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Abstract

G ene Expression Programming 
(GEP) is a popular and established 
evolutionary algorithm for au­

tomatic generation of computer programs. 
In recent decades, GEP has undergone 
rapid advancements and developments. A 
number of enhanced GEPs have been 
proposed to date and the real world ap­
plications that use them are also multiply­
ing fast. In view of the steadfast growth of 
GEP and its importance to both the aca­
demia and industry, here a review on GEP 
is considered. In particular, this paper pres­
ents a comprehensive review on the re­
cent progress of GEP. The state-of-the-art 
approaches of GEP, with enhanced designs 
from six aspects, i.e., encoding design, evo­
lutionary mechanism design, adaptation 
design, cooperative coevolutionary design, 
constant creation design, and parallel de­
sign, are presented. The theoretical studies 
and intriguing representative applications 
of GEP are given. Finally, a discussion 
of potential future research directions of 
GEP is also provided.

I. Introduction
Gene Expression Programming (GEP) is 
an established Evolutionary Algorithm 
(EA), which solves user-defined tasks by 
the evolution of computer programs [1], 
[2]. In GEP, computer programs are 

typically encoded by fixed-length gene 
expression strings that are evolved through 
nature-inspired operators such as mutation 
and crossover. Today, GEP has been veri­
fied as being effective in searching for 
accurate and concise com­
puter programs [2], [3]. It 
has been applied to many 
real world applications 
with much success re­
ported, including 
time series pre­
dictions [4], clas­
sification problems 
[2], regression prob­
lems [2], data mining 
and knowledge discov­
ery [5]–[7], etc.

Over the past decades, 
GEP has attracted ever-in­
creasing attention from the research 
communities, leading to a number of 
enhanced GEPs proposed in the literature. 
For instance, Li et al. [8] proposed the use 
of prefix notation to represent computer 
programs, and this has successfully im­
proved the search efficiency of GEP. 
Zhong et al. [7] extended the GEP chro­
mosome representation by using Auto­
matically Defined Functions (ADFs). In 
particular, new schemes such as the uni­
form design method [9], the Clonal Selec­
tion Algorithm (CSA) [10]–[12] and the 
weight tournament selection [13] have 

been used to improve the global search 
ability of GEP. In addition, some research­
ers have tried to integrate operators of 
other EAs into GEP to improve its search 
efficiency [7], [14], [15]. Mwaura and 

Keedwell [16] sought to im­
prove GEP by adaptively 

adjusting the parameter 
settings along with the 

search, while Shao 
et al. [17]–[21] at­

tempted to reduce 
the computational 
time of GEP via 

parallel computing 
technologies. The ap­

plications of GEP have 
also proliferated rapidly.

In contrast to the rapid 
research development of GEP, 

so far, few efforts have been made to 
review on the recent research progress of 
GEP in the literature. Among those 
available, Peng et al. [22] has conducted a 
preliminary survey of GEP. However, the 
review has focused only on the theoreti­
cal research works of GEP. There remains 
to be lacking a comprehensive survey of 
GEP that keeps track of the state-of-the-
art GEP algorithms and one that dis­
cusses on the exciting research areas of 
GEP. This survey thus represents an 
attempt to fill in this gap.

To date, work on GEP can be di­
vided into several unique areas. For the 
sake of brevity, in the present survey, we 
have classified them into eight groups. 
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These include encoding design, evolu­
tionary mechanism design, adaptation 
design, cooperative coevolutionary 
design, constant creation design, parallel 
design, theoretical study, and last but not 
least, the applications of GEP.

Encoding design, which defines how a 
solution (i.e., a computer program) is 
encoded in the chromosome, is the first 
step to design a GEP. The encoding 
design has significant influence on the 
performance of GEP, since it determines 
the search space as well as the mapping 
between phenotypes and genotypes. 
Traditional GEP adopts the Karva expres­
sion or K-expression [1] to represent a 
computer program. This representation is 
of a fixed length, which is useful for gen­
erating concise computer programs [3]. 
However, the K-expression representation 
has several drawbacks. For example, good 
building blocks could be easily destroyed 
by the genetic operators if the solution is 
encoded by the K-expression [8]. In 
recent decades, various efforts have been 
undertaken in order to overcome the 
drawbacks of K-expression representation 
[7], [8], [23].

With respect to the evolutionary mech­
anisms, traditional GEP adopts several 
Genetic Algorithm (GA)-based operators, 
such as the random mutation and the 
one-point crossover, to evolve the chro­
mosomes. These simple operators be­
come inefficient when attempting to 
solve complex and large-scale optimi­
zation problems. Thus, the literature 
includes many efforts to enhance the 
evolutionary mechanisms of GEP. Some 
of them use mathematical methods such 
as the uniform design [9], [24], while oth­
ers use new operators inspired by other 
EAs [7], [14], [15].

Adaptation design refers to the design 
of mechanisms to adaptively control the 
parameters of GEP. It is worth noting 
that GEP contains a number of control 
parameters, including the size of popula­
tion, the length of chromosome, and the 
mutation rate, etc. The setting of these 
parameters has significant influence on 
the performance of the algorithm, thus 
the finding of proper parameter settings 
for problems with different features is 
not a trivial task. To address this issue, 

several parameter adaptation techniques 
have been proposed to date. These tech­
niques attempt to adjust the parameter 
settings of GEP adaptively while the 
evolution progresses online [16], [25].

Cooperative Coevolutionary (CC) 
design is commonly used to improve 
EAs for solving large scale optimization 
problems. By decomposing the encoun­
tered problem into small scale sub-
problems and using separate EAs to solve 
the sub-problems cooperatively, CC 
design is capable of improving the search 
efficiency of various EAs on a number of 
problems [26]–[28]. In the literature, sev­
eral efforts have also been found on 
applying CC design to improve GEP 
[29]–[31].

Furthermore, constant creation is an 
optional operator in GEP that aims to 
find numerical constants (e.g., the coeffi­
cients of formulae) for constructing accu­
rate GEP solutions. Since numerical 
constant is an integral part of most math­
ematical formulas, the constant creation 
operator is useful for finding highly accu­
rate solutions. However, the evolution­
ary mechanisms of GEP are unsuitable for 
evolving numerical constants. To tackle 
this problem, a number of attempts have 
been made to improve GEP by proposing 
new schemes which are capable of evolv­
ing both structures and numerical con­
stants, simultaneously [32]–[37].

On the other hand, further reduction 
on the computational time of GEP via 
the integration of GEP with parallel and 
distributed computing platforms has 
become popular in recent years. Since 
GEP is a population-based search algo­
rithm, it relies on the search approaches 
that work on the basis of manipulating 
representative samples of the search sub-
regions within the solution landscape. 
Such inherently parallel or multi-track 
searches make GEP suitable for parallel­
ism. So far, a number of parallel GEPs 
have been developed. Existing parallel 
GEPs mainly adopt the Master-Slave 
model [17], [19], [20] and the Island 
model [18], [21], [38].

The theoretical study on GEP has 
focused on the theoretical aspects of 
GEP, such as the proof of convergence 
and the estimation of convergence 

speed. This paper will discuss recent 
research on the theoretical studies of 
GEP. In addition, this paper also reviews 
several areas of application where GEP 
has been successfully applied. Since the 
applications of GEP have proliferated 
rapidly, our focus here is placed on five 
key representative application areas of 
GEP. Finally, based on the survey, this 
paper then discusses a number of inter­
esting potential future research areas 
pertaining to GEP.

The purpose of the current survey is 
to present a comprehensive multi-facetted 
exposition of recent research in GEP. For 
the sake of completeness, the survey 
begins in Section 2 with a brief review 
on the background knowledge of GEP. 
Then, in Section 3, we review the state-
of-the-art GEP variants from six perspec­
tives as mentioned above. Section 4 
examines the theoretical studies of GEP, 
followed by a review of the representative 
application areas of GEP in Section 5. In 
Section 6, we discuss the future research 
directions of GEP, and finally draw our 
conclusions in Section 7.

II. Background
This section provides a brief introduc­
tion of related background knowledge to 
aid readers in understanding the search 
mechanism of GEP. In particular, the tra­
ditional chromosome representation of 
GEP is described. The algorithm frame­
work of GEP is also given in this section.

A. Chromosome  
Representation of GEP
Computer programs such as mathemati­
cal formulae and logical rules are com­
monly represented by expression trees 
(ETs) with two types of nodes: function 
and terminal. A function (e.g., +, sin) is a 
node that contains a single child or 
more which represent the input argu­
ments of this function. For example, a 
node sin is a function node since it has 
one child representing its input argu­
ment. A terminal is a leaf representing a 
variable or a constant. In GEP, a com­
puter program is encoded by one or 
multiple genes. Each gene is a fixed-
length string that comprises two parts. 
The first part (called the head) is formed 
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by functions and terminals, while the 
second part (called the tail) is formed by 
terminals only. Each gene can be con­
verted to an equivalent sub-function by 
using a width-first search scheme. The 
sub-functions encoded by genes are 
linked to form a final solution by a link­
ing function (e.g., +), which is defined 
in advance or determined by a certain 
adaptation strategy. To ensure that any 
chromosome can be translated to a valid 
expression tree, the lengths of the head 

(h) and tail (l) are imposed with the fol­
lowing constraint:

	 ( ) ,l h u 1 1$= - + � (1)

where u  is the maximum number of 
children of the functions.

