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Abstract

R ecent years have witnessed re­
markable successes of machine 
learning in various applications. 

However, machine learning models suffer 
from a potential risk of leaking private 
information contained in training data, 
which have attracted increasing research 
attention. As one of the mainstream priva­
cy-preserving techniques, differential pri­
vacy provides a promising way to prevent 
the leaking of individual-level privacy in 
training data while preserving the quality 
of training data for model building. This 
work provides a comprehensive survey on 
the existing works that incorporate differ­
ential privacy with machine learning, 
so-called differentially private machine 
learning and categorizes them into two 
broad categories as per different differen­
tial privacy mechanisms: the Laplace/
Gaussian/exponential mechanism and the 
output/objective perturbation mecha­
nism. In the former, a calibrated amount 
of noise is added to the non-private 
model and in the latter, the output or the 
objective function is perturbed by ran­
dom noise. Particularly, the survey covers 
the techniques of differentially private 
deep learning to alleviate the recent con­
cerns about the privacy of big data con­
tributors. In addition, the research 
challenges in terms of model utility, priva­
cy level and applications are discussed. To 
tackle these challenges, several potential 
future research directions for differentially 
private machine learning are pointed out.

I. Introduction
Machine learning aims to simulate the 
behaviors of human beings and give 
computers the ability to learn new 
knowledge or skills from data without 
being explicitly programmed. In the 
past decades, it has led to remarkable 
breakthroughs in both academia and 
industry including a variety of exciting 
real-world domains of images, videos, 
text, speech, complex networks, robots, 
healthcare and many more. Deep learn­
ing [1] based on artificial neural net­
works has rapidly become a popular 
branch of machine learning techniques 
since 2012 by virtue of the unprece­
dented performance. Machine learning 

methods, including deep learning 
methods, require more or less represen­
tative datasets for learning desirable 
models. However, these datasets may 
contain sensitive individual information. 
For the text typed on a mobile device, 
the individual information may include 
schedules, profiles, usernames, pass­
words, text dialogues, search queries and 
medical histories, etc. These data are 
usually privacy-sensitive even with legal 
and ethical constraints. With the era of 
big data coming, a dizzying array of 
semantic-rich data of individuals are 
being collected for analyzing, under­
standing and eventually entailing tre­
mendous commercial value. In some 
areas such as targeted advertisements 
and personalized recommendations, the 
datasets used for machine learning tasks 
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are numerous. In some domains, espe­
cially medicine and finance, each insti­
tute only has access to limited amount 
of data, and large datasets are often 
crowdsourced. Even though these datas­
ets for machine learning tasks enable 
faster commercial or scientific progress, 
the critical and sensible demand for 
preserving individual privacy from inva­
sion continues to rise in the crowd, 
companies and the government.

Ideally, the sensitive individual infor­
mation should not be leaked in the pro­
cess of training machine learning mod­
els. In other words, we al low the 
parameters of machine learning models 
to learn general patterns (people who 
smoke are more likely to suffer from 
lung cancer), rather than facts about spe­
cific training samples (he had lung can­
cer). Unfortunately, shallow models like 
support vector machine and logistic 
regression are capable of memorizing 
secret information of the training data­
set [2]. Deep models like convolutional 
neural networks are able to exactly 
memorize arbitrary labels of the training 
data [3]. Recent attacks against machine 
learning models as in [2], [4]–[8] 
emphasize the implicit risks and catalyze 
an urgent demand for privacy preserv­

ing. For examples, Shokri et al. [4] 
designed a membership inference attack 
that can estimate whether the training 
dataset contains a specific data record via 
the black-box access to the model. 
Fredrikson et al. [5] presented a model 
inversion attack that can reveal individ­
ual faces given the API of the face rec­
ognition system and the name of the 
user to be identified. In [6], the decision 
probability of the classification model 
can be used for the model extraction 
attack, which implicitly steals the sensi­
tive training data. Attackers abuse the 
pharmacogenetic model to inversely 
infer the patients’ genetic markers [7]. 
Adversaries can maliciously acquire 
unexpected but useful information from 
the machine learning classifiers [8].

To alleviate the possible privacy threats 
to data owners, an attractive and viable 
method is to involve the privacy-preserv­
ing techniques into machine learning 
approaches. In early works, it is prevalent 
to anonymize the data before analyzing 
data including k-anonymity [9], l-diversity 
[10], t-closeness [11], which remove pri­
vate details or replace them with random 
values. Nevertheless, they are not always 
sufficient and only provide privacy guar­
antee to a certain extent, especially when 

adversaries own auxiliary individual infor­
mation in the sensitive dataset. Besides, 
anonymizing is not applicable to high-
dimensional or diverse input datasets due 
to its strong theoretical and empirical lim­
itations [12], [13]. As a solid privacy 
model, differential privacy [14] has 
recently been considered as a promising 
strategy for privacy preserving in machine 
learning. There are roughly three major 
reasons: (1) Differential privacy can pro­
vide a provable privacy guarantee for 
individuals, which benefits from the most 
solid theoretical basis compared with 
other privacy-preserving models [9]–[11], 
[15], [16]. (2) Differential privacy achieves 
privacy preserving in machine learning by 
adding a calibrated amount of noise to 
the model or output results according to 
the concrete mechanisms instead of sim­
ply anonymizing the individual data. (3) 
Differential privacy can make a graceful 
compromise between privacy and utility 
by adjusting a privacy budget index, in 
which the smaller the value of the privacy 
budget, the stronger privacy guarantee it 
provides. For data owners, differentially 
private machine learning further ensures 
that the adversaries are incapable to infer 
any information about a single record 
with high confidence from the released 
machine learning models or output 
results, even if an adversary knows all the 
remaining records in this dataset. A graph­
ical illustration of incorporating differen­
tial privacy into machine learning for pri­
vacy preserving is shown in Figure 1.

In the past decade, we have witnessed 
the rapid advances of new methods about 
differentially private machine learning. 
This is entirely due to the remarkable 
capability of differential privacy in pro­
viding effective and efficient approaches 
for solving the problem of privacy pre­
serving, by utilizing the basic mechanisms 
such as Laplace mechanism [14], expo­
nential mechanism [17], and functional 
perturbation mechanism [18]. These dif­
ferential privacy mechanisms can com­
bine the strength of differential privacy to 
satisfy the requirement of privacy pre­
serving for non-private prototypes of a 
wide range of machine learning tech­
niques. There are only a few existing 
reviews on the topic of differentially 
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FIGURE 1 A graphical illustration of incorporating differential privacy into machine learning for 
privacy preserving.
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private machine learning. Dwork et al. 
[19] briefly summarized a limited num­
ber of the most basic problems on differ­
entially private machine learning, includ­
ing the sample complexity, online 
learning and empirical risk minimization. 
Ji et al. [20] focused on generalizing dif­
ferential privacy mechanisms to tradi­
tional machine learning models, while 
missing many newly developed 
approaches that update state-of-the-art 
benchmarks. Furthermore, both of them 
do not cover the advances of differential 
privacy in deep learning. Inspired by this, 
the purpose of this survey is to present a 
systematic and comprehensive overview 
of the extensive researches about differ­
entially private machine learning. More 
specifically, this survey investigates on 
applications of different differential pri­
vacy mechanisms from the perspectives 

of both traditional machine learning and 
recently booming deep learning. Fig­
ure 2 roughly provides a summary of dif­
ferentially private machine learning 
research. In particular, this survey has 
three major contributions as follows.
1)	We propose a taxonomy of existing 

techniques about differentially pri­
vate machine learning. To the best 
of our knowledge, we are the first to 
investigate the development of dif­
ferentially private deep learning.

2)	We provide a detailed and thorough 
study of the state-of-the-art methods. 
As a result, this survey brings new 
perspectives to better understand the 
existing works and improve the priva­
cy level of machine learning models.

3)	To facilitate the timely and potential 
research of this area for researchers 
from privacy preserving, especially 

machine learning, we summarize the 
limitations and challenges of current 
research works, and suggest several 
promising future research directions.
The rest of this paper is organized as 

follows. Section II introduces the related 
backgrounds. In Section III, we give a 
theoretical description of the application 
of differential privacy in traditional 
machine learning in detail. Section IV 
carefully covers recent models of differen­
tially private deep learning. In Section V, 
we discuss the existing challenges and 
point out promising future directions. Sec­
tion VI summarizes this review. Due to 
the limitation of space, five summary tables 
are shown in the supplementary material1.

II. Backgrounds
In this section, we will introduce the def­
inition of differential privacy, the princi­
ple differential privacy mechanisms and 
then present a brief overview of machine 
learning. The notations used in this sur­
vey are summarized in Table I.

A. Differential Privacy
Differential privacy [14] is a solid priva­
cy-preserving model presented by 
Dwork et al. in 2006. It aims to preserve 

TABLE 1 The common notations 
used in this survey.

