (9)

where pr  is the probability of selecting 
the realization AI p !  by the instance 
selection mechanism. It is notable that in 
[10], though the weighted average per-
formance over A  is used as the fitness 
value, the robustness of solutions is mea-
sured using the unweighted average. 
Wang et al. [10] compared two instances 
of the improved MAENS using Eqs. (8) 
and (9) as objective function, respective-
ly, on ugdb and uval benchmarks, and 
observed trade-off between robustness 

Algorithm 4 Stochastic generate-and-test process without assuming known expectations  

of random parameters.

Require: I: A UCARP
Require: r: Resampling number
Require: gr : Strategy for sampling a DCARP used to generate solutions
Require: tr : Strategy for sampling a DCARP used to evaluate and test solutions
  1:  Is !  Sample an independent deterministic realization of I using gr

  2:  x !  Generate a solution for Is

  3:  y 0!
  4:  for { , , }i r1 f!  do
  5:   �   Ii !  Sample an independent deterministic realization
         of I using tr

  6:      ( , )xy y C Ii! +       2 Evaluate xl once on Ii and
                                2 cumulate the cost
  7:  end for
  8:  /y y r!       2 Average cost of x over r simulations,
              2 other measures in Table IV can be used
  9:  while Stopping criteria not met do
  10:   �   Is !  Sample an independent deterministic realization 

of I using gr

  11:      x !l  Generate a solution for Is  from x by perturbation
  12:      y 0!l

  13:      for { , , }i r1 f!  do
  14:     �     Ii !  Sample an independent deterministic 

realization of I using tr

  15:     �      ( , )xy y C Ii! + ll l  2 Evaluate xl once on Ii  and 
                      2 cumulate the cost

  16:      end for
  17:      /y y r!l l     2 Average cost of xl over r simulations
  18:      if y y1l  then                    2 Test and replace
  19:          x x! l

  20:      end if
  21:  end while
  22:  return x
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V-D Learning Routing Policies

V-D1 GPHH V-D2 Knowledge Transfer V-D3 Ensemble V-D4 Coevolution

FIGURE 4 Methods for learning routing policies.

and time consumption. The MAENS 
using (9) achieved more robust solutions 
but was more time-consuming due to 
the evaluation on all instances, while the 
MAENS using (8) was computationally 
faster but less robust to the perturbation 
of variables.

2) Estimation of Distribution 
Algorithm with Stochastic  
Local Search
Similar to [10], Wang et al. [17] focused 
on searching for robust solutions over a 
set of DCARP instances and proposed 
an Estimation of Distribution Algorithm 
with Stochastic Local Search (EDASLS), 
based on the Edge Histogram Based 
Sampling Algorithm (EHBSA) and a 
novel Stochastic Local Search (SLS) pro-
cedure which is designed to handle the 
uncertainties in uCARP. In [17], the 
worst-case performance was used when 
ranking solutions during search.

3) Solving the Robust Counterpart
Chen et al. [21] formulated the road 
network monitoring service problem as 
a CARP with stochastic service time 
(CARP-SST) without the assumptions 
of known variable distributions made in 
[20]. A robust optimization model was 
built by replacing the constraint on the 
stochastic service time variable by a 
number of constraints based on a set of 
scenarios with deterministic service 
time [21]. The proposed model aimed to 
optimize the worst case value over the 
given set of scenarios [21]. It was solved 
by a branch-and-cut method and the 
resulted solutions were evaluated via 
Monte Carlo simulations [21].

D. Learning Routing Policies
Very recently, several machine learning 
methods have been applied to learning 
routing policies for CARP with uncer-
tainties (Figure 4).

1) Genetic Programming  
Hyper-Heuristic
In [25], [26], the routing policy for 
multi-vehicle UCARP was modelled as 
a Lisp tree and evolved using genetic 
programming hyper-heuristics (GPHH). 
The routing policy builds the routes in 
parallel and it is evaluated by a discrete 
event simulation system, which consists 
of a system state and a priority queue of 
3 events (refill, serve and refill-and-serve 
events). Mei and Zhang [26] found that 
the proposed GPHH generated better 
routing policies than the manually 
designed ones, but clarified that when 
the number of vehicles is changed, the 
policies need to be retrained.