A typical example of chromosome 
with a single gene is given by:

	
[ , , , , , , , , , , ,

, , , , , , , ] .

sin expy z x x y

y z x y y y x z

) )+ +
�

(2)

This chromosome can be converted to 
an expression tree as shown in Fig. 1, and 
the solution represented by the chromo­
some can then be decoded as:

	 ( ( ) ) ( ( ) ) .exp sinx y y x z) ) + + � (3)

In the GEP chromosome, the number 
of nodes in the final ET must not exceed 
the predefined length of the chromo­
some. Thus, this representation has a ten­
dency of producing short programs and 
avoiding the bloating limitation of GP.

B. Algorithm Framework of GEP
Fig. 2 illustrates the procedure of tradi­
tional GEP, which consists of the fol­
lowing operations.

Initialization: The first step is to generate 
a set of random chromosomes to form the 
initial population. For every chromosome 
in the initial population, each element of 
the fixed-length strings is randomly 
assigned based on the type of the element. 
Elements belonging to the head part are 
assigned functions and terminals, while 
elements belonging to the tail part are 
assigned terminals.

Fitness Evaluation: In this step, the fit­
ness values of all chromosomes in the 
population are evaluated. The fitness eval­
uation function is problem specific and 
has a great impact on the performance of 
the algorithm.

Selection and Replication: This step 
selects better chromosomes in the popu­
lation to form a new population for the 
next generation. There are various selec­
tion strategies that can be used, such as 
the roulette-wheel selection strategy and 
tournament selection strategy [39]. It has 
been shown that the roulette-wheel 
selection with elitism offers better per­
formances in solving complex problems.

Mutation: In the mutation operation, 
every element at any position of each chro­
mosome is subjected to a random change 
with a predefined mutation rate ( ).pm  If an 
element is to be mutated, it can only be 
assigned a feasible random symbol accord­
ing to its type. For example, a tail element 
can only be assigned a terminal.

Transposition: The transposition opera­
tion aims to replace some consecutive ele­
ments of the chromosome with a segment 
of consecutive elements in the same chro­
mosome. It contains three sub-steps, 
which are performed with probabilities of 

,p is  ,pris  and ,p g  respectively.
❏❏ IS-transposition: An Insertion Sequence 
(IS) is a segment of consecutive ele­
ments in the chromosome. In this sub-
step, an IS is randomly selected. Then a 
copy of the IS is made and inserted at a 
random position in the head of a gene. 
The inserted position should not be 
the start position of a gene because a 
gene with a terminal at the root is of 
little use. After that, the sequence 
downstream from the insertion point 
would be replaced by the IS. An 
example of the IS-transposition is 
illustrated in Fig. 3, where the chro­
mosome under consideration contains 
two genes. In the IS-transposition, an 
IS (i.e., “baa”) is randomly chosen from 
the chromosome. The insertion point 
(e.g., the  5th position of the 1st gene) 
is then randomly selected from the 
head parts of all the genes. Lastly, the 
elements of the head part downstream 
from the insertion point are replaced 
by the selected IS.

❏❏ RIS-transposition: A Root Insertion 
Sequence (RIS) is a segment of con­
secutive elements that starts with a 
function. Hence, RISs are chosen 
from the heads of genes. In this sub-
step, the chromosome and the gene to 
be modified, the start position of the 
RIS and its length, are randomly cho­
sen. Once an RIS is selected, a copy of 
the RIS is made and inserted into the 
root of the selected gene, as done in 
the IS-transposition step. Fig. 3 illus­
trates the RIS-transposition, where the 
RIS (i.e., “)a+”) is selected from the 
head of the 1st gene. Then, the RIS is 
inserted into the 1st position of the 1st 
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gene. The original head is shifted to ac­
commodate the RIS, and thus the last 
symbols of the head are deleted.

❏❏ Gene-transposition: In gene transposi­
tion, the chromosome to be modified 
is randomly chosen. Then, a random 
gene (but not the first gene) of the 
chosen chromosome is selected and 
transposed to the beginning of the 
chromosome. Fig. 3 presents a partic­
ular example of the gene-transposi­
tion, where the chromosome under 
consideration contains only two genes. 
In this example, the 2nd gene is select­
ed and transposed to the beginning of 
the chromosome.
Recombination: The aim of the recom­

bination operation is to exchange the 
gene information of two parent chromo­
somes to generate two offspring. This 
operation also contains three sub-steps. 
These are one-point recombination, 
two-point recombination, and gene 
recombination. In gene recombination, a 
gene of one parent is selected randomly. 
Then, the selected gene is exchanged 
with the corresponding gene of the 
other parent to generate two offspring. 
In the recombination, the three sub-steps 
are performed with probabilities of 

, ,p pc c1 2  and ,pcg  respectively.
After the recombination operation, a 

new population, which has the same size 
of the parent population, is generated. 
Then the algorithm turns to the fitness 
evaluation step, and the evolutionary 
process continues until the termination 
conditions (e.g., reaching maximum gen­
eration or achieving a satisfactory solu­
tion) are met.

C. GEP vs GPs and other EAs
GEP can be considered as a special vari­
ant of GP. The major difference between 
GEP and other GP variants lies in the 
chromosome representation. Traditional­
ly, in GPs, computer programs are repre­
sented using expression trees implemented 
by tree representation. To ensure that any 
chromosome is valid and promising, spe­
cific operators are required for initializa­
tion and reproduction (e.g., the full and 
grow methods [40]). This makes the 
implementation of GP more difficult 
than other EAs. Besides, as the evolution 

goes on, the size of the expression trees 
will grow quickly, which results in the 
“Bloating Problem”. To avoid the above 
problems, GEP uses a linear representa­
tion to encode computer programs. 
The chromosomes of GEP are easier 
to genetically manipulate. Further, as the 
size of the chromosome is fixed, the size 
of the decoded expression tree will never 
exceed a predefined upper-bound. 
Therefore, GEP is capable of providing 
relatively concise solution to the given 
problem. However, to facilitate the search 
for high quality solutions, the chromo­
some size should be configured appropri­
ately for the specific problem, which is 
often a non-trivial task.

There are also other GP variants that 
adopt a linear representation, such as 
Grammatical Evolution (GE) [41] and 
Linear Genetic Programming (LGP) [42]. 
Oltean and Grosan [43] have compared 
the differences between several GPs with 
linear representation. In general, each GP 
variant possesses its strengths and weak­
nesses. GE uses the BNF grammars for 
solution encoding and decoding, which 
makes it suitable for evolving programs 
that can be expressed as BNF rules. 
However, the decoding process of GE 
differs and tends to be more complex 
than that of the GEP. Besides, as some 
chromosomes of GE translate to invalid 
expressions, special mechanism to cope 
with such expressions is needed. In LGP, 
the computer program evolved consists 
of a series of low-level instructions and a 
number of registers. Thus, LGP is more 
suitable for evolving low-level programs 
that are run directly on the computer 
processor, while GEP is more suitable for 

evolving high-level programs that are 
human interpretable.

Compared with other EAs such as 
GA, Particle Swarm Optimization (PSO), 
and Differential Evolution (DE), the 
major difference of GEP lies in the form 
of solution provided. Generally, the solu­
tions provided by GEP are computer pro­
grams (e.g., mathematical formula, 
classification rule, and heuristic rule) 
which are generated based on function set 
and terminal set. Meanwhile, in other EAs, 
the solutions usually are a vector of values, 
and they do not need function and termi­
nal sets to construct solutions.

III. Algorithm Design Taxonomy
Over the past decades, a number of 
enhanced GEPs have been proposed. As 
shown in Fig. 4 and Table 1, these 
enhanced GEPs can, generally speaking, 
be classified into six classes. These are 
encoding design, evolutionary mecha­
nism design, adaptation design, coopera­
tive coevolutionary design, constant 
creation design, and parallel design.

A. Encoding Design in GEP
Encoding design determines how a solu­
tion is encoded in the chromosome, which 
has important influence on the perfor­
mance of GEP. In traditional GEP, a 
computer program is encoded by using a 
K-expression [1]. A K-expression string 
can be converted to an ET by using a 
width-first travelling procedure. Since all 
chromosomes are of a fixed length, the 
GEP is capable of generating concise solu­
tions. In addition, the fixed-length repre­
sentation facilitates it for genetic operators 
to manipulate the chromosomes.

IS-
Transposition:

RIS-
Transposition:

Gene-
Transposition:

First Gene Second Gene

+ – a – ∗ a + b

b a b a b ab a b
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Figure 3 Illustration of the transposition operations of GEP.
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However, the K-expression is very 
fragile, because good building blocks 
found can be easily destroyed by the 
genetic operators such as crossover. To solve 
this problem, Li et al. [8] proposed a Prefix 
Gene Expression Programming (P-GEP). 
The phenotype of P-GEP (i.e., the ET) is 
the same as that of GEP and the genotype 
of P-GEP is still a linear string of fixed-
length. However, in P-GEP, the phenotype 
is obtained by travelling the genotype in the 
depth-first scheme instead of the width-first 
scheme, as in GEP. For example, suppose a 
chromosome of P-GEP has the same 
gene as expressed in (2). Then, the corre­
sponding ET of P-GEP can be obtained 
as illustrated in Fig. 5, and the final solu­
tion can be decoded as:

	 ( ( ) ) ( ) .sin expy z x x y) )+ + � (4)

It can be observed from (3) and (4) that 
the same chromosome can lead to quite 
different solutions by using the decoding 
methods of GEP and P-GEP, respectively. 
The authors compared P-GEP with GEP 
on a symbolic regression problem and 
several classification problems. The experi­
mental results demonstrated that the pre­
fix notation in P-GEP is more protective 
for substructures and is capable of improv­
ing the search efficiency.

