
54 IEEE Computational intelligence magazine | august 2017� 1556-603x/17©2017ieee

Review
 Article

Digital Object Identifier 10.1109/MCI.2017.2708618
Date of publication: 19 July 2017

Corresponding Author: Liang Feng (Email: liangf@
cqu.edu.cn).

Abstract

G ene Expression Programming
(GEP) is a popular and established
evolutionary algorithm for au­

tomatic generation of computer programs.
In recent decades, GEP has undergone
rapid advancements and developments. A
number of enhanced GEPs have been
proposed to date and the real world ap­
plications that use them are also multiply­
ing fast. In view of the steadfast growth of
GEP and its importance to both the aca­
demia and industry, here a review on GEP
is considered. In particular, this paper pres­
ents a comprehensive review on the re­
cent progress of GEP. The state-of-the-art
approaches of GEP, with enhanced designs
from six aspects, i.e., encoding design, evo­
lutionary mechanism design, adaptation
design, cooperative coevolutionary design,
constant creation design, and parallel de­
sign, are presented. The theoretical studies
and intriguing representative applications
of GEP are given. Finally, a discussion
of potential future research directions of
GEP is also provided.

I. Introduction
Gene Expression Programming (GEP) is
an established Evolutionary Algorithm
(EA), which solves user-defined tasks by
the evolution of computer programs [1],
[2]. In GEP, computer programs are

typically encoded by fixed-length gene
expression strings that are evolved through
nature-inspired operators such as mutation
and crossover. Today, GEP has been veri­
fied as being effective in searching for
accurate and concise com­
puter programs [2], [3]. It
has been applied to many
real world applications
with much success re­
ported, including
time series pre­
dictions [4], clas­
sification problems
[2], regression prob­
lems [2], data mining
and knowledge discov­
ery [5]–[7], etc.

Over the past decades,
GEP has attracted ever-in­
creasing attention from the research
communities, leading to a number of
enhanced GEPs proposed in the literature.
For instance, Li et al. [8] proposed the use
of prefix notation to represent computer
programs, and this has successfully im­
proved the search efficiency of GEP.
Zhong et al. [7] extended the GEP chro­
mosome representation by using Auto­
matically Defined Functions (ADFs). In
particular, new schemes such as the uni­
form design method [9], the Clonal Selec­
tion Algorithm (CSA) [10]–[12] and the
weight tournament selection [13] have

been used to improve the global search
ability of GEP. In addition, some research­
ers have tried to integrate operators of
other EAs into GEP to improve its search
efficiency [7], [14], [15]. Mwaura and

Keedwell [16] sought to im­
prove GEP by adaptively

adjusting the parameter
settings along with the

search, while Shao
et al. [17]–[21] at­

tempted to reduce
the computational
time of GEP via

parallel computing
technologies. The ap­

plications of GEP have
also proliferated rapidly.

In contrast to the rapid
research development of GEP,

so far, few efforts have been made to
review on the recent research progress of
GEP in the literature. Among those
available, Peng et al. [22] has conducted a
preliminary survey of GEP. However, the
review has focused only on the theoreti­
cal research works of GEP. There remains
to be lacking a comprehensive survey of
GEP that keeps track of the state-of-the-
art GEP algorithms and one that dis­
cusses on the exciting research areas of
GEP. This survey thus represents an
attempt to fill in this gap.

To date, work on GEP can be di­
vided into several unique areas. For the
sake of brevity, in the present survey, we
have classified them into eight groups.

Jinghui Zhong
School of Computer Science and Engineering,
South China University of Technology, Guangzhou, CHINA

Liang Feng
College of Computer Science, Chongqing University,
Chongqing, CHINA

Yew-Soon Ong
School of Computer Science and Engineering,
Nanyang Technological University, SINGAPORE

Gene Expression Programming: A Survey

©istockphoto.com/kubkoo

august 2017 | IEEE Computational intelligence magazine 55

These include encoding design, evolu­
tionary mechanism design, adaptation
design, cooperative coevolutionary
design, constant creation design, parallel
design, theoretical study, and last but not
least, the applications of GEP.

Encoding design, which defines how a
solution (i.e., a computer program) is
encoded in the chromosome, is the first
step to design a GEP. The encoding
design has significant influence on the
performance of GEP, since it determines
the search space as well as the mapping
between phenotypes and genotypes.
Traditional GEP adopts the Karva expres­
sion or K-expression [1] to represent a
computer program. This representation is
of a fixed length, which is useful for gen­
erating concise computer programs [3].
However, the K-expression representation
has several drawbacks. For example, good
building blocks could be easily destroyed
by the genetic operators if the solution is
encoded by the K-expression [8]. In
recent decades, various efforts have been
undertaken in order to overcome the
drawbacks of K-expression representation
[7], [8], [23].

With respect to the evolutionary mech­
anisms, traditional GEP adopts several
Genetic Algorithm (GA)-based operators,
such as the random mutation and the
one-point crossover, to evolve the chro­
mosomes. These simple operators be­
come inefficient when attempting to
solve complex and large-scale optimi­
zation problems. Thus, the literature
includes many efforts to enhance the
evolutionary mechanisms of GEP. Some
of them use mathematical methods such
as the uniform design [9], [24], while oth­
ers use new operators inspired by other
EAs [7], [14], [15].

Adaptation design refers to the design
of mechanisms to adaptively control the
parameters of GEP. It is worth noting
that GEP contains a number of control
parameters, including the size of popula­
tion, the length of chromosome, and the
mutation rate, etc. The setting of these
parameters has significant influence on
the performance of the algorithm, thus
the finding of proper parameter settings
for problems with different features is
not a trivial task. To address this issue,

several parameter adaptation techniques
have been proposed to date. These tech­
niques attempt to adjust the parameter
settings of GEP adaptively while the
evolution progresses online [16], [25].

Cooperative Coevolutionary (CC)
design is commonly used to improve
EAs for solving large scale optimization
problems. By decomposing the encoun­
tered problem into small scale sub-
problems and using separate EAs to solve
the sub-problems cooperatively, CC
design is capable of improving the search
efficiency of various EAs on a number of
problems [26]–[28]. In the literature, sev­
eral efforts have also been found on
applying CC design to improve GEP
[29]–[31].

Furthermore, constant creation is an
optional operator in GEP that aims to
find numerical constants (e.g., the coeffi­
cients of formulae) for constructing accu­
rate GEP solutions. Since numerical
constant is an integral part of most math­
ematical formulas, the constant creation
operator is useful for finding highly accu­
rate solutions. However, the evolution­
ary mechanisms of GEP are unsuitable for
evolving numerical constants. To tackle
this problem, a number of attempts have
been made to improve GEP by proposing
new schemes which are capable of evolv­
ing both structures and numerical con­
stants, simultaneously [32]–[37].

On the other hand, further reduction
on the computational time of GEP via
the integration of GEP with parallel and
distributed computing platforms has
become popular in recent years. Since
GEP is a population-based search algo­
rithm, it relies on the search approaches
that work on the basis of manipulating
representative samples of the search sub-
regions within the solution landscape.
Such inherently parallel or multi-track
searches make GEP suitable for parallel­
ism. So far, a number of parallel GEPs
have been developed. Existing parallel
GEPs mainly adopt the Master-Slave
model [17], [19], [20] and the Island
model [18], [21], [38].

The theoretical study on GEP has
focused on the theoretical aspects of
GEP, such as the proof of convergence
and the estimation of convergence

speed. This paper will discuss recent
research on the theoretical studies of
GEP. In addition, this paper also reviews
several areas of application where GEP
has been successfully applied. Since the
applications of GEP have proliferated
rapidly, our focus here is placed on five
key representative application areas of
GEP. Finally, based on the survey, this
paper then discusses a number of inter­
esting potential future research areas
pertaining to GEP.

The purpose of the current survey is
to present a comprehensive multi-facetted
exposition of recent research in GEP. For
the sake of completeness, the survey
begins in Section 2 with a brief review
on the background knowledge of GEP.
Then, in Section 3, we review the state-
of-the-art GEP variants from six perspec­
tives as mentioned above. Section 4
examines the theoretical studies of GEP,
followed by a review of the representative
application areas of GEP in Section 5. In
Section 6, we discuss the future research
directions of GEP, and finally draw our
conclusions in Section 7.

II. Background
This section provides a brief introduc­
tion of related background knowledge to
aid readers in understanding the search
mechanism of GEP. In particular, the tra­
ditional chromosome representation of
GEP is described. The algorithm frame­
work of GEP is also given in this section.

A. Chromosome
Representation of GEP
Computer programs such as mathemati­
cal formulae and logical rules are com­
monly represented by expression trees
(ETs) with two types of nodes: function
and terminal. A function (e.g., +, sin) is a
node that contains a single child or
more which represent the input argu­
ments of this function. For example, a
node sin is a function node since it has
one child representing its input argu­
ment. A terminal is a leaf representing a
variable or a constant. In GEP, a com­
puter program is encoded by one or
multiple genes. Each gene is a fixed-
length string that comprises two parts.
The first part (called the head) is formed

56 IEEE Computational intelligence magazine | august 2017

by functions and terminals, while the
second part (called the tail) is formed by
terminals only. Each gene can be con­
verted to an equivalent sub-function by
using a width-first search scheme. The
sub-functions encoded by genes are
linked to form a final solution by a link­
ing function (e.g., +), which is defined
in advance or determined by a certain
adaptation strategy. To ensure that any
chromosome can be translated to a valid
expression tree, the lengths of the head

(h) and tail (l) are imposed with the fol­
lowing constraint:

	 () ,l h u 1 1$= - + � (1)

where u is the maximum number of
children of the functions.

A typical example of chromosome
with a single gene is given by:

	
[, , , , , , , , , , ,

, , , , , , ,] .

sin expy z x x y

y z x y y y x z

))+ +
�

(2)

This chromosome can be converted to
an expression tree as shown in Fig. 1, and
the solution represented by the chromo­
some can then be decoded as:

	 (()) (()) .exp sinx y y x z)) + + � (3)

In the GEP chromosome, the number
of nodes in the final ET must not exceed
the predefined length of the chromo­
some. Thus, this representation has a ten­
dency of producing short programs and
avoiding the bloating limitation of GP.

B. Algorithm Framework of GEP
Fig. 2 illustrates the procedure of tradi­
tional GEP, which consists of the fol­
lowing operations.

Initialization: The first step is to generate
a set of random chromosomes to form the
initial population. For every chromosome
in the initial population, each element of
the fixed-length strings is randomly
assigned based on the type of the element.
Elements belonging to the head part are
assigned functions and terminals, while
elements belonging to the tail part are
assigned terminals.

Fitness Evaluation: In this step, the fit­
ness values of all chromosomes in the
population are evaluated. The fitness eval­
uation function is problem specific and
has a great impact on the performance of
the algorithm.

Selection and Replication: This step
selects better chromosomes in the popu­
lation to form a new population for the
next generation. There are various selec­
tion strategies that can be used, such as
the roulette-wheel selection strategy and
tournament selection strategy [39]. It has
been shown that the roulette-wheel
selection with elitism offers better per­
formances in solving complex problems.

Mutation: In the mutation operation,
every element at any position of each chro­
mosome is subjected to a random change
with a predefined mutation rate ().pm If an
element is to be mutated, it can only be
assigned a feasible random symbol accord­
ing to its type. For example, a tail element
can only be assigned a terminal.

Transposition: The transposition opera­
tion aims to replace some consecutive ele­
ments of the chromosome with a segment
of consecutive elements in the same chro­
mosome. It contains three sub-steps,
which are performed with probabilities of

,p is ,pris and ,p g respectively.
❏❏ IS-transposition: An Insertion Sequence
(IS) is a segment of consecutive ele­
ments in the chromosome. In this sub-
step, an IS is randomly selected. Then a
copy of the IS is made and inserted at a
random position in the head of a gene.
The inserted position should not be
the start position of a gene because a
gene with a terminal at the root is of
little use. After that, the sequence
downstream from the insertion point
would be replaced by the IS. An
example of the IS-transposition is
illustrated in Fig. 3, where the chro­
mosome under consideration contains
two genes. In the IS-transposition, an
IS (i.e., “baa”) is randomly chosen from
the chromosome. The insertion point
(e.g., the 5th position of the 1st gene)
is then randomly selected from the
head parts of all the genes. Lastly, the
elements of the head part downstream
from the insertion point are replaced
by the selected IS.

❏❏ RIS-transposition: A Root Insertion
Sequence (RIS) is a segment of con­
secutive elements that starts with a
function. Hence, RISs are chosen
from the heads of genes. In this sub-
step, the chromosome and the gene to
be modified, the start position of the
RIS and its length, are randomly cho­
sen. Once an RIS is selected, a copy of
the RIS is made and inserted into the
root of the selected gene, as done in
the IS-transposition step. Fig. 3 illus­
trates the RIS-transposition, where the
RIS (i.e., “)a+”) is selected from the
head of the 1st gene. Then, the RIS is
inserted into the 1st position of the 1st

Head Tail

+ ∗ + ∗ y sin z x exp x y y z x y y y x z

+

+∗

∗ y

y

exp xx

zsin

(x ∗ exp(y) ∗ y) + (sin(x) + z)

Figure 1 An example chromosome of GEP
and the decoded expression tree.

Start

Initialization

Fitness Evaluation

Y

N
Stop?

Selection and Replication

Mutation

IS-Transposition

RIS-Transposition

Gene-Transposition

One-Point Crossover

Two-Point Crossover

Gene-Recombination

End

R
ec

om
bi

na
tio

n
T

ra
ns

po
si

tio
n

Figure 2 The procedure of traditional GEP.

august 2017 | IEEE Computational intelligence magazine 57

gene. The original head is shifted to ac­
commodate the RIS, and thus the last
symbols of the head are deleted.