NOTATIONS EXPLANATION 

D DATASET 

X  SAMPLE SPACE 

Y  OUTPUT SPACE 

M  ALGORITHM 

n SIZE OF THE DATASET 

d DIMENSION OF THE SAM-
PLE SPACE

L LOSS FUNCTION 

e PRIVACY BUDGET 

d POSSIBILITY OF VIOLATING 
e -DIFFERENTIAL PRIVACY

S $^ h SENSITIVITY 

Lap $^ h LAPLACE DISTRIBUTION 

( , )0N 2v  GAUSSIAN DISTRIBUTION 
WITH MEAN 0 AND VARI-
ANCE 2v  

1The supplementary material that includes five summa­
ry tables is available at http://see.xidian.edu.cn/faculty/
mggong/publication.htm
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FIGURE 2 The proposed taxonomy to summarize the methods about differentially private 
machine learning.



52    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2020

privacy of each record in the dataset and 
does not depend on any background 
knowledge of adversaries.

Definition 1. (Differential Privacy) 
For two datasets D and Dl differing 
only in one element, a randomized 
algorithm M guarantees ( , )e d -differen­
tial privacy for any subset of the output 
S, if M satisfies:

	
( )

.

Pr

Pr

expD

D S

SM

M$

! #

!

e

d+l

^
^
h
h

6
6

@
@ �
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The parameter e  denotes the privacy 
budget, which controls the privacy level 
of .M  To preserve privacy, the algorithm 
M randomizes the output and ensures 
that the probability of outputting the 
same results will not change significantly, 
when any record is deleted from the 
dataset. In specific, the probability ratio is 
bounded by ( ) .exp e  For a small e , the 
probability distributions of output results 
of M on D and Dl are extremely simi­
lar and it is difficult for attackers to distin­
guish the two datasets. Especially when 
e  = 0, it implies the strongest privacy 
level. In addition, it provides a possibility 
to violate e-differential privacy by a small 
probability d  [21]. When d  is equal to 
zero in Eq. 1, the randomized algorithm 
M guarantees e-differential privacy.

To analyze the privacy budget con­
suming of composite algorithms, two 
differential privacy composition theo­
rems are widely used.

Theorem 1. (Sequential Composi­
tion Theorem [17]) Suppose M is a set 
of privacy algorithms, M  satisfies 
e , ii dR R^ h-differential privacy if M  is 

sequentially performed on an entire 
dataset and MM i !  satisfies ( , )i ie d - 
differential privacy.

Theorem 2. (Parallel Composition 
Theorem [22]) Suppose M is a set of 
privacy algorithms, M satisfies { }max ie - 
differential privacy if MM i !  provides 
( , )i ie d -differential privacy guarantees on 
a disjointed subset of the entire dataset.

The sequential composition theorem 
is applicable to the scenario that a series 
of privacy algorithms are sequentially 
trained on a common dataset. The ulti­
mate privacy budget is equal to the total 
privacy budgets. However, the parallel 
composition theorem is critical for the 

case that multiple privacy algorithms are 
separately trained on the respective sub­
set of the entire dataset. The ultimate 
privacy budget depends on the maxi­
mum of privacy budgets.

In general, differential privacy can be 
achieved by adding a reasonable amount 
of noise into the output results of the 
query function. The amount of noise 
will affect the trade-off between privacy 
and utility of the dataset. Specifically, too 
much noise will make the dataset useless 
and too little noise is not enough for 
providing pr ivacy guarantees. The 
amount of noise can be determined by 
the sensitivity. There are two types of 
sensitivity including the global sensitiv­
ity and the local sensitivity defined 
as follows.

Definition 2. (Global Sensitivity [14]) 
Given a query function : ,f D R"  the 
global sensitivity of f is defined as

	 ( ( ) ( ) .max f D f DGS
,D D 1= -, )f D l
l

� (2)

Definition 3. (Local Sensitivity [23]) 
Given a query function : ,f D R"  the 
local sensitivity of f is defined as

	 ( ( ) ( ) .max f D f DSL
D 1= -, )f D l
l

� (3)

( ) ( )f D f D 1- l  represents the Manhat­
tan distance between f(D) and ( ) .f Dl  
The global sensitivity and the local sen­
sitivity provide us with the magnitude 
that only one record can change the 
query result of f in the worst case. How­
ever, the former is independent of datas­
ets and is only determined by the query 
function f whereas the latter takes both 
datasets and the function into consider­
ation. The relationship between them is 
denoted as ( , ) ( , ) .maxf D f DGS LS

D
=  

The global sensitivity works well when 
the sensitivity of the query function f is 
relatively small. If the global sensitivity is 
relatively large, a great amount of noise 
would be added into the query results 
for differential privacy, which may pro­
vide excessive guarantees of privacy. As 
for the local sensitivity, using it directly 
may lead to the information disclosure 
of the individual data.

Three fundamental mechanisms can 
be used to guarantee differential privacy: 

the Laplace mechanism [14], the Gauss­
ian mechanism [19], and the exponential 
mechanism [19]. The Laplace mecha­
nism and the Gaussian mechanism are 
widely used to achieve differential pri­
vacy for numerical results while the 
exponential mechanism is used for non­
numeric results.

Definition 4. (Laplace Mechanism 
[14]) For a query function : ,f D R"  a 
randomized algorithm M  satisfies 
e-differential privacy if

	
(

( ) ( ) ,D f D Lap
S f

M
e

= +
)c m � (4)

where S( f ) denotes the sensitivity of f 
and ( ( )/ )Lap S f e  represents the noise 
drawn from the Laplace distribution 
with the center of 0 and the scaling of 
( ( )/ ) .S f e

Definition 5. (Gaussian Mechanism 
[19]) For a query function : ,f D R"  a 
randomized algorithm M  satisfies 
( , )e d -differential privacy if

	 ( ) ( ) ( , ),D f D 0M N 2
v= + � (5)

where ( , )0N 2
v  indicates that the noise 

variable is i.i.d. the Gaussian distribu­
tion with the standard deviation of v =

)f( ( ( / )) .lnS 2 22 d e  In the Gaussian 
mechanism, the l2  sensitivity of f is used 
to achieve differential privacy, which is 
defined as ( ) ( ) ( )S f f D f D2 2< <= - l  
where ( ) ( )f D f D 2< <- l  represents the 
Euclidean distance between ( )f D  
and ( ) .f Dl

Definition 6. (Exponential Mecha­
nism [17]) Suppose q(D, r) is a utility 
function of the output r, qD  is the 
global sensitivity of the utility function 
q(D, r) and O is the output domain of a 
randomized algorithm M on the data­
set D. M satisfies e-differential privacy 
if it returns ( )r r O!  with the probabil­
ity proportional to ( , )/( ) .exp q D r q2e D

B. Machine Learning
Machine learning is a prevalent para­
digm for automatically discovering pat­
terns in data and using the patterns to 
make predictions. Generally, machine 
learning aims to learn a deterministic 
function :f X Y"  from the sample 
space X  to the output space .Y  The 



MAY 2020 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE    53

machine learning algorithms can be 
broadly divided into two categories: 
supervised learning and unsupervised 
learning. Supervised learning typically 
refers to deducing the hidden pattern or 
function from labeled training data. 
Classic examples of supervised learning 
models include naive Bayes model, deci­
sion tree learning, linear regression, 
logistic regression and support vector 
machine (SVM), etc. Unsupervised 
learning aims to build a mathematical 
model from unlabeled data. Traditional 
unsupervised learning algor ithms 
include clustering, dimensionality re­
duction and so on. Note that the goal of 
machine learning is to learn a general­
ized model that can perform well on the 
samples outside the training data. Even 
more, machine learning models with the 
strong generalization ability can be well 
suitable for the entire sample space. In 
other words, machine learning models 
should extract the useful information 
from the distribution of data on hand, 
rather than depend on specifics of any 
individual sample. Therefore, differen­
tial privacy is not in conflict with 
machine learning and has been suc­
cessfully applied to machine learning 
for privacy preserving.

In deep learning, deep neural net­
works learn composite and highly 
abstract features through multiple layers 
and nonlinear processing units [24]. The 
representation ability of deep learning 
models raises exponentially with the 
increase of the number of network lay­
ers [25]. The existing deep learning 
models consist of convolutional neural 
networks, deep belief networks and 
recurrent neural networks, etc. These 
models have made great progress in 
numerous applications such as object 
detection, speech recognition, natural 
language understanding, medical diag­
nosis, social network analysis, automatic 
driving, board games, bioinformatics and 
so on. The training of deep learning 
models can be supervised or unsuper­
vised, which depends on the specific 
task. As a branch of machine learning, 
deep learning is faced with the privacy 
issue as well. An ideal deep learning 
model should be conducive to the data 

analysis while preserving the privacy of 
sensitive data.

III. Application of Differential 
Privacy in Traditional Machine 
Learning
In this section, the application of dif­
ferential privacy in traditional machine 
learning algorithms is categorized into 
two broad categories according to dif­
ferent noise perturbation mechanisms. 
The Laplace/Gaussian/exponential 
mechanism focuses on incorporating 
the Laplace mechanism or the Gauss­
ian mechanism or the exponential 
mechanism into non-private learning 
models directly while the output/
objective perturbation mechanism per­
forms by adding noise to the output 
results or the objective function. The 
overall framework of incorporating 
differential pr ivacy into traditional 
machine learning algorithms is shown 
in Figure 3.

A. Laplace/Gaussian/Exponential 
Mechanism
The Laplace mechanism, the Gaussian 
mechanism and the exponential mecha­
nism are three classical differential priva­
cy mechanisms. The privacy of individual 
data can be preserved by combining 
the Laplace mechanism or the Gauss­
ian mechanism or the exponential 
mechanism with specific machine learn­
ing algorithms.