An effective approach to improve 
GEP is to incorporate high-order 
knowledge that can accelerate the search. 
One of the commonly used types of 
high-order knowledge is the ADF pro­
posed by Koza [52]. ADFs are sub-func­
tions embedded in chromosomes that 
can be evolved automatically along the 

search and be used as building blocks to 
construct the final solution. In the litera­
ture, ADFs have been shown to be effec­
tive for improving the search efficiency 
of GPs [52]–[55]. As GEP is a variant of 
GP, efforts have also been made to inte­
grate ADF with GEP to enhance the 
search process. For example, in [23], Fer­
reira proposes to utilize ADFs in GEP by 
introducing a representation called GEP-
ADF. In GEP-ADF, each chromosome 
consists of a number of conventional 
genes (i.e., ADFs) and a homeotic gene 
(i.e., main program), which are illustrated 
in Fig. 6. All of the conventional genes 
and the homeotic gene are represented 
using K-expression. The main program 
combines different ADFs through link­
ing functions (e.g., +, )) for generating 
the final output. The function set and 
terminal set of ADFs are the same as that 
in the traditional K-expression represen­
tation. On the other hand, the function 
set and terminal set of the homeotic 
gene are the linking function and ADFs, 
respectively. A typical example chromo­
some of GEP-ADF can be expressed as: 
[ , , , , , , , , , , , , , , ,y x x z x y z x) ) )- + + -  

, , , , , , , , , ].sin 1 2 2 1 2 1 2) +  This chromo­
some encodes two ADFs and one 
homeotic gene, and the decoded ETs of 
the chromosome are illustrated in Fig. 6. 
It can be observed that both ADF1 and 
ADF2 are used twice in the main pro­
gram. However, it is worth noting that 
ADFs in GEP-ADF can only be used as 
terminals of the homeotic gene and the 
ADFs contain no input argument. These 
features make GEP-ADF inefficient or 
non-scalable for complex problems.

To further improve the performance 
of GEP-ADF, Zhong et al. [7] proposed 
a new representation called C-ADF, 
which also tried to use ADFs in GEP. In 
C-ADF, each chromosome consists of a 
main program and several ADFs. The 
main program and ADFs are encoded 
using the K-expression. However, the 
building blocks (i.e., function set and 
terminal set) of the main program and 
ADFs are different. In particular, for the 
main program, the function set is com­
posed of functions and ADFs, and the 
terminal set contains variables and con­
stants. Meanwhile, the function and ter­
minal sets of ADFs consist of functions 
and input arguments, respectively. Fig. 7 
illustrates a chromosome with C-ADF 
representation. In this example, the ADFs 
are used three times in the main pro­
gram. It can further be observed from 
Fig. 7 that, in C-ADF, the ADFs have 
input arguments that can come in the 
form of variables (e.g., x  and z), con­
stants (e.g., r), ADFs, or any sub-tree of 
the main program. In this way, complex 
solutions can be represented in a concise 
and readable manner. Experimental 
results on benchmark symbolic regres­
sion problems and even parity problems 
showed that the C-ADF is effective to 
improve the search efficiency and to 
reduce the complexity of solutions.

Quan and Yang [44] proposed a 
Directed Acyclic Graph (DAG) represen­
tation method to improve GEP. The 
DAG chromosome consists of two parts, 
namely, the main chromosome and the 
topological chromosomes. The main 
chromosome consists of a list of functions 
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Figure 4 Outline of the GEP design taxonomy.
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and terminals, while the topological 
chromosome describes the topology of 
DAG attached to the main chromosome. 
A typical DAG representation is illus­
trated in Fig. 8. In this example, the first 
symbol in the main chromosome is “)”, 
and the corresponding values in the 
topological chromosomes (i.e., the two 
integers under the first symbol “)”) are 8 
and 6. This means that the input arguments 

of function “)” are the 8th and 6th sym­
bol in the main chromosome (i.e., “+” 
and “a”). In this way, we can build the 
sub-tree for each symbol in the main 
chromosome. If the symbol in the main 
chromosome is a terminal, the built sub-
tree contains only one node. Each sub-
tree represents a candidate solution of the 
encountered problem of interest, and the 
best sub-tree is selected as the final 

solution that is encoded by the entire 
chromosome. It is worth noting that the 
DAG representation can store multiple 
solutions in a single chromosome, which 
is the same as the MEP proposed in [56]. 
However, since all sub-trees encoded in 
the main chromosome need to be evalu­
ated, expensive computational cost is 
required in DAG.

In summary, the traditional K-expres­
sion and the prefix gene expression are 
simple and easy to implement. However, 
they may lead to complicated solutions 
since they cannot reuse high-order build­
ing blocks for solution construction. By 
considering ADFs as terminals, the GEP-
ADF is capable of reusing high-order 
building blocks (i.e., the ADFs) to con­
struct solutions, even though the ADFs 
cannot be utilized to construct more effec­
tive building blocks. Further, the C-ADF 
representation is more flexible and effective 
than GEP-ADF since it considers ADFs as 
functions rather than terminals. The DAG 
representation can encode multiple solu­
tions in a single solution, which is useful 
for exploiting the search space. However, 
it requires extra computational cost for 
solution evaluations.

B. Evolutionary Mechanism  
Design in GEP
1) Initialization: Initialization is the first 
step in the evolution process. In this step, 
a population of random individuals is 
generated. To gain sufficient population 
diversity for a global search, the initial 
population should be well scattered in 
the whole search space. However, the 
traditional method generates the initial 
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Figure 5 An example chromosome of 
P-GEP.

TABLE 1 Algorithm Design Taxonomy. 

Encoding Design K-expression [1] 

Prefix gene expression [8] 

Gene expression with ADF [23] 

C-ADF [7] 

Directed acyclic graph representation [44] 

Evolutionary  
Mechanism Design

GEP with initialization using uniform design [24] 

GEP with initialization using Gene Space Balance 
Strategy [45].

GEP with weight tournament selection [13] 

GEP with Component Thermodynamical Selection [46] 

GEP with Clonal Selection Algorithm [11], [12], [47], [48]

GEP with rotation operation [3] 

GEP with DE operators [7] 

GEP with SA operators [14] 

GEP with AIS operators [15] 

GEP with a distance-based crossover [49] 

GEP with an adaptive crossover [24] 

GEP with crossover using orthogonal design [50] 

Adaptation Design Adaptive GEP with a genemap [24] 

Adaptive GEP with feedback heuristic [16] 

Cooperative  
Coevolutionary Design

CCGEP with ADFs for classification [29] 

CCGEP for the 3D Process Plant Layouts problem [31] 

CCGEP for the Distributors Pallet Packing  
problem [30] 

Constant  
Creation Design

Constant creation using a Dc domain [32] 

Constant creation based ERC method [7] 

Constant creation by using local search method 
[34]–[36]

Constant creation by using extended encoding and 
DE operators [37] 

Constant creation with creep mutation and random 
mutation [33]

Parallel Design Parallel design using Master-Slave model [17], [19], [20]

Parallel design using Island model [18], [21], [38]

Parallel design using agent-based model [51] 



60    IEEE Computational intelligence magazine | august 2017

population randomly. Such method is 
not effective enough to create well-scat­
tered initial population. To address this 
issue, Chen et al. [24] proposed to use 
the uniform design method [9]. The 
uniform design seeks design points that 
are uniformly scattered throughout the 
search space. To use the uniform design 
for initialization, a uniform table is 
created in advance. The uniform table 
can be expressed by a matrix ( ),U QM

S  
where S  is the factors, Q  is the levels, 
and M  is the number of sample combi­
nations selected from the whole space 

.QS  Equation (5) gives a typical exam­
ple of a uniform matrix with 5 factors 
and 7 levels.
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W
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W
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W

� (5)

It can be observed from (5) that the 
number of levels is the same in each col­

umn (i.e., each column has 7 levels in 
(5)). The uniform table can then be filled 
with functions and terminals to generate 
an initial population. Each row of the 
uniform table represents a chromosome, 
and each column represents a dimension 
in the chromosome. Suppose 1, 2, 3, 4, 5, 
6, and 7 represent , , ,/, , ,x y)+ -  and ,z  
respectively, then the two chromosomes 
generated by the first two rows of (5) are 

,/, , ,z x)-  and , , , , ,z x y) -  respec­
tively. Since the chromosome of GEP is 
divided into head and tail parts, the 
authors of [24] constructed a mix-level 
uniform table to initialize the popula­
tion, where the head can choose more 
levels than the tail.