❏❏ Gene-transposition: In gene transposi­
tion, the chromosome to be modified
is randomly chosen. Then, a random
gene (but not the first gene) of the
chosen chromosome is selected and
transposed to the beginning of the
chromosome. Fig. 3 presents a partic­
ular example of the gene-transposi­
tion, where the chromosome under
consideration contains only two genes.
In this example, the 2nd gene is select­
ed and transposed to the beginning of
the chromosome.
Recombination: The aim of the recom­

bination operation is to exchange the
gene information of two parent chromo­
somes to generate two offspring. This
operation also contains three sub-steps.
These are one-point recombination,
two-point recombination, and gene
recombination. In gene recombination, a
gene of one parent is selected randomly.
Then, the selected gene is exchanged
with the corresponding gene of the
other parent to generate two offspring.
In the recombination, the three sub-steps
are performed with probabilities of

, ,p pc c1 2 and ,pcg respectively.
After the recombination operation, a

new population, which has the same size
of the parent population, is generated.
Then the algorithm turns to the fitness
evaluation step, and the evolutionary
process continues until the termination
conditions (e.g., reaching maximum gen­
eration or achieving a satisfactory solu­
tion) are met.

C. GEP vs GPs and other EAs
GEP can be considered as a special vari­
ant of GP. The major difference between
GEP and other GP variants lies in the
chromosome representation. Traditional­
ly, in GPs, computer programs are repre­
sented using expression trees implemented
by tree representation. To ensure that any
chromosome is valid and promising, spe­
cific operators are required for initializa­
tion and reproduction (e.g., the full and
grow methods [40]). This makes the
implementation of GP more difficult
than other EAs. Besides, as the evolution

goes on, the size of the expression trees
will grow quickly, which results in the
“Bloating Problem”. To avoid the above
problems, GEP uses a linear representa­
tion to encode computer programs.
The chromosomes of GEP are easier
to genetically manipulate. Further, as the
size of the chromosome is fixed, the size
of the decoded expression tree will never
exceed a predefined upper-bound.
Therefore, GEP is capable of providing
relatively concise solution to the given
problem. However, to facilitate the search
for high quality solutions, the chromo­
some size should be configured appropri­
ately for the specific problem, which is
often a non-trivial task.

There are also other GP variants that
adopt a linear representation, such as
Grammatical Evolution (GE) [41] and
Linear Genetic Programming (LGP) [42].
Oltean and Grosan [43] have compared
the differences between several GPs with
linear representation. In general, each GP
variant possesses its strengths and weak­
nesses. GE uses the BNF grammars for
solution encoding and decoding, which
makes it suitable for evolving programs
that can be expressed as BNF rules.
However, the decoding process of GE
differs and tends to be more complex
than that of the GEP. Besides, as some
chromosomes of GE translate to invalid
expressions, special mechanism to cope
with such expressions is needed. In LGP,
the computer program evolved consists
of a series of low-level instructions and a
number of registers. Thus, LGP is more
suitable for evolving low-level programs
that are run directly on the computer
processor, while GEP is more suitable for

evolving high-level programs that are
human interpretable.

Compared with other EAs such as
GA, Particle Swarm Optimization (PSO),
and Differential Evolution (DE), the
major difference of GEP lies in the form
of solution provided. Generally, the solu­
tions provided by GEP are computer pro­
grams (e.g., mathematical formula,
classification rule, and heuristic rule)
which are generated based on function set
and terminal set. Meanwhile, in other EAs,
the solutions usually are a vector of values,
and they do not need function and termi­
nal sets to construct solutions.

III. Algorithm Design Taxonomy
Over the past decades, a number of
enhanced GEPs have been proposed. As
shown in Fig. 4 and Table 1, these
enhanced GEPs can, generally speaking,
be classified into six classes. These are
encoding design, evolutionary mecha­
nism design, adaptation design, coopera­
tive coevolutionary design, constant
creation design, and parallel design.

A. Encoding Design in GEP
Encoding design determines how a solu­
tion is encoded in the chromosome, which
has important influence on the perfor­
mance of GEP. In traditional GEP, a
computer program is encoded by using a
K-expression [1]. A K-expression string
can be converted to an ET by using a
width-first travelling procedure. Since all
chromosomes are of a fixed length, the
GEP is capable of generating concise solu­
tions. In addition, the fixed-length repre­
sentation facilitates it for genetic operators
to manipulate the chromosomes.

IS-
Transposition:

RIS-
Transposition:

Gene-
Transposition:

First Gene Second Gene

+ – a – ∗ a + b

b a b a b ab a b

+ – a – b a a b

+ – a – ∗ a + b

∗ a + + – a – ∗

∗ + a b a b b +

+ – a – ∗ a + b

Head Tail Head Tail

b a b a b ab a b

a a b a a ab a b

b a b a b ab a b

b a b a b ab a b

b a b a b ab a b

∗ + ab abb +

∗ + ab abb +

∗ + ab abb +

∗ + ab abb +

∗ + ab abb +

+ – a– ∗a+ b

a a b a a a b a b

a a b a a a b a b

a a b a a a b a b

a a b a a a b a b

a a b a a a b a b

b a b a b a b a b

Figure 3 Illustration of the transposition operations of GEP.

58 IEEE Computational intelligence magazine | august 2017

However, the K-expression is very
fragile, because good building blocks
found can be easily destroyed by the
genetic operators such as crossover. To solve
this problem, Li et al. [8] proposed a Prefix
Gene Expression Programming (P-GEP).
The phenotype of P-GEP (i.e., the ET) is
the same as that of GEP and the genotype
of P-GEP is still a linear string of fixed-
length. However, in P-GEP, the phenotype
is obtained by travelling the genotype in the
depth-first scheme instead of the width-first
scheme, as in GEP. For example, suppose a
chromosome of P-GEP has the same
gene as expressed in (2). Then, the corre­
sponding ET of P-GEP can be obtained
as illustrated in Fig. 5, and the final solu­
tion can be decoded as:

	 (()) () .sin expy z x x y))+ + � (4)

It can be observed from (3) and (4) that
the same chromosome can lead to quite
different solutions by using the decoding
methods of GEP and P-GEP, respectively.
The authors compared P-GEP with GEP
on a symbolic regression problem and
several classification problems. The experi­
mental results demonstrated that the pre­
fix notation in P-GEP is more protective
for substructures and is capable of improv­
ing the search efficiency.

An effective approach to improve
GEP is to incorporate high-order
knowledge that can accelerate the search.
One of the commonly used types of
high-order knowledge is the ADF pro­
posed by Koza [52]. ADFs are sub-func­
tions embedded in chromosomes that
can be evolved automatically along the

search and be used as building blocks to
construct the final solution. In the litera­
ture, ADFs have been shown to be effec­
tive for improving the search efficiency
of GPs [52]–[55]. As GEP is a variant of
GP, efforts have also been made to inte­
grate ADF with GEP to enhance the
search process. For example, in [23], Fer­
reira proposes to utilize ADFs in GEP by
introducing a representation called GEP-
ADF. In GEP-ADF, each chromosome
consists of a number of conventional
genes (i.e., ADFs) and a homeotic gene
(i.e., main program), which are illustrated
in Fig. 6. All of the conventional genes
and the homeotic gene are represented
using K-expression. The main program
combines different ADFs through link­
ing functions (e.g., +,)) for generating
the final output. The function set and
terminal set of ADFs are the same as that
in the traditional K-expression represen­
tation. On the other hand, the function
set and terminal set of the homeotic
gene are the linking function and ADFs,
respectively. A typical example chromo­
some of GEP-ADF can be expressed as:
[, , , , , , , , , , , , , , ,y x x z x y z x)))- + + -

, , , , , , , , ,].sin 1 2 2 1 2 1 2) + This chromo­
some encodes two ADFs and one
homeotic gene, and the decoded ETs of
the chromosome are illustrated in Fig. 6.
It can be observed that both ADF1 and
ADF2 are used twice in the main pro­
gram. However, it is worth noting that
ADFs in GEP-ADF can only be used as
terminals of the homeotic gene and the
ADFs contain no input argument. These
features make GEP-ADF inefficient or
non-scalable for complex problems.

To further improve the performance
of GEP-ADF, Zhong et al. [7] proposed
a new representation called C-ADF,
which also tried to use ADFs in GEP. In
C-ADF, each chromosome consists of a
main program and several ADFs. The
main program and ADFs are encoded
using the K-expression. However, the
building blocks (i.e., function set and
terminal set) of the main program and
ADFs are different. In particular, for the
main program, the function set is com­
posed of functions and ADFs, and the
terminal set contains variables and con­
stants. Meanwhile, the function and ter­
minal sets of ADFs consist of functions
and input arguments, respectively. Fig. 7
illustrates a chromosome with C-ADF
representation. In this example, the ADFs
are used three times in the main pro­
gram. It can further be observed from
Fig. 7 that, in C-ADF, the ADFs have
input arguments that can come in the
form of variables (e.g., x and z), con­
stants (e.g., r), ADFs, or any sub-tree of
the main program. In this way, complex
solutions can be represented in a concise
and readable manner. Experimental
results on benchmark symbolic regres­
sion problems and even parity problems
showed that the C-ADF is effective to
improve the search efficiency and to
reduce the complexity of solutions.

Quan and Yang [44] proposed a
Directed Acyclic Graph (DAG) represen­
tation method to improve GEP. The
DAG chromosome consists of two parts,
namely, the main chromosome and the
topological chromosomes. The main
chromosome consists of a list of functions

GEP for Complex Optimization

Problems

Solutions

How to Improve Global Search Ability and Search Efficiency? How to Reduce Computation Time?

Parallel Design

Other Models

Constant
Creation Design

Island Model

Cooperative
Coevolutionary Design

Master-Slave Model

Adaptation
Design

Enhanced
Reproduction

Enhanced
Selection

Evolutionary
Mechanism Design

Enhanced
Initialization

Encoding
Design

Figure 4 Outline of the GEP design taxonomy.

august 2017 | IEEE Computational intelligence magazine 59

and terminals, while the topological
chromosome describes the topology of
DAG attached to the main chromosome.
A typical DAG representation is illus­
trated in Fig. 8. In this example, the first
symbol in the main chromosome is “)”,
and the corresponding values in the
topological chromosomes (i.e., the two
integers under the first symbol “)”) are 8
and 6. This means that the input arguments

of function “)” are the 8th and 6th sym­
bol in the main chromosome (i.e., “+”
and “a”). In this way, we can build the
sub-tree for each symbol in the main
chromosome. If the symbol in the main
chromosome is a terminal, the built sub-
tree contains only one node. Each sub-
tree represents a candidate solution of the
encountered problem of interest, and the
best sub-tree is selected as the final

solution that is encoded by the entire
chromosome. It is worth noting that the
DAG representation can store multiple
solutions in a single chromosome, which
is the same as the MEP proposed in [56].
However, since all sub-trees encoded in
the main chromosome need to be evalu­
ated, expensive computational cost is
required in DAG.

In summary, the traditional K-expres­
sion and the prefix gene expression are
simple and easy to implement. However,
they may lead to complicated solutions
since they cannot reuse high-order build­
ing blocks for solution construction. By
considering ADFs as terminals, the GEP-
ADF is capable of reusing high-order
building blocks (i.e., the ADFs) to con­
struct solutions, even though the ADFs
cannot be utilized to construct more effec­
tive building blocks. Further, the C-ADF
representation is more flexible and effective
than GEP-ADF since it considers ADFs as
functions rather than terminals. The DAG
representation can encode multiple solu­
tions in a single solution, which is useful
for exploiting the search space. However,
it requires extra computational cost for
solution evaluations.

B. Evolutionary Mechanism
Design in GEP
1) Initialization: Initialization is the first
step in the evolution process. In this step,
a population of random individuals is
generated. To gain sufficient population
diversity for a global search, the initial
population should be well scattered in
the whole search space. However, the
traditional method generates the initial

Head Tail

x y y z x y y y x z+ ∗ + ∗ y sin z x exp

+

+ exp

y

y

z

xx

∗

∗

sin

Figure 5 An example chromosome of
P-GEP.

TABLE 1 Algorithm Design Taxonomy.

Encoding Design K-expression [1]

Prefix gene expression [8]

Gene expression with ADF [23]

C-ADF [7]

Directed acyclic graph representation [44]

Evolutionary
Mechanism Design

GEP with initialization using uniform design [24]

GEP with initialization using Gene Space Balance
Strategy [45].

GEP with weight tournament selection [13]

GEP with Component Thermodynamical Selection [46]

GEP with Clonal Selection Algorithm [11], [12], [47], [48]

GEP with rotation operation [3]

GEP with DE operators [7]

GEP with SA operators [14]

GEP with AIS operators [15]

GEP with a distance-based crossover [49]

GEP with an adaptive crossover [24]

GEP with crossover using orthogonal design [50]

Adaptation Design Adaptive GEP with a genemap [24]

Adaptive GEP with feedback heuristic [16]

Cooperative
Coevolutionary Design

CCGEP with ADFs for classification [29]

CCGEP for the 3D Process Plant Layouts problem [31]

CCGEP for the Distributors Pallet Packing
problem [30]

Constant
Creation Design

Constant creation using a Dc domain [32]

Constant creation based ERC method [7]

Constant creation by using local search method
[34]–[36]

Constant creation by using extended encoding and
DE operators [37]

Constant creation with creep mutation and random
mutation [33]

Parallel Design Parallel design using Master-Slave model [17], [19], [20]

Parallel design using Island model [18], [21], [38]

Parallel design using agent-based model [51]

60 IEEE Computational intelligence magazine | august 2017

population randomly. Such method is
not effective enough to create well-scat­
tered initial population. To address this
issue, Chen et al. [24] proposed to use
the uniform design method [9]. The
uniform design seeks design points that
are uniformly scattered throughout the
search space. To use the uniform design
for initialization, a uniform table is
created in advance. The uniform table
can be expressed by a matrix (),U QM

S
where S is the factors, Q is the levels,
and M is the number of sample combi­
nations selected from the whole space

.QS Equation (5) gives a typical exam­
ple of a uniform matrix with 5 factors
and 7 levels.