1) Supervised Learning
Naive Bayes model. Consider a gi­
ven dataset {( , ), , ( , )}x x yD y( ) ( ) ( ) ( )n n1 1 f=  
with d + 1 attributes , , , , ,X X X Yd1 2 f  
where  Y Y!  i s  the  output  and 

{ , , }c cY k1 f=  is a set of responses. The 
Naive Bayes model is known as a classifica­
tion method based on the Bayes theorem 

( | ) ( ( | )x xP Y c X P X Y ck k= = = = =

( )/ ( | ) ( ))xP Y c P X Y c P Y ckk k kR= = = =  
and the conditional independence as­
sumption ( | )xP X Y ck= = = (P X

j

n

j
1
P =
=

| ) .x Y cj k=  The Bayes theorem is used 
to find the output y with the largest 
posterior probability:

	

( )

( | ).

argmax

x

y P Y c

P X Y c

c
k

j j k
j

n

1

k

#

= =

= =
=

% �
(6)

A pioneering method of differentially 
private Naive Bayes classification is pro­
posed in [26], which derives the sensitiv­
ity for each attribute appropriately based 
on whether it is categorical or nu­
meric. For categorical attributes, given 
an attribute X with r possible attribute 
values , , ,x xr1 f  the probability is 

( | ) ( / )x nP X Y c nk j kj= = =  where n is 
the number of total training examples and 
nkj  is the number of the training exam­
ples that also have .xX k=  Moreover, the 
sensitivity can be calculated on the counts 
or on the likelihoods. Therefore, the sensi­
tivity of each nkj  is 1 for all the values of 
attribute xk  and the values of class .c j  For 
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FIGURE 3 A classical learning framework with noise perturbation to satisfy differential privacy. 
Noise can be added into the learning model, the objective function, or the output results. In 
different cases, there are different methods to add noise perturbation.
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numeric attributes, we need to derive the 
sensitivity of both mean and standard 
deviation due to the fact that the proba­
bility ( | )xP X Y c j= =  depends on 
mean jn  and variance j

2
v . Assume that 

the values of attribute X j  lie in the 
range [ , ]l uj j , the sensitivity for the 
mean is ( )/( )u l n 1j j- +  and the sen­
sitivity for the standard deviation is 

n # ( ) ( )./u l n 1j j- +  Following this, 
Laplace noise is added to parameters 
(counts for categorical attributes, mean 
and standard deviation for numeric attri­
butes) to preserve the privacy.

Compared to the previous privacy-
preserving algorithms that build the 
model over a single data provider, Li 
et al. [27] proposed a differentially pri­
vate Naive Bayes algorithm that per­
forms on multiple data sources. It aggre­
gates the data of each owner and 
achieves privacy preserving during the 
training process without disclosing the 
privacy of each owner. In the first place, 
the cryptographic systems and the pub­
lic parameters should be initialized. 
Then each data owner encrypts their 
own dataset and contributes it to the 
data collector. Some auxiliary informa­
tion is also provided to the data collec­
tor. There is one more point that the 
data collector aggregates the encrypted 
data and adds the Laplace noise to the 
aggregated ciphertexts based on the 
auxiliary information to achieve privacy 
preserving. The last but not least, the 
data collector releases the differentially 
private Naive Bayes model to the data 
receiver. Furthermore, the proposed 
method can also preserve both statistics 
privacy and ownership privacy.

Decision tree learning. The learn­
ing process of a decision tree is an 

iterative process in which training data 
are segmented according to features 
which are selected recursively. A decision 
tree is constructed from the root that 
holds all training data. Then an optimal 
feature is chosen as per the information 
gain and it divides training data into sub­
sets so that each subset has the best classi­
fication under current conditions.

Blum et al. [28] pioneered the first 
differentially private decision tree algo­
rithm that performs on the Sub-Linear 
Queries (SuLQ) interface and preserves 
the privacy by adding noise to the 
information gain. The feature with the 
noisy information gain is chosen to par­
tition a tree node when the noisy infor­
mation gain of this feature is less than a 
specified threshold. However, the noisy 
information gain is evaluated separately 
for each feature in each iteration, which 
may result in a large amount of noise. 
What is more, the SuLQ fails to deal 
with continuous features. To overcome 
these disadvantages, Friedman et al. [29] 
employed the exponential mechanism in 
the step of feature selection so that not 
only continuous features can be tackled, 
but also less privacy budget is consumed 
than SuLQ. However, although the pro­
posed method acquires a better perfor­
mance than SuLQ, both of them still 
result in a large volume of noise.

To avoid the consumption of privacy 
budget during feature selection, Jagan­
nathan et al. [30] proposed a differen­
tially private random decision tree algo­
rithm, which eliminates the pruning 
step by removing empty tree nodes and 
creating a tree in which all of the leaf 
nodes are at the same level. Further­
more, the leaf nodes of a random deci­
sion tree form a leaf vector, where the 

global sensitivity of the leaf vector is 1. 
The noise of ( / )Lap 1 e  is added to each 
component of the leaf vector and the 
released noisy vector satisfies e-differen­
tial privacy. The differentially private 
random decision tree can be generated 
from the noisy leaf vector. Unlike previ­
ous works that preserve the complete 
data distribution strictly, and in order to 
further reduce the consumption of 
noise, a differentially private random 
forest presented in [31] provides a more 
practical way to achieve data privacy 
preserving by only protecting the neces­
sary statistics such as variance of the esti­
mate, which can provide significantly 
higher utility.

Unlike the existing researches that 
focus on the scenarios where differential 
privacy is embedded in one-step data 
mining computation, Bai et al. [32] pro­
posed an algorithm based on Markov 
Chain Monte Carlo (MCMC), which 
embeds differential privacy in a decision 
tree with different depths. To preserve 
pr ivacy, the Laplace mechanism is 
applied for the generation of leaf node 
label and the exponential mechanism is 
applied for the split of a node. Further­
more, it is a polynomial-time algorithm 
for d-step computation embedding. In 
addition, a differentially private random 
decision forest algorithm is presented by 
Fletcher et al. [33], which preserves data 
privacy by using the exponential mech­
anism to output the class label rather 
than using a count query to return the 
class counts. It not only reduces the sen­
sitivity of the query, but also achieves 
higher accuracy.

A straightforward implementation of 
differential privacy for decision trees 
often yields poor accuracy and stableness. 
To overcome this issue, a differentially 
private decision tree algorithm is pro­
posed by Liu et al. [34], which preserves 
the privacy information based on a bud­
get allocation strategy. In the strategy, the 
closer an internal node is to the root 
node, the smaller the budget allocated. In 
addition, the bagging technique [35] is 
used to construct ensemble models to 
avoid high variance and improve the 
classification performance through inte­
grating decisions of multiple trees.

To tackle the challenges in terms of model utility, privacy 
level and applications, several interesting directions 
deserve further exploration, such as devising alternative 
differential privacy mechanisms, enhancing the privacy 
and utility, presenting a unified private framework, 
incorporating differential privacy to other machine learning 
models, and involving novel distributed protocols.
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Boosting. Boosting is a family of 
algorithms that promote multiple weak 
learners to a strong learner. The working 
mechanism of boosting shares the fol­
lowing paradigm. The weight distribu­
tion of training data are first initialized. 
Then three computation steps are per­
formed cyclically as follows. (1) Using a 
training dataset with the weight distri­
bution Dm  to obtain a basic classifier 

( ) .xGm  (2) Calculating the classification 
error rate of ( )xGm  on the training 
dataset. (3) Updating the weight dis­
tribution Dm 1+  of the dataset. However, 
there are two considerable issues about 
boosting. One is how to change the 
weight or probability distribution of the 
training dataset in each round. The other 
is how to combine the weak learner 
into a strong learner.

Dwork et al. [36] designed a query-
boosting algorithm, which aims to con­
vert a weak and sometimes-accurate 
learner into a strong and accurate learner 
with differential privacy. It considers the 
input database as a training dataset, each 
row in the database as exactly a sample 
and almost does not compromise the 
accuracy. To achieve privacy preserving, it 
gradually changes the weight as a func­
tion of how accurate the answer is, rather 
than using a sharp threshold between the 
accurate and inaccurate answers, due to 
the fact that the change of each row in 
the database can affect the answers to all 
the queries and thus influence the distri­
bution of queries.

Summary. The application of differ­
ential privacy in supervised learning algo­
rithms represents an important branch of 
differentially private machine learning. 
Table I shown in the Supplementary 
Material summarizes and compares exist­
ing differentially private naive Bayes 
models and decision tree algorithms 
based on different mechanisms, advan­
tages, disadvantages and privacy level. 
One of the advantages in differentially 
private supervised learning is that noise is 
easy to be added to satisfy differential pri­
vacy. For the differentially private deci­
sion tree, these algorithms are easy to 
retain good utility, but the privacy budget 
may be quickly consumed due to the 
continuous selection of split attributes, 

which requires a high privacy budget and 
may result in a bad privacy level.

