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Evolutionary algor ithms (EAs) 
including other meta-heuristics 
such as particle swarm optimization 

and differential evolution have shown to 
be powerful for global optimization of a 
wide range of problems. In recent years, 
huge research effort has been devoted to 
solving complex engineering optimiza-
tion (CEO) problems. Among others, 
CEO problems are often subject to large 
amount of uncertainties, such as varying 
environmental conditions, system degen-
eration, or changing customer demand; 
they are highly constrained, where the 
constraints themselves can also change 
over time; computationally expensive 
and need to satisfy multiple criteria 
involving multiple disciplines; they usu-
ally consist of mutually dependent sub-
systems having a high number of 
possibly correlated decision variables. 
Furthermore, complex engineering opti-
mization in most cases is embedded into 
a larger design process involving several 
teams and tools working sequentially and 
in parallel on a variety of temporally and 
spatially decomposed sub-systems. As a 
result, a number of new research areas 
have emerged, including evolutionary 
optimization in dynamic and uncertain 
environments [1], [2], surrogate-assisted 
evolutionary optimization [3], multi- and 
many-objective optimization [4], [5], 
large-scale optimization [6], and inte-
grated control and optimization [7], [8], 
just to name a few. 

Despite the fact that the above topics 
are motivated from real-world challenges, 

not much of the research results in the 
above areas have been applied to solving 
real-world problems and most challenges 
in complex engineering optimization 
remain unsolved. Thus, concerns have 
been raised about the relevance of these 
lines of research to real-world problems. 
First, it remains unclear whether the 
challenges addressed in these areas are of 
practical significance in the real world. 
For example, in evolutionary dynamic 
optimization, most algorithms have been 
designed to closely track the changing 
optimum. This is ideal in principle if the 
designed algorithm is able to follow the 
moving optimum at any time instant. 
However, frequent changes of the opti-
mal design will not only be constrained 
by time for implementing the new 
designs, but will also incur very high cost, 
which makes it impractical in the real-
world. One recent idea to address this 
issue is to find optimal solutions that  
are robust over time so that optimal solu-
tions that change most slowly will be 
identified to minimize the need to 
change the design [9], which can be seen 
as a trade-off between optimum tracking 
and robustness. 

Second, a large number of test prob-
lems have been designed for benchmark-
ing the performance of different meta-
heuristics. Such test problems are meant to 
reflect the hardness of real-world problems 
and have widely been used in dynamic 
optimization, multi-objective optimiza-
tion, constrained optimization as well as in 
large-scale optimization. For publishing a 
paper, these test problems have become 
almost a standard for demonstrating the 
advantage of newly proposed algorithms 

over the state-of-the-art. However, little 
thought has been given to whether these 
popular suits of test problems are of signifi-
cance in the real-world, i.e. how much the 
test problems are relevant to real optimiza-
tion cases.

Third, it is no longer straightforward 
to come up with one single well-defined 
performance indicator to compare the 
performance of the developed algo-
rithms. This is true for multi-objective 
optimization, where the quality of the 
achieved solution set must be assessed 
using more than one performance indi-
cator, including accuracy and diversity. In 
addition, the quality of solutions can also 
be subjective, often depending on the 
preference of a human decision maker. 
The situation becomes worse in many-
objective optimization, where the num-
ber of objectives considered is often very 
high. Obviously, comparing an extremely 
small set of solutions in a huge space 
makes little sense and can even become 
misleading without a clear preference. 
Even the seemingly straightforward visu-
alization of the results of a many objec-
tive optimization process can be very 
awkward due to the high dimensionality 
of the objective space.

To address the above-mentioned con-
cerns, the first question one might raise is: 
What makes a CEO problem really diffi-
cult to solve? It is not straightforward to 
provide a simple answer to this question, 
as it is inherently problem dependent. In 
the following, we attempt to discuss a few 
points, which—we hope—can shed 
some light on the question. 

If one has had experience in solving 
real-world CEO problems, one will be 
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aware that much effort needs to be 
expended in solving a number of issues 
even before the actual optimization can 
be conducted. The first issue is the prob-
lem formulation, including definition of 
the objectives, constraints and the repre-
sentation, which defines the decision 
variables. Difficulties may arise from the 
fact that many CEO problems consist of 
a number of sub-systems or sub-pro-
cesses that are inter-dependent, and opti-
mization of the individual sub-systems 
separately may not lead to a globally 
optimal solution. At the same time, the 
representation of the complete problem 
at once is often prohibited by the very 
high dimensionality. Problems from 
aerodynamic shape optimization are 
good examples, where a holistic repre-
sentation of e.g. a racing car would easily 
consist of thousands of decision variables. 
Therefore, representations have to be 
defined which are inherently incomplete 
covering only part of the design space. 
Methods to cope with this deficiency are 
required, e.g. by choosing an optimal 
spatio-temporal decomposition of the 
problem or by adaptively changing the 
representation during the search process 
focusing on those design areas which are 
highly sensitive. 