	 () .U 7

2
3
4
5
6
7
1

4
7
3
6
2
5
1

3
5
7
2
4
6
1

7
6
5
4
3
2
1

5
2
6
3
7
4
1

7
5 =

R

T

S
S
S
S
S
S
S
S
S

V

X

W
W
W
W
W
W
W
W
W

� (5)

It can be observed from (5) that the
number of levels is the same in each col­

umn (i.e., each column has 7 levels in
(5)). The uniform table can then be filled
with functions and terminals to generate
an initial population. Each row of the
uniform table represents a chromosome,
and each column represents a dimension
in the chromosome. Suppose 1, 2, 3, 4, 5,
6, and 7 represent , , ,/, , ,x y)+ - and ,z
respectively, then the two chromosomes
generated by the first two rows of (5) are

,/, , ,z x)- and , , , , ,z x y) - respec­
tively. Since the chromosome of GEP is
divided into head and tail parts, the
authors of [24] constructed a mix-level
uniform table to initialize the popula­
tion, where the head can choose more
levels than the tail.

Similarly, to improve the diversity of
the initial population, Hu et al. [45] pro­
posed a Gene Space Balance Strategy
(GSBS). The key idea of GSBS is to per­
form an additional checking procedure
after the traditional population initializa­
tion process. In this procedure, the dimen­
sions of the chromosomes are checked
one by one. For each dimension, if an ele­
ment has a probability which is higher
than the average value, it will be replaced
by the element that appears to have the
lowest probability. In this way, the ele­
ments can be scattered as uniformly as
possible in the initial population.

2) Selection: Selection operator imple­
ments the “survival of the fittest” princi­
ple in nature. This operator is used to
guide the population to evolve towards
the desired direction. The roulette-wheel
selection and the tournament selection
are two most commonly used selection
schemes in the EA community. The tra­
ditional GEP adopts the roulette-wheel
selection with elitism. In general, various
selection schemes provide different levels
of selection pressure and can lead to
quite different convergence behaviors of
the population. Several efforts have been
made to design more effective selection
schemes for GEP.

Wang et al. [13] proposed a weight
tournament selection to improve the
population diversity. In the weight tour­
nament selection, a probability vector was
introduced to represent the selection
probabilities of individuals in the popula­
tion. To calculate the probability vector,

Main Program ADF1

ADF1

ADF1

ADF1

ADF1 cos ADF1 ADF1 x π x z y + + ∗ a b a b

cos

x

x z

π a b a b

+

+ ∗

ADF1(a, b) = a + b + a∗b

ADF1(cos(ADF1(x, z)), ADF1(x, π))

Final Solution: cos(x+z+x ∗z)+x+π+x∗π+cos(x+z+x∗z)∗(x+π+x∗π)

Figure 7 An example chromosome with C-ADF representation.

ADF1 ADF2

Homeotic Gene
(Main Program)

∗ ∗ – y x x z + + – x y z x ∗ ∗ sin 1 + 2 2 1 2 1 2

∗ ∗

∗∗ –

y x x x y z xz

+

+

– sin

+ ADF2

ADF1

ADF1

ADF2

Figure 6 An example chromosome of GEP-ADF.

august 2017 | IEEE Computational intelligence magazine 61

the authors defined a measure to evaluate
the similarity between two individuals s1
and s2 by

	 (,) () () ,s s l s l s
2

Similarity
MaximumOverlap

1 2
1 2

)
=

+
� (6)

where MaximumOverlap represents the
maximum overlap between s1 and ,s2 si
represents the length of coding regions
in si (i.e., the redundant bits in si will
not be considered in calculating ()) .l si
Then, the selection probability of the ith
individual is calculated by

((,))

(,)
,P

Similarity s s

Similarity s s

1

1
i

j
j

i

1
best

best
PopulationSize=

-

-

=

/
	

(7)

where sbest is the historical best individ­
ual. In this way, the more similar an
individual is to the historical best indi­
vidual, the lower selection probability of
the individual has. For example, sup­
pose the historical best individual is
{ , , , , , , , , }x x y y x y)) - , and an individ­
ual in the population is { , , , , ,x y x) -

, , , } .x x y x Then, the valid segments of
these two individuals are { , , , ,x)) -

, }x y and { , , , , },x y x) - respectively.
We can calculate the maximum overlap
between these two individuals as 3 by com­
paring each symbol of { , , , , }x x y) -
and { , , , , } .x y x) - Thus, the similarity
between these two chromosome can be
calculated as ()/() / .2 3 6 5 6 11) + = In
this way, we can calculate the similarity
between each individual and the histori­
cal best individual. The similarity values
are used as weights to calculate the
selection probability, which is then used
in the tournament selection. The indi­
vidual with larger similarity value has a
higher selection probability. Once the
required number of individuals has been
selected for tournament competition, the
individual with the best fitness value
wins the competition and survives to the
next generation. In general, the weight
tournament selection only reduces the
probability of reproducing an individual
with a structure that is similar to the his­
torical best individual so as to increase

the population diversity and to avoid
being trapped into the local optimum.

Guo et al. [46] proposed a new Com­
ponent Thermodynamical Selection
(CTS) to balance the selection pressure
and the population diversity. The CTS is
inspired by the principle of minimal free
energy in thermodynamics. In the selec­
tion process, the newly created offspring
are combined with the parent population
at first. The free energy component of
each individual is then computed by us­
ing the mathematical formula defined by
the authors. Finally, individuals with larger
free energy components are removed, and
the remaining individuals form the popu­
lation for the next generation.

The Clonal Selection Algorithm
(CSA) proposed by De Castro and Von
Zuben is a new EA inspired by basic
immunological principles [10]. The CSA
has been validated as effective for solving
complex optimization problems. Over
the past few years, efforts have been
made to integrate CSA and GEP so as to
accelerate the search efficiency. For
example, Karakasis and Stafylopatis [47]
proposed an ECA algorithm based on
GEP and CSA [10]. The ECA algorithm
adopts the representation of GEP to
encode chromosomes, while the search
mechanism of the CSA is utilized to
evolve the chromosomes. Similarly, Guan
et al. [11] and Litvinenko et al. [12] pro­
posed enhanced GEPs by replacing the
traditional operators of GEP with those
of the CSA so as to maintain popula­
tion diversity. Liu et al. [48] proposed a
hybrid selection strategy. In the hybrid
selection, the clonal selection is used to
select parent individuals for reproduc­
tion, and the roulette-wheel selection
method is used to select individuals to
form the new population.

3) Reproduction: The traditional GEP
contains seven operators to generate off­
spring, including mutation, IS-transition,
RIS-transition, gene-transition, one-
point crossover, two-point crossover and
gene-recombination, which make it hard
to configure a GEP for solving a prob­
lem of interest efficiently and effectively.
Taking this cue, Zhou et al. [3] simplified
GEP by using three reproduction opera­
tors, namely, crossover, mutation and

rotation. As shown in Fig. 9, the one-
point crossover and two-point crossover
are adopted in this simplified GEP. Both
crossover operators are working in the
same way as in the traditional GA. In the
mutation process, a symbol in the chro­
mosome is mutated to a random symbol
in probability. In the rotation operation,
the chromosome is divided into two
parts with a randomly selected point.
Next, the two parts are exchanged to
form a new offspring. Please note that
the operators of the simplified GEP
would generate invalid chromosomes
which cannot be translated to an expres­
sion tree. To tackle this problem, Zhou
et al. [3] proposed to apply a validity test
operation to check if a chromosome is
valid or not. In particular, if a chromo­
some produced by the genetic operator
cannot pass the test, the operator will be
executed repeatedly until the generated
chromosome is valid.

Recently, researchers attempted to im­
prove the reproduction process of GEP by
using operators of other EAs. For example,
Zhong et al. [7] proposed a Self-Learning
GEP (SL-GEP) that extends the opera­
tions of Differential Evolution (DE) for
the evolution of chromosomes. DE is a
well-known EA, which has been shown
to have strong global search capability in
continuous optimization problems. In SL-
GEP, the crossover and mutation operators
of DE are extended to evolve computer

Main
Chromosome:

Topological
Chromosomes:

∗ ∗+ a b b ba∗/

9 8 7 6 5 4 3 2 1 0

8 4 5 5 3 3 2

223476

0 0 0

0011

∗

∗

∗

a

b

b

b a

+

/

Figure 8 An example chromosome with
DAG representation.

62 IEEE Computational intelligence magazine | august 2017

programs, which are encoded in discrete
search space. By using the newly defined
operators, the number of control parame­
ters in SL-GEP has been reduced and the
performance of SL-GEP has been en­
hanced when compared to GEP on a
number of symbolic regression problems
and even-parity problems. Further, Jiang et
al. [14] proposed a new GEP named
GEPS that combines GEP and Simulated
Annealing (SA). Similarly, Zeng et al. [15]
proposed an Immune GEP (IGEP) based
on the Artificial Immune System (AIS) for
rule mining. The authors adopted the rep­
resentation of GEP to encode chro­
mosomes and operators of AIS to evolve
the chromosomes.

Qu et al. [49] proposed two new
crossover operators for GEP. The authors
defined a metric to measure the distance
between two individuals. One crossover
selects the individuals with farthest dis­
tance for recombination, and the other
selects the individuals with smallest dis­
tance for recombination. Experimental
results on five symbolic regression prob­
lems indicated that the first crossover
can bring more population diversity and
better performance.

Chen et al. [24] proposed an adaptive
crossover for GEP. In this new crossover,
offspring are generated by combining
gene segments of multiple parents. Sup­
pose m chromosomes are selected to
create an offspring. Each selected chro­
mosome is divided into n exclusive genes
and a uniform table is designed to sample
n genes from the m chromosomes to
form an offspring. The value of m
changes adaptively based on the parents’
current state. If the distance between the
parent’s fitness values ()fp and the histori­

cal best fitness value ()fmax gets larger, m
will increase so as to enable communica­
tions among more parents. If the distance
gets shorter, it may avoid more excessive
mutations from excellent gene segments
to have a uniform table of a smaller scale.
The number of parents in the uniform
table is determined by:

	 ,m f
f

m1
max

i
p

i 1#d= - + -c m � (8)

where (,)0 1!d and i is the current
generation.

Yang and Ma [50] proposed an en­
hanced crossover with orthogonal design.
In this new crossover operator, offspring are
generated by combining segments from
multiple parent chromosomes. Instead of
evaluating all possible segments combina­
tions from parents, the authors used an or­
thogonal table to generate a small number
of representative combinations. Then, the
representative combinations together with
the parent chromosomes are ranked and
the top m fitter chromosomes are selected
as the outputs of the crossover.

In summary, the evolutionary mech­
anism of GEP consists of three major
operators (i.e., initialization, selection,
and reproduction). These operators play
the key role in determining the search
performance for solving the problem of
interests. All of the existing works on
enhanced evolutionary mechanism
design try to better balance the explora­
tion and exploitation abilities of GEP.
The major difference among them lies
in the operator to be extended (e.g., ini­
tialization, selection, and reproduction),
the goal to be achieved (e.g., explora­
tion, and exploitation), and the tech­

nique to be adopted (e.g., uniform design
and orthogonal design).

C. Adaptation Design in GEP
In this section, we examine the adapta­
tion design in GEP. In GEP, a number of
control parameters, such as the size of
population, the length of chromosomes,
mutation rate, one-point crossover rate,
etc., have to be defined for problem solv­
ing. However, it is well established that
the performance of evolutionary search
correlates positively to the incorporation
of domain specific configuration [57].
That is, different problems require unique
parameter configurations for evolutionary
search, and a proper configuration could
significantly enhance the problem-solv­
ing process. Thus, the researchers have
successfully proposed adaptive methods
to control the configurations of evolu­
tionary search while search progress­
es [58]–[61].

In contrast to other evolutionary
search methods such as GA, adaptation
design in GEP received far less attention.
Only a few studies have been proposed in
the literature with regard to adaptive GEP
design. Bautu et al. [24] presented an
adaptive GEP called AdaGEP, which
adaptively adjusts the number of genes
used in the chromosome online. In
AdaGEP, each gene is associated with a
flag in a binary vector called genemap.
The size of genemap is equal to the num­
ber of genes in a chromosome. The genes
will be ignored in the decoding process if
the corresponding flags in the genemap
are assigned as zero. This genemap is
evolved by the classical GA operators
along with the evolutionary search of
AdaGEP. Further, Mwaura and Keedwell
[16] proposed an adaptive GEP by using a
simple feedback heuristic. In [16], the exe­
cution probability (e.g., crossover rate and
IS-transition rate) of operations that par­
ticipate in generating offspring with
improved fitness will be increased, while
those of the operations that generate dete­
riorated offspring will be reduced.

As we can see, both of the above two
methods attempt to adjust the configu­
rations of GEP adaptively while the
evolution progresses. However, they
focused on different configurations. In

Crossover
(Single-Point)

Crossover
(Two-Point)

Mutation

Rotation

Initial Chromosomes Offspring

∗ + ∗ a b c / d ∗ + ∗ b d c a d
+ – c a b c / d

∗ + ∗ b d c / d
+ – c a b c a d

∗ + c a b c / d

∗ a b c / d ∗ +

+ – c b d c a d

∗ + ∗ a b c / d

∗ + ∗ a b c / d

+ – c b d c a d

∗ + ∗ a b c / d

Figure 9 Genetic operators of the simplified GEP in [3].

august 2017 | IEEE Computational intelligence magazine 63

particular, the former tries to adjust the
valid bits used in the chromosomes, while
the later attempts to adjust the execution
probabilities of genetic operators.