2) Unsupervised Learning
Clustering. As the most basic cluster­
ing algorithm, k-means divides the unla­
beled samples { , , }x xD ( ) ( )n1 f=  into k 
disjoint subsets { , , , },C C C Ck1 2 f=  
and the samples in the same subset are 
similar to each other. The goal of 
k-means cluster ing is to minimize 
( / ) xn1 xj

k
C C1

2
i i< <nR R -!=  where Cin  

is the mean of samples in the subset .Ci

The differentially private clustering 
algorithm is performed by adding noise 
to each cluster center and the number of 
records in the center. However, it may 
result in a large sensitivity. To tackle this, 
Nissim et al. [23] used the local sensitivity 
instead of the global sensitivity to mea­
sure the sensitivity of cluster centers since 
the local sensitivity is much lower than 
the traditional global sensitivity. In addi­
tion, Feldman et al. [37] proposed a more 
restrict differentially private clustering 
algorithm, which defines the private 
coresets to preserve the privacy for 
k-mean queries. The coreset of a point set 
P is a small weighted set of records that 
captures geometric properties of these 
records. This algorithm satisfies differen­
tial privacy since the coreset is differen­
tially private.

Due to the fact that the private clus­
tering based on the sample-aggregate 
framework suffers from a poor utility in 
practice, Wang et al. [38] proposed a prac­
tical private subspace clustering algorithm 
based on the exponential mechanism. It 
preserves privacy information by acquir­
ing the parameter ({ } ,{ } )S Cl l

k
i i

n
1 1i = = =  

from the following distribution

( ; ) , ,exp xp X d S2
( )i

C
i

n
2

1
i?i

e-
=

c ^ hm/
� (7)

where S Sl d
q

!  denotes the set of all 
q-dimensional subspace in ,Rd  and 

{ , , } .C k1i f!  To further improve the 
performance, Su et al. [39], [40] pre­
sented a noninteractive approach named 
Extended Uniform Grid k-Means 
(EUGkM), which publishes a differen­
tially private synopsis for k-means clus­
tering. Given a d-dimensional dataset, 

the dataset is divided into M equal-
width grid cells. The differentially pri­
vate k-means algorithm preserves data 
privacy by adding the Laplace noise to 
each cell count. When M is large, the 
noise will have greater impacts, and 
vice-versa. Schellekens et al. [41] pro­
posed a differentially private compres­
sive k-means method, which provides 
privacy preserving by combining the 
Laplace noise with subsampling. This 
method performs at least as well as pre­
viously developed ones while requiring 
fewer computations.

Dimensionality reduction. Dimen­
sionality reduction transforms the original 
high-dimensional attribute space into a 
low-dimensional subspace through math­
ematical transformations. In this subspace, 
the sample density is greatly improved and 
the distance calculation becomes easier. 
Principal Component Analysis (PCA) is a 
popular method of dimensionality reduc­
tion that aims to calculate k new irrele­
vant attributes ranked by the importance 
from large to small, which is a linear com­
bination of original attributes. For a set of 
n vectors { , , },x xD ( ) ( )n1 f=  where each 
x R( )i d!  corresponds to the privacy 
data of one individual. Suppose X = 
[ , , ]x x( ) ( )n1 f  is the matrix whose col­
umns are data vectors { }x( )i . The positive 
semidefinite matr ix ( / )nA XX1 T=  
denotes the d × d second-moment matrix 
of the data. Let the eigenvalues of A be 

( ) ( ) ( )A A A 0d1 2 g$ $ $ $m m m  and 
K  be a d × d diagonal matrix with 

( ) .Aii imK =  The Singular Value De­
composition (SVD) gives A V VTK= , 
where V is an orthonormal matr ix 
of eigenvectors.

The Sub-Linear Quer ies [28] 
method adds noise to the second 
moment matrix and runs PCA on the 
noisy matrix, which may impact the 
quality of approximation. Unlike the 
Sub-Linear Queries method, Chaudhuri 
et al. [42] proposed PPCA that explicitly 
considers the quality of approximation 
and the sample complexity of it scales as 
O d^ h. The PPCA algorithm preserves 
the privacy information by randomly 
sampling a k-dimensional subspace from 
the matr ix Bingham distr ibution 

( )BBMFk  [43] based on the exponential 
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mechanism. The density of the matrix 
Bingham distribution is equals to

BV(
, ,

(f V
F k d B

V

2
1

2
1

1 exp(tr T

1 1

=) )),
` j

 
 
� (8)

where V is a d × k matr ix whose 
columns are orthonormal and 1F1((1/2)k,  
(1/2)d, B) is a confluent hypergeometric 
function. Kapralov et al. [44] presented a 
low rank approximation algorithm based 
on the Laplace and exponential mecha­
nisms, which provides a strict guarantee 
on convergence. However, it is complicat­
ed and takes /O d6

e^ h time complexity.
To acquire a better utility guarantee, 

Jiang et al. [45] proposed a differentially 
private PCA approach that uses a Wis­
hart distribution to generate noise. 
Unlike traditional methods that add 
noise when computing the top-k sub­
space of A, the proposed mechanism 
generates a noisy sample covariance 
matrix before computing the eigens­
pace. The magnitude of the noise matrix 
directly determines how large the effects 
on the original matrix are. This method 
takes O kd2^ h running time. Most of dif­
ferentially private PCA algorithms 
either employ the computationally 
intensive exponential mechanism or 
require an access to the covariance 
matrix. Both of them fail to utilize the 
potential sparsity of the data. To over­
come these issues, a differentially private 
PCA mechanism based on the smooth 
sensitivity is presented in [46], which 
preserves privacy by employing output 
perturbation. Moreover, a post process­
ing step is conducted so that there is 
reasonable noise added to the output.

Plenty of machine learning tasks per­
form on the datasets that contain sensi­
tive information and hold at different 
locations. The differentially private algo­
rithms perform worse in the distributed 
environment since the introduction of a 
larger volume of noise. However, a dis­
tributed differentially private algorithm 
for PCA is proposed in [47], which 
employs a correlated noise design scheme 
to alleviate the effects of noise and 
achieves the same noise level as the cen­
tralized scenario. This method defines a 
noise generator to generate the D × D 

matrix Es  i.i.d. ~ ( , .0N e
2
v )  In addition, 

an aggregator generates the D × D 
matrix Fs  i.i.d. ~ ( , )0N f

2
v  and the sites 

generate the D × D matrix Gs  i.i.d. 
~ ( , .0N g

2
v )  The sites that hold a smaller 

number of samples preserve privacy by 
using the D × D matrix sent from the 
random noise generator and the aggre­
gator to compute the noisy estimate of 
the local second-moment matrix by

	 ,A A E F Gs s s s s! + + +t � (9)

where .( / )nA X X1s s s
T=  Finally, Ast  is 

sent to the aggregator.
Summary. Differentially private 

unsupervised learning has made great 
developments in recent years. We summa­
rize and compare differentially private 
algorithms applied in clustering and 
dimensionality reduction in Table II of 
the Supplementary Material. Differentially 
private clustering algorithms usually retain 
good utility yet come along with high 
sensitivity. Local sensitivity and smooth 
sensitivity can be used to solve this prob­
lem to a certain extent. Most of differen­
tially private PCA algorithms rely on a 
large number of computations, which 
require high time complexity and fail to 
utilize the potential sparsity of the data. 
Some techniques are designed to reduce 
time complexity and there remains room 
to be further improved. In addition, a dis­
tributed differentially private algorithm 
[47] for PCA is developed.

3) Online Learning
Online learning is an outstanding meth­
od of machine learning in which data 
become available in a sequential order, 
and is used to update the best predictor 
for future data at each step rather than 
generate the best predictor by learning 
on the entire training dataset at once. In 
online learning, the online convex pro­
gramming (OCP) solves convex pro­
gramming problems in an online manner, 
which maps a function sequence 

, , ,F f f fT1 2 fG H=  to a sequence of 
points ., , ,x x x x( ) ( ) ( )T2 3 1fG H= +  The 
goal of it is to minimize the regret as

.( ) ( ) (minx xT f fR ( )

x
t

t

t

T

C
t

t

T

1 1

= - )

!= =
)

)/ / � (10)

Jain et al. [48] proposed a differen­
tially private framework for solving 
OCP problems, which is instantiated by 
Implicit Gradient Decent (IGD) [49] 
and Generalized Infinitesimal Gradient 
Ascent (GIGA) [50]. Assume that OCP 
satisfies the L2-sensitivity and the regret 
bound ( ),TR  the framework provides 
O Tu ^ h regret and preserves privacy by 
adding noise to each sample x( )t  and 
using the perturbed sample for the 
future computation. For the problem of 
online linear optimization in the full 
information and bandit settings with 
optimal O Tu ^ h regret bounds, a differ­
entially private algorithm is presented in 
[51], which preserves privacy by ensur­
ing loss vectors of the entire sequence 
are differentially private.

Li et al. [52] developed a much faster 
differentially private distributed online 
learning algorithm (DOLA) on the data 
collected from distributed data sources, it 
can be also used for high-dimensional 
data optimization. Both e  and ( , )e d -dif­
ferential privacy are provided for DOLA, 
and private regret bounds have the same 
order of O T^ h and logO T^ h respec­
tively with the non-private algorithm. 
Specifically, the e-differentially private 
DOLA is performed by adding the 
Laplace noise to the learnable parameter 

t
i

1~ + , and the Laplace output perturba­
tion is broadcasted to neighbors 

.( )t 1G i+  In addition, the ( , )e d -differ­
entially private DOLA is performed by 
adding the Gaussian noise to the updated 
parameter ~  and broadcasting the 
Gaussian output perturbation to neigh­
bors ( ) .tG i  Both of them provide a 
strong privacy guarantee for individuals.