Similarly, to improve the diversity of 
the initial population, Hu et al. [45] pro­
posed a Gene Space Balance Strategy 
(GSBS). The key idea of GSBS is to per­
form an additional checking procedure 
after the traditional population initializa­
tion process. In this procedure, the dimen­
sions of the chromosomes are checked 
one by one. For each dimension, if an ele­
ment has a probability which is higher 
than the average value, it will be replaced 
by the element that appears to have the 
lowest probability. In this way, the ele­
ments can be scattered as uniformly as 
possible in the initial population.

2) Selection: Selection operator imple­
ments the “survival of the fittest” princi­
ple in nature. This operator is used to 
guide the population to evolve towards 
the desired direction. The roulette-wheel 
selection and the tournament selection 
are two most commonly used selection 
schemes in the EA community. The tra­
ditional GEP adopts the roulette-wheel 
selection with elitism. In general, various 
selection schemes provide different levels 
of selection pressure and can lead to 
quite different convergence behaviors of 
the population. Several efforts have been 
made to design more effective selection 
schemes for GEP.

Wang et al. [13] proposed a weight 
tournament selection to improve the 
population diversity. In the weight tour­
nament selection, a probability vector was 
introduced to represent the selection 
probabilities of individuals in the popula­
tion. To calculate the probability vector, 
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Figure 7 An example chromosome with C-ADF representation.
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the authors defined a measure to evaluate 
the similarity between two individuals s1  
and s2  by

	 ( , ) ( ) ( ) ,s s l s l s
2

Similarity
MaximumOverlap

1 2
1 2

)
=

+
� (6)

where MaximumOverlap represents the 
maximum overlap between s1  and ,s2  si  
represents the length of coding regions 
in si  (i.e., the redundant bits in si  will 
not be considered in calculating ( )) .l si   
Then, the selection probability of the ith 
individual is calculated by
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where sbest  is the historical best individ­
ual. In this way, the more similar an 
individual is to the historical best indi­
vidual, the lower selection probability of 
the individual has. For example, sup­
pose the historical best individual is 
{ , , , , , , , , }x x y y x y) ) - , and an individ­
ual in the population is { , , , , ,x y x) -

, , , } .x x y x  Then, the valid segments of 
these two individuals are { , , , ,x) ) -

, }x y  and { , , , , },x y x) -  respectively. 
We can calculate the maximum overlap 
between these two individuals as 3 by com­
paring each symbol of { , , , , }x x y) -  
and { , , , , } .x y x) -  Thus, the similarity 
between these two chromosome can be 
calculated as ( )/( ) / .2 3 6 5 6 11) + =  In 
this way, we can calculate the similarity 
between each individual and the histori­
cal best individual. The similarity values 
are used as weights to calculate the 
selection probability, which is then used 
in the tournament selection. The indi­
vidual with larger similarity value has a 
higher selection probability. Once the 
required number of individuals has been 
selected for tournament competition, the 
individual with the best fitness value 
wins the competition and survives to the 
next generation. In general, the weight 
tournament selection only reduces the 
probability of reproducing an individual 
with a structure that is similar to the his­
torical best individual so as to increase 

the population diversity and to avoid 
being trapped into the local optimum.

Guo et al. [46] proposed a new Com­
ponent Thermodynamical Selection 
(CTS) to balance the selection pressure 
and the population diversity. The CTS is 
inspired by the principle of minimal free 
energy in thermodynamics. In the selec­
tion process, the newly created offspring 
are combined with the parent population 
at first. The free energy component of 
each individual is then computed by us­
ing the mathematical formula defined by 
the authors. Finally, individuals with larger 
free energy components are removed, and 
the remaining individuals form the popu­
lation for the next generation.

The Clonal Selection Algorithm 
(CSA) proposed by De Castro and Von 
Zuben is a new EA inspired by basic 
immunological principles [10]. The CSA 
has been validated as effective for solving 
complex optimization problems. Over 
the past few years, efforts have been 
made to integrate CSA and GEP so as to 
accelerate the search efficiency. For 
example, Karakasis and Stafylopatis [47] 
proposed an ECA algorithm based on 
GEP and CSA [10]. The ECA algorithm 
adopts the representation of GEP to 
encode chromosomes, while the search 
mechanism of the CSA is utilized to 
evolve the chromosomes. Similarly, Guan 
et al. [11] and Litvinenko et al. [12] pro­
posed enhanced GEPs by replacing the 
traditional operators of GEP with those 
of the CSA so as to maintain popula­
tion diversity. Liu et al. [48] proposed a 
hybrid selection strategy. In the hybrid 
selection, the clonal selection is used to 
select parent individuals for reproduc­
tion, and the roulette-wheel selection 
method is used to select individuals to 
form the new population.

3) Reproduction: The traditional GEP 
contains seven operators to generate off­
spring, including mutation, IS-transition, 
RIS-transition, gene-transition, one-
point crossover, two-point crossover and 
gene-recombination, which make it hard 
to configure a GEP for solving a prob­
lem of interest efficiently and effectively. 
Taking this cue, Zhou et al. [3] simplified 
GEP by using three reproduction opera­
tors, namely, crossover, mutation and 

rotation. As shown in Fig. 9, the one-
point crossover and two-point crossover 
are adopted in this simplified GEP. Both 
crossover operators are working in the 
same way as in the traditional GA. In the 
mutation process, a symbol in the chro­
mosome is mutated to a random symbol 
in probability. In the rotation operation, 
the chromosome is divided into two 
parts with a randomly selected point. 
Next, the two parts are exchanged to 
form a new offspring. Please note that 
the operators of the simplified GEP 
would generate invalid chromosomes 
which cannot be translated to an expres­
sion tree. To tackle this problem, Zhou 
et al. [3] proposed to apply a validity test 
operation to check if a chromosome is 
valid or not. In particular, if a chromo­
some produced by the genetic operator 
cannot pass the test, the operator will be 
executed repeatedly until the generated 
chromosome is valid.

Recently, researchers attempted to im­
prove the reproduction process of GEP by 
using operators of other EAs. For example, 
Zhong et al. [7] proposed a Self-Learning 
GEP (SL-GEP) that extends the opera­
tions of Differential Evolution (DE) for 
the evolution of chromosomes. DE is a 
well-known EA, which has been shown 
to have strong global search capability in 
continuous optimization problems. In SL-
GEP, the crossover and mutation operators 
of  DE are extended to evolve computer 
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programs, which are encoded in discrete 
search space. By using the newly defined 
operators, the number of control parame­
ters in SL-GEP has been reduced and the 
performance of SL-GEP has been en­
hanced when compared to GEP on a 
number of symbolic regression problems 
and even-parity problems. Further, Jiang et 
al. [14] proposed a new GEP named 
GEPS that combines GEP and Simulated 
Annealing (SA). Similarly, Zeng et al. [15] 
proposed an Immune GEP (IGEP) based 
on the Artificial Immune System (AIS) for 
rule mining. The authors adopted the rep­
resentation of GEP to encode chro­
mosomes and operators of AIS to evolve 
the chromosomes.

Qu et al. [49] proposed two new 
crossover operators for GEP. The authors 
defined a metric to measure the distance 
between two individuals. One crossover 
selects the individuals with farthest dis­
tance for recombination, and the other 
selects the individuals with smallest dis­
tance for recombination. Experimental 
results on five symbolic regression prob­
lems indicated that the first crossover 
can bring more population diversity and 
better performance.

Chen et al. [24] proposed an adaptive 
crossover for GEP. In this new crossover, 
offspring are generated by combining 
gene segments of multiple parents. Sup­
pose m  chromosomes are selected to 
create an offspring. Each selected chro­
mosome is divided into n  exclusive genes 
and a uniform table is designed to sample 
n  genes from the m  chromosomes to 
form an offspring. The value of m  
changes adaptively based on the parents’ 
current state. If the distance between the 
parent’s fitness values ( )fp and the histori­

cal best fitness value ( )fmax gets larger, m  
will increase so as to enable communica­
tions among more parents. If the distance 
gets shorter, it may avoid more excessive 
mutations from excellent gene segments 
to have a uniform table of a smaller scale. 
The number of parents in the uniform 
table is determined by:

	 ,m f
f

m1
max

i
p

i 1#d= - + -c m � (8)

where ( , )0 1!d  and i  is the current 
generation.

Yang and Ma [50] proposed an en­
hanced crossover with orthogonal design. 
In this new crossover operator, offspring are 
generated by combining segments from 
multiple parent chromosomes. Instead of 
evaluating all possible segments combina­
tions from parents, the authors used an or­
thogonal table to generate a small number 
of representative combinations. Then, the 
representative combinations together with 
the parent chromosomes are ranked and 
the top m fitter chromosomes are selected 
as the outputs of the crossover.

In summary, the evolutionary mech­
anism of GEP consists of three major 
operators (i.e., initialization, selection, 
and reproduction). These operators play 
the key role in determining the search 
performance for solving the problem of 
interests. All of the existing works on 
enhanced evolutionary mechanism 
design try to better balance the explora­
tion and exploitation abilities of GEP. 
The major difference among them lies 
in the operator to be extended (e.g., ini­
tialization, selection, and reproduction), 
the goal to be achieved (e.g., explora­
tion, and exploitation), and the tech­

nique to be adopted (e.g., uniform design 
and orthogonal design).