D. Cooperative Coevolutionary
Design in GEP
Cooperative Coevolutionary (CC) is an
evolutionary framework designed for
solving large scale optimization prob­
lems. The key idea is to decompose the
original problem into a number of sim­
pler and easier sub-problems. Then, the
sub-problems are solved independently
by separate EAs with sub-populations.
The fundamental issues in designing CC
framework include i) how to decompose
the problem and ii) how to evaluate the
individuals in the sub-populations. Early
works in CC design may include that
Potter and De Jong [26] proposed a CC
framework to improve GA, where an
individual in one sub-population is eval­
uated by concatenating this individual
with the elite individuals from the other
sub-populations. To date, CC framework
has been successfully applied to improve
the search capability of several popula­
tion based search methods such as PSO
[27] and DE [28].

In the literature, the CC framework
has also been applied to improve GEP. In
particular, Sosa-Ascencio et al. [29] pro­
posed a CC-based GEP framework,
where two sub-populations are evolved
simultaneously. The first sub-population
focuses on evolving the main pro­
gram, while the second sub-population
responses to the evolution of ADFs. The
fitness of an individual is given by the best
evaluation obtained from all the evalua­
tions of this individual concatenating with
the solutions in the other sub-population.
Further, Furuholmen et al. tackled the
Distributor’s Pallet Packing problem with
CC-based GEP by dividing it into two
sub-problems, i.e., pre-scheduling and
packing, in [30], and solved the Three-di­
mensional Process Plant Layouts problem
with CC-based GEP which contains
one population of layout heuristics and
one population of scheduling heuristics
[31]. In both [30] and [31], the fitness of
an individual in one sub-population is
evaluated by concatenating the individual

with the best individual in the other
sub-populations.

E. Constant Creation Design in GEP
Numerical constants are an integral part
of most mathematical formulas. Thus,
constant creation is an important opera­
tion for GPs to find highly accurate
mathematical formulas. However, it is a
challenging task for GPs to find highly
accurate constant values, for the numeri­
cal constants are continuous values while
the chromosome representations of GPs
are suitable for combinatorial optimi­
zation. In the GP community, several
methods have been proposed to create
constants. The most commonly used
method is the “Ephemeral Random
Constant (ERC)” method introduced by
Koza [62]. Koza’s method introduces a
special terminal symbol to represent a
constant. In the initialization step, the
value of each ERC symbol in the initial
individual is assigned a random value
within a specific range. After that, these
random ERCs are fixed and can be
moved from one expression tree to
another by using the crossover operator.
Other methods such as the local search
method [63], nonlinear least squares min­
imization [64], and EAs [65] have also
been used to search for constant values
for GP. Most of the methods proposed
for GP can also apply to GEP.

Ferreira proposed a new method to
create constants in GEP [32]. In Ferreira’s
method, an extra terminal “?” is used to
represent a constant in the formula, and a

domain for encoding random constants
(Dc) is inserted after the tail to indicate
constants, which is illustrated in Fig. 10.
The length of the Dc domain is equal to
that of the tail. The symbols in Dc are
indices of constants in a constant vector.
The constant vector is randomly gener­
ated at the beginning. Then, the “?”s in
the chromosome are replaced from left
to right, and from top to bottom by the
constants in the constant vector based on
the Dc domain. In this way, numerical
constants can be implemented in GEP.
However, further research conducted by
Ferreira [32] indicated that the GEP
itself has the capability of generating
simple constants. For some problems, the
GEP without using constant creation
can perform even better than those with
explicit use of numerical constants in
terms of accuracy. This is because that
using numerical constants will signifi­
cantly increase the search space, which
requires a lot more computational cost
to find a satisfactory solution.

Zhong et al. [7] proposed a method
based on ERC to create constants. In
[7], a set of fixed random constants
within a specific range (e.g., [-1, 1]) is
generated in the initialization step of the
algorithm. ERCs are represented by
using a new terminal symbol. In the ini­
tialization step and mutation operation,
each element in the chromosomes has a
probability of crate of being assigned a
random constant which is selected from
the constant set. The constant assigned
to the element shall remain fixed along

Head Tail Dc

+ ∗ + ∗ ? sin ? x exp x ? y z x ? ? y x z 1 3 5 7 0 2 6 2 4

+ + +

+++∗

∗

∗

∗

∗

∗ ? ?

?

sin

exp expx xx

5

1 3sin

x

sin 1.25

x

0.32

exp

0.51

x

Constant Vector:
{0.55, 0.32, 1.73, 1.25, 4.67, 0.51, 9.23, 0.35, 2.35, 7.23, 1.00}

Figure 10 The structure of GEP chromosome with Dc domain.

64 IEEE Computational intelligence magazine | august 2017

the evolution process on unless a muta­
tion is performed on it.

Li et al. [33] investigated different exe­
cution strategies of two constant creation
methods, namely creep mutation and ran­
dom mutation. Their experimental results
suggested that constant creation methods
applied to the whole population for select­
ed generations performed better than
those applied only to the best individual.

Zhang et al. [34], [35] proposed to
use DE as a local search method to tune
constants of formula because DE is suit­
able for solving continuous optimization
problems. Li et al. [36] proposed a hybrid
framework which uses the PSO as the
local search method to create constants
for GEP.

Cerny et al. [37] proposed a framework
named DE-PGEP, in which the traditional
discrete genotype is replaced by the con­
tinuous genotype. In particular, to create
constants for formulae, a predefined num­
ber of real constants are added at the end
of the chromosome. Each constant is rep­
resented by a new terminal, which will be
used to construct the final solution. Dur­
ing the evolution process, DE operators
are adopted to evolve the chromosomes,
including the constant part.

In summary, most existing methods
such as [32], [7] and [33] create constants
by introducing special terminals and using
random mutation. These methods are sim­
ple to implement, but lack of effectiveness
in finding highly accurate constants. On

the other hand, the EA-based methods
have the potential to find highly accurate
constants. However, these methods are
computationally expensive since they
require running another EA to tune con­
stants of individuals in every generation.

F. Parallel Design in GEP
GEP contains an iterative evolution pro­
cess. As a result, it is extremely slow in the
context of solving complex and large-scale
optimization problems. To address this
issue, more and more researchers try to
make use of the computing power of par­
allel and distributed platforms to reduce
the computational time of GEP. A number
of parallel GEPs have been proposed over
the years and they mainly use the Master-
Slave Model and the Island Model.

Master-Slave Model: The master-slave
model contains a master thread and a
number of slave threads, as illustrated in
Fig. 11. The master thread controls the ex­
ecution of the main program while the
slave threads solve subtasks of the main
program, such as evaluating the fitness of
individuals. By solving the subtasks simulta­
neously, the computational time for solving
the main task can be significantly reduced.
A typical example is the pGEP proposed
by Shao et al. [17]. In pGEP, the main GEP
framework is controlled by a master thread.
During the evolution process, the fitness
values of individuals in the population are
calculated in parallel using GPU. Deng
et al. [19] proposed a distributed GEP,

called DFMGEP-FR. The DFMGEP-FR
can be deemed as a master-slave model,
where the master (server) sends regression
tasks to the slaves (clients), and the slaves
concurrently solve the assigned tasks and
send the results to the master. Finally, the
master integrates all solutions received
from the slaves and generates the final so­
lution. Park et al. [20] proposed a parallel
GEP which can solve the problem at hand
and tune the parameters of GEP simulta­
neously. They adopted a Master-Slave
model that contains two kinds of slaves,
namely, the O-client and the G-client. The
O-client focuses on turning parameters of
GEP, while the G-client focuses on solv­
ing the problem at hand.

Island Model: In the Island model, the
entire population is divided into a num­
ber of sub-populations. Each sub-
population is evolved by one processor, as
shown in Fig. 12. During the evolution­
ary process, individuals in one sub-popu­
lation can be transferred to another to
share the search information. For exam­
ple, Jiang et al. [18] proposed a parallel
GEP called GEPSA, where the global
population is divided into several sub-
populations, which have different parame­
ter settings that serve to balance
exploration and exploitation abilities. To
share search information and to improve
the search efficiency, the best-so-far indi­
vidual will adaptively replace the worst
individual of a sub-population if it does
not contain the best-so-far individual. Lin
et al. [38] proposed a parallel niching GEP
called PNGEP. In PNGEP, the whole
population is again divided. Each sub-
population is mapped into a processor and
then be evolved using the niching tech­
nique to maintain the population diversi­
ty. The best individual of each
sub-population will be exchanged
through the individual pool during the
evolution. Further, Du et al. [21] proposed
a parallel EA architecture. They use GEP
as an example to implement their parallel
method. In their method, the population
is also divided into a number of sub-pop­
ulations. Each sub-population uses the
MapReduce mechanism to further paral­
lelize the fitness evaluation process. Dur­
ing the evolution, individuals can also be
transfer across sub-populations.

...

Master Thread (or Server)

Individual

Fitness

Slave Thread 1
(or Client 1)

Slave Thread 2
(or Client 2)

Slave Thread n
(or Client n)

Figure 11 The structure of the Master-slave model.

august 2017 | IEEE Computational intelligence magazine 65

Other Models: Besides the Master-
Slave Model and the Island Model, some
other parallel models have been used to
implement parallel GEP. For example,
Jdrzejowicz and Ratajczak-Ropel [51]
implemented a parallel GEP using the
multi-agent model.

In summary, most existing parallel
designs in GEP attempt to reduce the
computational cost of GEP by conduct­
ing fitness evaluation in parallel. The
major difference of existing methods lies
in the selection of parallel models (e.g.,
Master-slave model, Island model, or
Agent-based Model) and the parallel
computing platforms (e.g., MPI, MapRe­
duce, or GPU).

IV. Theoretical Study of GEP
Despite the broad research deployed and
the great success achieved in advanced
GEP designs so far, there is a lack of rig­
orous theoretical GEP studies in the lit­
erature, since it is hard for theory to keep
track with the state-of-the-art algorithms
which have become increasingly elabo­
rate for handling today’s complex and
big problems.

In [66], Yuan et al. proved that the
evolution of GEP for symbolic regression
will converge on the global best chromo­
some in probability and the GEP may
also converge on the local best chromo­
some. Furthermore, Lu et al. [67], [68]
used Markov chain and spectrum analysis
to analyze the convergence rate of GEP
with maintaining elitist (ME-GEP). They
proved that the convergence speed of
ME-GEP depends on the properties of
transition matrices and the upper bound
of convergence speed relies on the
parameter settings of ME-GEP, such as
the population size, mutation probability
and selection probability.

More recently, Du et al. [69] used
Markov chain theory to analyze the time
complexity of ME-GEP. They obtained
the upper and lower limits of the average
time complexity of ME-GEP, and discov­
ered the relationship between the upper
limit and the parameter settings of ME-
GEP. In particular, suppose the popula­
tion size is ,n the generation number is ,t
the best individual in the population
is (),x t0 the ith individual in the pop­

ulation is (), ,x t i n1i # # and ()tp =

((), (), (), ..., ()).x t x t x t x tn0 1 2 According
to [69], { (); }t t 0$p is a Markov Chain.
Def ine the opt imal s ta te set of
ME-GEP as:

 
{(, , ...,)

: () },

E x x x

E x j n B0

n

j

0 1

7! # # !

=)
�

(9)

where E represents the state space, and
B represents the best solution set in the
search space. Then, according to [69], the
ME-GEP converges to ,E) i.e.,

	 { () } .limP t E 1
t

!p =
"

)

3
� (10)

In addition, Huang [70] studied the
schema theory of GEP. The genetic mod­
ifications provided by each operator of
GEP were analysed. In [70], a set of theo­
rems for predicting the propagation of the
schema from one generation to another
and a set of experiments designed to vali­
date the developed schema theory are
also presented.

V. Applications of GEP
Over the past decades, GEP has been
applied to a range of applications owing
to its high effectiveness and efficiency. It
is worth noting that the applications of
GEP are very large and are increasing
rapidly. Thus, it is impossible to list all of
them in this article. For the sake of space
economy, in this section, we focus on
describing five representative application
fields of GEP. Most of the applications of
GEP can be converted to the problems

that belong to these five representative
fields. Our objective is to provide a brief
description of these representative fields
so as to facilitate readers applying GEP
in practice. Table 2 summaries the exam­
ple applications of GEP in the five repre­
sentative areas. In general, most applications
adopt the classical single objective GEP
proposed by Ferreira [1], [2], while some
applications adopt GEP with problem-
specific modifications.

A. Symbolic Regression Problem (SRP)
SRP is one of the most common appli­
cation fields of GEP. It requires finding a
mathematic formula to fit the given
dataset. The mathematical formula,
which is formed by combining building
blocks such as numerical functions (e.g.,
+ and sin) and input variables (e.g., x, y),
is expected to describe the insight rela­
tionships between the inputs and outputs
of the system and be capable of predict­
ing outputs of new inputs. Each sample
of the dataset consists of input variables
and outputs, and can be expressed as:

	 { , , ..., , , ..., },x x x o o, , , , ,i i i n i i m1 2 1 � (11)

where n is the number of input variables
and m is the number of outputs, x ,i j and
o ,i j are the jth input and the jth output
of the ith sample, respectively. The quality
of the formula C^ h is evaluated by the
accuracy of its fitting, which is common­
ly achieved by using the root-mean-
square-error (RMSE). Generally, given a

Island 1

Island n Island 2

Island 3

Individual
Migration

...

Figure 12 The structure of the Island model.

66 IEEE Computational intelligence magazine | august 2017

TABLE 2 Example applications of GEP.