B. Output/Objective Perturbation 
Mechanism
The output and objective perturbation 
mechanisms are two generic differentially 
private methods to achieve privacy pre­
serving. The output perturbation mecha­
nism is performed by adding an amount 
of noise to the model output while the 
objective perturbation mechanism can be 
implemented by adding noise to the 
objective function and optimizing the 
perturbed objective function. There is 
no doubt that both of them play an 
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indispensable role in differentially private 
machine learning algorithms, and can be 
used in empirical risk minimization 
(ERM) and distributed optimization.

1) Differentially Private ERM
The empirical risk is the average loss of 
the machine learning model on the 
training dataset D. The objective of 
ERM is to obtain the optimal parameter 
~
)  that minimizes the empirical risk as

	 ( ( , ); ),min xn f y1 L
i

n

i i
1

~
~

=

/ � (11)

where f is the prediction function with 
the parameter ~ . Differentially private 
ERM provides us an opportunity to pre­
serve privacy in a dataset effectively 
given a target excess risk. The utility of 
differentially private ERM can be mea­
sured by the risk bound, which is related 
to the dimension and the size of the 
dataset. There are quite a few differential­
ly private ERM methods based on out­
put or objective perturbation, including 
linear regression, logistic regression, lin­
ear SVM and kernel SVM, all of which 
are supervised models.

Linear regression. Suppose a dataset 
D contains n tuples { , , },t t( ) ( )n1 f  d 
explanatory attributes , , ,X X Xd1 2 f  and 
one response attribute Y, where each tuple 

( , )xt y( ) ( ) ( )i i i=  and , , .x x x( ) ( ) ( )i i
d
i

1 f= ^ h  
Linear regression aims to learn a model 
to predict Y given , , , .X X Xd1 2 f  The 
cost function ( , ) ( )xf t y( ) ( ) ( )i i T i 2

~ ~= -  
is used to measure the difference 
between the true and predicted values 
of yi . The optimal model parameter is 
defined as .( , )argmin f t( )

i
n i

1)~ ~R=
~

=

A differentially private linear regres­
sion model suitable for low-dimensional 
datasets is presented in [53]. It preserves 
the data privacy by adding noise to his­
tograms of the input data and producing 
a synthetic dataset based on the per­
turbed histogram. However, the existing 
works are limited to nonstandard types 
of regression analysis or unable to out­
put the regression results as accurate as 
possible. Therefore, Zhang et al. [54] 
proposed the functional mechanism, 
which achieves the preservation of sen­
sitive data by perturbing the objective 

function ,( )f t( )i
~  and releasing the 

model parameters to minimize the per­
turbed objective function. Specifically, 
the cost function ,( )f t( )i

~  can be writ­
ten as a polynomial of , , ,d1 f~ ~  i.e., for 
some [ , ]J 0 3! , we have

	 ( , ) ( ),f t( )i
t

j

J

0

( )i

j

~ m z ~=
!

z

z U=

// � (12)

where jU  denotes a set of products of 
, , d1 f~ ~  with degree j and t( )imz  

denotes the coefficient of ( )z ~ . The 
objective function is perturbed by add­
ing noise to coefficients t( )imz .

Compared to traditional methods that 
subject to a fixed privacy budget e , a gen­
eral noise reduction framework that has a 
better performance for providing privacy 
preserving on regularized linear regression 
is presented in [55], which takes a set of 
privacy levels T1 g1 1e e  as input  
and outputs a sequence of hypotheses 

,, , T1 fi i  and each t
i  satisfies te -differ­

ential privacy. The optimal solution i)  is

( ( ) , )

,

( , )argmin

argmin
x x x

D

n
y

2
2

2

L
T T T

2
2

G H
i

i i i

m i

i=

=
-

+

)

i

i  
�

(13)

where m  is a regularization parameter. 
The proposed noise reduction frame­
work preserves the data privacy by add­
ing the Laplace noise to each entry of 
x xT  and x yT  based on the covariance 
perturbation. Finally, the private hypoth­
esis is derived by solving the noisy ver­
sion of the optimization problem, and 
the algorithm halts when the released 
hypothesis t

i  achieves the accuracy goal.
Logistic regression. As a binary clas­

sification model, the logistic regression 
model performed on the dataset 

, , , ,x xD y y( ) ( ) ( ) ( )n n1 1 f= ^ ^h h" ,  p r e ­
dicts y 1( )i =  with the probability 

,/exp expx x1( ) ( )T i T i
~ ~+) )^ ^ ^h hh  where 

~
)  is a d-dimensional real vector that 

minimizes the cost function ,f t( )i ~ =^ h  
.log exp x xy1 ( ) ( ) ( )T i i T i

~ ~+ -^ ^ hh  In gen­
eral, a regularization term / m2 2

2< <m ~^ h  is 
added to the cost function to prevent 
overfitting, where 02m  is a hyper-
parameter of the cost function.

Chaudhuri et al. [18], [56] demon­
strated that regularized logistic regres­
sion can be combined with differential 
privacy based on output or objective 
perturbation directly, since the cost 
function of regularized logistic regres­
sion is continuous, differentiable and 
doubly differentiable. However, the pro­
posed algorithm is inapplicable for stan­
dard logistic regression. Besides, the 
regression model proposed by Jing [53] 
can also preserve the privacy by per­
turbing histograms, which avoids con­
ducting a sensitivity analysis directly on 
regression outputs, but it is limited to 
datasets with small dimensionality or it 
leads to a poor accuracy.

The differentially private functional 
perturbation mechanism [54] is pro­
posed to solve the above problems. 
However, the polynomial form of the 
objective function of logistic regression 
contains terms with unbounded degrees, 
so that we need to derive an approxi­
mate polynomial form of the objective 
function based on Taylor expansions. 
Assume that there exist 2m functions 

, ,f fm1 f  and , , ,g gm1 f  such that 
/, ,f t f g t( ) ( )mi

l l l
i

1~ ~= =^ ^ ^h hh and each gl  
is a polynomial function of , , .d1 f~ ~  
Given the above decomposition of 

, ,f t( )i ~^ h  the Taylor expansion can be 
applied on each ( )fl $  to obtain the fol­
lowing equation

,
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where zl  is a real number. The acquired 
objective function ,( )f ti ~t  can be per­
turbed by adding noise to its coefficients.

Data owners may have different pri­
vacy preferences and the same privacy 
preserving provided for all individuals 
will limit the accuracy of the model. 
Therefore, Li et al. [57] proposed the 
privacy-aware mechanism and utility-
based partitioning mechanism to acquire 
a better performance. The former is to 
minimize the waste of privacy budget 
whereas the latter is to maximize the 
utility for a given aggregate analysis. 
Given the minimum threshold T of par­
titions size ni  for the differentially 
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private mechanism, the privacy-aware 
partitioning takes ( )logO mn n  complex­
ity where /m n T=  and the utility-
based partitioning takes .( )O n

Linear SVM. Linear SVM is a linear 
classifier which constructs a model from the 
dataset , , , ,x xD y y( )( ) ( ) ( )n n1 1 f= ^ ^h h" ,  
and finds the optimal dividing hyperplane  

x b 0~ + =)  to separate samples into 
different categories. The parameter ~ is 
calculated by minimizing the loss func­
tion /

,b~
/( )( ) min C1 2LSVM i

m2
1< <~ ~= + =  

, ,max xy b0 1 i ~- +( )T i^ ^ hh  where C is a 
constant and .C 02

Chaudhuri et al. [18], [56] demon­
strated that linear SVM can be combined 
with the differential privacy mechanism 
by applying output or objective pertur­
bation to preserve personal data on con­
dition that loss functions are differentia­
ble and convex. However, the loss 
function of linear SVM does not satisfy 
the conditions, since it is continuous but 
not differentiable. There are two alterna­
tive solutions to tackle it. One solution is 
to approximate LSV M  by a piecewise 
loss function and another is to use the 
Huber loss. After the transformation of 
the loss function, the differentially pri­
vate linear SVM can be performed based 
on output or objective perturbation.

Kernel SVM. Linear SVM is an 
effective method to solve the linear classi­
fication problem, but can not solve non­
linear classification problems. We can 
apply kernel SVM that involves the ker­
nel tricks to address the nonlinear classifi­
cation problem. Kernel SVM aims to 
transform the input space to a linearly 
separable feature space through a nonlin­
ear transformation, so that the classifica­
tion problem can be accomplished by 
solving the linear SVM in the feature 
space. The kernel SVM predicts the label 

/ , xY Xsign ( )
i i

im
1a l= =^ ^ hh when classi­

fying a sample with feature X, where the 
Lagrange multiplier 0i$a  and ,xX ( )i

l^ h 
is the kernel function.