C. Adaptation Design in GEP
In this section, we examine the adapta­
tion design in GEP. In GEP, a number of 
control parameters, such as the size of 
population, the length of chromosomes, 
mutation rate, one-point crossover rate, 
etc., have to be defined for problem solv­
ing. However, it is well established that 
the performance of evolutionary search 
correlates positively to the incorporation 
of domain specific configuration [57]. 
That is, different problems require unique 
parameter configurations for evolutionary 
search, and a proper configuration could 
significantly enhance the problem-solv­
ing process. Thus, the researchers have 
successfully proposed adaptive methods 
to control the configurations of evolu­
tionary search while search progress­
es [58]–[61].

In contrast to other evolutionary 
search methods such as GA, adaptation 
design in GEP received far less attention. 
Only a few studies have been proposed in 
the literature with regard to adaptive GEP 
design. Bautu et al. [24] presented an 
adaptive GEP called AdaGEP, which 
adaptively adjusts the number of genes 
used in the chromosome online. In 
AdaGEP, each gene is associated with a 
flag in a binary vector called genemap. 
The size of genemap is equal to the num­
ber of genes in a chromosome. The genes 
will be ignored in the decoding process if 
the corresponding flags in the genemap 
are assigned as zero. This genemap is 
evolved by the classical GA operators 
along with the evolutionary search of 
AdaGEP. Further, Mwaura and Keedwell 
[16] proposed an adaptive GEP by using a 
simple feedback heuristic. In [16], the exe­
cution probability (e.g., crossover rate and 
IS-transition rate) of operations that par­
ticipate in generating offspring with 
improved fitness will be increased, while 
those of the operations that generate dete­
riorated offspring will be reduced.

As we can see, both of the above two 
methods attempt to adjust the configu­
rations of GEP adaptively while the 
evolution progresses. However, they 
focused on different configurations. In 
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particular, the former tries to adjust the 
valid bits used in the chromosomes, while 
the later attempts to adjust the execution 
probabilities of genetic operators.

D. Cooperative Coevolutionary 
Design in GEP
Cooperative Coevolutionary (CC) is an 
evolutionary framework designed for 
solving large scale optimization prob­
lems. The key idea is to decompose the 
original problem into a number of sim­
pler and easier sub-problems. Then, the 
sub-problems are solved independently 
by separate EAs with sub-populations. 
The fundamental issues in designing CC 
framework include i) how to decompose 
the problem and ii) how to evaluate the 
individuals in the sub-populations. Early 
works in CC design may include that 
Potter and De Jong [26] proposed a CC 
framework to improve GA, where an 
individual in one sub-population is eval­
uated by concatenating this individual 
with the elite individuals from the other 
sub-populations. To date, CC framework 
has been successfully applied to improve 
the search capability of several popula­
tion based search methods such as PSO 
[27] and DE [28].

In the literature, the CC framework 
has also been applied to improve GEP. In 
particular, Sosa-Ascencio et al. [29] pro­
posed a CC-based GEP framework, 
where two sub-populations are evolved 
simultaneously. The first sub-population 
focuses on evolving the main pro­
gram, while the second sub-population 
responses to the evolution of ADFs. The 
fitness of an individual is given by the best 
evaluation obtained from all the evalua­
tions of this individual concatenating with 
the solutions in the other sub-population. 
Further, Furuholmen et al. tackled the 
Distributor’s Pallet Packing problem with 
CC-based GEP by dividing it into two 
sub-problems, i.e., pre-scheduling and 
packing, in [30], and solved the Three-di­
mensional Process Plant Layouts problem 
with CC-based GEP which contains 
one population of layout heuristics and 
one population of scheduling heuristics 
[31]. In both [30] and [31], the fitness of 
an individual in one sub-population is 
evaluated by concatenating the individual 

with the best individual in the other 
sub-populations.

E. Constant Creation Design in GEP
Numerical constants are an integral part 
of most mathematical formulas. Thus, 
constant creation is an important opera­
tion for GPs to find highly accurate 
mathematical formulas. However, it is a 
challenging task for GPs to find highly 
accurate constant values, for the numeri­
cal constants are continuous values while 
the chromosome representations of GPs 
are suitable for combinatorial optimi­
zation. In the GP community, several 
methods have been proposed to create 
constants. The most commonly used 
method is the “Ephemeral Random 
Constant (ERC)” method introduced by 
Koza [62]. Koza’s method introduces a 
special terminal symbol to represent a 
constant. In the initialization step, the 
value of each ERC symbol in the initial 
individual is assigned a random value 
within a specific range. After that, these 
random ERCs are fixed and can be 
moved from one expression tree to 
another by using the crossover operator. 
Other methods such as the local search 
method [63], nonlinear least squares min­
imization [64], and EAs [65] have also 
been used to search for constant values 
for GP. Most of the methods proposed 
for GP can also apply to GEP.

Ferreira proposed a new method to 
create constants in GEP [32]. In Ferreira’s 
method, an extra terminal “?” is used to 
represent a constant in the formula, and a 

domain for encoding random constants 
(Dc) is inserted after the tail to indicate 
constants, which is illustrated in Fig. 10. 
The length of the Dc domain is equal to 
that of the tail. The symbols in Dc are 
indices of constants in a constant vector. 
The constant vector is randomly gener­
ated at the beginning. Then, the “?”s in 
the chromosome are replaced from left 
to right, and from top to bottom by the 
constants in the constant vector based on 
the Dc domain. In this way, numerical 
constants can be implemented in GEP. 
However, further research conducted by 
Ferreira [32] indicated that the GEP 
itself has the capability of generating 
simple constants. For some problems, the 
GEP without using constant creation 
can perform even better than those with 
explicit use of numerical constants in 
terms of accuracy. This is because that 
using numerical constants will signifi­
cantly increase the search space, which 
requires a lot more computational cost 
to find a satisfactory solution.

Zhong et al. [7] proposed a method 
based on ERC to create constants. In 
[7], a set of fixed random constants 
within a specific range (e.g., [-1, 1]) is 
generated in the initialization step of the 
algorithm. ERCs are represented by 
using a new terminal symbol. In the ini­
tialization step and mutation operation, 
each element in the chromosomes has a 
probability of crate  of being assigned a 
random constant which is selected from 
the constant set. The constant assigned 
to the element shall remain fixed along 
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the evolution process on unless a muta­
tion is performed on it.

Li et al. [33] investigated different exe­
cution strategies of two constant creation 
methods, namely creep mutation and ran­
dom mutation. Their experimental results 
suggested that constant creation methods 
applied to the whole population for select­
ed generations performed better than 
those applied only to the best individual.

Zhang et al. [34], [35] proposed to 
use DE as a local search method to tune 
constants of formula because DE is suit­
able for solving continuous optimization 
problems. Li et al. [36] proposed a hybrid 
framework which uses the PSO as the 
local search method to create constants 
for GEP.

Cerny et al. [37] proposed a framework 
named DE-PGEP, in which the traditional 
discrete genotype is replaced by the con­
tinuous genotype. In particular, to create 
constants for formulae, a predefined num­
ber of real constants are added at the end 
of the chromosome. Each constant is rep­
resented by a new terminal, which will be 
used to construct the final solution. Dur­
ing the evolution process, DE operators 
are adopted to evolve the chromosomes, 
including the constant part.

In summary, most existing methods 
such as [32], [7] and [33] create constants 
by introducing special terminals and using 
random mutation. These methods are sim­
ple to implement, but lack of effectiveness 
in finding highly accurate constants. On 

the other hand, the EA-based methods 
have the potential to find highly accurate 
constants. However, these methods are 
computationally expensive since they 
require running another EA to tune con­
stants of individuals in every generation.

F. Parallel Design in GEP
GEP contains an iterative evolution pro­
cess. As a result, it is extremely slow in the 
context of solving complex and large-scale 
optimization problems. To address this 
issue, more and more researchers try to 
make use of the computing power of par­
allel and distributed platforms to reduce 
the computational time of GEP. A number 
of parallel GEPs have been proposed over 
the years and they mainly use the Master-
Slave Model and the Island Model.

Master-Slave Model: The master-slave 
model contains a master thread and a 
number of slave threads, as illustrated in 
Fig. 11. The master thread controls the ex­
ecution of the main program while the 
slave threads solve subtasks of the main 
program, such as evaluating the fitness of 
individuals. By solving the subtasks simulta­
neously, the computational time for solving 
the main task can be significantly reduced. 
A typical example is the pGEP proposed 
by Shao et al. [17]. In pGEP, the main GEP 
framework is controlled by a master thread. 
During the evolution process, the fitness 
values of individuals in the population are 
calculated in parallel using GPU. Deng  
et al. [19] proposed a distributed GEP, 

called DFMGEP-FR. The DFMGEP-FR 
can be deemed as a master-slave model, 
where the master (server) sends regression 
tasks to the slaves (clients), and the slaves 
concurrently solve the assigned tasks and 
send the results to the master. Finally, the 
master integrates all solutions received 
from the slaves and generates the final so­
lution. Park et al. [20] proposed a parallel 
GEP which can solve the problem at hand 
and tune the parameters of GEP simulta­
neously. They adopted a Master-Slave 
model that contains two kinds of slaves, 
namely, the O-client and the G-client. The 
O-client focuses on turning parameters of 
GEP, while the G-client focuses on solv­
ing the problem at hand.