Problem Type of GEP Summary

SRP SOGEP Predict reference evapotranspiration in arid climate [71]

SOGEP Predict velocity field [72]

SOGEP Predict the discharge coefficient in rectangular side weirs [73]

SOGEP Predict construction and demolition waste [74]

SOGEP Determination of the ultimate limit states of shallow foundations [75]

SOGEP Predict bus dwell time [76]

SOGEP Stock market prediction [77]

SOGEP Predict Caspian sea level changes [78]

SOGEP Predict friction factor for Southern Italian rivers [79]

SOGEP Estimation of Critical Velocity for Slurry Transport through
Pipeline [80]

SOGEP Estimation performance of LiBraH2O absorption cooling system [81]

SOGEP Estimation of flash point temperature of non-electrolyte organic
compounds [82]

SOGEP Short-term load forecasting in the electric power industry [83]

SOGEP Stage-discharge relationship prediction [84]

SOGEP Time series prediction [4]

Improved SOGEP with block strategy Predict software reliability [85]

SOGEP Estimate flow time of jobs in a multi-stage job shop [86]

SOGEP Weather prediction [87]

SOGEP Predict normalized shear modulus and damping ratio of sands [88]

SOGEP Predict voltage of different Proton exchange membrane fuel cells [89]

SOGEP Predict evapotranspiration [90]

SOGEP Flow duration curve regionalization [91]

SOGEP predict electricity demand [92]

CP SOGEP Discover classification rules [93]

Revised SOGEP with backward
changing EA

Discover rules for music emotion classification [94]

SOGEP Multi-label classification [95]

SOGEP Even selection in high energy physics [96]

Simplied SOGEP Benchmark classification problems [3]

AMDP SOGEP, SL-GEP Crowd model design [5], [97]

GEP with some modification Electronic circuits design [98]

Modified SOGEP with multiple gene
domains

Artificial neural networks design [99]

 SOGEP Circuits design [100], [101]

SOGEP Production line design [102]

SOGEP with extended encoding design Robot behavior model design [103]

COP SOGEP Generate hyper-heuristic for combinatorial optimization problems
[6], [104]

SOGEP Dynamic machine scheduling problems [105], [106]

SOGEP with extended operators TSP and task assignment problem [2]

ROP SOGEP with encoding extension The HZero and GEP-PO algorithms [2], the UC-GEP [107]

SOGEP represents the traditional single objective GEP proposed by Ferreira [1], [2].

august 2017 | IEEE Computational intelligence magazine 67

set of building blocks (e.g., numerical
functions and input variables), the sym­
bolic regression requires finding the
optimal C) that minimizes the RMSE
for the given dataset:

	 (),arg min fC C=)

C
� (12)

where ()f C returns the fitting error of .C
Many practical problems such as the

time series prediction problems can be
converted to an SR problem. In the lit­
erature, various GEP based methods have
been proposed to solve problems that
can be converted to an SR problem. For
example, Yassin et al. [71] converted the
problem of estimating reference evapo­
transpiration in arid climate as an SR
problem and applied GEP to solve it.
Gholami et al. [72] used GEP to predict
the velocity field in a 90c channel bend.
Ebtehaj et al. [73] treated the prediction
of discharge coefficient in rectangular
side weirs as an SR problem and used
GEP to solve the problem. Similar works
in this area can be found in [4], [74]–
[92], [108].

B. Classification Problem (CP)
Classification is a fundamental and active
research topic in data mining and
knowledge discovery. Formally, given a
set of predetermined target classes

{ , , ..., },C C C Cn1 2= a set of input fea­
tures { , , ..., },A A Am1 2 and a set of train­
ing data { , , ..., }S S S SN1 2= where each
sample Si has m features and is associat­
ed with one target class. The task is to
construct a set of rules, which can be
used to predict the target classes of sam­
ples, given the input feature values of the
samples. Machine learning (ML) tech­
niques such as Artificial Neural Net­
works (ANNs) and Support Vector
Machine (SVM) are commonly used
to solve classification problems [109].
Recently, GP and its variants have also
been applied to classification. Espejo
et al. [110] has done a comprehensive sur­
vey on using GP for classification. As a
variant of GP, GEP has also been applied
to classification over the past decades. For
example, Zhou et al. [3] applied GEP to
several classification problems and showed
that GEP is capable of evolving more

concise solutions than the other methods.
Karakasis and Stafylopatis [111] proposed
an enhanced GEP with Clonal Selection
to evolve accurate classification rules.
Ávila et al. [95] applied GEP to the solu­
tion of multi-label classifications. Wagner
et al. [112] proposed an enhanced GEP-
based method to discover classification
rule for data mining.

C. Automatic Model Design
Problem (AMDP)
Recently, GEP has been used for AMDP.
As an example, Zhong et al. [5] used GEP
to design crowd simulation model. In this
application, the GEP is used to combine
the predefined building blocks to form
model components (i.e., behavior rules)
so as to fit the given real dataset. To evalu­
ate the fitness of a candidate behavior rule,
a crowd simulation model with the
behavior rule is performed first. The final
simulation results are then compared with
the objective data to calculate the fitness
value of the behavior rule. A similar tech­
nique was applied to another crowd
modelling application [97].

GEP has also been used for automatic
circuit design. For example, Janeiro et al.
[100], [101] proposed a GEP-based
method to design components of sensor
circuits. In their method, two functions
(+ and =) are used to represent series
and parallel structures of the circuit,
respectively. Three terminals are used
to represent resistances, inductors and
capacitors. In this way, an electrical cir­
cuit can be represented by a linear string
of functions and terminals. Similar work
in this area can be found in [98], [99],
[102], [103].

D. Combinatorial Optimization
Problem (COP)
Combinatorial optimization aims to find
an optimal subset in a given family of
subsets of a finite set so as to maximize

(or minimize) a given cost function
[113]. Many combinatorial optimization
problems such as the Travelling Salesman
Problem (TSP) and the Job Shop
Scheduling problem (JSP) are NP-hard
problems. Thus, they are infeasible for
exhaustive search methods to solve.
Recently, using GEP to solve combina­
torial optimization problems has attract­
ed increasing attention. For example,
Ferreira [2] applied GEP to two sched­
uling problems, i.e., the TSP and the
Task Assignment Problem. Sabar et al.
[6], [104] applied GEP to designing
high-level heuristics for combinatorial
optimization problems. Nie et al. [105],
[106] applied GEP to evolving generic
scheduling rules for dynamic machine
scheduling problems. A major feature of
using GEP for combinatorial optimiza­
tion is that the solutions provided by
GEP are often general enough to solve
multiple problems. For example, the
high-level heuristics generated by GEP
in [104] are capable of solving multiple
problems across different domains.

E. Real Parameter
Optimization Problem
Typically, the Real parameter Optimiza­
tion Problem (ROP) can be stated as
follows:

	
()

,
F x
x

maximize
subject to Rn!

� (13)

where n is the dimension of the problem,
Rn denotes the decision space, and

:F R Rn
" represents the objective func­

tion. In the literature, ROPs are com­
monly solved by EAs such as GA, DE,
and PSO. As GEPs are straightforward to
be employed for evolving programs with
discrete tree structure, the research of
GEP for ROPs received far less attention
with only few works reported to date. In
particular, Ferreira [2] proposed two GEP
variants for ROPs, namely, the HZero

Over the past decades, GEP has been applied to a range
of applications, such as symbolic regression, classification,
automatic model design, combinatorial optimization, and
real parameter optimization.

68 IEEE Computational intelligence magazine | august 2017

algorithm and the GEP-PO algorithm,
while Xu et al. [107] presented an Uni­
form-Constants based GEP (UC-GEP)
for ROPs. The key idea of these methods
is to use multiple genes to represent one
solution of the ROP, with each gene
representing one variable value. They
mainly differ in how to encode a real
value by a gene. For example, in the
HZero algorithm, each gene contains a
tail domain and a Dc domain. Only one
terminal “?” is considered to represent a
real constant. Thus each gene is essential­
ly a formula that consists of different
constant values and functions. The final
result of the formula is assigned to the
corresponding ROP variable. Further, it
is worth noting that a large chromosome
length is required if the high dimension­
ality ROPs are encountered, which leads
to a huge search space that cannot be
efficiently solved by existing GEPs. It is
an unexplored direction whether the
GEP based methods can outperform
other EAs such as DE and PSO on large
scale ROPs.

VI. Open Research Issues
In this section, several open research
issues of GEP are identified and dis­
cussed for further exploration.

A. Advanced Mechanism
Design in GEP
GEP contains several key components,
such as transposition, mutation, constant
creation, and a number of control param­
eters. The design of these components as
well as the control of the search process
have a great impact on the performance
of GEP. Although many works have been
proposed for dedicated configuration
mechanisms in GEP, further exploration
of advanced designs in GEP is expected.

1) Evolutionary Operator and Parameter
Control Design: In the literature, various
advanced evolutionary operators and
parameter control approaches have been
proposed and verified to be effective in
other EAs, such as the orthogonal design
method [114], [115], the aging concepts
[116], the compact design mechanism
[117], and the opposite-based evolution­
ary mechanism [118]. In contrast, dedi­
cated designs of evolutionary operators

and parameter settings for GEP are lim­
ited, such as the adaptive and self-adap­
tive GEP designs discussed in Section
III.C. More efficient and effective
designs of the search operators as well as
control approaches of parameter config­
uration are necessary to achieve advanced
GEP for problem solving.

2) Constant Creation Design: Constant
creation is an important operator in GEP,
which is helpful in finding high quality
GEP solutions. However, the optimiza­
tion of constants significantly increases
the search space. Existing constant cre­
ation techniques are not effective in han­
dling the additional complexity incurred
by constant creation. In particular, Fer­
reira [32] has compared two commonly
used constant creation methods in GEP
on symbolic regression problems. The
experimental results showed that the
GEPs with a constant creation operator
performed even worse than the GEPs
without a constant creation operator for
checking the solution accuracy. It is there­
fore desirable to design advanced constant
creation techniques, which can balance
the incurred complexity in a search space
and the efforts made for accurate solu­
tion exploration.

3) GEP Design for Solution Complexity
Reduction: The GEP adopts a fixed length
string to represent a computer program.
This enables the GEP to find concise
solutions when the length of chromo­
some is small. However, when the prob­
lems become complicated, especially
with a large number of terminals and
functions, the dimension of the corre­
sponding chromosome will increase
accordingly to ensure the accuracy of the
optimized solution. This, however, can
lead to complicated GEP solutions that
are not general, and difficult for humans
to interpret. Thus, it is necessary to de­
sign effective mechanisms to reduce the
solution complexity of the GEP. One
potential approach is to treat the solution
complexity as another objective and use
multi-objective optimization techniques
[119]–[121] to find solutions that have
trade-offs between the accuracy and the
complexity of solutions.

4) GEP Design for Ill-defined Problems:
Traditional GEP and its variants are usu­

ally applied to well-defined problems.
However, in many real world applica­
tions (e.g., classification problems with
unbalanced data [122]), the problems
encountered may contain specific fea­
tures, which make GEP inapplicable or
inefficient. In these cases, problem-spe­
cific GEP has to be designed based on
the features of the problem encountered.
For example, in the application of deter­
mining the water quality and stress on
lakes or rivers as a result of pollutants
found in the wastewater, evaluation sys­
tems were installed to measure the
changes of the environment over time in
different perspectives1. Due to the cir­
cumstances relating to measurement, the
measurement data may have missing val­
ues. This problem can be easily converted
to a symbolic regression problem, which
is the common application of GEP.
However, without an effective method
to deal with the missing data, the GEP
cannot be applied directly to solve it.

B. GEP Meets Machine Learning
Another open research issue relates to
the use of ML techniques to enhance
the search performance of GEP. Specifi­
cally, ML can be used to learn high-
order or domain-specific knowledge to
enhance the search efficiency of GEP. In
the GP community, some work has
already been done on using ML to learn
high-order or domain-specific knowl­
edge in order to enhance the problem-
solving performance of GP [52], [53],
[123]–[126]. As an example, Kameya et
al. [125] used ML to capture the building
blocks (frequently used sub-functions)
from historical search experiences, which
are then reused in an effort to improve
GP. The GEP is an iterative search algo­
rithm that generates a great amount of
history search information during the
search. Thus, it is also possible to learn
useful domain-specific knowledge from
history search information to improve
the search efficiency of GEP.

Furthermore, ML could be used to
define surrogate models aimed at reduc­
ing the computational cost of GEP. For

1The readers are referred to the detailed descriptions of
the application in http://www.spotseven.de/gecco-
challenge/gecco-challenge-2014

august 2017 | IEEE Computational intelligence magazine 69

many optimization problems such as
those that require running simulations,
evaluating the fitness of an individual is
expensive [5], [97]. In these cases, ML
techniques, such as ANNs, can be used to
build an approximation model of the real
system (a surrogate model) to estimate the
fitness of a given individual. Since per­
forming with the surrogate model is
much cheaper than doing so with the real
system, using surrogate model can signifi­
cantly reduce the computational costs of
the search process [127].

In addition, ML could be used to
reduce the dimension of the problem
encountered so as to improve the search
efficiency of GEP. In practical applications,
the problem at hand may contain a large
number of redundant dimensions, such as
redundant input features. In fact, only a
small subset of the features is useful for
constructing the final GEP solutions. In
these cases, we can use ML techniques,
such as feature selection, to choose a small
number of important features for solution
construction. In this way, the search space
would be reduced and the search effi­
ciency of GEP could be improved.

C. Exploration of New GEP Framework
With the rapid development of Internet
and cloud computing technology, the
problems that humans face today are be­
coming more and more complicated. Op­
timization problems with large-scale size,
high dimensional decision spaces, many
objectives, etc., create common challenges.
To solve these challenging problems, new
GEP frameworks need to be developed.

1) Big GEP Framework: Today, the data
generated by human increases exponen­
tially. This leads to an urgent need for
designing effective methods to solve big
optimization problems, as traditional GEP
may become inapplicable in these cases
[128], [129]. Among others, there are at
least two main reasons. First, the search
space is huge due to the large dimensions
of the problems encountered. For exam­
ple, the DNA micro array data usually
contain thousands of features [130]. Thus,
traditional GEP may quickly be affected
by local stagnations. Second, for big opti­
mization problems, the fitness evaluation
involves processing great quantities of

data and could be quite expensive. GEP
is an iterative search algorithm that
requires a large number of fitness evalua­
tions. Thus, the total computational time
for GEP to solve big optimization prob­
lems could be very long. To address the
above issues, one potential approach is to
design parallel GEP models based on
cloud computing platforms or distributed
computing platforms.