The algorithm proposed in [58] maps 
the input data to a randomized low-
dimensional feature space and applies the 
existing differentially private linear meth­
ods to preserve privacy. The presented 
mechanism indicates that inner products 
of the transformed data are approximately 

equal to those in the feature space of the 
specified shift-invariant kernel. Thus, a 
kernel SVM model is transformed into a 
linear SVM model and differentially pri­
vate linear SVM mechanisms can be used 
in the kernel SVM model to preserve the 
individual privacy. Rubinstein et al. [59] 
presented an efficient mechanism for 
potentially infinite-dimensional feature 
mappings with translation-invariant ker­
nels, which minimizes the regularized 
empirical risk in a random Reproducing 
Kernel Hilbert Space (RKHS) Ht  whose 
kernel uniformly approximates the 
desired kernel H  with high probability. 
The proposed method preserves the pri­
vacy of individual entries by adding 
appropriate Laplace noise to the weight 
vector .~u  Another work for differentially 
private kernel SVM is proposed in [56], 
which also uses an approximation 
method [58] to approximate the kernel 
function based on random projections 
and it projects data from the original 
sample space to a space independent of 
private training data. This differentially 
private kernel SVM is performed by 
transforming nonlinear classification to 
linear classification and perturbs the 
objective function based on output or 
objective perturbation.

However, the above algorithms are 
always restricted to the specific transla­
tion-invariant kernels and may be not 
suitable for various kernels. Therefore, 
Jain et al. [60] presented a differentially 
private kernel SVM algorithm for all 
RKHS kernels. The user sends a small 
subset of test data to the trusted learner 
and the trusted learner returns a differ­
entially private version ~t  of the optimal 
solution to the kernel ERM (kERM) 
( )~)  over T rounds. The proposed test 
data independent learner is proved to 
satisfy , -( )e d differential privacy and the 
sample complexity is ( )O d /1 3  compared 
to ( )O d  for [56], [59], where d  repre­
sents the dimension.

Summary. Output and objective 
perturbation are common techniques in 
differential private empirical risk mini­
mization. Objective perturbation per­
forms better than output perturbation 
because additional noise added on the 
objective function will not significantly 

affect the performance, while that added 
on the output does. However, objective 
perturbation is premised on the fact that 
the objective function must be convex, 
differential, or satisfy other conditions. 
More specific comparisons are shown in 
Table III of the Supplementary Material.

2) Differentially Private Distributed 
Optimization
The distributed optimization is a crucial 
approach to tackle machine learning 
problems that can be transformed into 
an objective function in a distributed 
manner. Given a group of n agents, each 
agent , ,i n1 f! " , has its own corre­
sponding objective function :f D Ri "  
where .D Rn1  The objective function 
fi  is only known to the agent ,i  which 

is convex and twice continuously differ­
entiable. The goal of distributed optimi­
zation problems for all the agents is

	 ,( ) ( )min x xf f
x D

i
i

=
!

/ � (15)

which subjects to ,
( )

x
x

A b
H 0#
='  where 

,A bR Rs d s! !#  and the component 
functions of :H D Rm"  are convex. 
Differentially private distributed opti­
mization aims to minimize the sum of 
individual objective functions while pre­
venting privacy disclosure based on out­
put or objective perturbation.

For preserving privacy in distributed 
optimization, it is indispensable for us to 
avoid the information inference about the 
objective function when agents exchange 
the messages. Huang et al. [61] proposed a 
private distributed optimization problem 
(PDOP) based on objective perturbation, 
which effectively provides privacy pre­
serving for the objective function of each 
agent. Any change in the objective func­
tion only leads to nonsubstantial transfor­
mations in message statistics. The PDOP 
tackles privacy disclosure in objective 
functions by adding an amount of Laplace 
noise to the optimal point that has been 
estimated and broadcasted the noisy esti­
mate to its adjacent agents. In addition, 
the sensitivity ( )S f  of PDOP is a key 
parameter that determines the amount of 
noise should be added. Therefore, it is 
imperative to keep the Laplace noise 
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( )( )/Lap S f e  smaller to balance privacy 
and utility. Moreover, the accuracy of 
PDOP has the order of .( )/O 1 2

e

However, the output of the algo­
rithm is inconsistent with the true opti­
mizer for any fixed level of privacy. 
Therefore, Nozari et al. [62] proposed a 
differentially private distributed convex 
optimization framework, in which each 
agent perturbs the objective function 
that belongs to itself based on functional 
perturbation. The presented method 
uses the trusty distributed coordination 
algorithm to optimize the sum of noisy 
objective functions. Finally, the distance 
between the noisy optimizer and the 
expected optimizer is bounded explic­
itly so that the accuracy of the presented 
model can be guaranteed.

C. Sample Complexity
The sample complexity shows lower 
bounds on the numbers of samples to 
reach a particular accuracy for a learning 
model. It is strongly related to the theo­
ry of probably approximately correct 
(PAC) learning and the VC dimension. 
For a learning model, the concept is 
defined as the mapping from the sample 
space X  to the output space .Y  For any 
sample , ,( )x y  if the mapping ( )xc  is 
equal to y, c is viewed as the target con­
cept. Concept class C  is the set of all 
target concepts. A hypothesis space H  
represents the set of all the possible con­
cepts and a concept in the hypothesis 
space is called a hypothesis h. It is called 
properly PAC learnable provided that 
H C=  holds in a learning model [63].

The sample complexity of a non-
private learning model that is efficiently 
PAC learnable only requires a constant 
number of samples. Blum et al. [64] 
demonstrated that to satisfy e -differen­
tial privacy, the lowest sample complex­
ity of a privacy learning model is 

,( )logO VCX C$; ;^ h  which is higher 
than the non-private learning model. To 
ensure both privacy and utility of pri­
vacy learning models, researchers con­
ducted several research works on reduc­
ing the sample complexity [65].

Replacing the proper learner by the 
improper learner can also reduce the 
sample complexity in privacy learning. 

Beimel et al. [66] demonstrated that for 
a proper private learner, the sample 
complexity can be approximated as 
( )dX  where d is the dimension of con­

cept class. However if the learner is 
improper, the sample complexity can be 
reduced to .( )logO d^ h  The improper 
learner can also be built upon a probabi­
listic representation of .C  A list of col­
lections , , ,H Hr1 f" ,  rather than one 
collection ,H  is utilized to represent .C  
If the sampled collection H i  belongs to 
the list, there will be a hypothesis 
h H!  that is close to c with high prob­
ability. The learning model samples H i  
from the list and then selects a hypothe­
sis from H i  based on the exponential 
mechanism. The sample complexity can 
be reduced to .max lnO Hi i; ;^ h  How­
ever, the workload of this method may 
increase exponentially. For a private 
learning model with constant sample 
complexity, if ,H C=  the time for eval­
uation is also a constant. However if 

,H C!  it needs ( )expO d^ h time for 
evaluation [67].

There is another feasible way to 
reduce the sample complexity by relax­
ing the privacy requirement. Chaudhuri 
et al. [68] assumed that with label pri­
vacy guarantee rather than all attributes 
of samples, at least ( )dX l  samples are 
required for a given hypothesis set in any 
learning algorithm, where dl is the dou­
bling dimension of the disagreement 
metr ic. However, this method only 
applies to samples whose other attributes 
are nonsensitive except for labels. Other­
wise, there still exists the risk of leaking 
sensitive information.

Inspired by semi-supervised learn­
ing, Beimel et al. [69] designed a novel 
technique for reducing the labeled sam­
ple complexity of a given private learn­
ing model. It sanitizes unlabeled data 
to create a synthetic dataset, and chooses 
a subset of the hypotheses of size 
2 ( ( ))O VC C  based on ( ( ))O VC C  labeled 
examples. The complexity of labeled sam­
ples is ( ( ))O VC C  while the complexity 
of unlabeled samples is ( ( )).O d VC C$   
The high sample  complexi ty  i s 
unavoidable for unlabeled samples in 
any generic e-differentially pr ivate 
learning models.

Extending e-differential privacy to 
,( )e d -differential privacy is another 

method to reduce the sample complex­
ity. Suppose the family of point func­
tions ( )c x x i1 iffi = =" ,  otherwise 

,( )c x 0i =" ,  and the family of threshold 
f unc t i on s  .( )c x x i1 iffi #=" ,  Fo r 

,( )e d -differentially private and properly 
PAC learnable point functions, the sam­
ple complexity is a constant, while the 
threshold functions require 2 ( )logO d)  [70]. 
Bun et al. [71] indicated that ,( )e d -dif­
ferentially private and properly learning 
threshold functions require log dX )^ h 
samples. However, these works are based 
on relatively simple concept classes, and 
have not yet been extended to more 
complex concept classes.

Summary. PAC learning theory is 
used to analyze the relationship between 
the learning model and samples it 
requires to reach a certain accuracy. It 
reveals that the sample complexity of 
privacy learning is higher than that in 
non-privacy learning. So many endeav­
ors have been devoted to reducing the 
sample complexity of privacy learning. 
However, most of them focus on theo­
retical research and have few practical 
application. Table IV shown in the Sup­
plementary Material summarizes the 
complexity, advantages, disadvantages and 
privacy level of those methods.

IV. Differentially Private Deep 
Learning
Besides shallow machine learning mod­
els, deep learning with differential priva­
cy is another popular area. In this section, 
we present a taxonomy of recent differ­
entially private deep learning methods 
according to different noise perturbation 
mechanisms. For each setting, we explain 
its characteristics and introduce the rep­
resentative approaches in detail.