In addition, CEO problems may not 
be easily described by explicit mathe-
matical models and are subject to a large 
amount of uncertainty. Understanding 
and properly formulating an optimiza-
tion problem is itself part of the overall 
problem-solving process and it typically 
requires several iterations between the 
optimization expert and the application 
engineer often also involving a simula-
tion specialist working on the particular 
problem. Many simulation methods are 
iterative approaches (e.g. CFD or FEM) 
with a residual error and a problem-
dependent setup (mesh type and size) 
that strongly interacts with the optimi-
zation methodology. Another typical 
class of CEO problems are plant-wide 
product process optimization [7], e.g., 
optimization of the global operation of 
mineral processing, which is composed 
of multiple coupled processes such as 
ore crushing, grinding and regrinding, 
and selection. No exact mathematical 

models are available to describe such 
processes and several objectives includ-
ing product quality, energy efficiency 
and productivity need to be satisfied. 
One particularly interesting issue in such 
process optimization problems is that 
both optimization and control are 
involved. An integrated control and 
optimization strategy may not only lead 
to global optimization, but may also 
offer a new approach to deal with 
uncertainties that optimally balance 
dynamic optimization and robustness. 

Another example is aircraft design, 
where various parts of an aircraft, e.g., 
fuselage, wing and tail must be designed 
in an integrated and holistic way to 
ensure that each part is designed for the 
optimization of the whole aircraft with 
respect to multiple objectives including 
energy efficiency, emission reduction 
and safe operations. To deal with the 
optimization of such CEO problems, a 
systems engineering perspective, i.e. a 
holistic problem view must be taken as 
suggested in [7], [10]. 

Similar challenges can be identified 
for the optimization of passenger cars, 
where not just the optimization criteria 
from several engineering disciplines 
such as structural safety (crash), aerody-
namics and thermodynamics have to be 
integrated, but also issues of aesthetic 
design, cost efficient manufacturing, and 
product disposal (recycling) have to be 
taken into account. The optimization 
framework basically embraces and inter-
relates all segments in the product life 
cycle management process that is the 
backbone of most complex engineering 
problems. In a sense, the optimiza-
tion  framework itself is hierarchically 
organized consisting of many sub opti-
mization problems that are allowed to 
operate on different time scales from 
minutes to months and that need to 
interact with each other and with the 
respective decision makers during the 
complete development, procurement, 
manufacturing and service processes. In 
real-world challenges tuning the algo-
rithm to be embeddable into such a com-
plex framework is often more relevant 
than providing optimization results that 
are marginally better on a limited test 

suite the state-of-the-art methods. This 
shall not belittle the efforts that have 
been taken and are taking to improve 
numerical and combinatorial optimiza-
tion methods, but shall emphasize that 
often the needs in a practical CEO chal-
lenge are different. At the same time, 
evolutionary algorithms (EAs) including 
other meta-heuristics are very promising 
candidates and approaches for fitting 
into complex design frameworks, 
because of their inherent robustness, 
flexibility and adaptability. 

Optimization algorithms developed 
for solving CEO problems must be scal-
able to the number of decision variables 
as well as to the number of objectives 
and be able to deal with uncertainties, 
by tracking the optimum or finding 
robust optimal solutions or by identify-
ing optimal (acceptable) solutions that 
are robust over time when frequent 
change of solution is prohibitive. Whilst 
algorithms proposed for solving large-
scale and many-objective optimization 
tasks are very helpful, it is equally desir-
able if the optimization algorithm is able 
to identify a small number (two to three) 
of the most critical objectives. To this 
end, preference-based interactive search 
may be more tractable than an unin-
formed search aiming to find all Pareto-
optimal solutions, if the number of 
objectives cannot be reduced. This is one 
example where engineering data min-
ing, knowledge acquisition, see e.g. [13], 
and visualization techniques become 
more and more important to guide the 
interactive search process, to formulate 
the initial problem or to identify the 
most appropriate problem representa-
tion, which is directly related to reduc-
ing the number of decision variables. 