2) Multi-Tasking GEP Framework:
Multi-task learning has become an active
research topic in the machine learning
community [131]–[135]. The justification
for multi-task learning is that problems
seldom exist in isolation, and related
problems often contain useful informa­
tion that can be utilized to improve prob­
lem-solving efficiency [53], [126], [136].
Recently, the concept of Multi-Factorial
Optimization (MFO) has been intro­
duced in [137] as a new evolutionary par­
adigm that would promote evolutionary
multitasking. In contrast to traditional
EAs that solve a single task each time, the
MFO intends to conduct evolutionary
searches on multiple concurrently exist­
ing search spaces, corresponding to differ­
ent tasks. A Multi-Factorial Evolutionary
Algorithm (MFEA) has been designed
based on the concept of MFO, and has
been shown to be effective on a number
of continuous and combinatorial optimi­
zation problems in [137]. The MFO has
great potential to improve the problem
solving efficiency of GEP. However, the
original MFEA is designed based on the
specific problems and cannot be applied
with GEP directly for the evolution of
computer programs. Thus, one of the
possible directions for multi-tasking GEP
is from the perspective of MFO.

3) Many-Objective GEP Framework:
Many-Objective Optimization problems
(MaOPs), which have more than three
objectives to be optimized simultane­

ously, have widely existed in various
applications [138]–[140]. MaOPs are
more challenging compared with the
bi- and tri-objective optimization prob­
lems, since the Pareto fronts of MaOPs
are much more complicated. Traditional
multi-objective GEPs (see, for example,
[141]) can be applied to solving MaOPs,
but their performance will worsen as
the number of objectives increases. The
reason for this is that when the number
of objectives is large, most of the indi­
viduals in the population will be equally
good (i.e., nondominated to each other).
This causes the algorithms to fail to
converge due to the loss of selection
pressure in the direction of the Pareto
front. Therefore, designing new many-
objective GEP frameworks to handle
MaOPs is required.

4) Dynamic GEP Framework: Many
practical optimization problems are dy­
namic, which requires an optimization al­
gorithm finding the global optimal
solution under a specific environment as
well as tracking the trajectory of the
changing optima over dynamic environ­
ments. In the literature, many EAs for
Dynamic Optimization Problems (DOPs)
have been proposed, which can be gener­
ally divided into two categories: (1) find­
ing/tracking optima over time (algorithms
are mainly for DOPs in a continuous
space) [142], [143], and (2) adapting
current solutions against changes (algo­
rithms are mainly for DOPs in a combi­
natorial space) [144], [145]. In contrast,
significantly fewer studies on GEPs for
solving DOPs, including both continuous
and combinatorial DOPs, have been ex­
plored, making it a fertile area for further
research investigations.

D. Theoretical Studies of GEP
As discussed above, GEP is one of com­
putational intelligence areas in which the

There are still many challenges and open research issues
for further exploration of GEP, such as the exploration
of advanced designs in GEP, the design of new GEP
framework for complicated optimization, and rigorous
theoretical analysis of GEPs.

70 IEEE Computational intelligence magazine | august 2017

empirical work has outpaced the theo­
retical work. While there has been some
work on the theory of GEP [66]–[70],
more rigorous theoretical analysis is
expected to provide more insights on the
GEP search process. Possible areas for the­
oretical study on GEP may include the
proof of convergence, time complexity
analysis, the convergence speed estimation,
and the analysis of evolution efficiencies of
operators. Besides the classical GEP frame­
work, theoretical studies on the state-of-
the-art GEP frameworks are also expected.

VII. Conclusion
GEP is a variant of GP for automatic
generation of computer programs. It uses
a fixed-length gene expression represen­
tation to encode computer programs, and
be able to find concise and readable solu­
tion efficiently. Over the past decades,
GEP has undergone rapid advancements
and has been widely used in many appli­
cations, including classification problems,
time series predictions, and others. In this
survey, we reviewed the recent research
progress of GEP from various perspec­
tives. In particular, we first discussed the
state-of-the-art techniques designed for
improving the search performance of
GEP. In general, these techniques try to
improve GEP from six aspects, including
encoding design, evolutionary mecha­
nism design, parameter adaptation design,
cooperative coevolutionary design, con­
stant creation design, and parallel design.
Next, we presented the theoretical studies
of GEP to date. The theoretical study of
GEP has not attracted sufficient atten­
tions from researchers yet. Existing works
focused mainly on the proof of conver­
gence and the estimation of convergence
speed. Further, we summarized the major
applications of GEP. Generally, most
applications of GEP can be converted
into five representative optimization
problems, i.e., symbolic regression, clas­
sification, automatic model design,
combinatorial optimization, and real pa­
rameter optimization.

Although GEP has achieved fast ad­
vancements and developments, there are
still many challenges and open research
issues for further exploration. First, to
further improve the performance of

GEP, exploration of advanced designs in
GEP is expected. Potential techniques
include the new parameter adaptive con­
trolling design, constant creation design,
solution complexity reduction design,
and ill-problem handling design. Second,
using ML to assist GEP is desirable. ML
could be used in at least three aspects for
enhancing GEP for problem solving, i.e.,
learning problem-specific knowledge,
constructing surrogate models, and di­
mension reduction. Third, to solve com­
plicated problems that humans face
today. The design of new GEP frame­
work for complicated optimization (e.g.,
those with large-scale size, high dimen­
sional decision spaces, and many objec­
tives, etc.) is urgent. These include the
Big GEP framework for solving prob­
lems in big data environment, Multi-
Tasking GEP framework for handling
multiple tasks simultaneously, Many-ob­
jective GEP Framework to deal with
problems with more than three objec­
tives, and Dynamic GEP framework for
problems with optima changing over dy­
namic environments. Last but not least,
rigorous theoretical analysis of GEP is
required for providing deeper insights
of the GEP search process, such as the
proof of convergence, time complexity
analysis, convergence speed estimation,
and analysis of evolution efficiencies
of operators.

Acknowledgment
This work is partially supported under
the National Natural Science Founda­
tion of China (Grant No. 61602181,
61603064), Fundamental Research
Funds for the Central Universities
(Grant No. 2017ZD053), Frontier
Interdisciplinary Research Fund for
the Central Universities (Grant No.
106112017CDJQJ188828), and the Data
Science and Artificial Intelligence Center
(DSAIR) at the Nanyang Technological
University. Further, the authors would like
to express their sincere thanks to Dr.
Athanasios V. Vasilakos for his time in
proofreading the first version of the paper.

References
[1] C. Ferreira, “Gene expression programming: A new
adaptive algorithm for solving problems,” Complex Syst.,
vol. 13, no. 2, pp. 87–129, 2001.

[2] C. Ferreira, Gene Expression Programming: Mathematical
Modelling by an Artificial Intelligence. New York: Springer-
Verlag, 2006.
[3] C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson,
“Evolving accurate and compact classif ication rules with
gene expression programming,” IEEE Trans. Evolut. Com-
put., vol. 7, no. 6, pp. 519–531, Dec. 2003.
[4] J. Zuo, C.-J. Tang, C. Li, C.-A. Yuan, and A.-L.
Chen, “Time series prediction based on gene expression
programming,” in International Conference on Web-Age
Information Management. Berlin Heidelberg: Springer-
Verlag, 2004, pp. 55–64.
[5] J. Zhong, L. Luo, W. Cai, and M. Lees, “Automatic
rule identif ication for agent-based crowd models through
gene expression programming,” in Proc. Int. Conf. Au-
tonomous Agents and Multiagent Systems, Int. Foundation
for Autonomous Agents and Multiagent Systems. ACM, May
2014, pp. 1125–1132.
[6] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “A
dynamic multiarmed bandit-gene expression program­
ming hyper-heuristic for combinatorial optimization
problems,” IEEE Trans. Evolut. Comput., vol. 45, no. 2,
pp. 217–228, Feb. 2015.
[7] J. Zhong, Y.-S. Ong, and W. Cai, “Self-learning gene
expression programming,” IEEE Trans. Evolut. Comput.,
vol. 20, no. 1, pp. 65–80, Feb. 2016.
[8] X. Li, C. Zhou, W. Xiao, and P. C. Nelson, “Prefix
gene expression programming,” in Proc. Genetic and Evo-
lutionary Computation Conf. ACM, June 2005, pp. 25–31.
[9] K.-T. Fang, D. K. Lin, P. Winker, and Y. Zhang,
“Uniform design: Theory and application,” Technometrics,
vol. 43, no. 3, pp. 237–248, 2000.
[10] L. N. D. Castro and F. J. V. Zuben, “Learning and opti­
mization using the clonal selection principle,” IEEE Trans.
Evolut. Comput., vol. 6, no. 3, pp. 239–251, June 2002.
[11] G. L. Z. Gan, Z. Yang and M. Jiang, “Automatic
modelling of complex functions with clonal selection-
based gene expression programming,” in Proc. Int. Conf.
Natural Computation, Aug. 2007, pp. 228–232.
[12] V. Litvinenko, P. Bidyuk, J. Bardachov, V. Sherstjuk,
and A. Fefelov, “Combining clonal selection algorithm
and gene expression programming for time series pre­
diction,” in Proc. IEEE Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications,
Sept. 2005, pp. 133–138.
[13] L. Wang, B. Yang, S. Wang, and Z. Liang, “Building
image feature kinetics for cement hydration using gene
expression programming with similarity weight tourna­
ment selection,” IEEE Trans. Evolut. Comput., vol. 19, no. 5,
pp. 679–693, Oct. 2015.
[14] S. Jiang, Z. Cai, D. Zeng, Y. Liu, and Q. Li, “Gene
expression programming based on simulated annealing,”
in Proc. IEEE Int. Conf. Wireless Communications, Network-
ing and Mobile Computing, Sept. 2005, pp. 1264–1267.
[15] T. Zeng, C. Tang, Y. Xiang, P. Chen, and Y. Liu,
“A model of immune gene expression programming for
rule mining,” J Univers. Comput Sci., vol. 13, no. 10, pp.
1484–1497, Oct. 2007.
[16] J. Mwaura and E. Keedwell, “Adaptive gene expres­
sion programming using a simple feedback heuristic,” in
Proc. AISB Conf., 2009.
[17] S. Shao, X. Liu, M. Zhou, J. Zhan, X. Liu, Y. Chu,
and H. Chen, “A GPU-based implementation of an en­
hanced GEP algorithm,” in Proc. 14th Annu. Conf. Ge-
netic and Evolutionary Computation. ACM, July 2012, pp.
999–1006.
[18] S.-W. Jiang, Z.-H. Cai, D. Zeng, Q. Li, and Y.-F.
Cheng, “Parallel gene expression programming algo­
rithm based on simulated annealing method,” DianziXue-
bao (Acta Electronica Sinica), vol. 33, no. 11, pp. 2017–2021,
Nov. 2005.
[19] S. Deng, D. Yue, L.-C. Yang, X. Fu, and Y.-Z. Feng,
“Distributed function mining for gene expression pro­
gramming based on fast reduction,” PloS One, vol. 11, no.
1, pp. e0146698, Jan. 2016.
[20] H.-H. Park, A. Grings, M. V. dos Santos, and A. S.
Soares, “Parallel hybrid evolutionary computation: Au­
tomatic tuning of parameters for parallel gene expression
programming,” Appl. Math Comput., vol. 201, no. 1, pp.
108–120, July 2008.
[21] X. Du, Y. Ni, Z. Yao, R. Xiao, and D. Xie, “High
performance parallel evolutionary algorithm model based