MacLachlan et al. [27] proposed two 
new techniques to improve the GPHH: 
(i) a no-early-refill filter and (ii) a flood 
fill (FF) feature to better handle route 
failures and reduce the extra cost. Back-
hauls to the depot result in extra cost. If 
the depot is on the expected shortest 
path to a task to serve, the vehicle will 
automatically refill at the depot and then 
serve this task. This leads to small routes 
and increase in the total cost due to the 
backhauls to the depot. The designed no-
early-refill filter excludes the tasks in 
which the depot is on the expected 
shortest path to the task. Another possible 

Robust Optimisation
in CARP With Uncertainties

V-B Optimisation
Under Distribution Assumptions

V-B1 Deterministic
Optimisation

V-B1a
Meta-Heuristics (5)

V-B1b
NSGA-II (4)

V-B1c
Branch-and-Price (1)

V-B3 Robust Optimisation
Modelling

V-B3a Stochastic
Programming (1)

V-B3b Chance
Constrained Programming (2)

V-B3c Robust
Counterpart (3)

V-B2 Stochastic
Optimisation

V-B2a
Meta-Heuristics (3)

V-B2b
SPS-ALNS (2)

V-C Scenario-Based
Robust Optimisation

V-C1
Meta-Heuristics (1)

V-C2
EDASLS (1)

V-C3 Robust
Counterpart (1)

FIGURE 3 Taxonomy of robust optimization approaches for CARP with uncertainties. The number in brackets indicates the number of papers in 
that category.
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cause of backhauls to the depot is route 
failures. It was assumed in [6], [27] that 
route failures usually occur toward the end 
of routes. The closer the failure is to the 
depot, the shorter the backhaul is, and 
the smaller the extra cost is. To determine 
the tasks closed to the depot and select the 
next task to serve, the FF factor is de
fined. For each unserved task t, FF(t) is 
defined as the number of these shortest 
paths that t is a member of. Tasks with 
smaller FF values are preferred. No fea-
ture of the problem has been used and 
for each newly sampled scenario, the 
routing policy needs to be re-trained.

Very recently, Wang et al. [31], [32] 
noticed that the routing policies evolved 
by GPHH are hard to be interpreted. To 
evolve less complex and more interpre-
table routing policies, two approaches 
have been investigated: (i) a two-stage 
GPHH [31], which takes the perfor-
mance as an optimization objective dur-
ing the first stage, then both the perfor-
mance and the tree size are optimized 
with a multi-objective GP proposed in 
[31], was designed; (ii) three ensemble 
methods based on GP, namely Bag-
gingGP, BoostingGP and cooperative 
coevolution GP (CCGP), were pro-
posed and compared to the simple 
GPHH [26], and the experimental study 
on the tested UCARP instances showed 
the potentials of CCGP on evolving 
more interpretable routing policies.

Almost all the work reviewed in this 
paper rely on the assumption that it is 
not possible to assign another vehicle 
when a route failure occurs. Thus, when 
a vehicle fails to serve its assigned task t, 
it should return to the depot, release its 
capacity and then return to the next task 
to serve; no other, even nearby, vehicle is 
capable of serving the task t instead. This 
assumption is not always true in reality. 
To the best of our knowledge, 
MacLachlan et al. [28] were the first to 
split deliveries in UCARP and proposed 
an enhanced GPHH with vehicle col-
laboration (GPHH-C). The vehicle col-
laboration was proved to be effective 
compared to the GPHH without col-
laboration [25] on the ugdb, uval, uegl 
benchmarks, and also to EDASLS [17] 
on most of the tested instances.

2) Knowledge Transfer
More recently, Ardeh et al. [29] assumed 
that the routing policies of similar sce-
narios share similar (sub-)trees, which 
could be seen as knowledge transfers 
among multiple routing policies.

3) Ensemble Methods
Wang et al. [33] proposed two novel 
ensemble genetic prog ramming 
approaches, namely diverse bagging 
genetic programming (DivBaggingGP) 
and diverse niching genetic program-
ming (DivNichGP), to evolve policies. 
The former evolves policies sequentially 
while the latter evolves policies in a par-
allel manner. An ensemble of simpler 
and more interpretable routing policies 
were evolved in [33].