Here, we naturally come to another 
important question that may arise in 
dealing with CEO problems, i.e., how to 
make sure that a developed optimization 
algorithm is able to gain problem-spe-
cific knowledge during optimization so 
that the search is more efficient, adapt-
able and well prepared for change. To this 
end, hyper-heuristics [11] that systemati-
cally integrate optimization and learning 
techniques can be promising approaches. 
Incorporation of learning techniques to 
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gain problem specific knowledge can be 
beneficial not only for capturing the 
problem structure to select the right 
search strategy, learning user preference 
in multi- and many-objective optimiza-
tion, but also in identifying the most rel-
evant search space and modeling of the 
unknown or partially known system for 
optimization and control [12]. Another 
strategy used in biology to cope with 
uncertain environments is to be prepared 
for changes. To this end, an optimization 
algorithm should be evolvable, i.e., be 
able to find optimal solutions that can 
easily adapt to a new environment. 
Methods for finding robust (robust over 
time) optimal solutions in changing 
environments [8] can be seen as a spe-
cific example. 

Figure 1 summarizes the main chal-
lenges and requirements in dealing with 
CEO problems.

This special issue aims to promote 
the application of EAs and other meta-
heuristics to solving real-world complex 
engineering optimization problems. In 
response to the Call for Papers, nine 
papers have been submitted. After a stan-
dard peer-review process, four papers 

have been selected to include in the spe-
cial issue. These four papers represent 
recent advances in evolutionary optimi-
zation of a wide range of real-world 
problems, including optimization of 
multi-UAV (unmanned aerial vehicles) 
systems for adaptive 3D formation con-
figuration, multi-objective optimization 
of wall-following mobile robots, self-
organization of internet of things, and 
discovering low-energy transition states 
of small, non-cyclic molecules. These 
results illustrate, to various degrees, the 
challenges that need to be addressed in 
solving complex optimization problems.

In the paper “Hybrid particle swarm 
optimization and genetic algorithm for 
multi-UAV formation reconfiguration in 
3-D space” by Duan et al, a hybrid opti-
mization strategy combining a genetic 
algorithm (GA) and particle swarm opti-
mization (PSO) has been proposed in 
order to find an optimal control strategy 
for multi-UAV formation reconfigura-
tion problem in 3-D space. The problem 
is formulated as an optimization prob-
lem involving the minimization for a 
specified payoff function with state rela-
tive constraints. The proposed algorithm 

that takes advantage of the global search 
ability of GA and the fast convergence 
property of PSO has been shown to be 
able to solve the time-optimal control 
for single- and multi-formation recon-
figuration problems.

In the article “Multi-objective rule-
coded advanced continuous-ant-colony-
optimized fuzzy controller for robot 
wall-following control” by Hsu and Juang, 
both structure and parameters of a fuzzy 
controller are optimized using ant colony 
optimization (ACO). In this optimiza-
tion task, both discrete and continuous 
decision parameters need to be opti-
mized, requiring that the search algo-
rithm is able to handle the search of both 
types of decision variables. Meanwhile, 
multiple objectives, including maximiza-
tion of wall-following accuracy, minimi-
zation of the time for completing the 
wall-following task, maximization of the 
smoothness in changing the steering 
angles and the minimization of the num-
ber of fuzzy rules have been taken into 
account. No fuzzy rules need to be pre-
defined and all data for generating the 
rules are collected online. 

The Internet of Things (IoT) is a rep-
resentative new development in commu-
nication and networking technologies in 
the past decades, which is characterized 
by its large-scale heterogeneous network 
elements and large amount of uncer-
tainty in the sensed information in a 
dynamic, external environment it usually 
resides in. In the article “An intelligent 
self-organization scheme inspired from 
the endocrine regulation principle for 
the complex Internet of Things” by Ding 
et al, it is shown that an artificial endo-
crine system inspired by the human 
hormone system can provide solutions 
to the often seen challenges in solving 
real-world problems such as scalability, 
heterogeneity and complexity. By intro-
ducing the hormone mechanism with 
different purposes as the media for the 
information transmission and data shar-
ing among the nodes in the IoT, the 
nodes can collaborate with each other 
and work in a cooperative way.

Memetic algorithms are one type of 
the “hyper-heuristics” that can acquire 
problem-specific knowledge during 
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optimization to enhance search efficiency. 
In the paper titled “Discovering unique, 
low-energy transition states of small, non-
cyclic molecules using evolutionary 
molecular memetic computing” by 
Ellabaan et al, a novel evolutionary 
Molecular Memetic Computing (MMC) 
methodology is presented that requires 
little domain knowledge. The essence of 
MMC lies in the tree-based representa-
tion of non-cyclic molecules and the 
covalent-bond-driven evolutionary oper-
ators in addition to the typical backbone 
of memetic algorithms—the population-
based global search method and the indi-
vidual-based life-time learning procedure. 
This work confirms that an efficient rep-
resentation of the optimization problem 
and automatic acquisition and reuse of 
problem knowledge can be critical for 
solving complex optimization problems.

The four papers in this special issue 
may just illustrate a subset of the chal-
lenges in solving real-world CEO prob-
lems. Nevertheless, we believe that all of 

the papers are interesting, informative 
and will help us to better understand the 
promises and challenges in evolutionary 
optimization of complex engineering 
problems. We are confident that in the 
near future, more sophisticated work on 
evolutionary optimization of CEO prob-
lems will be reported. We would like to 
thank Dr. Kay Chen Tan, the Editor-in-
Chief, for giving us the opportunity to 
guest-edit this special issue. Thanks also 
go to all authors who submitted their 
work to this special issue and reviewers 
for providing us constructive and insight-
ful reviews within a very tight schedule.

References
[1] Y. Jin and J. Branke, “Evolutionary optimization in 
uncertain environments—A survey,” IEEE Trans. Evol. 
Comput., vol. 9, no. 3, pp. 303–317, 2005.
[2] H.-G. Beyer and B. Sendhoff, “Robust optimiza-
tion—A comprehensive survey,” Comput. Methods Appl. 
Mech. Eng., vol. 196, no. 33, pp. 3190–3218, 2007.
[3] Y. Jin, “Surrogate-assisted evolutionary computation: 
Recent advances and future challenges,” Swarm Evol. 
Comput., vol. 1, no. 2, pp. 61–70, 2011.
[4] D. Deb, Multi-Objective Optimization Using Evolutionary 
Algorithms. New York: Wiley, 2009.

[5] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evo-
lutionary many-objective optimization: A short review,” 
in Proc. Congr. Evolutionary Computation, 2008, pp. 2424–
2431. 
[6] Z. Yang, K. Tang, and X. Yao, “Large scale evolution-
ary optimization using cooperative coevolution,” Inform. 
Sci., vol. 178, no. 15, pp. 2985–2999, 2008.
[7] T.-Y. Chai, “Challenges of optimal control for plant-
wide production processes in terms of control and opti-
mization theories,” Acta Autom. Sin., vol. 35, no. 6, pp. 
641–649, 2009.
[8] S. Engell and I. Harjunkoski, “Optimal operation: 
Scheduling, advanced control and their integration,” 
Comput. Chem. Eng., vol. 47, pp. 121–133, Dec. 2012.
[9] Y. Jin, K. Tang, X. Yu, B. Sendhoff, and X. Yao, 
“A framework for f inding robust optimal solutions over 
time,” Memetic Comput., vol. 5, no. 1, pp. 3–18, 2013.
[10] Y. Jin and B. Sendhoff, “A systems approach to evo-
lutionary multiobjective structural optimization and 
beyond,” IEEE Comput. Intell. Mag., vol. 4, no. 3, pp. 
62–76, 2009.
[11] E. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, 
and S. Schulenburg, “Hyper-heuristics: An emerg-
ing direction in modern search technology,” in Hand-
book of Metaheuristics. Norwell, MA: Kluwer, 2003, pp. 
457–474.
[12] J. Ding, T.-Y. Chai, H. Wang, and X. Chen, 
“Knowledge-based global operation of mineral process-
ing under uncertainty,” IEEE Trans. Ind. Informat., vol. 8, 
no. 4, pp. 849–859, 2012.
[13] L. Graening, S. Menzel, M. Hasenjäger, T. Bihrer, M. 
Olhofer, and B. Sendhoff, “Knowledge extraction from 
aerodynamic design data and its application to 3D turbine 
blade geometries,” J. Math. Model. Algorithms, vol. 7, no. 4, 
pp. 329–350, 2008.

�    

Y O U K N O W Y O U R S T U D E N T S N E E D I E E E I N F O R M A T I O N .

N O W T H E Y C A N H AV E I T. A N D Y O U C A N A F F O R D I T.

I E E E R E C O G N I Z E S T H E S P E C I A L N E E D S O F S M A L L E R C O L L E G E S ,

and wants students to have access to the information that will 

put them on the path to career success. Now, smaller colleges can

subscribe to the same IEEE collections that large universities

receive, but at a lower price, based on your full-time enrollment

and degree programs.

Find out more–visit www.ieee.org/learning


