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The advent of the Social Web has 
provided people with new con-
tent-sharing services that allow 

them to create and share their own 
contents, ideas, and opinions, in a time- 
and cost-efficient way, with virtually 
millions of other people connected to 
the World Wide Web. This huge amount 
of information, however, is mainly 
unstructured (because it is specifically 
produced for human consumption) and 
hence not directly machine-processible. 
The automatic analysis of text involves 
a deep understanding of natural lan-
guage by machines, a reality from 
which we are still very far off.

Hitherto, online information retrieval, 
aggregation, and processing have mainly 
been based on algorithms relying on the 
textual representation of web pages. Such 
algorithms are very good at retrieving 
texts, splitting them into parts, checking 
the spelling and counting the number of 
words. But when it comes to interpreting 
sentences and extracting meaningful 
information, their capabilities are known 
to be very limited. Word-based algo-
rithms are limited by the fact that they 
can process only the information that 
they can ‘see’. As human text processors, 
we do not have such limitations as every 
word we see activates a cascade of seman-
tically related concepts, relevant episodes, 
and sensory experiences, all of which 
enable the completion of complex tasks 
(such as word-sense disambiguation, tex-

tual entailment, and semantic role label-
ing) in a quick and effortless way.

Computational models attempt to 
bridge such a cognitive gap by emulat-
ing the way the human brain processes 
natural language, e.g., by leveraging on 
semantic features that are not explicitly 
expressed in text. Computational mod-
els are useful both for scientific purposes 
(such as exploring the nature of linguis-
tic communication), as well as for prac-
tical purposes (such as enabling effective 
human-machine communication).

Traditional research disciplines do 
not have the tools to completely address 
the problem of how language compre-
hension and production work. Even if 
you combine all the approaches, a com-
prehensive theory would be too com-
plex to be studied using traditional 
methods. But we may be able to realize 
such complex theories as computer 
programs and then test them by 
observing how well they perform. By 
seeing where they fail, we can incre-
mentally improve them. Computational 
models may provide very specific pre-
dictions about human behavior that 
can then be explored by the psycholin-
guist. By continuing in this process, we 
may eventually acquire a deep under-
standing of how human language pro-
cessing occurs. To realize such a dream 
will take the combined efforts of for-
ward-thinking psycholinguists, neuro-
scientists, anthropologists, philosophers, 
and computer scientists.

In this light, this Special Issue 
focuses on the introduction, presenta-
tion, and discussion of novel semantic 

approaches to natural language process-
ing. The main motivation for the Spe-
cial Issue, in particular, is to go beyond 
a mere word-level analysis of text and 
propose new computational-intelli-
gence approaches that allow a more 
efficient passage from (unstructured) 
textual information to (structured) 
machine-processible data.

For this Special Issue, we received 
43 valid submissions, of which only 18 
were short-listed and eventually only 2 
accepted for publication. The first arti-
cle, “Frame-Based Detection of Opin-
ion Holders and Topics: A Model and a 
Tool”, by Aldo Gangemi, Valentina Pre-
sutti, and Diego Reforgiato, presents 
Sentilo, a model and a tool to perform 
holder and topic detection in opinion 
sentences. Sentilo implements an 
approach based on the neo-Davidso-
nian assumption that events/situations 
are the primary entities for contextual-
izing sentiment, which makes it able to 
distinguish holders, main topics, and 
sub-topics of an opinion. It uses a heu-
ristic graph-mining approach that relies 
on FRED, a machine reader for the 
Semantic Web leveraging natural-lan-
guage-processing and knowledge-rep-
resentation components jointly with 
cognitively-inspired frames.

The second article, “A Probabilistic 
Generative Model for Mining Cyber-
criminal Networks from Online Social 
Media”, by Raymond Lau, Yunqing Xia, 
and Yunming Ye, proposes the design, 
development, and evaluation of a novel 
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