Island Model: In the Island model, the 
entire population is divided into a num­
ber of sub-populations. Each sub-
population is evolved by one processor, as 
shown in Fig. 12. During the evolution­
ary process, individuals in one sub-popu­
lation can be transferred to another to 
share the search information. For exam­
ple, Jiang et al. [18] proposed a parallel 
GEP called GEPSA, where the global 
population is divided into several sub-
populations, which have different parame­
ter settings that serve to balance 
exploration and exploitation abilities. To 
share search information and to improve 
the search efficiency, the best-so-far indi­
vidual will adaptively replace the worst 
individual of a sub-population if it does 
not contain the best-so-far individual. Lin 
et al. [38] proposed a parallel niching GEP 
called PNGEP. In PNGEP, the whole 
population is again divided. Each sub-
population is mapped into a processor and 
then be evolved using the niching tech­
nique to maintain the population diversi­
ty. The best individual of each 
sub-population will be exchanged 
through the individual pool during the 
evolution. Further, Du et al. [21] proposed 
a parallel EA architecture. They use GEP 
as an example to implement their parallel 
method. In their method, the population 
is also divided into a number of sub-pop­
ulations. Each sub-population uses the 
MapReduce mechanism to further paral­
lelize the fitness evaluation process. Dur­
ing the evolution, individuals can also be 
transfer across sub-populations.

...
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Slave Thread 2
(or Client 2)

Slave Thread n
(or Client n)

Figure 11 The structure of the Master-slave model.
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Other Models: Besides the Master-
Slave Model and the Island Model, some 
other parallel models have been used to 
implement parallel GEP. For example, 
Jdrzejowicz and Ratajczak-Ropel [51] 
implemented a parallel GEP using the 
multi-agent model.

In summary, most existing parallel 
designs in GEP attempt to reduce the 
computational cost of GEP by conduct­
ing fitness evaluation in parallel. The 
major difference of existing methods lies 
in the selection of parallel models (e.g., 
Master-slave model, Island model, or 
Agent-based Model) and the parallel 
computing platforms (e.g., MPI, MapRe­
duce, or GPU).

IV. Theoretical Study of GEP
Despite the broad research deployed and 
the great success achieved in advanced 
GEP designs so far, there is a lack of rig­
orous theoretical GEP studies in the lit­
erature, since it is hard for theory to keep 
track with the state-of-the-art algorithms 
which have become increasingly elabo­
rate for handling today’s complex and 
big problems.

In [66], Yuan et al. proved that the 
evolution of GEP for symbolic regression 
will converge on the global best chromo­
some in probability and the GEP may 
also converge on the local best chromo­
some. Furthermore, Lu et al. [67], [68] 
used Markov chain and spectrum analysis 
to analyze the convergence rate of GEP 
with maintaining elitist (ME-GEP). They 
proved that the convergence speed of 
ME-GEP depends on the properties of 
transition matrices and the upper bound 
of convergence speed relies on the 
parameter settings of ME-GEP, such as 
the population size, mutation probability 
and selection probability.

More recently, Du et al. [69] used 
Markov chain theory to analyze the time 
complexity of ME-GEP. They obtained 
the upper and lower limits of the average 
time complexity of ME-GEP, and discov­
ered the relationship between the upper 
limit and the parameter settings of ME-
GEP. In particular, suppose the popula­
tion size is ,n  the generation number is ,t  
the best individual in the population 
is ( ),x t0  the ith individual in the pop­

ulation is ( ), ,x t i n1i # #  and ( )tp =

( ( ), ( ), ( ), ..., ( )).x t x t x t x tn0 1 2  According 
to [69], { ( ); }t t 0$p  is a Markov Chain. 
Def ine the opt imal  s ta te  set  of 
ME-GEP as:

 
{( , , ..., )

: ( ) },

E x x x

E x j n B0

n

j

0 1

7! # # !

=)
�
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where E  represents the state space, and 
B represents the best solution set in the 
search space. Then, according to [69], the 
ME-GEP converges to ,E)  i.e.,

	 { ( ) } .limP t E 1
t

!p =
"

)

3
� (10)

In addition, Huang [70] studied the 
schema theory of GEP. The genetic mod­
ifications provided by each operator of 
GEP were analysed. In [70], a set of theo­
rems for predicting the propagation of the 
schema from one generation to another 
and a set of experiments designed to vali­
date the developed schema theory are 
also presented.

V. Applications of GEP
Over the past decades, GEP has been 
applied to a range of applications owing 
to its high effectiveness and efficiency. It 
is worth noting that the applications of 
GEP are very large and are increasing 
rapidly. Thus, it is impossible to list all of 
them in this article. For the sake of space 
economy, in this section, we focus on 
describing five representative application 
fields of GEP. Most of the applications of 
GEP can be converted to the problems 

that belong to these five representative 
fields. Our objective is to provide a brief 
description of these representative fields 
so as to facilitate readers applying GEP 
in practice. Table 2 summaries the exam­
ple applications of GEP in the five repre­
sentative areas. In general, most applications 
adopt the classical single objective GEP 
proposed by Ferreira [1], [2], while some 
applications adopt GEP with problem-
specific modifications.

A. Symbolic Regression Problem (SRP)
SRP is one of the most common appli­
cation fields of GEP. It requires finding a 
mathematic formula to fit the given 
dataset. The mathematical formula, 
which is formed by combining building 
blocks such as numerical functions (e.g., 
+ and sin) and input variables (e.g., x, y), 
is expected to describe the insight rela­
tionships between the inputs and outputs 
of the system and be capable of predict­
ing outputs of new inputs. Each sample 
of the dataset consists of input variables 
and outputs, and can be expressed as:

	 { , , ..., , , ..., },x x x o o, , , , ,i i i n i i m1 2 1 � (11)

where n  is the number of input variables 
and m is the number of outputs, x ,i j  and 
o ,i j  are the jth input and the jth output 
of the ith sample, respectively. The quality 
of the formula C^ h is evaluated by the 
accuracy of its fitting, which is common­
ly achieved by using the root-mean-
square-error (RMSE). Generally, given a 

Island 1

Island n Island 2

Island 3

Individual
Migration

...

Figure 12 The structure of the Island model.
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TABLE 2 Example applications of GEP. 

Problem Type of GEP Summary 

SRP SOGEP Predict reference evapotranspiration in arid climate [71] 

SOGEP Predict velocity field [72] 

SOGEP Predict the discharge coefficient in rectangular side weirs [73] 

SOGEP Predict construction and demolition waste [74] 

SOGEP Determination of the ultimate limit states of shallow foundations [75] 

SOGEP Predict bus dwell time [76] 

SOGEP Stock market prediction [77] 

SOGEP Predict Caspian sea level changes [78] 

SOGEP Predict friction factor for Southern Italian rivers [79] 

SOGEP Estimation of Critical Velocity for Slurry Transport through  
Pipeline [80] 

SOGEP Estimation performance of LiBraH2O absorption cooling system [81] 

SOGEP Estimation of flash point temperature of non-electrolyte organic 
compounds [82] 

SOGEP Short-term load forecasting in the electric power industry [83] 

SOGEP Stage-discharge relationship prediction [84] 

SOGEP Time series prediction [4] 

Improved SOGEP with block strategy Predict software reliability [85] 

SOGEP Estimate flow time of jobs in a multi-stage job shop [86] 

SOGEP Weather prediction [87] 

SOGEP Predict normalized shear modulus and damping ratio of sands [88] 

SOGEP Predict voltage of different Proton exchange membrane fuel cells [89] 

SOGEP Predict evapotranspiration [90] 

SOGEP Flow duration curve regionalization [91] 

SOGEP predict electricity demand [92] 

CP SOGEP Discover classification rules [93] 

Revised SOGEP with backward  
changing EA 

Discover rules for music emotion classification [94] 

SOGEP Multi-label classification [95] 

SOGEP Even selection in high energy physics [96] 

Simplied SOGEP Benchmark classification problems [3] 

AMDP SOGEP, SL-GEP Crowd model design [5], [97]

GEP with some modification Electronic circuits design [98] 

Modified SOGEP with multiple gene 
domains 

Artificial neural networks design [99] 

 SOGEP Circuits design [100], [101]

SOGEP Production line design [102] 

SOGEP with extended encoding design Robot behavior model design [103] 

COP SOGEP Generate hyper-heuristic for combinatorial optimization problems  
[6], [104]

SOGEP Dynamic machine scheduling problems [105], [106]

SOGEP with extended operators TSP and task assignment problem [2] 

ROP SOGEP with encoding extension The HZero and GEP-PO algorithms [2], the UC-GEP [107] 

SOGEP represents the traditional single objective GEP proposed by Ferreira [1], [2].



august 2017 | IEEE Computational intelligence magazine    67

set of building blocks (e.g., numerical 
functions and input variables), the sym­
bolic regression requires finding the 
optimal C)  that minimizes the RMSE 
for the given dataset:

	  ( ),arg min fC C=)

C
� (12)

where ( )f C  returns the fitting error of .C
Many practical problems such as the 

time series prediction problems can be 
converted to an SR problem. In the lit­
erature, various GEP based methods have 
been proposed to solve problems that 
can be converted to an SR problem. For 
example, Yassin et al. [71] converted the 
problem of estimating reference evapo­
transpiration in arid climate as an SR 
problem and applied GEP to solve it. 
Gholami et al. [72] used GEP to predict 
the velocity field in a 90c channel bend. 
Ebtehaj et al. [73] treated the prediction 
of discharge coefficient in rectangular 
side weirs as an SR problem and used 
GEP to solve the problem. Similar works 
in this area can be found in [4], [74]–
[92], [108].