A. Laplace/Gaussian Mechanism
In fact, the Laplace or Gaussian mecha­
nism can be incorporated into existing 
deep learning models to further enhance 
the privacy. There are generally two types 
of possible solutions. One is to introduce 
the Laplace or Gaussian mechanism into 
general training algorithms for deep 
learning including centralized and 
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distributed algorithms. Another is to 
design a customized private version of 
the specific deep learning models such as 
long short-term memory networks 
(LSTM), generative neural networks 
(GAN) and their variants, etc.

1) Centralized Training Algorithms
Deep learning models are often opti­
mized by gradient descent or its variants 
through which we can minimize the 
nonlinear objective function and find 
optimal model parameters. In most cases, 
the training data are held centrally, which 
we called centralized training. In an early 
work, stochastic gradient descent with 
differentially private updates has been 
derived for general convex objectives 
[72]. Inspired by this, an intuitive method 
is adding random noise to gradients for 
privacy preserving.

NoisySGD, a differentially private 
version of the SGD algorithm, is pro­
posed in [73] for preserving privacy of 
training data through differentially pri­
vate optimization. Based on the basic 
Laplace mechanism, NoisySGD clips 
each gradient by l2  norm, groups the 
batches into a lot and adds noise to the 
sum of gradients of each lot, working on 
the training process of non-convex deep 
learning models. Further, it refines the 
privacy loss analysis by the modest 
moments accountant. It can control the 
effect of training data over the course of 
SGD computation and output a pri­
vacy-preserving deep learning model. 
Following the learning architecture of 
NoisySGD, other differentially private 
deep learning techniques based on gra­
dient perturbation have been proposed 
in [74]–[80].

In NoisySGD [73], the amount of 
random noise and the privacy budget 
remain increasing with the increase in 
the number of training epochs, which is 
not expected since privacy budget is 
usually limited. Besides, the amount of 
noise remains unchanged regardless of 
the importance of different parameters 
in existing differentially private deep 
learning techniques. The work of 
Shokri et al. [81], also suffers the same 
problems. To tackle these drawbacks, 
Phan et al. [82] proposed a highly effec­

tive mechanism for differential privacy 
preservation in deep learning. Laplace 
noise is added to the affine transforma­
tions of neurons and the loss functions 
only once. The input features are adap­
tively perturbed according to the con­
tribution of different features upon the 
model output. In addition, it can be 
applied in various deep models as Noi­
sySGD [73].

2) Distributed Training Algorithms
A prerequisite for centralized training 
algorithms is the massive data available 
for training the deep learning model. 
Nevertheless, an institution only owns 
limited amount of data in general, which 
may result in overfitting while training 
deep learning models. Even more, a 
crowdsourced data collection suffers 
from obvious privacy issues because data 
owners can neither delete nor restrict 
the purpose once collected. Recently, 
there emerges a paradigm of distributed 
deep learning where multiple partici­
pants jointly train a deep learning model 
through a central server to achieve com­
mon objectives without sharing the pri­
vate data.

Shokri et al. [81] presented a pioneer 
work of incorporating differential pri­
vacy into distributed deep learning. 
They carefully designed a practical train­
ing framework that enables multiple 
participants to collaboratively learn a 
desirable deep learning model without 
sharing their own training data. Under 
the assumption that different participants 
have the same objective function in 
advance, this framework is optimized by 
the proposed distributed selective SGD 
protocol. In this protocol, each partici­
pant independently trains their local 
model on their own dataset and only 
asynchronously uploads part of trun­
cated and perturbed gradients, under a 
consistent differential privacy mecha­
nism. Each participant can download 
latest parameters shared by other partici­
pants to enhance its own local model. 
This protocol explicitly avoids the leak­
age of the sensitive information and the 
empirical evaluation proves that it can 
actually achieve comparable accuracy to 
conventional SGD.

Zhang et al. [83] proposed another 
method for privacy preserving in multi­
party deep learning, whose scenario is 
similar to that in [81]. For the reason 
that each party operates under the local 
private context, the injected randomiza­
tion is often overly conservative, result­
ing in great uncertainty of information 
disclosure and significant utility loss in 
the global model. To solve this issue, this 
method not only enforces differentially 
private randomization to local gradients 
in local models but also considers t-vis­
ibility for obtaining more secure aggre­
gation of local gradients based on 
homomorphic encryption and threshold 
secret sharing. Through the synergy of 
multi-participants, it can provide us with 
powerful privacy assurance and high 
effectiveness simultaneously.

Following the privacy-preserving 
training process of deep neural networks 
in NoisySGD, Chase et al. [74] married 
differential privacy with secure multi­
party computation to avoid the privacy 
leakage in collaborative machine learn­
ing. They designed a protocol of training 
collaborative neural networks, in which 
the private gradient descent method 
adds random noise from an appropriate 
distribution to gradients. Then the col­
laborative private gradient descent 
method ensures that the compounded 
information per mini-batch will not be 
disclosed too much with the increase of 
the number of participants.

Different from the above differen­
tially private distributed training frame­
works [74], [81], [83] that add random 
noise to gradients, Papernot et al. [84] 
introduced Pr ivate Aggregation of 
Teacher Ensembles (PATE) for learning 
generally applicable privacy-preserving 
models from disjoint private data, agnos­
tic to model details and optimization 
algorithms. Different data owners with 
the same machine learning tasks train 
their own teacher model on disjoint 
sensitive data independently. The votes 
of multiple teacher models can be 
aggregated and the Laplace noise is 
added to aggregation results:

,argmaxx xf n Lap 1
j

j
c

= +^ ^ ch h m' 1 � (16)
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where c  is the privacy parameter and 
xn j^ h is the number of teachers that 

assign class j to the input .x  Then, a stu­
dent model can be trained on unlabeled 
public data by semi-supervised knowl­
edge transfer from the teacher ensemble, 
providing a releasable model that will not 
expose privacy in the original data.

However, the original PATE [84] is 
only practical on simple classification tasks 
since it requires more queries and has a 
large privacy cost when handling class 
imbalance problems. In fact, data irregu­
larities are ubiquitous in pattern classifica­
tion [85]. Scalable private learning with 
PATE, named SPATE [86], is a novel 
aggregation mechanism that is more 
selective and adds less noise. If the teach­
er’s answers are not consistent, the answer 
can be omitted. The teachers can also give 
no answers when the student can confi­
dently obtain the right answer. To involve 
less noise for preserving privacy in the 
aggregation of votes, SPATE adds Gauss­
ian noise instead of Laplace noise, which 
is beneficial for the practicality of predic­
tion tasks with many output classes.

3) Long Short-Term Memory 
Networks
As a standard language model, long 
short-term memory networks (LSTM) 
can capture long term dependencies and 
have been successfully applied to speech 
recognition, machine translation, and 
sentiment analysis, etc. Unfortunately, 
these training data are all privacy sensi­
tive. Considering the fact that each user 
may contribute a multitude of training 
samples in language modeling, the 
approach [75] provides user-level privacy 
guarantees in LSTM instead of example-
level privacy in prior works. In spite of 
the complex internal structure, McMah­
an et al. designed a model based on fed­
erated learning for next-word prediction 
in mobile keyboards. The user-level pri­
vacy preserving can be achieved in fed­
erated algorithms by adding Gaussian 
noise and enforcing clipping each-user 
update in the iterative training.

4) Generative Neural Networks
Generative models, training on realistic 
data collected from users, are widely 

used for generating various desirable 
data. Generative neural networks [87] 
iteratively train the generator and dis­
criminator until the generated sample is 
indistinguishable for the discriminator 
from the true sample. Releasing of dif­
ferentially private data faces many chal­
lenges in preserving inherent correlation 
structure of various types of data. To 
resolve these challenges, Lu et al. [77] 
presented a unified framework of gener­
ating and publishing synthetic tabular or 
graph data through modeling the input 
distribution based on generative adver­
sarial networks trained by NoisySGD 
[73]. To tackle the data scarcity problem 
in some domains, Xie et al. [80] present­
ed another unified framework of train­
ing generative adversarial networks in a 
differentially private manner. During the 
training procedure, carefully designed 
noise is added on gradients of the dis­
criminator and iterative gradient descent 
is enforced with gradient clipping.

In medical practice, clinical data are 
extremely scarce and often need to be 
shared. To address the challenges in clini­
cal data sharing, the method in [78] trains 
auxiliary classifier generative adversarial 
networks with differential privacy for 
generating shareable and reanalysis bio­
medical data. For preserving the privacy 
of participants, it clips the norm of gradi­
ents and adds Gaussian noise while train­
ing the discriminator.

Instead of adding noise to gradients of 
the discriminator during training in [78], 
[80], PATE-GAN [88] modifies PATE 
[84] and integrates it to GANs for gener­
ating synthetic data in a differentially pri­
vate manner. In order to build a dif­
ferentially private generative model, 
PATE-GAN designs multiple teacher dis­
tinguishers and a student distinguisher. 
Multiple teacher distinguishers have access 
to the real data that are partitioned in 
advance, and the differentially private 
aggregation of their outputs are used to 
train the student distinguisher. The result­
ing model can be applicable for generating 
synthetic data while providing rigorous 
privacy guarantees for the original dataset.