4) Solution-Policy Co-Evolver
The above work focused mostly on 
either the evaluation of the robustness of 
solutions or repairing techniques (some-
times called recourse policy) which lead 
to a low extra cost due to additional trips 
(backhauls to depots). Liu et al. [30] pro-
posed a new proactive-reactive approach, 
called solution-policy co-evolver. In [30], 
a solution is represented as a baseline task 
sequence and a recourse policy, which are 
evolved simultaneously in a cooperative 
coevolution manner by an estimation of 
distribution algorithm (EDA) and genetic 
programming (GP), respectively. This 
approach was only tested on the single-
vehicle case [30] but could be extended 
to the multi-vehicle case.

E. Summary of Solution Approaches
Figures 1, 3 and 4 summarize the tech-
niques for handling uncertainties, the 
robust optimization approaches for 
CARP with uncertainties, and the 
applications of machine learning meth-
ods to routing policies.

In the early attempt to solve the 
CARP with uncertainties, different 
assumptions of variable distribution 
have been made (Section V-A). Algo-
rithms for solving DCARP are applied 
directly to the static version or deter-
ministic realizations of a UCARP (Sec-
tion V-B1) aiming at minimizing the 
expected cost, then the obtained solu-

tions are evaluated on unseen samples 
using diverse performance metr ics 
(Tables IV and V).

Several algorithms are adapted for 
solving CARP with uncertainties (Sec-
tion V-B2). These approaches mostly dif-
fer in (i) the sampling methods of deter-
ministic realizations when generating 
intermediate solutions during the search 
and (ii) using deterministic evaluation 
(i.e., sample UCARP once and then 
evaluate on the sampled DCARP) or 
stochastic evaluation (i.e., sample 
UCARP multiple times and then aver-
age the performance on the sampled 
scenarios) during the search. Some other 
work was interested in designing robust 
optimization models (Section V-B3).

Scenario-based robust optimization 
approaches were investigated without 
assuming variable distributions (Section 
V-C). As the exact values of parameters are 
known only at the time of execution in 
practice, the solutions obtained may 
become infeasible. For example, the vehi-
cle capacity may be exceeded due to 
unexpectedly high demands of tasks. Con-
sequently, some work focused on chang-
ing the problem formulation to reduce the 
probability of route failure (e.g., [6], [12]), 
and designing or learning effective and 
efficient recourse strategies (also called 
recourse policies or repairing operators), 
such as in [30]. The routing or recourse 
policies are often evaluated by the average 
performance in unseen problem instances.

Techniques for handling uncertain-
ties, including a prior techniques, poste-
rior techniques and resampling, can be 
integrated into different approaches for 
solving variants of CARP with uncer-
tainties (Figure 3).

VI Discussion and Challenges

A. Difficulties in Comparing 
Approaches
Different approaches for handling 
CARP with uncertainties are rarely 
compared to each other in the literature, 
but mostly compared to some state-of-
the-art approaches for solving DCARP 
or to some techniques proposed by the 
same authors, probably due to the fol-
lowing reasons.
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1) Lack of Common Benchmarks
The proposed approaches were mostly 
designed and tested on different problem 
instances: different uncertainties, different 
models for uncertainties, a priori known 
or unknown models. Those problem 
instances were designed by adapting dif-
ferently from well-known DCARP 
benchmarks or self-designed instances. As 
shown in Tables II, III and V, diverse 
variants of CARP with uncertainties 
have been studied, while for each variant, 
different assumptions on variable distri-
butions have been made and different 
distributions have been used for sampling 
the variables. Only a few work used the 
benchmarks uval, uegl, ugdb2. Most work 
designed their own instances for testing.

2) Usage of Different Assumptions

a) A priori known or unknown models
As shown in Figure 3, most of the 
approaches assume certain a priori 
knowledge of variable distributions 
while some of them do not and are sce-
nario-based (e.g., [10], [17]).

b) Assumptions on Vehicles
Besides the differences in assumptions on 
uncertainties, different assumptions have 
also been made on vehicles, which implies 
different designs of recourse strategies, as 
detailed in Section V-A2c. For instance, 
some work assumed that a vehicle can 
have at most one extra trip, while some of 
them do not. Only [28] considered collab-
oration between vehicles. In all the other 
work, it is assumed that when a route fail-
ure occurs, no other vehicle is able to help, 
and then a recourse is mandatory.

3) Usage of Different  
Performance Measures
Table V shows a large number of differ-
ent performance measures that have 
been designed with particular foci and 
used in the optimization and evaluation 
processes. Although most of the work 
reported the average cost over a number 

2 The Java benchmark generator for sampling UCARP 
instances, based on static instances, using the same vari-
able assumptions as in [9], can be found in the GitHub 
project: https://github.com/meiyi1986/gpucarp.

of simulations, it is impossible to com-
pare different approaches due to the rea-
sons listed above. Moreover, even if a 
common benchmark, for example uval, 
is used, using different random seeds for 
sampling scenarios will introduce noise 
when comparing approaches. For a fair 
comparison, the solutions recommended 
by different approaches should be evalu-
ated on an identical set of scenarios.

As a conclusion, a common bench-
mark for studying CARP with uncer-
tainties is needed.

B. Scalability
Most current work focused on small-scale 
or medium-scale problem instances. The 
instances in the UCARP benchmark sets, 
ugdb, uegl and uval [9], are small compared 
to the problems in reality, not to mention 
other self-designed instances of smaller 
size (cf. Table III). For example, the uval 
instances contain no more than 50 verti-
ces and 97 edges. Meanwhile, in the studies 
of DCARP, several sets of static CARP 
instances created based on real-world trans-
port networks (e.g., Flanders district of 
Belgium [56], [57], Beijing and Hefei of 
China with up to 3584 tasks [58], [59]) 
have been used. Moreover, only [18], [34], 
[35], [53] focused on multi-objective 
DCARP and considered instances of small 
size only in their case studies. Adapting 
recent approaches for handling multi-
objective large-scale DCARP, such as MA 
based on route distance grouping [56], to 
multi-objective large-scale UCARP is 
worth investigating.

C. Computation Time
As discussed previously in Section 
IV-G and shown in Table V, most of 
the reviewed work did not report the 
computation time. The stopping crite-
ria were normally designed as a maxi-
mum number of iterations or when a 
predefined solution for a transformed 
DCARP was found. However, the 
execution time is crucial in real-world 
applications and it is not realistic to 
obtain a transformed DCARP due to 
complex uncertainties. In reality, we 
often define a maximum execution 
time as the budget and report the best 
solution found within this budget.

VII. Conclusion and  
Future Directions
Our review in this paper has shown that 
there has been a surprising broad range 
of issues that have been addressed by 
published papers on the CARP with 
uncertainties. There are many places 
where uncertainties can occur in the 
CARP. Various techniques and algo-
rithms have been adapted or developed 
specifically for handling such uncertain-
ties when finding a near optimal solution 
to the CARP. However, in spite of the 
breadth in research, the depth is largely 
lacking. There are still many open 
research questions that remain to be 
answered. This section first draws some 
conclusions and then points out possible 
future research directions.

A. Conclusion
During the past decades, CARP and its 
variations have been studied widely due 
to its large number of real-world appli-
cations. However, most of the work 
assumed deterministic problem instanc-
es, which is far from the reality. Till 
2002, Fleury et al. [6] started to investi-
gate the robustness of solutions to the 
CARP with stochastic demands. To the 
best of our knowledge, Mei et al. [9] was 
the first to propose uncertain CARPs 
with different random variables, includ-
ing random demands, costs, presence of 
edges and tasks. Since then, more and 
more research studies have been con-
ducted on the robust optimization of 
CARPs with uncertainties. This paper 
focuses on the robust optimization of 
the CARP with uncertainties and 
reviews the related work by discussing 
the modelling of uncertainties, robust-
ness evaluation of solutions, uncertainty 
handling techniques and robust optimi-
zation approaches, as well as the learning 
of routing policies.

The core components for solving 
UCARP are divided into three main 
steps: data prediction, problem solving 
and decision making. Published work 
around the CARP with uncertainties has 
very different foci: problem modelling, 
solvers, metrics for evaluating solutions, 
creation of instances, generation of testing 
scenarios, etc. These research topics rely 
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highly on the targeted real-world appli-
cations and are often not independent of 
each other. The uncertainty modelling, 
uncertainty handling, stochastic optimiza-
tion and robust decision making are all 
important research topics closely related 
to the CARP with uncertainties.

B. Future Directions
There are three main areas of future 
research related to the CARP with 
uncertainties.

1) Construction of Benchmark
It is necessary to construct a common 
benchmark for studying the CARP with 
uncertainties. Ideally, the benchmark 
should (i) include a set of different 
uncertainties and a set of candidate dis-
tributions that can be used for modelling 
each uncertainty; (ii) offer the possibility 
of adding new uncertainties and models; 
and finally, (iii) be constructed based on 
well-known DCARP benchmarks (such 
as val, egl and gdb or larger instances [58]) 
for an easier comparison with the deter-
ministic case. The benchmark should be 
scalable so that we can test the scalability 
of any proposed algorithm.

2) Investigation into New Approaches

a) Simplified Assumptions on Vehicles
Current recourse strategies (except [28]) 
assume that assigning another vehicle is 
impossible or inefficient, hence only the 
actual capacity-violated vehicle is 
replanned. In reality, it is possible to allo-
cate an additional vehicle as an alterna-
tive or ask a nearby vehicle to help.

b) Robustness Measures
Expected performance and average per-
formance are often used in current 
work. However, the expectation of vari-
ables and even the distributions are 
mostly unknown in practice. Robustness 
measures based on a weighted average 
performance computed using Nash 
equilibria is worth investigating.

c) More Recommendations  
for Decision Makers
Besides the very few approaches using 
bi-objective optimization, most of the 

approaches recommend one solution 
only at the end of their execution. It is 
worth applying multi- or many-objec-
tive optimization with user specified 
preferences, or using probabilistic deci-
sion-making models for recommending 
solutions to generate a small set of good 
solutions from which human decision 
makers can further select a solution to 
execute with their expertise.

d) Hybridization with Classical Methods
Features in the UCARP instances are so 
far not well exploited. It would be inter-
esting to exploit such features in new 
approaches and to combine problem-
independent meta-heuristics, problem-
specif ic heur ist ics and class ical 
mathematical programming methods 
when designing new solution approaches.

e) Trade-Off Between Exploration  
and Exploitation
Due to the computational cost of simu-
lating a solution on a scenario, given a 
fixed time budget, balancing the trade-off 
between the number of times a solution 
is simulated and the number of iterations 
that an algorithm executes is important 
for ensuring the computational efficiency 
in finding a near optimum. Empirical 
studies showed that increasing the simula-
tion number along with the iteration 
number can speed up the convergence, 
under the assumption that the difference 
between solutions becomes smaller when 
searching is close to the optimum [60], 
[61]. However, in the current work, a 
constant value of simulations was used for 
reevaluating solutions. Determining the 
optimal simulation number for stochastic 
evaluation is crucial and a key topic for 
future research.

3) Real-World Applications
Most work in the CARP with uncer-
tainties were experimented on artificial 
problems only. Few real-world applica-
tions have been implemented except for 
[20], [21], in which real data of road net-
works in Shanghai city were used. Note 
that not only real data is needed, and the 
actual road conditions and traffic rules in 
reality, which probably determine the 
design of recourse strategies, should also 

be considered, as examples given in [7] 
show: Should a vehicle always return 
from a node or is it allowable to take a U 
turn at any point along an edge; if the lat-
ter case, how to calculate the cost of its 
travelled time/distance on this edge; 
besides the cost associated to edges, is 
there any additional cost of returning to 
the depot (e.g., cost of a U turn, cost of 
refilling/unloading goods)? In the future, 
it would be interesting to apply robust 
optimization approaches and design of 
routing polices to real-world applications 
of the CARP with uncertainties.

Real-world problems provide a fer-
tile ground for future research. There 
are many new problem formulations 
that we should consider in the future, 
for example, multiple depots [15], mul-
tiple vehicle capacities [16], and sto-
chastic and uncertain decision variables 
that are, to our best knowledge, not 
well exploited.
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