B. Classification Problem (CP)
Classification is a fundamental and active 
research topic in data mining and 
knowledge discovery. Formally, given a 
set of predetermined target classes 

{ , , ..., },C C C Cn1 2=  a set of input fea­
tures { , , ..., },A A Am1 2  and a set of train­
ing data { , , ..., }S S S SN1 2=  where each 
sample Si  has m  features and is associat­
ed with one target class. The task is to 
construct a set of rules, which can be 
used to predict the target classes of sam­
ples, given the input feature values of the 
samples. Machine learning (ML) tech­
niques such as Artificial Neural Net­
works (ANNs) and Support Vector 
Machine (SVM) are commonly used 
to solve classification problems [109]. 
Recently, GP and its variants have also 
been applied to classification. Espejo  
et al. [110] has done a comprehensive sur­
vey on using GP for classification. As a 
variant of GP, GEP has also been applied 
to classification over the past decades. For 
example, Zhou et al. [3] applied GEP to 
several classification problems and showed 
that GEP is capable of evolving more 

concise solutions than the other methods. 
Karakasis and Stafylopatis [111] proposed 
an enhanced GEP with Clonal Selection 
to evolve accurate classification rules. 
Ávila et al. [95] applied GEP to the solu­
tion of multi-label classifications. Wagner 
et al. [112] proposed an enhanced GEP-
based method to discover classification 
rule for data mining.

C. Automatic Model Design  
Problem (AMDP)
Recently, GEP has been used for AMDP. 
As an example, Zhong et al. [5] used GEP 
to design crowd simulation model. In this 
application, the GEP is used to combine 
the predefined building blocks to form 
model components (i.e., behavior rules) 
so as to fit the given real dataset. To evalu­
ate the fitness of a candidate behavior rule, 
a crowd simulation model with the 
behavior rule is performed first. The final 
simulation results are then compared with 
the objective data to calculate the fitness 
value of the behavior rule. A similar tech­
nique was applied to another crowd 
modelling application [97].

GEP has also been used for automatic 
circuit design. For example, Janeiro et al. 
[100], [101] proposed a GEP-based 
method to design components of sensor 
circuits. In their method, two functions 
(+ and =) are used to represent series 
and parallel structures of the circuit, 
respectively. Three terminals are used 
to represent resistances, inductors and 
capacitors. In this way, an electrical cir­
cuit can be represented by a linear string 
of functions and terminals. Similar work 
in this area can be found in [98], [99], 
[102], [103].

D. Combinatorial Optimization 
Problem (COP)
Combinatorial optimization aims to find 
an optimal subset in a given family of 
subsets of a finite set so as to maximize 

(or minimize) a given cost function 
[113]. Many combinatorial optimization 
problems such as the Travelling Salesman 
Problem (TSP) and the Job Shop 
Scheduling problem (JSP) are NP-hard 
problems. Thus, they are infeasible for 
exhaustive search methods to solve. 
Recently, using GEP to solve combina­
torial optimization problems has attract­
ed increasing attention. For example, 
Ferreira [2] applied GEP to two sched­
uling problems, i.e., the TSP and the 
Task Assignment Problem. Sabar et al. 
[6], [104] applied GEP to designing 
high-level heuristics for combinatorial 
optimization problems. Nie et al. [105], 
[106] applied GEP to evolving generic 
scheduling rules for dynamic machine 
scheduling problems. A major feature of 
using GEP for combinatorial optimiza­
tion is that the solutions provided by 
GEP are often general enough to solve 
multiple problems. For example, the 
high-level heuristics generated by GEP 
in [104] are capable of solving multiple 
problems across different domains.

E. Real Parameter  
Optimization Problem
Typically, the Real parameter Optimiza­
tion Problem (ROP) can be stated as 
follows:

	
( )

,
F x
x

maximize 
subject to Rn!

� (13)

where n  is the dimension of the problem, 
Rn  denotes the decision space, and 

:F R Rn
"  represents the objective func­

tion. In the literature, ROPs are com­
monly solved by EAs such as GA, DE, 
and PSO. As GEPs are straightforward to 
be employed for evolving programs with 
discrete tree structure, the research of 
GEP for ROPs received far less attention 
with only few works reported to date. In 
particular, Ferreira [2] proposed two GEP 
variants for ROPs, namely, the HZero 

Over the past decades, GEP has been applied to a range 
of applications, such as symbolic regression, classification, 
automatic model design, combinatorial optimization, and 
real parameter optimization.
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algorithm and the GEP-PO algorithm, 
while Xu et al. [107] presented an Uni­
form-Constants based GEP (UC-GEP) 
for ROPs. The key idea of these methods 
is to use multiple genes to represent one 
solution of the ROP, with each gene 
representing one variable value. They 
mainly differ in how to encode a real 
value by a gene. For example, in the 
HZero algorithm, each gene contains a 
tail domain and a Dc domain. Only one 
terminal “?” is considered to represent a 
real constant. Thus each gene is essential­
ly a formula that consists of different 
constant values and functions. The final 
result of the formula is assigned to the 
corresponding ROP variable. Further, it 
is worth noting that a large chromosome 
length is required if the high dimension­
ality ROPs are encountered, which leads 
to a huge search space that cannot be 
efficiently solved by existing GEPs. It is 
an unexplored direction whether the 
GEP based methods can outperform 
other EAs such as DE and PSO on large 
scale ROPs.

VI. Open Research Issues
In this section, several open research 
issues of GEP are identified and dis­
cussed for further exploration.

A. Advanced Mechanism  
Design in GEP
GEP contains several key components, 
such as transposition, mutation, constant 
creation, and a number of control param­
eters. The design of these components as 
well as the control of the search process 
have a great impact on the performance 
of GEP. Although many works have been 
proposed for dedicated configuration 
mechanisms in GEP, further exploration 
of advanced designs in GEP is expected.

1) Evolutionary Operator and Parameter 
Control Design: In the literature, various 
advanced evolutionary operators and 
parameter control approaches have been 
proposed and verified to be effective in 
other EAs, such as the orthogonal design 
method [114], [115], the aging concepts 
[116], the compact design mechanism 
[117], and the opposite-based evolution­
ary mechanism [118]. In contrast, dedi­
cated designs of evolutionary operators 

and parameter settings for GEP are lim­
ited, such as the adaptive and self-adap­
tive GEP designs discussed in Section 
III.C. More efficient and effective 
designs of the search operators as well as 
control approaches of parameter config­
uration are necessary to achieve advanced 
GEP for problem solving.

2) Constant Creation Design: Constant 
creation is an important operator in GEP, 
which is helpful in finding high quality 
GEP solutions. However, the optimiza­
tion of constants significantly increases 
the search space. Existing constant cre­
ation techniques are not effective in han­
dling the additional complexity incurred 
by constant creation. In particular, Fer­
reira [32] has compared two commonly 
used constant creation methods in GEP 
on symbolic regression problems. The 
experimental results showed that the 
GEPs with a constant creation operator 
performed even worse than the GEPs 
without a constant creation operator for 
checking the solution accuracy. It is there­
fore desirable to design advanced constant 
creation techniques, which can balance 
the incurred complexity in a search space 
and the efforts made for accurate solu­
tion exploration.

3) GEP Design for Solution Complexity 
Reduction: The GEP adopts a fixed length 
string to represent a computer program. 
This enables the GEP to find concise 
solutions when the length of chromo­
some is small. However, when the prob­
lems become complicated, especially 
with a large number of terminals and 
functions, the dimension of the corre­
sponding chromosome will increase 
accordingly to ensure the accuracy of the 
optimized solution. This, however, can 
lead to complicated GEP solutions that 
are not general, and difficult for humans 
to interpret. Thus, it is necessary to de­
sign effective mechanisms to reduce the 
solution complexity of the GEP. One 
potential approach is to treat the solution 
complexity as another objective and use 
multi-objective optimization techniques 
[119]–[121] to find solutions that have 
trade-offs between the accuracy and the 
complexity of solutions.

4) GEP Design for Ill-defined Problems: 
Traditional GEP and its variants are usu­

ally applied to well-defined problems. 
However, in many real world applica­
tions (e.g., classification problems with 
unbalanced data [122]), the problems 
encountered may contain specific fea­
tures, which make GEP inapplicable or 
inefficient. In these cases, problem-spe­
cific GEP has to be designed based on 
the features of the problem encountered. 
For example, in the application of deter­
mining the water quality and stress on 
lakes or rivers as a result of pollutants 
found in the wastewater, evaluation sys­
tems were installed to measure the 
changes of the environment over time in 
different perspectives1. Due to the cir­
cumstances relating to measurement, the 
measurement data may have missing val­
ues. This problem can be easily converted 
to a symbolic regression problem, which 
is the common application of GEP. 
However, without an effective method 
to deal with the missing data, the GEP 
cannot be applied directly to solve it.