Different from previous studies [77], 
[78], [80] that release the synthetic data, 
the approach proposed in [79] aims at 

publishing a differentially private deep 
generative model that is trained on origi­
nal data. Within the training of generative 
adversarial networks, it clips the norm of 
gradients and adds appropriate Gaussian 
noise while updating the discriminator 
that is directly accessible to original data. 
To further improve the training stability 
and convergence rate, three optimization 
strategies are proposed. Thus, analysts can 
use the well-trained private generative 
model to produce high-quality data.

In [89], GANobfuscator, a differen­
tially private generative adversarial net­
work is proposed to mitigate information 
leakage under GAN. Specifically, the care­
fully designed noise is added to gradients 
to achieve differential privacy within the 
learning procedure, and the gradient 
pruning is presented to enhance the pri­
vacy and improve the stability and scal­
ability of generative model training itself. 
Unlike the privacy-preserving framework 
mentioned in PATE [84], whose privacy 
loss is proportional to the amount of data 
needed to be labeled in the public dataset, 
the privacy loss of GANobfuscator is 
independent of the amount of generated 
data, which enables GANobfuscator for a 
wide variety of real-world scenarios.

Note that releasing generative mod­
els trained by standard SGD techniques 
may leak the privacy of users. In [76], 
data are separated to different clusters by 
differentially private kernel k-means and 
separate generative neural models are 
trained on each cluster by improved dif­
ferentially private gradient descent. As a 
result, we can learn private generative 
models that provide differential privacy 
for each individual in the training data 
and generate realistic synthetic samples.

5) Summary
In Table V of the Supplementary Mate­
rial, we summarize and compare the 
aforementioned differentially private 
deep learning methods based on the 
Laplace or Gaussian mechanism, mainly 
according to specific mechanisms, advan­
tages, disadvantages and privacy level. To 
achieve differential privacy, the Laplace or 
Gaussian mechanism is usually performed 
upon gradient during model training, 
because the optimization of neural 
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network based deep learning methods is 
all based on gradient descent. Remark­
ably, generating sharable and non-private 
data are a paramount practical application 
of differentially private deep learning.

B. Output/Objective Perturbation 
Mechanism
This section reveals the incorporation of 
the output or objective perturbation 
mechanism for privacy preserving in 
deep learning models including deep 
auto-encoders (AE), convolutional deep 
belief networks (CDBN) and a network 
embedding method named DeepWalk. 
The existing three research works are all 
based on objective perturbation.

1) Deep Auto-Encoders
Deep auto-encoders [90] are composed 
of multiple auto-encoders and can be 
trained for extracting useful latent features 
in an unsupervised manner. As the first 
attempt of applying objective perturba­
tion for privacy preserving in deep learn­
ing models, Phan et al. [91] tried to ensure 
that the adversaries will not learn any sen­
sitive information from deep auto-encod­
ers even if they possess all the remaining 
tuples of the sensitive data. It enforces 
polynomial approximation of the data 
reconstruction and the cross-entropy 
objective function by Taylor expansion. 
Then it adds appropriate noise into coef­
ficients of the polynomial approximation. 
After training deep auto-encoders by gra­
dient descent methods, the optimal 
parameters can be obtained, which do not 
disclose any private information of the 
training data when the model is released.

2) Convolutional Deep Belief 
Networks
Convolutional deep belief networks 
(CDBNs) represent one of the well-
known hierarchical generative models, 
which consist of multiple convolutional 
restricted Boltzmann machines [92]. 
Analogous to [91], Phan et al. [93] intro­
duced differential privacy to CDBNs. 
Realizing the fact that the objective 
function of CDBNs is more complicat­
ed than that of auto-encoders, private 
CDBNs ingeniously utilize the Cheby­
shev expansion to obtain the polynomi­

al approximation of the energy-based 
objective functions of CDBNs. To 
achieve differential privacy, coefficients 
of the polynomial representation are 
perturbed by adding random noise. Fur­
thermore, a single-layer private CDBN 
can be stacked to deep private CDBNs.

3) DeepWalk
As a new learning paradigm for network 
analysis, network embedding encodes 
nodes in a network into a low-dimen­
sional vector space, and simultaneously 
characterizes structure information of a 
network. Unfortunately, almost all of the 
existing network embedding methods 
ignore the risk of releasing nodes repre­
sentations, which may cause link privacy 
leakage for nodes in a network. DPNE 
[94] develops a differentially private ver­
sion of DeepWalk [95] that is revealed 
to be equivalent to factorization of a 
normalized Laplacian matrix in [96]. By 
perturbing the objective function of 
matrix factorization, the embedding 
representations learned by DPNE can 
achieve differential privacy. In addition, 
DPNE can be applied in other network 
embedding methods that can be equal 
to factorize a certain matrix.

4) Summary
There are only three related works con­
ducted on output or objective perturba­
tion. The reason is that the objective 
functions of deep learning algorithms 
are almost all non-convex, and it is more 
difficult to converge after adding noise 
to the objective function. Moreover, 
simply adding noise to the well-trained 
model parameters may remarkably dis­
tort the model utility.

V. Discussion
Even though the techniques mentioned 
above ensure that the results can satisfy 
the requirement of differential privacy 
and prevent models from revealing 
inappropriate details of sensitive data, 
there remain great research challenges 
and also open several avenues for fur­
ther investigations.

Model utility. The prevalent mecha­
nisms such as the Laplace or Gaussian 
mechanism, can be introduced to numer­

ous machine learning methods by virtue 
of their flexibility and simplicity. With a 
lot of noise being added, the foremost 
challenge for researchers is ensuring the 
accuracy of analysis results, especially for 
those models that require high accuracy. 
As a different scheme, the output or 
objective perturbation mechanism involves 
differential privacy into various learning 
algorithms to avoid the privacy disclosure 
of samples. In ERM-based techniques, 
random noise is added to the output 
models or the convex objective functions 
of models. Meanwhile, ERM has essen­
tial constraints that the objective function 
must be convex and L-Lipschitz. The 
PAC-based techniques try to measure the 
relationship between the quantity of 
learning samples and the bounded accu­
racy of the model. Obviously, the accu­
racy of model results is in direct propor­
tion to the number of learning samples. 
By doing so, the privacy learning by PAC 
may lead to higher sample complexity 
even gain inaccurate results or become 
impractical for real applications. However, 
the mentioned perturbation mechanisms 
in this survey may be not the only ways 
to develop a differentially private model. 
For addressing potential privacy issues 
in machine learning, how to design an 
effective differentially private algorithm 
still requires further exploration.

Privacy level. To provide the prin­
cipled and rigorous privacy guarantees 
in fundamental machine learning mod­
els, the privacy budget should be bounded 
at first. Then the composition bounds 
can be used to ensure that the final model 
has desirable differentially private prop­
erties and retains acceptable model util­
ity. However, the sensitivity of the out­
put with respect to changing a single input 
record is usually hard to determine 
especially for various specific problems. 
Consequently, different ways should be 
tried to reduce the privacy budget of 
differential privacy and tighten the util­
ity bound of machine learning methods. 
Moreover, there still lacks of a unified 
framework that satisfies differential pri­
vacy and can be applied to different 
machine learning approaches.

Applications. Another challenging 
problem is how to achieve privacy 
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preserving in evolutionary computation 
and fuzzy systems, which are fascinating 
research areas in computational intelli­
gence. For example, an important next 
step is to incorporate differential privacy 
mechanisms to operators, evaluation 
functions and solutions when designing 
data-driven evolutionary algorithms. 
Especially, adding appropriate noise may 
increase the diversity of the population. 
It would also be an exciting research 
area to explore adding calibrated noise 
to the process of fuzzy reasoning, such as 
affiliation functions.

Last but not least, incorporating dif­
ferential privacy into complex models 
represents a long-standing challenge for 
research communities of privacy pre­
serving. On one hand, complex models 
can lead to the increased complexity in 
managing the risk of information dis­
closure, which means that excessive san­
itization is usually indispensable and 
even leading to distorting the data utility 
for analysis. On the other hand, preserv­
ing privacy in complex models may 
consume more time and even become 
computationally infeasible. Especially in 
deep learning, training complex neural 
networks may cost a considerable 
amount of time. For these reasons, it is 
nontrivial for researchers to apply differ­
entially private techniques to different 
types of complex machine learning 
models for a wide variety of specific 
tasks. Many other techniques, such as 
designing novel distributed protocols, 
may provide future opportunities for 
improving utility and privacy of differ­
entially private machine learning. Other 
machine learning models have the 
potential to be performed with differen­
tial privacy.

VI. Conclusion
Hitherto, most of the existing machine 
learning models are known to implicitly 
memorize many details of training datas­
ets during training and inadvertently 
reveal privacy during model prediction. 
It is paramount to improve the non-pri­
vate machine learning methods for non­
experts on privacy especially for those 
who majored in information-critical 
domains. Throughout this paper, we give 

a comprehensive review of privacy pre­
serving in machine learning under the 
unified framework of differential privacy. 
We provide an intuitive handle for the 
operator to gracefully balance between 
utility and privacy, through which more 
users can benefit from machine learning 
models built on their sensitive data. And 
finally, we discuss major challenges and 
promising research directions in the field 
of differentially private machine learning.
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