august 2017 | IEEE Computational intelligence magazine 71

on MapReduce framework,” Int. J. Comput. Appl. Tech-
nol., vol. 46, no. 3, pp. 290–295, Mar. 2013.
[22] Y.-Z. Peng, C.-A. Yuan, X.-F. Mai, and X. Qin,
“Survey on theoretical research of gene expression pro­
gramming,” Appl. Res. Comput., vol. 28, no. 2, pp. 413–
419, Feb. 2011.
[23] C. Ferreira, Automatically Defined Functions in Gene
Expression Programming. Berlin, Heidelberg: Springer-
Verlag, 2006, pp. 21–56.
[24] Y. Chen, D. Chen, S. U. Khan, J. Huang, and C. Xie,
“Solving symbolic regression problems with uniform
design-aided gene expression programming,” J Supercom-
put., vol. 66, no. 3, pp. 1553–1575, Dec. 2013.
[25] A. Brbulescu and E. Butu, “Time series modelling
using an adaptive gene expression,” Int. J. Math. Models
Methods Appl. Sci., vol. 3, pp. 85–93, 2009.
[26] M. A. Potter and K. A. De Jong, “A cooperative co­
evolutionary approach to function optimization,” in In-
ternational Conference on Parallel Problem Solving from Nature.
New York: Springer-Verlag, 1994, pp. 249–257.
[27] X. Li and X. Yao, “Cooperatively coevolving par­
ticle swarms for large scale optimization,” IEEE Trans.
Evolut. Comput., vol. 16, no. 2, pp. 210–224, Apr. 2012.
[28] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Coop­
erative co-evolution with differential grouping for large
scale optimization,” IEEE Trans. Evolut. Comput., vol. 18,
no. 3, pp. 378–393, June 2014.
[29] A. Sosa-Ascencio, M. Valenzuela-Rendón, and H.
Terashima-Marín, “Cooperative coevolution of auto­
matically defined functions with gene expression pro­
gramming,” in Proc. IEEE 11th Mexican Int. Conf. Artificial
Intelligence, Oct. 2012, pp. 89–94.
[30] M. Furuholmen, K. Glette, M. Hovin, and J. Tor­
resen, “Coevolving heuristics for the distributor’s pallet
packing problem,” in Proc. IEEE Congress on Evolutionary
Computation, May 2009, pp. 2810–2817.
[31] M. Furuholmen, K. Glette, M. Hovin, and J. Tor­
resen, “A coevolutionary, hyper heuristic approach to the
optimization of three-dimensional process plant layoutsa
comparative study,” in Proc. IEEE Congress on Evolutionary
Computation, July 2010, pp. 1–8.
[32] C. Ferreira, “Function finding and the creation of
numerical constants in gene expression programming,”
in Advances in Soft Computing. New York: Springer-Ver­
lag, 2003, pp. 257–265.
[33] X. Li, C. Zhou, P. C. Nelson, and T. M. Thomas,
“Investigation of constant creation techniques in the con­
text of gene expression programming,” in Proc. 6th Annu.
ACM Conf. Genetic and Evolutionary Computation, 2004.
[34] Q. Zhang, C. Zhou, W. Xiao, P. C. Nelson, and X.
Li, “Using differential evolution for GEP constant cre­
ation,” in Proc. Late breaking paper at Genetic and Evolution-
ary Computation Conf., Seattle, WA, USA, 2006.
[35] Q. Zhang, C. Zhou, W. Xiao, and P. C. Nelson,
“Improving gene expression programming performance
by using differential evolution,” in 6th IEEE Int. Conf.
Machine Learning and Applications, Dec 2007, pp. 31–37.
[36] T. Li, T. Dong, J. Wu, and T. He, “Function mining
based on gene expression programming and particle swarm
optimization,” in Proc. 2nd IEEE Int. Conf. Computer Sci-
ence and Information Technology, Aug 2009, pp. 99–103.
[37] B. M. Cerny, P. C. Nelson, and C. Zhou, “Using
differential evolution for symbolic regression and nu­
merical constant creation,” in Proc. 10th Annu. Conf. Ge-
netic and Evolutionary Computation. ACM, July 2008, pp.
1195–1202.
[38] Y. Lin, H. Peng, and J. Wei, “A niching gene expres­
sion programming algorithm based on parallel model,” in
International Workshop on Advanced Parallel Processing Tech-
nologies. New York: Springer-Verlag, 2007, pp. 261–270.
[39] J. Zhong, X. Hu, J. Zhang, and M. Gu, “Comparison
of performance between different selection strategies on
simple genetic algorithms,” in Proc. Int. Conf. Computa-
tional Intelligence for Modelling, Control and Automation and
Int. Conf. Intelligent Agents, Web Technologies and Internet
Commerce, vol. 2, Nov. 2005, pp. 1115–1121.
[40] R. Poli, W. B. Langdon, N. F. McPhee, and J. R. Koza,
A Field Guide to Genetic Programming. Lulu. com, 2008.
[41] M. O’Neill and C. Ryan, “Grammatical evolution,”
IEEE Trans. Evolut. Comput., vol. 5, no. 4, pp. 349–358,
Aug. 2001.
[42] M. F. Brameier and W. Banzhaf, Linear Genetic Pro-
gramming. New York: Springer-Verlag, 2007.

[43] M. Oltean and C. Grosan, “A comparison of several
linear genetic programming techniques,” Complex Syst.,
vol. 14, no. 4, pp. 285–314, 2003.
[44] H-y. Quan and G. Yang, “Gene expression program­
ming with DAG chromosome,” in Proceedings of the 2Nd
International Conference on Advances in Computation and
Intelligence, ser. ISICA’07. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 271–275.
[45] J. Hu, C.-J. Tang, L. Duan, J. Zuo, J. Peng, and C.-A.
Yuan, “The strategy for diversifying initial population of
gene expression programming,” Chin. J. Comput., vol. 30,
no. 2, pp. 305, Feb. 2007.
[46] Z. Guo, Z. Wu, X. Dong, K. Zhang, S. Wang, and Y.
Li, “Component thermodynamical selection based gene
expression programming for function finding,” Math.
Probl. Eng., vol. 2014, 2014.
[47] V. K. Karakasis and A. Stafylopatis, “Efficient evolu­
tion of accurate classif ication rules using a combination
of gene expression programming and clonal selection,”
IEEE Trans. Evolut. Comput., vol. 12, no. 6, pp. 662–678,
Dec. 2008.
[48] J. Y.-C. Liu, J.-H. A. Chen, C.-T. Chiu, and J.-C.
Hsieh, “An extension of gene expression programming
with hybrid selection,” in Proceedings of the 2nd Interna-
tional Conference on Intelligent Technologies and Engineer-
ing Systems (ICITES2013). New York: Springer-Verlag,
2014, pp. 635–641.
[49] L. Qu, C. Hongbing, and H. X. Lin, “Edit distance
based crossover operator in gene expression program­
ming,” in Proc. 8th IEEE Int. Conf. Biomedical Engineering
and Informatics, Oct. 2015, pp. 468–472.
[50] J. Yang and J. Ma, “A hybrid gene expression pro­
gramming algorithm based on orthogonal design,” Int. J.
Comp. Intell. Tech., vol. 9, no. 4, pp. 778–787, June 2016.
[51] P. Jdrzejowicz and E. Ratajczak-Ropel, “Agent-
based gene expression programming for solving the
RCPSP/max problem,” in International Conference on
Adaptive and Natural Computing Algorithms. New York:
Springer-Verlag, 2009, pp. 203–212.
[52] J. R. Koza and J. Noyes, Genetic Programming II Videotape:
The Next Generation. Cambridge, MA: MIT Press, 1994.
[53] R. Meuth, M.-H. Lim, and Y.-S. Ong, D. C. W, II,
“A proposition on memes and meta-memes in computing
for higher-order learning,” Memetic Comput., vol. 1, no. 2,
pp. 85–100, June 2009.
[54] T. V. Belle and D. H. Ackley, “Code factoring and
the evolution of evolvability,” in Proc. Genetic Evol. Com-
put. Conf., July 2002, pp. 1383–1390.
[55] J. A. Walker and J. F. Miller, “The automatic acquisi­
tion, evolution and reuse of modules in cartesian genetic
programming,” IEEE Trans. Evolut. Comput., vol. 12, no.
4, pp. 397–417, Aug. 2008.
[56] M. Oltean and D. Dumitrescu, “Multi expression
programming,” Cluj-Napoca, Romania: Babe-Bolyai
University, Tech. Rep. UBB-01-2002, Jan. 2002.
[57] D. H. Wolpert and W. G. Macready, “No free lunch
theorems for optimization,” IEEE Trans. Evolut. Comput.,
vol. 1, no. 1, pp. 67–82, Apr. 1997.
[58] A. K. Qin and P. N. Suganthan, “Self-adaptive dif­
ferential evolution algorithm for numerical optimiza­
tion,” in Proc. IEEE Congress on Evolutionary Computation.
Sept. 2005, vol. 2, pp. 1785–1791.
[59] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V.
Zumer, “Self-adapting control parameters in differential
evolution: A comparative study on numerical benchmark
problems,” IEEE Trans. Evolut. Comput., vol. 10, no. 6,
pp. 646–657, Dec. 2006.
[60] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung,
“Adaptive particle swarm optimization,” IEEE Trans.
Syst. Man Cybern. B Cybern., vol. 39, no. 6, pp. 1362–
1381, Dec. 2009.
[61] J. Zhang and A. C. Sanderson, “JADE: Adaptive dif­
ferential evolution with optional external archive,” IEEE
Trans. Evolut. Comput., vol. 13, no. 5, pp. 945–958, Oct
2009.
[62] J. R. Koza, Genetic Programming: vol.1, On the Pro-
gramming of Computers by Means of Natural Selection. Cam­
bridge, MA: MIT Press, 1992.
[63] M. Zhang and W. Smart, “Genetic programming
with gradient descent search for multiclass object classi­
f ication,” in 2004 European Conference on Genetic Program-
ming (EuroGP). New York: Springer-Verlag, Apr. 2004,
pp. 399–408.

[64] M. Kommenda, G. Kronberger, S. Winkler, M. Af­
fenzeller, and S. Wagner, “Effects of constant optimiza­
tion by nonlinear least squares minimization in symbolic
regression,” in Proc. 15th Annu. Conf. Companion on Ge-
netic and Evolutionary Computation. ACM, July 2013, pp.
1121–1128.
[65] S. Mukherjee and M. J. Eppstein, “Differential evo­
lution of constants in genetic programming improves ef­
f icacy and bloat,” in Proc. 14th Annu. Conf. Companion
on Genetic and Evolutionary Computation. ACM, July 2012,
pp. 625–626.
[66] C. Yuan, C. Tang, Y. Wen, J. Zuo, J. Peng, and J.
Hu, “Convergency of genetic regression in data mining
based on gene expression programming and optimized
solution,” Int. J. Comput. Appl., vol. 28, no. 4, pp. 359–
366, July 2006.
[67] X. Du, L. X. Ding, C. W. Xie, X. Xu, S. W. Wang,
and L. Chen, “Convergence analysis of gene expression
programming based on maintaining elitist,” in Proc.the
first ACM/SIGEVO Summit on Genetic and Evolutionary
Computation. ACM, June 2009, pp. 823–826.
[68] X. Du and L. Ding, “About the convergence rates of
a class of gene expression programming,” Sci. China Inf.
Sci., vol. 53, no. 4, pp. 715–728, Mar. 2010.
[69] X. Du, Y. Ni, D. Xie, X. Yao, P. Ye, and R. Xiao,
“The time complexity analysis of a class of gene expres­
sion programming,” Soft Comput., vol. 19, no. 6, pp.
1611–1625, Dec. 2015.
[70] Z. Huang, “Schema theory for gene expression pro­
gramming,” Ph.D. dissertation, Brunel Univ. School
Eng. Design PhD. Theses, Sept. 2014.
[71] M. A. Yassin, A. Alazba, and M. A. Mattar, “Artificial
neural networks versus gene expression programming for
estimating reference evapotranspiration in arid climate,”
Agric. Water Manag., vol. 163, pp. 110–124, Sept. 2016.
[72] A. Gholami, H. Bonakdari, A. H. Zaji, A. A. Akh­
tari, and S. R. Khodashenas, “Predicting the velocity
f ield in a 90 open channel bend using a gene expression
programming model,” Flow Meas. Instrum., vol. 46, pp.
189–192, Oct. 2015.
[73] I. Ebtehaj, H. Bonakdari, A. H. Zaji, H. Azimi, and
A. Sharif i, “Gene expression programming to predict the
discharge coeff icient in rectangular side weirs,” Appl. Soft
Comput., vol. 35, pp. 618–628, July 2015.
[74] Z. Wu, H. Fan, and G. Liu, “Forecasting construc­
tion and demolition waste using gene expression pro­
gramming,” J. Comput. Civil Eng., vol. 29, no. 5, pp.
04014059, Oct. 2013.
[75] A. T. poora, A. Bararib, M. Behniac, and T. Najafid,
“Determination of the ultimate limit states of shallow
foundations using gene expression programming (GEP) ap­
proach,” Soils Found., vol. 55, no. 3, pp. 650–659, Apr. 2015.
[76] S. Rashidi and P. Ranjitkar, “Bus dwell time model­
ling using gene expression programming,” Comput. Aided
Civil Infrastruct. Eng., vol. 30, no. 6, pp. 478–489, Apr.
2015.
[77] A. Karatahansopoulos, G. Sermpinis, J. Laws, and C.
Dunis, “Modelling and trading the Greek stock market
with gene expression and genetic programing algorithms,”
J. Forecast., vol. 33, no. 8, pp. 596–610, Sept. 2014.
[78] A. Karatahansopoulos, G. Sermpinis, J. Laws, and
C. Dunis, “Forecasting caspian sea level changes using
satellite altimetry data (June 1992-December 2013) based
on evolutionary support vector regression algorithms and
gene expression programming,” Glob. Planet. Chang., vol.
121, pp. 53–63, July 2014.
[79] H. M. Azamathulla, “Gene-expression programming
to predict friction factor for southern Italian rivers,” Neural
Comput. Appl., vol. 23, no. 5, pp. 1421–1426, Aug. 2013.
[80] H. M. Azamathulla and Z. Ahmad, “Estimation of
critical velocity for slurry transport through pipeline us­
ing adaptive neuro-fuzzy interference system and gene-
expression programming,” J. Pipeline Syst. Eng. Pract., vol.
4, no. 2, pp. 131–137, July 2012.
[81] E. Dikmen, “Gene expression programming strat­
egy for estimation performance of LiBr-H2O absorption
cooling system,” Neural Comput. Appl., vol. 26, no. 2, pp.
409–415, Feb. 2015.
[82] F. Gharagheizi, P. Ilani-Kashkouli, N. Farahani, and
A. H. Moham-madi, “Gene expression programming
strategy for estimation of f lash point temperature of non-
electrolyte organic compounds,” Fluid Phase Equilib., vol.
329, pp. 71–77, May 2012.