B. GEP Meets Machine Learning
Another open research issue relates to 
the use of ML techniques to enhance 
the search performance of GEP. Specifi­
cally, ML can be used to learn high-
order or domain-specific knowledge to 
enhance the search efficiency of GEP. In 
the GP community, some work has 
already been done on using ML to learn 
high-order or domain-specific knowl­
edge in order to enhance the problem-
solving performance of GP [52], [53], 
[123]–[126]. As an example, Kameya et 
al. [125] used ML to capture the building 
blocks (frequently used sub-functions) 
from historical search experiences, which 
are then reused in an effort to improve 
GP. The GEP is an iterative search algo­
rithm that generates a great amount of 
history search information during the 
search. Thus, it is also possible to learn 
useful domain-specific knowledge from 
history search information to improve 
the search efficiency of GEP.

Furthermore, ML could be used to 
define surrogate models aimed at reduc­
ing the computational cost of GEP. For 

1The readers are referred to the detailed descriptions of 
the application in http://www.spotseven.de/gecco-
challenge/gecco-challenge-2014
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many optimization problems such as 
those that require running simulations, 
evaluating the fitness of an individual is 
expensive [5], [97]. In these cases, ML 
techniques, such as ANNs, can be used to 
build an approximation model of the real 
system (a surrogate model) to estimate the 
fitness of a given individual. Since per­
forming with the surrogate model is 
much cheaper than doing so with the real 
system, using surrogate model can signifi­
cantly reduce the computational costs of 
the search process [127].

In addition, ML could be used to 
reduce the dimension of the problem 
encountered so as to improve the search 
efficiency of GEP. In practical applications, 
the problem at hand may contain a large 
number of redundant dimensions, such as 
redundant input features. In fact, only a 
small subset of the features is useful for 
constructing the final GEP solutions. In 
these cases, we can use ML techniques, 
such as feature selection, to choose a small 
number of important features for solution 
construction. In this way, the search space 
would be reduced and the search effi­
ciency of GEP could be improved.

C. Exploration of New GEP Framework
With the rapid development of Internet 
and cloud computing technology, the 
problems that humans face today are be­
coming more and more complicated. Op­
timization problems with large-scale size, 
high dimensional decision spaces, many 
objectives, etc., create common challenges. 
To solve these challenging problems, new 
GEP frameworks need to be developed.

1) Big GEP Framework: Today, the data 
generated by human increases exponen­
tially. This leads to an urgent need for 
designing effective methods to solve big 
optimization problems, as traditional GEP 
may become inapplicable in these cases 
[128], [129]. Among others, there are at 
least two main reasons. First, the search 
space is huge due to the large dimensions 
of the problems encountered. For exam­
ple, the DNA micro array data usually 
contain thousands of features [130]. Thus, 
traditional GEP may quickly be affected 
by local stagnations. Second, for big opti­
mization problems, the fitness evaluation 
involves processing great quantities of 

data and could be quite expensive. GEP 
is an iterative search algorithm that 
requires a large number of fitness evalua­
tions. Thus, the total computational time 
for GEP to solve big optimization prob­
lems could be very long. To address the 
above issues, one potential approach is to 
design parallel GEP models based on 
cloud computing platforms or distributed 
computing platforms.

2) Multi-Tasking GEP Framework: 
Multi-task learning has become an active 
research topic in the machine learning 
community [131]–[135]. The justification 
for multi-task learning is that problems 
seldom exist in isolation, and related 
problems often contain useful informa­
tion that can be utilized to improve prob­
lem-solving efficiency [53], [126], [136]. 
Recently, the concept of Multi-Factorial 
Optimization (MFO) has been intro­
duced in [137] as a new evolutionary par­
adigm that would promote evolutionary 
multitasking. In contrast to traditional 
EAs that solve a single task each time, the 
MFO intends to conduct evolutionary 
searches on multiple concurrently exist­
ing search spaces, corresponding to differ­
ent tasks. A Multi-Factorial Evolutionary 
Algorithm (MFEA) has been designed 
based on the concept of MFO, and has 
been shown to be effective on a number 
of continuous and combinatorial optimi­
zation problems in [137]. The MFO has 
great potential to improve the problem 
solving efficiency of GEP. However, the 
original MFEA is designed based on the 
specific problems and cannot be applied 
with GEP directly for the evolution of 
computer programs. Thus, one of the 
possible directions for multi-tasking GEP 
is from the perspective of MFO.

3) Many-Objective GEP Framework: 
Many-Objective Optimization problems 
(MaOPs), which have more than three 
objectives to be optimized simultane­

ously, have widely existed in various 
applications [138]–[140]. MaOPs are 
more challenging compared with the 
bi- and tri-objective optimization prob­
lems, since the Pareto fronts of MaOPs 
are much more complicated. Traditional 
multi-objective GEPs (see, for example, 
[141]) can be applied to solving MaOPs, 
but their performance will worsen as 
the number of objectives increases. The 
reason for this is that when the number 
of objectives is large, most of the indi­
viduals in the population will be equally 
good (i.e., nondominated to each other). 
This causes the algorithms to fail to 
converge due to the loss of selection 
pressure in the direction of the Pareto 
front. Therefore, designing new many-
objective GEP frameworks to handle 
MaOPs is required.

4) Dynamic GEP Framework: Many 
practical optimization problems are dy­
namic, which requires an optimization al­
gorithm finding the global optimal 
solution under a specific environment as 
well as tracking the trajectory of the 
changing optima over dynamic environ­
ments. In the literature, many EAs for 
Dynamic Optimization Problems (DOPs) 
have been proposed, which can be gener­
ally divided into two categories: (1) find­
ing/tracking optima over time (algorithms 
are mainly for DOPs in a continuous 
space) [142], [143], and (2) adapting 
current solutions against changes (algo­
rithms are mainly for DOPs in a combi­
natorial space) [144], [145]. In contrast, 
significantly fewer studies on GEPs for 
solving DOPs, including both continuous 
and combinatorial DOPs, have been ex­
plored, making it a fertile area for further 
research investigations.

D. Theoretical Studies of GEP
As discussed above, GEP is one of com­
putational intelligence areas in which the 

There are still many challenges and open research issues 
for further exploration of GEP, such as the exploration 
of advanced designs in GEP, the design of new GEP 
framework for complicated optimization, and rigorous 
theoretical analysis of GEPs.
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empirical work has outpaced the theo­
retical work. While there has been some 
work on the theory of GEP [66]–[70], 
more rigorous theoretical analysis is 
expected to provide more insights on the 
GEP search process. Possible areas for the­
oretical study on GEP may include the 
proof of convergence, time complexity 
analysis, the convergence speed estimation, 
and the analysis of evolution efficiencies of 
operators. Besides the classical GEP frame­
work, theoretical studies on the state-of-
the-art GEP frameworks are also expected.

VII. Conclusion
GEP is a variant of GP for automatic 
generation of computer programs. It uses 
a fixed-length gene expression represen­
tation to encode computer programs, and 
be able to find concise and readable solu­
tion efficiently. Over the past decades, 
GEP has undergone rapid advancements 
and has been widely used in many appli­
cations, including classification problems, 
time series predictions, and others. In this 
survey, we reviewed the recent research 
progress of GEP from various perspec­
tives. In particular, we first discussed the 
state-of-the-art techniques designed for 
improving the search performance of 
GEP. In general, these techniques try to 
improve GEP from six aspects, including 
encoding design, evolutionary mecha­
nism design, parameter adaptation design, 
cooperative coevolutionary design, con­
stant creation design, and parallel design. 
Next, we presented the theoretical studies 
of GEP to date. The theoretical study of 
GEP has not attracted sufficient atten­
tions from researchers yet. Existing works 
focused mainly on the proof of conver­
gence and the estimation of convergence 
speed. Further, we summarized the major 
applications of GEP. Generally, most 
applications of GEP can be converted 
into five representative optimization 
problems, i.e., symbolic regression, clas­
sification, automatic model design, 
combinatorial optimization, and real pa­
rameter optimization.

Although GEP has achieved fast ad­
vancements and developments, there are 
still many challenges and open research 
issues for further exploration. First, to 
further improve the performance of 

GEP, exploration of advanced designs in 
GEP is expected. Potential techniques 
include the new parameter adaptive con­
trolling design, constant creation design, 
solution complexity reduction design, 
and ill-problem handling design. Second, 
using ML to assist GEP is desirable. ML 
could be used in at least three aspects for 
enhancing GEP for problem solving, i.e., 
learning problem-specific knowledge, 
constructing surrogate models, and di­
mension reduction. Third, to solve com­
plicated problems that humans face 
today. The design of new GEP frame­
work for complicated optimization (e.g., 
those with large-scale size, high dimen­
sional decision spaces, and many objec­
tives, etc.) is urgent. These include the 
Big GEP framework for solving prob­
lems in big data environment, Multi-
Tasking GEP framework for handling 
multiple tasks simultaneously, Many-ob­
jective GEP Framework to deal with 
problems with more than three objec­
tives, and Dynamic GEP framework for 
problems with optima changing over dy­
namic environments. Last but not least, 
rigorous theoretical analysis of GEP is 
required for providing deeper insights 
of the GEP search process, such as the 
proof of convergence, time complexity 
analysis, convergence speed estimation, 
and analysis of evolution efficiencies 
of operators.
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