72 IEEE Computational intelligence magazine | august 2017

[83] S. S. S. Hosseini and A. H. Gandomi, “Short-term
load forecasting of power systems by gene expression
programming,” Neural Comput. Appl., vol. 21, no. 2, pp.
377–389, Mar. 2012.
[84] A. Guven and A. Aytek, “New approach for stage-
discharge relationship: Gene-expression programming,”
J. Hydrol. Eng., vol. 14, no. 8, pp. 812–820, Aug. 2009.
[85] Y. Zhang and J. Xiao, “A software reliability mod­
elling method based on gene expression programming,”
Appl. Math. Inf. Sci., vol. 6, no. 1, pp. 125–132, Jan. 2012.
[86] A. Baykasolu and M. Gken, “Gene expression pro­
gramming based due date assignment in a simulated job
shop,” Expert Syst. Appl., vol. 36, no. 10, pp. 12 143–12
150, Mar. 2009.
[87] A. Bakhshaii and R. Stull, “Deterministic ensemble
forecasts using gene-expression programming,” Weather
Forecast., vol. 24, no. 5, pp. 1431–1451, Oct. 2009.
[88] A. Keshavarz and M. Mehramiri, “New gene expres­
sion programming models for normalized shear modulus
and damping ratio of sands,” Eng. Appl. Artif. Intell., vol. 45,
pp. 464–472, July 2015.
[89] A. Nazari, “Prediction performance of PEM fuel
cells by gene expression programming,” Int. J. Hydrogen
Energy, vol. 37, no. 24, pp. 18 972–18 980, Aug. 2012.
[90] S. Traore and A. Guven, “New algebraic formula­
tions of evapotranspiration extracted from gene-expres­
sion programming in the tropical seasonally dry regions
of west Africa,” Irrigation Sci., vol. 31, no. 1, pp. 1–10,
Jan. 2013.
[91] M. Z. Hashmi and A. Y. Shamseldin, “Use of gene ex­
pression programming in regionalization of f low duration
curve,” Adv. Water Resour., vol. 68, pp. 1–12, Feb. 2014.
[92] S. M. Mousavi, E. S. Mostafavi, and F. Hosseinpour,
“Gene expression programming as a basis for new genera­
tion of electricity demand prediction models,” Comput.
Ind. Eng., vol. 74, pp. 120–128, May 2014.
[93] Z. Yu, H. Lu, H. Si, S. Liu, X. Li, C. Gao, L. Cui, C.
Li, X. Yang, and X. Yao, “A highly eff icient gene expres­
sion programming (GEP) model for auxiliary diagnosis
of small cell lung cancer,” PloS One, vol. 10, no. 5, pp.
e0125517, May 2015.
[94] K. Zhang and S. Sun, “Web music emotion recogni­
tion based on higher effective gene expression program­
ming,” Neurocomputing, vol. 105, pp. 100–106, June 2013.
[95] J. L. Ávila, E. Gibaja, A. Zafra, and S. Ventura, “A
gene expression programming algorithm for multi-label
classif ication,” J. Mult. Valued Logic Soft Comput., vol. 17,
pp. 183–206, 2011.
[96] L. Teodorescu, “Gene expression programming ap­
proach to event selection in high energy physics,” IEEE
Trans. Nucl. Sci., vol. 53, no. 4, pp. 2221–2227, Aug. 2006.
[97] J. Zhong and W. Cai, “A hyper-heuristic framework
for agent-based crowd modeling and simulation,” in Proc.
Int. Conf. Autonomous Agents & Multiagent Systems. Inter­
national Foundation for Autonomous Agents and Multia­
gent Systems, 2016, pp. 1331–1332.
[98] X.-S. Yan, W. Wei, R. Liu, S.-Y. Zeng, and L.-
S. Kang, “Designing electronic circuits by means of
gene expression programming,” in Proc. First NASA/
ESA Conference on Adaptive Hardware and Systems, 2006,
pp. 194–199.
[99] Y. Yang and A. Alexeev, “Designing neural networks
using gene expression programming,” in Proc. Applied Soft
Computing Technologies: The Challenge of Complexity, 2006,
pp. 517–535.
[100] F. M. Janeiro and P. M. Ramos, “Sensor character­
ization using gene expression programming evolutionary
algorithms,” in Proc. Instrumentation and Measurement Tech-
nology Conf., May 2012, pp. 1–5.
[101] F. M. Janeiro, J. Santos, and P. M. Ramos, “Gene
expression programming in sensor characterization: Nu­
merical results and experimental validation,” IEEE Trans
Instrum Meas., vol. 62, no. 5, pp. 1373–1381, May 2013.
[102] A. Baykasolu, “Gene expression programming
based meta-modelling approach to production line de­
sign,” Int. J. Comput. Integrat. Manuf., vol. 21, no. 6, pp.
657–665, Aug. 2008.
[103] J. Mwaura and E. Keedwell, “Evolving robot sub-
behaviour modules using gene expression program­
ming,” Genet. Program. Evolvable Mach., vol. 16, no. 2, pp.
95–131, June 2015.
[104] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “Au­
tomatic design of a hyper-heuristic framework with gene

expression programming for combinatorial optimization
problems,” IEEE Trans. Evolut. Comput., vol. 19, no. 3,
pp. 309–325, June 2015.
[105] L. Nie, X. Shao, L. Gao, and W. Li, “Evolving sched­
uling rules with gene expression programming for dynamic
single-machine scheduling problems,” Int. J. Adv. Manuf.
Technol., vol. 50, no. 5–8, pp. 729–747, Sept. 2010.
[106] L. Nie, L. Gao, P. Li, and X. Li, “A GEP-based
reactive scheduling policies constructing approach for
dynamic f lexible job shop scheduling problem with job
release dates,” J. Intell. Manuf., vol. 24, no. 4, pp. 763–774,
Aug. 2013.
[107] K. Xu, Y. Liu, R. Tang, J. Zuo, J. Zhu, and C. Tang,
“A novel method for real parameter optimization based
on gene expression programming,” Appl. Soft Comput.,
vol. 9, no. 2, pp. 725–737, Sept. 2009.
[108] H. M. Azamathulla, “Gene expression program­
ming for prediction of scour depth downstream of sills,”
J. Hydrol., vol. 460, pp. 156–159, June 2012.
[109] C. Bishop, Pattern Recognition and Machine Learning
(Information Science and Statistics). New York: Springer-
Verlag, 2007.
[110] P. G. Espejo, S. Ventura, and F. Herrera, “A survey
on the application of genetic programming to classif ica­
tion,” IEEE Trans. Syst. Man Cybern. Syst. Part C, vol. 40,
no. 2, pp. 121–144, Mar. 2010.
[111] V. K. Karakasis and A. Stafylopatis, “Efficient evolu­
tion of accurate classif ication rules using a combination
of gene expression programming and clonal selection,”
IEEE Trans. Evolut. Comput., vol. 12, no. 6, pp. 662–678,
Dec. 2008.
[112] W. R. Weinert and H. S. Lopes, “GEPCLASS: A
classif ication rule discovery tool using gene expression
programming,” in 2006 International Conference on Ad-
vanced Data Mining and Applications. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2006, pp. 871–880.
[113] C. Helmberg, “Semidefinite programming for com­
binatorial optimization,” Tech. Rep. ZIB-Report ZR-00-
34, Konrad-Zuse-Zentrum Berlin, Oct. 2000.
[114] Z.-H. Zhan, J. Zhang, Y. Li, and Y.-H. Shi, “Or­
thogonal learning particle swarm optimization,” IEEE
Trans. Evolut. Comput., vol. 15, no. 6, pp. 832–847,
Dec. 2011.
[115] Y.-W. Leung and Y. Wang, “An orthogonal genetic
algorithm with quantization for global numerical opti­
mization,” IEEE Trans. Evolut. Comput., vol. 5, no. 1, pp.
41–53, Feb. 2001.
[116] W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H.
Zhan, H. S.-H. Chung, Y. Li, and Y.-H. Shi, “Particle
swarm optimization with an aging leader and challeng­
ers,” IEEE Trans. Evolut. Comput., vol. 17, no. 2, pp.
241–258, Apr. 2013.
[117] F. C. E. Mininno, F. Neri, and D. Naso, “Compact
differential evolution,” IEEE Trans. Evolut. Comput., vol.
15, no. 1, pp. 32–54, Feb. 2011.
[118] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama,
“Opposition-based differential evolution,” IEEE Trans.
Evolut. Comput., vol. 12, no. 1, pp. 64–79, Feb. 2008.
[119] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan,
“A fast and elitist multiobjective genetic algorithm: NS­
GA-II,” IEEE Trans. Evolut. Comput., vol. 6, no. 2, pp.
182–197, Apr. 2002.
[120] E. Zitzler and S. Knzli, “Indicator-based selection
in multiobjective search,” in Proc. Parallel Problem Solving
from Nature, 2004, pp. 832–842.
[121] Q. Zhang and H. Li, “MOEA/D: A multi-objective
evolutionary algorithm based on decomposition,” IEEE
Trans. Evolut. Comput., vol. 11, no. 6, pp. 712–731, Dec.
2007.
[122] U. Bhowan, M. Johnston, M. Zhang, and X. Yao,
“Evolving diverse ensembles using genetic programming
for classif ication with unbalanced data,” IEEE Trans. Evo-
lut. Comput., vol. 17, no. 3, pp. 368–386, June 2013.
[123] X. Chen, Y.-S. Ong, M.-H. Lim, and K. C. Tan,
“A multi-facet survey on memetic computation,” IEEE
Trans. Evolut. Comput., vol. 15, no. 5, pp. 591–607, Oct.
2011.
[124] Y.-S. Ong, M.-H. Lim, and X. Chen, “Memetic
computation past, present & future [research frontier],”
IEEE Comput. Intell. Mag., vol. 5, no. 2, pp. 24–31, May
2010.
[125] Y. Kameya, J. Kumagai, and Y. Kurata, “Accelerat­
ing genetic programming by frequent subtree mining,” in

2008 Genetic Evol. Comput. Conf. New York, NY, USA:
ACM, July 2008, pp. 1203–1210.
[126] M. Iqbal, W. Browne, and M. Zhang, “Reusing
building blocks of extracted knowledge to solve complex,
large-scale boolean problems,” IEEE Trans. Evolut. Com-
put., vol. 18, no. 4, pp. 465–480, Aug. 2014.
[127] Y. Jin, “A comprehensive survey of f itness approxi­
mation in evolutionary computation,” Soft Comput., vol.
9, no. 1, pp. 3–12, Jan. 2005.
[128] Z. H. Zhou, N. V. Chawla, Y. Jin, and G. J. Wil­
liams, “Big data opportunities and challenges: Discus­
sions from data analytics perspectives [discussion forum],”
IEEE Computat. Intell. Mag., vol. 9, no. 4, pp. 62–74, Nov.
2014.
[129] Y. Zhai, Y.-S. Ong, and I. W. Tsang, “The emerg­
ing “big dimensionality,” IEEE Computat. Intell. Mag.,
vol. 9, no. 3, pp. 14–26, Aug. 2014.
[130] A. Brazma, H. Parkinson, U. Sarkans, M. Shojata­
lab, J. Vilo, N. Abeygunawardena, E. Holloway, M. Ka­
pushesky, P. Kemmeren, G. G. Lara, A. Oezcimen, P.
Rocca-Serra, and S.A. Sansone, “ArrayExpressła public
repository for microarray gene expression data at the
EBI,” Nucleic Acids Res., vol. 31, no. 1, pp. 68–71, Jan.
2003.
[131] R. Caruana, “Multitask learning,” Mach. Learn.,
vol. 28, no. 1, pp. 41–75, 1997.
[132] T. Evgeniou and M. Pontil, “Regularized multi-
task learning,” in Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. New York, NY, USA: ACM, 2004, pp. 109–117.
[133] T. Evgeniou, C. A. Micchelli, and M. Pontil,
“Learning multiple tasks with kernel methods,” J. Mach.
Learn. Res., vol. 6, no. 4, pp. 615–637, Apr. 2005.
[134] O. Chapelle, P. Shivaswamy, S. Vadrevu, K. Wein­
berger, Y. Zhang, and B. Tseng, “Multi-task learning for
boosting with application to web search ranking,” in Proc.
16th ACM SIGKDD Int. Conf. Knowledge Discovery and
Data Mining, pp. 1189–1198. 2010.
[135] P. Gong, J. Ye, and C. Zhang, “Robust multi-task
feature learning,” in Proc. 18th ACM SIGKDD Int. Conf.
Knowledge Discovery and Data Mining, 2012, pp. 895–903.
[136] M. Iqbal, “Improving the scalability of XCS-based
learning classif ier systems,” Ph.D. dissertation, Victoria
University of Wellington. 2014.
[137] A. Gupta, Y.-S. Ong, and L. Feng, “Multifacto­
rial evolution: Toward evolutionary multitasking,” IEEE
Trans. Evolut. Comput., vol. 20, no. 3, pp. 343–357, June
2016.
[138] A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay,
and C. A. C. Coello, “A survey of multiobjective evolu­
tionary algorithms for data mining: Part I,” IEEE Trans.
Evolut. Comput., vol. 18, no. 1, pp. 4–19, Feb. 2014.
[139] H. K. S. M. Asafuddoula and T. Ray, “Six-sigma
robust design optimization using a many-objective de­
composition-based evolutionary algorithm,” IEEE Trans.
Evolut. Comput., vol. 19, no. 4, pp. 490–507, Aug. 2015.
[140] J. G. Herrero, A. Berlanga, and J. M. M. Lpez, “Ef­
fective evolutionary algorithms for many-specif ications
attainment: Application to air traff ic control tracking
f ilters,” IEEE Trans. Evolut. Comput., vol. 13, no. 1, pp.
151–168, Feb. 2009.
[141] Y. Zheng, L. Jia, and H. Cao, “Multi-objective gene
expression programming for clustering,” Inf. Technol.
Control, vol. 41, no. 3, pp. 283–294, 2012.
[142] S. Jiang and S. Yang, “A steady-state and genera­
tional evolutionary algorithm for dynamic multiobjective
optimization,” IEEE Trans. Evolut. Comput., vol. 21, no.
1, pp. 65–82, Feb. 2017.
[143] S. Yang, “Evolutionary computation for dynamic
optimization problems,” in Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and
Evolutionary Computation, ser. GECCO Companion ’15.
New York, NY, USA: ACM, 2015, pp. 629–649.
[144] M. Mavrovouniotis, F. M. Mller, and S. Yang, “Ant
colony optimization with local search for dynamic travel­
ing salesman problems,” IEEE Trans. Cybern., pp. 1–14.
in pressing 2016.
[145] M. Liu, H. K. Singh, and T. Ray, “A memetic al­
gorithm with a new split scheme for solving dynamic ca­
pacitated arc routing problems,” in Proc. IEEE Congress on
Evolutionary Computation, July 2014, pp. 595–602.

�

