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Abstract— Moving Target Defense and Cyber Deception
emerged in recent years as two key proactive cyber defense
approaches, contrasting with the static nature of the traditional
reactive cyber defense. The key insight behind these approaches is
to impose an asymmetric disadvantage for the attacker by using
deception and randomization techniques to create a dynamic
attack surface. Moving Target Defense (MTD) typically relies on
system randomization and diversification, while Cyber Deception
is based on decoy nodes and fake systems to deceive attackers.
However, current Moving Target Defense techniques are complex
to manage and can introduce high overheads, while Cyber Decep-
tion nodes are easily recognized and avoided by adversaries. This
paper presents DOLOS, a novel architecture that unifies Cyber
Deception and Moving Target Defense approaches. DOLOS is
motivated by the insight that deceptive techniques are much
more powerful when integrated into production systems rather
than deployed alongside them. DOLOS combines typical Moving
Target Defense techniques, such as randomization, diversity, and
redundancy, with cyber deception and seamlessly integrates them
into production systems through multiple layers of isolation.
We extensively evaluate DOLOS against a wide range of attackers,
ranging from automated malware to professional penetration
testers, and show that DOLOS is effective in slowing down attacks
and protecting the integrity of production systems. We also
provide valuable insights and considerations for the future
development of MTD techniques based on our findings.

Index Terms— Moving target defense, active defense, cyber
deception, intrusion detection.

I. INTRODUCTION

TRADITIONAL cyber defense techniques are typically
based on a detection-reaction paradigm where vari-

ous mechanisms are deployed to identify early signs of
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intrusion. Upon detection, intruders are generally blocked,
and relevant alerts are forwarded to the Computer Security
Incident Response Team (CSIRT) for remediation. This reac-
tive approach to cybersecurity has considerably evolved over
the past decades, and the core concept of detection-reaction
is embedded in the large majority of cyber defense tools
available today. However, reactive approaches create a disad-
vantage for defenders because of the asymmetrical relationship
between attackers and defenders. Indeed, while reactive cyber
defenses are static and come from fixed procedures, they must
be effective even against novel and unfamiliar adversaries
using constantly changing attack methods and exploiting new
vulnerabilities.

Moving Target Defense (MTD) [1] (also known as Active
Defense) and Cyber Deception [2] emerged in recent years
as proactive cyber defense techniques aimed at protecting
computer systems from intrusion. The key concept behind
these approaches is to impose an asymmetric disadvantage
for the attacker by exploiting randomization and deception
techniques, creating a dynamic attack surface that is hard for
the attacker to identify and exploit [3], [4], [5], [6].

MTD-based techniques are typically based on randomiza-
tion, diversification, and redundancy and aim at changing
system configuration unpredictably to hamper reconnaissance
and exploitation attempts [7], [8], [9], [10]. Cyber Deception
techniques generally rely on mock-ups of real systems and
services deployed on separate, fake nodes in the network with
the goal of misleading attackers and attracting them away from
sensitive targets [11], [12], [13].

However, these approaches suffer several limitations.
MTD approaches, particularly randomization-based ones, can
impose large overheads on the system they are deployed
on, are complex to implement, and risk affecting legitimate
services [3]. Cyber Deception techniques do not hinder legit-
imate services and pose no overhead on production systems,
as they are typically deployed on separate nodes or machines.
However, it has been shown that expert adversaries can easily
recognize and bypass them to focus on the actual production
systems [14], [15].

This paper presents DOLOS, a new architecture to unify
Moving Target Defense and Cyber Deception. DOLOS is
designed to seamlessly integrate into production systems to
provide deception and MTD capabilities through the orchestra-
tion of fake services and randomization of the attack surface.
Unlike typical MTD, DOLOS does not randomize real services:
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only deceptive services and system properties are manipulated.
This approach allows DOLOS to reduce overhead and man-
agement complexity compared to previous MTD techniques.
On the other hand, DOLOS integrates directly in production
systems through multiple layers of isolation, making any
bypass much harder compared to typical Cyber Deception
techniques. The concept behind DOLOS is that deceptive
techniques are much more powerful when integrated into
the production systems rather than deployed alongside them.
We show that embedding DOLOS in production systems can
lead attackers to completely disregard them, mistaking them
for fake machines. We evaluate DOLOS against different types
of attackers, ranging from automated malware to professional
penetration testers, and unequivocally show its effectiveness
in thwarting attacks.

In this paper, which builds and expands upon our previous
work of [6], we make the following new contributions:

• We present DOLOS, a novel architecture to unify Cyber
Deception and MTD. DOLOS integrates deception and
randomization capabilities directly into production sys-
tems, providing the advantages of both MTD and Cyber
Deception techniques, without the drawbacks.

• We provide what is, to the best of our knowledge,
the most thorough experimental evaluation of an MTD
approach to date. We study the effectiveness of DOLOS
against a wide range of different attackers, from auto-
mated malware to professional pentesters, both in the
real world and virtual networks.

• We show that DOLOS’s approach is highly effective
in slowing down attackers and protecting the integrity
of production systems, even against expert human
attackers.

• We make available the code to reproduce our results
at https://github.com/pagiux/dolos

In particular, we show that (1) DOLOS can effectively
trap automated malware for extended periods of time, hin-
dering reconnaissance and making remediation easier; (2)
average human attackers are unable to identify and avoid
DOLOS services, and are confused by DOLOS MTD-deception
tools; (3) expert human attackers consistently fail to compro-
mise machines protected by DOLOS; (4) DOLOS significantly
increases the time-to-compromise when deployed and greatly
decreases attack success rate.

II. THREAT MODEL

Figure 1 illustrates the threat model. We consider the setting
of a computer network, such as a company network, that
needs to be secured from external and internal attackers. A
DOLOS Agent (D in the figure) is deployed on each computer
in the network (called production systems from here on) and
provides them with advanced deception and MTD capabilities.
A single DOLOS Controller (C in the figure) manages all the
Agents in the network; the communication between Agent
and Controller is unicast. Each Agent is managed individ-
ually by the Controller and no synchronization among the
Agents or between messages from the different Agents is
required. The DOLOS Controller is considered trusted, and

Fig. 1. DOLOS threat model. We consider both internal adversaries which
reside inside the network that DOLOS is protecting, as well as external
adversaries that can only reach machines on the network perimeter. The
DOLOS controller is considered trusted.

the communication between the Controller and the Agent is
considered tamper-proof and secure, for instance by means of
TLS. The DOLOS Agent is not considered trusted: it can be
compromised by adversaries which can, for instance, use it to
send forged logs and alerts to the controller. Similar to other
MTD techniques, DOLOS is assumed to be part of a complete
set of cyber defense tools to provide defense in depth. DOLOS
is designed to slow down and thwart reconnaissance and lateral
movement activities from attackers, making it more difficult to
find and exploit vulnerable services and applications. DOLOS
is not designed to patch critical vulnerabilities and miscon-
figurations of system applications that an attacker can exploit
after obtaining access to the production system.

We consider two types of adversaries: (1) external attack-
ers and (2) internal attackers. External attackers are located
outside the perimeter of the network and can only initiate
connections toward production systems that are on the network
perimeter, exposed to the Internet. External attackers are
therefore limited in their interactions with production systems
and can only query exposed services remotely in an attempt to
find vulnerabilities and compromise them. Internal attackers
reside on a production system within the network and have
full control over it. Internal attackers can reach any production
system within the network. Both internal and external attackers
can scan the network to identify reachable production systems
and are allowed to interact with them without limitation.
We do not assume IDS or other traditional tools to prevent
or limit the activity of the attacker in any way. We assume
that legitimate users are well-behaved: they only interact with
the production systems through standard applications provided
to them with the specific configuration given by the manager
of the network, and do not attempt to perform suspicious
activities such as network scanning, enumeration or access
files on the system that do not belong to them. Therefore,
in our model legitimate users never interact with DOLOS
Agent’s services. Any interaction directed towards any service
provided by the DOLOS Agent is considered suspicious and
originated by a potential adversary.

III. DOLOS

This section presents DOLOS, our novel Moving Target
Defense architecture. The key idea behind DOLOS is that
deception is a much more powerful tool when embedded
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directly in the systems it should protect rather than deployed
alongside them. To this end, DOLOS is designed to seamlessly
integrate into production systems to provide advanced decep-
tion and annoyance capabilities by orchestrating fake services
and randomizing system resources. The goal of DOLOS is
two-fold: on the one hand, protecting the production systems
by disguising real services among multiple, real-looking fake
ones; on the other, slowing down attackers by randomizing
the attack surface through fake services and resources, thus
allowing ample time for the CSIRT to detect and respond to
the threat.

Unlike traditional MTD tools, which directly modify the real
services and the configuration of production systems through
randomization and diversification techniques [3], DOLOS only
alters fake services and system resources that are added by
a DOLOS Agent running on the production systems. The
real services running on the production system are never
randomized or reconfigured, therefore avoiding the manage-
ment complexities and overhead introduced by traditional
MTD techniques. DOLOS can alter fake services and system
resources without limitation since they have no impact on
the activity of legitimate users, and no additional mechanisms
are required to guarantee the consistency and availability of
these services. Furthermore, given the direct integration of
the fake services and resources into the production system,
DOLOS avoids the limitations of traditional cyber deception
techniques whereby adversaries can easily identify deceptive
systems such as honeypots and avoid them [14], [15]. Since
DOLOS fake services are deployed on the same production
systems as real services, an attacker will need to thoroughly
interact with all of them to assess whether they are real or fake
in order to identify potential vulnerabilities, as demonstrated
in our experimental evaluation. Finally, DOLOS is designed to
transparently integrate with and be deployed alongside other
cyber defense tools to provide defense in depth to the produc-
tion systems. Since DOLOS does not affect real services, it can
also be deployed alongside other traditional MTD techniques
that employ service randomization and diversification without
any conflict.

Overall, the benefits of integrating DOLOS into production
are the following:

Real-Time Protection: DOLOS’s MTD and deception
modules transparently provide all production systems in
the network with real-time, always-on defense capabilities.
As highlighted Section IV-C, DOLOS modules are effective in
slowing down and confusing attackers, as well as increasing
the amount of interaction with the target system required for
adversaries. These properties make it considerably easier to
detect intrusions and provide ample time and opportunity for
incident and response teams to intervene.

Operational Continuity: DOLOS integration ensures min-
imal disruption to production system operations. As shown
in Section IV-I, the production system services remain fully
functional and are not affected in any way by DOLOS, which
operates only on fake, deceptive services and resources.

Reduced Management Complexity: DOLOS modules deploy
and interact only with fake services and resources. This
reduces the complexity and overhead associated with

managing multiple MTD solutions that continuously shuf-
fle and randomize real services. Indeed, as we show in
Section IV-I and discuss in Section VI, traditional MTD tools
require complex ad-hoc solutions to ensure that real services
are not disrupted, increasing the burden on network manage-
ment and rendering network troubleshooting more difficult.

Adaptive Defense: the architecture of DOLOS is designed
to allow dynamic deployment and reconfiguration of the mod-
ules running in the production systems through the DOLOS
Agent (see Section III-A.1). This provides DOLOS with the
capability to dynamically adapt deployed modules based on
specific attack patterns or actions performed by the adversary
against DOLOS modules, making the system highly adaptable
to evolving threats. An initial implementation of dynamic
adaptation is currently implemented in DOLOS MTD Mod-
ules, as discussed in Section IV-H. However, a completely
autonomous control logic to detect attack patterns and abstract
adversarial goals into concrete actions is left for future work.

Cost-Effectiveness: the integration of DOLOS into the
production system is more cost-effective compared to the
deployment and management of multiple, separate honey-
devices in the network. Organizations can leverage existing
infrastructure and tools for the management of DOLOS, maxi-
mizing their investments while enhancing security capabilities.

The remainder of this section presents the architecture of
DOLOS in Section III-A, the MTD tools (called MTD modules
from here on) implemented in DOLOS in Section III-B, and
an overview of the sandboxing and hardening techniques in
Section III-C.

A. Architecture

The DOLOS system consists of two main components: the
DOLOS Agent and the DOLOS Controller. The DOLOS Agent
is the architectural component deployed on production systems
and effectively implements deceptive capabilities. The DOLOS
Controller provides command and control functionality for
the management of the Agent. In a real-world deployment,
an Agent is installed in each production system that needs
protection, with a single Controller managing all the agents in
the network. In what follows, we describe the DOLOS Agent
and Controller and their functionality in detail.

1) DOLOS Agent: The DOLOS Agent is implemented as a
multi-layered architecture based on a clear separation between
different component modules. Figure 2 presents an overview
of the architecture. The DOLOS Core component of the Agent
is a software module written in C that integrates a Python
interpreter to facilitate the prototyping and development of
MTD tools. The C component of the core efficiently imple-
ments a set of advanced functionalities typically required by
MTD modules and exposes an interface to access them. This
interface is exposed through the integrated Python interpreter
that is extended to interact with the C components of the
Core seamlessly. The extension of the interpreter was carefully
designed to accommodate the concurrent nature of the DOLOS
Core. In particular, the explicit management of the internal
reference count of Python objects to periodically clean up
memory and the fine-grained handling of the Global Interpreter
Lock (GIL) posed non-trivial technical challenges.
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Fig. 2. Architecture of the DOLOS Agent. MTD tools are implemented as
modules, executed by an interpreter in the DOLOS Core. The Agent is isolated
from the real production system through multiple layers of sandboxing.

The C component of the DOLOS Core implements stan-
dardized functions for logging, networking, filesystem, and
user-handling-related operations. In particular, the logging
component exposes an interface to standardize the generation,
storage, and management of logs across all the MTD modules,
as well as the functionalities to send the event logs to the
controller. The networking component provides methods to
seamlessly send and receive network connections concurrently,
relying on an implementation of a thread pool within the Core
so that MTD modules can be developed without consideration
for these complexities. The filesystem component provides a
system-agnostic abstraction layer that makes the integration
of MTD modules that operate on files easier. It provides
interfaces for file creation, integrity checking, and deployment
of monitors to detect file and directory modifications. Finally,
the user-handling component exposes common methods for
the creation and handling of user profiles, such as the setup
of user directory trees and of various profile properties.

We highlight that the DOLOS Core component can be easily
extended to integrate additional functionalities without any
particular limitation, except for the boundaries imposed by the
isolation of the DOLOS Agent and the underlying production
system. Furthermore, as a result of the integration of the
Python interpreter, a Python interface to these functionalities
can be easily provided to MTD module developers.

MTD modules are implemented as external components and
are executed by the DOLOS interpreter. This modular design of
the Agent allows for easy extensibility and avoids duplication
of functionality between different MTD modules. The Agent is
separated from the underlying production system by multiple
layers of isolation through container-based techniques and
sandboxing. The sandboxing layer is carefully designed to
limit the Agent’s access only to the necessary functionality of
the underlying system and to reduce the overhead for the pro-
duction system. As our experimental analysis in Section IV-I
shows, our design allows DOLOS to have negligible impact on
system performance. We provide more details on the isolation
techniques used in Section III-C and a detailed quantitative
analysis of the performance overhead in Section IV-I.

Fig. 3. Architecture of the DOLOS Controller.

The main advantages of the DOLOS Agent over previous
container-based solutions are its modularity, extensibility, and
efficiency. Typically, a basic container is used to run multiple
independent MTD tools simultaneously. The container-based
approach was used mainly for ease of deployment and to
provide some level of isolation from the underlying system [6].
On the other hand, the DOLOS Agent implements standard
functions in the Core component and exposes them to the
MTD modules through a unified interface. This modular
approach reduces overall resource utilization, as different
modules do not need to instantiate the same resource mul-
tiple times. The centralization of common functions in the
Core component also allows for fine-grained control over the
interactions between the Agent and the underlying system,
which occur only through the Core libraries. Finally, new MTD
modules can be integrated into the Agent in a much easier
manner than in typical container-based approaches.

2) DOLOS Controller: The architecture of the DOLOS
Controller is presented in Figure 3. The Controller is the key
component of DOLOS that provides management, monitoring,
and control functions. It comprises three main modules: Man-
agement, Information, and Monitor. The Management module
offers a remote management interface for the Controller and,
indirectly, for the Agents. All control actions such as installing
Agents, deploying new MTD modules, or restarting an Agent
are executed by this component and are carried out through
an interface layer implemented through the Ansible orches-
trator [16]. The Information module maintains status updates,
processed logs from MTD modules, and alerts generated by
the Agent. The storage of logs generated by MTD modules is
currently implemented in the Structured Threat Information
Expression (STIX) format [17], thus allowing easier pro-
cessing of security events and implementation of automated
decision-making. Finally, the Monitor module is a correlation
engine that regularly processes data in the Information module
and generates alerts on potential threats detected. In the present
version, response and remediation actions are not automated
by the Controller and must be undertaken by the Incident
Response Team. We plan to introduce autonomous learning
capabilities in the Controller in future work, as detailed in
Section V.

B. DOLOS MTD Modules

This section describes the current capabilities of DOLOS
and the MTD modules currently implemented by the
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Agent. We subdivide DOLOS MTD modules into three
categories: networking-related, filesystem-related, and user
account-related.

1) Networking Modules: The Networking modules provide
a set of essential functionalities to spoof well-known services
and fake open ports. The main goal of these modules is to
make it hard for an adversary to find real services and to slow
down the reconnaissance phase of the attack significantly. Cur-
rently, DOLOS implements four networking MTD modules:

• Portspoof, a module that fakes the presence of arbitrary
services behind a set of selected open ports. It emulates
valid services by dynamically generating signatures to
respond to service probes.

• Honeyports, a module that attaches and listens on a set
of predefined ports, completing any incoming connection
requests. Any IP address that initiates and completes a
connection with Honeyports is added to a blocklist.

• Invisiport, a module that implements deceptive blocklist-
ing of incoming connections. It listens for probes on a set
of fake, open ports and adds the initiator to an internal
blocklist when a connection is detected. All connections
from blocklisted initiators are refused on all ports, except
for a second set of fake Invisiport services that will still
be reachable.

• Endlessh, a module that implements an SSH tarpit to
slow down bruteforce attacks. At each connection request,
before sending its SSH identification string, it slowly
sends a series of banners keeping the bruteforcing script
locked up for a long time.

• Artillery, a module that implements SSH bruteforce mon-
itoring. It analyzes login attempts on any SSH shells
it is configured to listen on, including potentially fake
DOLOS shells, and reports suspicious chains of failed
login attempts.

2) Filesystem Modules: The Filesystem modules imple-
ment file-based deceptive functionalities. The main goal of
these modules is to provide early detection of local access
breaches and the ability to terminate access to compromised
user accounts. Currently, DOLOS implements the following
filesystem MTD modules:

• Honeyfiles, a module that monitors file and directory
access in the production system. It attaches a listener
to a set of specified files and directories and monitors
whether unexpected actions are performed. It can also
apply different countermeasures, such as terminating the
offending process or locking out users.

• Cryptolocked, a module that deploys fake files in the
production system called trip files. It attaches a listener
to all deployed trip files and triggers an alert whenever
access is detected.

3) User Account Modules: The User Account modules
implement MTD functionality related to fake user accounts.
The main goal of these modules is to provide the attacker with
a believable environment to interact with in order to slow him
down. Currently, DOLOS implements one user account MTD
module:

• Honey Account, a module that deploys fake, realistic
user accounts in the system. Each account is initialized
with a semi-randomized directory structure and a set of
files. Moreover, a high-interaction faux shell is attached to
each honey account to provide realistic interactions with
adversaries. The honey accounts are accessible through a
regular SSH server.

C. DOLOS Hardening

Introducing additional services and open ports in production
systems, even when fake, inevitably increases the attack sur-
face of the systems. Potentially, an attacker could compromise
a DOLOS MTD module to obtain local access to the system
and escalate privileges to fully compromise the machine.
DOLOS employs a multi-layer sandbox architecture to limit
this possibility and reduces the privileges of the Agent to
those strictly necessary. The first layer of isolation used in
the DOLOS Agent is based on container technology [18].
DOLOS processes are isolated inside a container from normal
production system processes and cannot see nor interact with
them in any manner. DOLOS Agents also have their own
network stack, and interaction with the network interfaces of
the production system is allowed only through typical network
connections. This prevents the DOLOS Agent from sniffing
traffic directed to the production system. Beyond the isolation
provided by the container, DOLOS deploys additional tools to
limit the Agent’s access to the underlying system. Access to
the production system kernel is filtered through an allowlist,
authorizing execution only of specific system calls. The inter-
action between the Agent and the production system is further
limited through mandatory access control (MAC) [19]. DOLOS
uses strict MAC configuration policies that prevent the Agent
from accessing any object it does not strictly need. Finally,
DOLOS also uses fine-grained capabilities configuration to
limit container permissions only to those effectively required
by the system, which is mainly the use of raw sockets [20].
To use the DOLOS Agent as an entry point in the system,
an attacker would have to: (1) compromise a DOLOS MTD
module; (2) escalate privileges within the Agent’s container;
(3) escape the container through a vulnerability; (4) achieve
all this while being limited by DOLOS’s system call allowlist,
MAC and capability limitation system.

Finally, an attacker that can compromise a DOLOS Agent
but is unable to escape the isolation to the underlying system
can only use the Agent to communicate with the Controller.
However, this is inconsequential, as the Agent does not have
the ability to send any commands or carry out any actions
for the attacker. The attacker can either prevent local alerts
and log forwarding to the Controller or send fake logs/alerts.
Preventing log forwarding after compromising the Agent is
ineffective because the attacker has already interacted with the
MTD modules to gain access, and all relevant logs and alerts
have already been sent to the Controller. Meanwhile, sending
forged logs or alerts would serve no real purpose, as it may
only risk triggering an alert from the Controller to the CSIRT.
These alerts can be further validated by correlating data from
the DOLOS Agent with those from other traditional defense
systems in the network.
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Fig. 4. Experimental setup used in Setting (I) of the Automated Adversary
evaluation.

IV. EVALUATION

This section evaluates DOLOS across a wide range of
conditions and against four different types of adversaries:
automated malware, average human attackers, expert human
attackers, and professional human attackers. Finally, we study
the overhead introduced by the DOLOS framework on the
production systems.

A. Automated Adversary: Malware

This section evaluates the ability of DOLOS to slow down
automated attacks by malware. We design two different set-
tings to analyze malware interactions with our MTD tools: (I)
focusing on interactions at the filesystem level, representing
the case of malware running on a local machine in the network,
for instance, after a successful phishing campaign; and (II)
focusing on interactions at the network level, representing
the case of an external attacker trying to get a foothold in
the network. With these experiments, we aim to answer the
following research questions: (a) are file system MTD tools
practical to slow down automated malware? (b) are networking
MTD tools effective in thwarting and detecting malware
lateral movement? (c) can networking MTD tools slow down
reconnaissance and local access attempts by malware?

1) Experimental Setup - Setting (I): Figure 4 illustrates
the experimental setup. We deploy five Debian VMs on the
open Internet through the Google Cloud Platform Compute
Engine (GCP). One of these machines acts as a bastion host,
providing connectivity to the subnetwork and preventing direct
connections from the Internet to the remaining four private
hosts. On the bastion host, we deploy three separate docker
containers:

• DOLOS container: runs the Cryptolocked and Honeyfiles
modules to deploy trip-files throughout the filesystem
and to monitor file events in the /home, /data and /tmp
directories of the SSH users and Apache container.

• Apache container: runs an HTTP web server exposed
on port 80 comprised of a single CGI webpage. The
page allows users to interact with the underlying systems
and send commands to a bash shell vulnerable to the
Shellshock vulnerability [21].

• Ubuntu container: runs an SSH service on the default
port 22, exposing two accounts with extremely weak
username-password pairs.

On the four private hosts, we deploy DOLOS with Honey-
ports that expose fake services on well-known open ports to
detect any potential malware traffic generated from the bastion
host. This configuration of DOLOS allows us to evaluate both
the effectiveness of file-based deception against automated
malware and the usefulness of network-level MTD against
lateral movements by automated adversaries.

2) Results - Setting (I): We have deployed our virtual
network on the open Internet for a period of 30 days, over
which we analyzed all interactions with the containers in the
bastion host and private hosts. Over this period, the bastion
host was compromised within a few hours of deployment a
total of 14 times, with a maximum deployment-to-compromise
time of 27 hours. After each compromise, the bastion host was
manually terminated and redeployed. All security breaches
happened through the exploitation of the weak credentials on
the SSH service, while no successful attacks were detected on
the HTTP Web server.

Once local access to the bastion host was obtained, none of
the malware interacted with any trip file or performed any
operation in the directories monitored by DOLOS. Further-
more, no outbound connection to any of the private hosts was
detected, and in general, no outbound traffic to the internal
network was generated. In all breaches, the automated malware
installed cryptominers in the bastion host, which explains why
no interaction with the local file system nor private hosts was
detected by DOLOS. Since the GCP forbids crypto mining,
we shut down the bastion host and restored it soon after each
security breach. This can also explain the lack of interaction
registered with the malware. It is possible that, given more
time, the malware would have attempted to spread toward
other hosts in the network to increase the mining capacity.

3) Experimental Setup - Setting (II): The experimental
setup for setting (II) consists of a single VM where we deploy
DOLOS equipped with two tools: Endlessh and Honeyports.
Endlessh is configured to run on the standard port 22 in “start”
mode, while we configure Honeyports to simulate several open
services on well-known ports: FTP on 21, DNS on 53, HTTP
server on 80, IMAP on 143 and MySQL on 3306. The VM is
deployed on the GCP and directly accessible on the Internet.

4) Results - Setting (II): We have deployed the VM for a
total of 430 hours, distributed over a period of one month.
In total, five instances of the VM were deployed. Over this
period, Honeyports detected a large number of incoming
connections (port scans) evenly distributed among the different
deployed services. More rarely, complete Nmap fingerprinting
connections were detected as well — also evenly distributed.
Interestingly, the most significant portion of incoming connec-
tions did not target the Honeyports services, but concentrated
on the ssh port: 1758 connections were detected by Endlessh
over the 430 hours, with duration ranging from a few seconds
to over 9 hours. This indicates a strong preference by the mal-
ware to target interactive services that can provide immediate
access to the system, possibly because credential bruteforcing
is an easily-automated process. Figure 5 shows the CDF of
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TABLE I
FILESYSTEM-LEVEL ACTIVITY DETECTED THROUGH LOG ANALYSIS AFTER COMPROMISE OF BASTION HOST

the inbound ssh connection duration registered during the
evaluation. As we can see, most malware connections last for
less than 100s, with only a few long-lasting connections that
skew the average. Most likely, the short-duration connections
result from scanning/enumeration probes that give up after
a short time, while longer-lasting ones correspond to real
connections to attempt credentials bruteforcing.

B. Lessons Learned: Automated Adversary

1) Lessons Learned - Setting (I): While it is unfortunate that
only cryptominers interacted with our systems in the 30 days
deployment window, the results of this experiment provide
some interesting insights. Concerning research question (a),
we can say that DOLOS’s file-level MTD modules are not
helpful against cryptominers. This is unsurprising, as the only
goal of this type of malware is to obtain as much compu-
tational power as possible to mine cryptocurrency. Indeed,
all cryptominers in our experiments only downloaded scripts
in the home directory, which is not considered suspicious
activity. The answer to research question (b) is also negative,
as cryptominers do not appear to attempt any lateral movement
once they obtain access to a machine. This result is somewhat
surprising, as one would expect malware to try to infect as
many devices as possible to further increase the available
computational power. However, as we stated before, this
result could be influenced by the short window of time the
malware had to propagate to new machines before the bastion
host was reset. Finally, our analysis of the filesystem-level
activity performed by the cryptominers provides interesting
hints on what new active defense tools can be developed
against this type of malware. Table I details the activity
carried out by the different cryptominers obtained through
log analysis. Most of the activity carried out by the malware
relates to downloading malicious scripts or unpacking malware
in the /home and /tmp directories. Furthermore, at least one
botnet exploits known services and cronjobs to ensure that
the malware is running at all times. These interactions are
challenging to deal with since introducing filesystem-level
tools that detect the creation/modification of files in the /home
and /tmp directories could hinder regular use of the system.
However, almost all the malware detected also downloads
additional scripts/bytecode beside the cryptominer to perform
further actions. An interesting direction to deal with this kind

Fig. 5. Cumulative Distribution Function (CDF) of Endlessh connections
duration for the Setting (II) of the Automated Adversary evaluation.

of malware is to analyze the behavior these scripts enable and
target these new actions with specific new deception MTB
modules. Due to the terms of use of the GCP, we could
not analyze the secondary behavior of these malware, as the
bastion VM was terminated as soon as we detected crypto
activity. The detailed analysis of the secondary behaviors of
crypto miners and possible MTD countermeasures are left as
future work.

2) Lessons Learned - Setting (II): The results of this
experiment show that DOLOS’s networking MTD modules are
highly effective in hindering malware during the reconnais-
sance phase, forcing it to waste time and preventing it from
being able to quickly probe all available services. Furthermore,
the large amount of network noise generated makes it much
easier to detect automated exploit attempts. The results of the
experiments also suggest that malware often exploits easily
automatable vulnerabilities, such as weak credentials. By using
fake interactive services, such as Endlessh, to trap the malware
in endless connection loops, real services can be protected
from attacks. Therefore, our experimental results suggest a
positive answer to the research question (c).

C. Average Human Attacker

This section evaluates the effectiveness of DOLOS against
average human attackers. For these experiments, we enrolled
a team of students from the final year of our computer
science degree and asked them to attack a VM protected
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by DOLOS. The attackers aim to obtain local access to
the VM and perform privilege escalation to steal sensitive
documents. Similarly to our previous experiment, we design
this evaluation to analyze the effectiveness of different DOLOS
MTD modules in deceiving and hindering knowledgeable
adversaries. This experiment aims at providing a qualitative
evaluation of DOLOS and answering three research questions:
(d) how effective are DOLOS’s networking MTD modules
against human adversaries? (e) Can networking MTD tools
effectively slow down and confuse human attackers, providing
time for incident response teams to act? (f) Are filesystem
MTD tools practical against privilege escalation and data
stealing?

1) Experimental Setup: The experimental setup consists in
one VM where we deploy real, vulnerable services as well as
DOLOS services. Attackers can interact with the VM remotely
through the network. The detailed configuration of the VM is
as follows:

a) Real services:

• Apache HTTP server on port 80. The server has a single
webpage using CGI to handle user requests. The page
shows a website under construction that internally calls
a bash script to retrieve connection-related information
to display. The bash version has been downgraded to be
vulnerable to the Shellshock attack. The webserver runs
under the default “www-data” user.

• SSH service on port 2000. This service is vulnerable to
bruteforce attacks on two different user accounts using
well-known weak passwords: “test” with password “test”;
“user” with password “password123”. These users do not
have root privileges.

b) DOLOS services:

• Portspoof. Provides several fake services to slow down
reconnaissance and make it harder to identify real ser-
vices.

• Invisiport. Setup to trigger upon interaction with ports
53, 443, 445, corresponding to DNS service, HTTPS
server, and Microsoft-ds (SMB - Server Message Block
protocol).

• Endlessh. Provides fake ssh tarpits on ports 22, 2001, and
2222.

• Honeyfile. Configured to log interactions with a set of
directories that could be of interest to an attacker.

• Honeyfile. Configured to kill the PID and lock the user
that accesses a set of directories hidden in the /home and
/data directories.

• Cryptolocked. Configured to kill the PID and lock
the user interacting with any trip file deployed in the
machine’s filesystem.

The pentesting activity was carried out in four separate
sessions for a total of approximately 12 hours. The participants
were not told about the presence of DOLOS on the VM.

2) Results: During the initial phase of the attack, the
pentesters carried out a port scan on the VM, detecting
multiple open services. Initially, the pentesters focused mainly
on port 445, the Server Message Block protocol, looking for
misconfigurations that could potentially allow access to files

or command execution. The pentesters also probed the service
to enumerate potential system users. In reality, port 445 is a
spoofed service provided by the Invisiport module, which auto-
matically blocklisted the IP address of the pentesters, making
all services unreachable except for a small set of fake services
provided by the module itself. After further interaction, the
pentesters noticed the inconsistencies caused by Invisiport
and reset their session to restart the vulnerability assessment
from scratch. In this second session, the pentesters focused
mainly on the fake Samba and HTTPS services, primarily
looking for ways to enumerate users and well-known web
application vulnerabilities without success. During the third
session, the pentesters switched focus to interactive services,
particularly SSH. All four SSH services, one real and three
fake SSH tarpits, saw considerable volumes of connections in
this session. The fake SSH tarpit on port 22 absorbed the most
significant number of connections, shifting the attention of the
pentesters away from the real SSH service. Over the session,
seven separate connections were directed to port 22, with
an average duration of 30 seconds and a maximum duration
of 115 seconds. Most of these were short-lived bruteforce
attempts on the tarpit, which resulted in considerable wasted
time. A small number of connections were also directed to
the real SSH service and the other two SSH tarpits. However,
no successful bruteforce attempt was registered.

In the fourth and final session of the test, we gave the
pentesters local access to the machine by directing them to
the real SSH service and suggesting bruteforcing with a list
of well-known usernames/passwords. After obtaining local
access, the pentesters began analyzing the filesystem looking
for potentially valuable files and ways to escalate privileges.
In their activity, the pentesters triggered some trip files, which
resulted in Cryptolocked terminating the connection. The pen-
testers also used different scripts and tools to aid their search
for potential vulnerabilities and valuable files, which resulted
in numerous alerts from the deployed filesystem-based active
defense tools. Finally, the pentesters identified a vulnerability
in a Vim container, which allowed them to spawn a root shell
and escalate privileges.

D. Lessons Learned: Average Human Attacker

From the logs gathered during the four pentesting sessions
and a descriptive report produced by the pentesters, we can
confidently say that the answer to research questions (d)
and (e) is affirmative: DOLOS networking MTD modules
are highly effective at confusing and slowing down average
human attackers. At the end of the third session, the testers
reported that “the conflicting information gathered by ini-
tial assessments made it hard to identify attack vectors and
plan exploitation strategies” and that “active services that
at times responded slowly and inconsistently complicated the
pentesting process”. Indeed, the Invisiport tool and SSH tarpits
proved extremely valuable from the point of view of deception
and annoyance, attracting many connections and absorbing a
considerable amount of the pentester’s time and attention.

Based on the logs and alerts generated from the filesystem-
level active defense tools, the answer to research question (f)
is also affirmative: DOLOS’s filesystem MTD modules are a
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TABLE II
VIRTUAL MACHINE CONFIGURATION FOR THE EXPERT HUMAN ATTACKER EVALUATION

valuable asset for the early detection of privilege escalation
attempts and data stealing. Trip files proved exceptionally
effective against scripts aimed at gathering intelligence on the
filesystem and system configuration-based vulnerabilities. The
scripts used by the pentesters to detect privilege escalation
vulnerabilities triggered multiple trip files and generated sev-
eral log alerts that, in an entire enterprise network, would have
immediately warned the CSIRT of the attack.

Concluding, this evaluation shows that the coordination of
multiple active defense tools by DOLOS provides valuable
defense in depth against average attackers. Moreover, it can
significantly increase the time required for an attack thus
amplifying the response time available to cybersecurity teams.

E. Expert Human Attacker

This section studies the effectiveness of DOLOS against
expert human attackers. We enrolled 31 final-year students
with a solid background in systems security from our Master’s
degree program in Cybersecurity, and designed a multi-layer
evaluation of our system. The goal of the attackers is to
complete all layers of the experiment by compromising at
least one VM in each layer and obtaining root privileges. The
attackers had knowledge of the details of DOLOS, but were not
explicitly told of its presence on the VMs. We designed this
evaluation to assess the effectiveness of DOLOS as a deterrent
and measure how much it can slow down attackers. To this
end, layers one and three of the experiment are designed to
be a one-to-one comparison between an attack on machines
without DOLOS and the same machines with DOLOS. Layer
two assesses the ability of DOLOS to discourage attacks
on systems by comparing a DOLOS-protected VM to the
same VM without DOLOS-protection. This evaluation aims at
answering two research questions: (g) is DOLOS an effective
deterrent? How much less likely to be compromised is a
system running it? And (h) can DOLOS provide additional

Fig. 6. Experimental setup for the Expert Human Attacker evaluation.

time for incident response teams to react compared to systems
without it? If so, how much?

1) Experimental Setup: The experimental setup used is
illustrated in Figure 6. We use a three-layer design for this
experiment where the attacker must compromise a VM in one
layer before accessing the next one. Each layer comprises two
VMs. To unequivocally identify the VMs, we use the notation
VMx.y, where x identifies which layer the VM belongs to,
and y identifies the VM number in that layer. For example,
the second VM of the third layer would be VM3.2. The
configuration of the VMs in each layer is presented in Table II.
In the first layer, no machine uses DOLOS, and both have rea-
sonably straightforward vulnerabilities. In layer two, VM2.2 is
protected by DOLOS and has an easy-to-exploit command
injection vulnerability on the webserver, similar to VM1.2.
VM2.1, on the other hand, is not protected by DOLOS but has
a more complex exploitation path which requires successful
PBX extension enumeration by exploiting the Asterisk VoIP
service and then using one of these extensions to exploit a
command injection vulnerability on a FreePBX web page [22].
Finally, the third layer is configured with the same vulnerabil-
ities as layer 1, but both machines are protected by DOLOS.
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TABLE III
EXPERT HUMAN ATTACKER EVALUATION RESULTS. SHOWS THE PERCENTAGE OF PENTESTERS WHO SUCCESSFULLY COMPROMISED EACH VM, THE

AVERAGE TIME TO COMPROMISE, AND THE OVERALL TRAFFIC GENERATED

2) Results: The results of our evaluation are presented
in Table III. Overall, the pentesting activity lasted for over
57 hours over a period of one month and generated more than
150GB of traffic. More than 90% of the attackers success-
fully compromised layer 1, with a significant preference for
VM1.2 (84.98% compromise rate). This VM was vulnerable
to a reasonably direct command injection vulnerability, which
could be found using the OWASP ZAP tool [23]. VM1.1 saw
considerably less interaction, almost half as much as VM1.2,
and generally was ignored in favor of the other VM. From
the penetration testing reports, no particular difficulties were
reported on the first layer. This layer of the evaluation was
designed to establish a baseline level of proficiency of the
attackers and a baseline performance to compare DOLOS’s
effectiveness.

The second layer was successfully compromised by a con-
siderably lower number of attackers (61%), and all of them
achieved it by exploiting VM2.1, which did not run DOLOS.
As discussed, the exploitation path required to compromise
this VM was much more complex than VM2.2, which had the
same vulnerable web application as VM1.2. The fact that 85%
of the attackers compromised VM1.2, but none of them could
exploit the same vulnerability in a VM with DOLOS (VM2.2)
unequivocally shows its effectiveness as a deterrent. We also
note that many attackers reported suspicion that VM2.2 was a
honeypot rather than a real system. These reports highlight an
important advantage of embedding deception into production
systems. This second layer demonstrates that the knowledge of
the possible presence of deceptive tools in a system does not
adversely impact the effectiveness of the deception. Indeed,
it becomes an advantage for the defenders, as the attacker is
led to exclude the easier VM in favor of the harder one, due
to the fear that it might be a honeypot designed to deceive
him. This behavior is consistent with recent findings in the
literature on the effects of cyber deception on the behavior of
attackers, which finds that “The ambiguity effect suggests that
ambiguity causes people to be unwilling to act” and that being
informed about the possible presence of deception can increase
the confusion in the attacker [11], lending further credibility
to our experimental results.

The final layer of the evaluation consists of just DOLOS-
protected systems. The VMs in the third layer were configured
precisely like the VMs of layer 1, with only port numbers
varying. From Table III, we see that only 6% of the attackers
successfully compromised this layer, compared to 90% in

layer 1. Moreover, the time-to-compromise for layer 3 was
over 48 hours, compared to just ∼ 1.5 hours for layer
1: a 32-fold increase. The amount of generated traffic also
dramatically increased between layer 1 and layer 3, more than
doubling from 21.22GB in layer 1 to 54.89GB in layer 3.
These results highlight the effectiveness of DOLOS in defend-
ing production systems and significantly slowing down attacks,
giving CSIRT ample time to take some actions. Furthermore,
the considerable increase in registered network traffic and
the large number of alerts generated by DOLOS (on average,
63 per attacker) eases the detection of intruders considerably.

F. Lessons Learned: Expert Human Attacker

From the results of this evaluation, we can draw several
conclusions. We can claim that the answer to the research
question (g) is affirmative. As shown by the layer 2 evaluation,
DOLOS is an effective deterrent, and machines protected by
our system are unlikely to be targets of attacks. None of the
expert attackers successfully compromised VM2.2, regardless
of the easier exploitation path. Instead, after thoroughly inter-
acting with it and generating over 26.82GB of traffic, they
decided to avoid it, considering it a potential honeypot.

The answer to the research question (h) is also affirmative.
The direct comparison between layers 1 and 3 shows that
DOLOS deception capabilities significantly increase system
defenses and that, even when successful, expert human attack-
ers require much more time and traffic to compromise the
systems. The same VM configuration (VM1.2 - VM3.2) was
much more challenging to exploit when DOLOS was deployed
because it decreased the success rate by 93% and increased
the time-to-compromise by over 30 times.

In conclusion, the evaluation results show that DOLOS is
an effective defense tool against expert human attackers with
considerable knowledge of system security.

G. Professional Penetration Tester

This section outlines the opinion that a professional penetra-
tion tester reported on DOLOS. We provided the pentester with
access to the architecture of DOLOS and the MTD modules
implemented and asked him how he would carry out an attack
on a production system armed with DOLOS.

The goal of this evaluation is to answer the following two
research questions: (i) can DOLOS be effective in slowing
down professional attackers? (j) Can DOLOS help CSIRT to
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expose stealthy attackers who try to compromise the systems
without being detected?

We report the main conclusions of the professional pen-
tester. He would begin the evaluation by obtaining information
on the operating system run by the host, for instance through
the ping command. Based on the time-to-live field in the
response packet, it is possible to identify the operating system
running on the machine, as DOLOS does not implement
any MTD countermeasure against this type of interaction.
Successively, the pentester would begin a system-wide scan to
reveal open ports and an enumeration of running services with
an automated tool. Since DOLOS networking MTD modules
are configured to block and prevent banner grabbing and
enumeration, the results from the scan would appear suspicious
to a professional. The pentester would then move to a more
curated, stealth approach, enumerating the running services
manually using a standard fixed request string. The majority
of currently implemented DOLOS networking modules provide
a low-interaction environment designed to fool automated
scanning tools. Through manual inspection, the professional
pentester would slowly identify DOLOS fake services and
converge on the set of real services offered by the production
system. During this process, the pentester’s IP address would
be blocklisted multiple times by the automated networking
modules of DOLOS, which would require a continuous IP
change to pursue the attack. In the real world, this can
be achieved by using multiple VMs from a cloud provider
but would increase the time and cost required for exploita-
tion. Eventually, the professional pentester would identify all
DOLOS fake services and obtain access to the production
system by exploiting the real vulnerable services.

H. Professional Penetration Tester: Lessons Learned

As is often the case with cybersecurity defenses, a pro-
fessional adversary dedicating enough time, resources and
effort would be able to identify DOLOS MTD modules and
eventually converge on the real production services. However,
the goal of DOLOS is not to stop an attacker completely but
rather to slow him down and expose his activity to CSIRT
for remediation. To identify the real production services,
a professional attacker would have to manually interact with
all available services and filter out DOLOS’s fake services one
at a time. This activity requires a considerable amount of time,
as it involves manual analysis of the responses from each
deployed networking module. Moreover, interactions with sev-
eral DOLOS networking modules would result in blocklisting
of the attacker’s IP address. This would further increase the
time required for the attack, forcing the adversary to switch
between multiple machines to continue the activity. Finally,
the interaction with DOLOS networking modules would raise
several alerts in the Controller which would relay them to
the CSIRT. Therefore, we can conclude that the answers to
research questions (i) and (j) are affirmative.

The professional pentester report provided us with important
insights in how to improve DOLOS and MTD techniques
further. An important point highlighted by the pentester is
that IP blocklisting makes it trivial to identify fake services.
Indeed, interactions with spoofed services are often used as

a trigger for IP blocklisting by DOLOS. While this approach
can be effective against automated tools and adversaries who
rely on similar tools, this measure is not sufficient against a
professional attacker, which can exploit this information to
filter DOLOS services. Furthermore, the professional pentester
could filter out MTD modules individually because DOLOS
does not dynamically mutate the attack surface over time and
the same port numbers stay assigned to the same fake services.
The traditional MTD technique of periodically randomizing
services would not work to address these issues. In fact,
it would make it easier for an attacker to identify real
services: since DOLOS would randomize only fake services,
the remaining fixed, unchanging ones would be the real ser-
vices. Allowing DOLOS also to randomize real services would
incur in all the drawbacks of traditional MTD randomization
techniques, as well as providing DOLOS with extended access
to the real production system, which we strive to avoid.

Countermeasures. These limitations have been addressed
and DOLOS improved by integrating a new dynamic deception
approach as described below. We can exploit the fake services
exposed by DOLOS to identify suspicious IP addresses and
implement a transparent filter on the open ports associated
with real production services. Any IP address that interacts
with a DOLOS service is added to a suspicious list. Any
connection coming from an IP in the suspicious list towards a
real service is re-routed to a DOLOS-controlled port where a
similar fake service is exposed. From the adversary’s point
of view, the real service port is exposing a fake service.
However, any legitimate user who did not interact with DOLOS
modules will be connected to the real production service
without disruption. This dynamic deception approach can be
further extended to introduce full, system-wide randomization
of services without affecting any real service for legitimate
users. After detection of suspicious activity from an IP address,
DOLOS can use transparent filtering to make real services
unreachable for the attacker and at the same time re-randomize
all running DOLOS fake services. From the point of view of the
adversary, this would effectively result in all the services and
ports on the machine changing at the same time. However,
it would not affect legitimate users, and they would still
be able to access real services without interruption. These
functionalities do not require implementing new modules and
are already achievable with the current DOLOS architecture.
The Management module of the DOLOS Controller already
implements a command to re-initialize all MTD modules
deployed by an Agent, which can be used to provide re-
randomization of the fake services. The implementation of the
port filtering can be achieved by installing a simple rule in
any programmable router or IDS in the network. The DOLOS
Controller instructs the relevant network device to change the
destination port of any packet matching a specific triplet <

source IP, dest. IP, dest. port>, where source IP is an address
in the suspicious list, and destination IP and port identify the
socket of the real services to protect.

Finally, we can further strengthen the resiliency of the
suspicious list by implementing enumeration fingerprinting
techniques in DOLOS [24], [25]. The professional pentester
report highlights how advanced adversaries employ manual
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TABLE IV
OVERHEAD OF DOLOS UNDER DIFFERENT CONDITIONS

techniques for enumeration to be more stealthy and to analyze
the responses from the services better. Typically, an adversary
does this through the use of fixed query requests using tools
such as netcat. DOLOS can exploit this by creating a fingerprint
of all connection requests received by any of its networking
modules. This fingerprint can be later used to identify further
connection requests even if they come from the same adversary
using other IP addresses. We leave the implementation of the
transparent filter module based on enumeration fingerprinting
as future work.

I. Overhead

In the final section of our evaluation, we assess the impact
of DOLOS on system performance from the point of view
of CPU and memory usage overhead. The main findings in
Table IV show that the impact of DOLOS on both CPU and
RAM is negligible. When idle with only the core module
loaded, the overhead in the system is essentially zero. Loading
and deploying all DOLOS tools results in similar negligible
performance impact, with only ∼ 11MB of RAM used by
the system. We could detect any measurable CPU overhead
only when the system was actively under attack. When under
port scan with all modules deployed, we registered a 0.1%
increase in CPU load and a ∼ 41MB overhead in system
RAM usage. Similarly, with all modules deployed and a file-
scanning script running in the system, we barely registered a
0.1% increase in CPU usage and a 52MB increase in system
RAM usage. Finally, when under both port scan and filesystem
scanning, the CPU overhead reached a brief peek of 0.2%,
while the system RAM usage remained similar at +52MB.
By all measures, we can say that DOLOS adds negligible
overhead to the systems in which it is deployed.

V. DISCUSSION

This section discusses potential pitfalls of DOLOS and future
development directions toward a fully autonomous active
defense agent.

A. Increase in Attack Surface

The main potential pitfall of DOLOS is the increased attack
surface it provides to adversaries. A general rule of cyber-
security is if you don’t need something, then don’t have it.
This especially applies to open ports and exposed services.
If a service is not necessary to achieve the function of a
system, it should be removed, and its port should be closed

to reduce the attack surface for potential adversaries. The
DOLOS approach of embedding fake services in production
systems flips this concept on its head. While it is undeniable
that adding fake services can potentially introduce new attack
vectors in a system, we believe that our evaluation of DOLOS
shows the advantages outweigh the risks. The container-based
architecture of DOLOS and the multi-layer security features
described in Section III-C minimize the risk that compromise
of DOLOS services leads to privilege escalation and breach
of the container. Moreover, by setting up seccomp profiles,
capabilities, and AppArmor in a controlled manner, the con-
tainer’s access to the underlying system is restricted, reducing
the ability of an attacker to exploit DOLOS and compromise
the production system.

B. Towards an Autonomous Agent

Currently, the DOLOS Controller implements an interface
through which security teams can view and update the configu-
ration of DOLOS modules, as well as view logging information
and alerts. A promising future direction is to introduce a new
component in the Controller that can autonomously deploy
DOLOS modules, as well as initialize their configuration based
on the network environment and potential attackers. At the
most basic level, such component could be modeled as an
expert system with well-defined rules and conditions covering
the most common use cases and system settings. A good
starting point to design a system of this type would be
the MITRE Engage framework [26], which defines a set of
activities that can be performed in response to adversaries’
actions.

A more advanced, more flexible form of automation would
be the introduction of an intelligent component in the Con-
troller, able to make decisions based on the assessment of
the state of the deployment environment and the actions
taken by attackers. An interesting approach in this direc-
tion is deep reinforcement learning, which has been recently
applied to many complex problems from robotics [27] to
cybersecurity [28]. Deep reinforcement learning is an inter-
esting candidate for an intelligent controller since it excels
at learning and solving complex high-dimensional problems.
Controlling DOLOS’s module deployment and configuration
while considering the current state of the environment and
adversarial interactions is a problem with a very large state
space and numerous potential actions that can be applied. Deep
reinforcement learning [29] uses an approximator, typically a
deep neural network, to estimate the value function that is
typically based on a table of state-action pairs in traditional
reinforcement learning [30]. The ability of the neural network
approximator to learn a complex function mapping arbitrary
states to action/rewards appears to be a perfect fit for the
control problem of active defense tools. Some initial research
on applications of reinforcement learning to active defense
and cybersecurity tools configuration exists [31], [32], [33].
However, these works are restricted to limited automation of
specific tools, and no general solution to this problem exists to
our knowledge. We leave the study of these research questions
as future work.
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VI. RELATED WORKS

Researchers have proposed randomization and shuffling-
based defense techniques for several decades, ranging from the
first on n-version programming [34] to reconfigurable software
and networks [35]. However, this approach to cybersecurity
was formalized only recently under the umbrella of Moving
Target Defense [1]. Since then, many approaches have been
proposed in the literature at different levels of the system
stack, with several review papers covering the topic [36], [37].
In this section, we analyze relevant related works and provide
a comparison against DOLOS.

A. Hardware-Level MTD Techniques

In [38], the authors propose an MTD technique based on
instruction-set randomization at the CPU level. They create
process-specific randomized instruction sets based on a secret
key to defend against code-injection attacks. The idea is that an
attacker who does not know the randomization key will inject
code that is invalid for the specific randomized CPU, failing
the attack. The authors of [39] extend this approach to the
whole software stack to prevent the execution of unauthorized
binaries regardless of the attack vector. These approaches are
orthogonal to our proposal, which does not aim to defend
against this family of attacks.

B. Network-Level MTD Techniques

Several works propose applications of different flavors
of IP address randomization [7], [40], [41], [42]. Typi-
cally, this family of approaches periodically changes the IP
address of production systems in a randomized manner to
thwart adversarial reconnaissance. The authors of [42] exploit
Software-Defined Networking (SDN) to introduce an IP muta-
tion technique that is transparent to end hosts. They exploit the
global view provided by the SDN controller to keep track of
two different IP for each host in the network: the real IP and
an ephemeral “virtual IP” that changes at regular intervals.
In [7], the authors proposed an SDN-based IP multiplexing
technique to randomize the addresses of end hosts in a similar
fashion. Moreover, the authors of [43] propose a shuffling-
based MTD technique that realies on SDN to randomize the
network configuration of a host (mac/ip addresses, ports) based
on the likelihood of it being in an adversary’s attack path.
While promising, these proposals showcase the complications
introduced by traditional MTD techniques: in order to utilize
the defense, a network needs to use specific technologies
(SDN in this case) and implement complex IP translation
methods that complicate the maintenance of the network.
DOLOS avoids these complexities by introducing random-
ization only to fake services and resources, which greatly
simplifies maintainability. In any case, both these approaches
can be deployed alongside DOLOS transparently, as DOLOS
does not affect real services in any way. In [40], the authors
propose a similar IP mutation technique based only on routing
updates. The proposal uses similar virtual/real IP pairs to
randomly mutate the address of end hosts. At the network
edges, real IPs are translated to virtual, which are used to route
packets inside the network. The consistency of the routing is

achieved by regularly updating the routing tables within the
network with the current virtual IP for each host. Similarly
to other IP-randomization proposals, this approach introduces
high complexity in network management, with end hosts
constantly changing IP addresses. Moreover, it also introduces
additional overhead required for the convergence of routing
paths after virtual IP updates, which increases proportion-
ally to the size of the network and the average number of
branches at each router. Chowdhary et al [44] propose another
approach to counter DDoS attacks based on SDN, Snort IDS,
and Nash Folk Theorem to analyze the behavior of sus-
pected nodes. The paper [45] introduces an MTD framework
employing reinforcement learning to inspect network traffic
and a network shuffling MTD technique to defend against
detected threats. Similar to previous works, the proposal
employs SDN to implement transparent IP randomization.
These two approaches suffer the limitations mentioned above,
namely the reliance on non-standard network technologies and
increased network troubleshooting complexity. In [46] Mani
et al. analyze the resilience of address randomization-based
MTD techniques. They show that machine learning-based can
be employed to detect address randomization techniques and,
in some cases, even to predict future assigned addresses. The
analysis of the limitations of address-randomization techniques
further adds to the limitations of these approaches.

C. System-Level MTD Techniques

Another thread of MTD research focuses on system diver-
sification and redundancy. This family of works employs
multiple, diverse implementations of system components
designed to achieve the same end result in different manners.
In [47], the authors propose a theoretical model to fully
randomize the network stack of systems. From all possible
combinations of the different layers of the stack, a subset
of allowed combinations is defined. The proposed system
randomizes the layers periodically by choosing from this
set of allowed combinations. The authors of [48] propose a
system that changes components of a running program in a
randomized manner. The authors use multiple functionally-
equivalent implementations of different program components
and randomly chose variants at runtime. In [49], the authors
combine shuffling and diversity techniques and introduce a
multi-version web service architecture designed to maximize
system dependability. The paper [50] introduces a redundancy-
based MTD technique aimed at protecting webservers from
command injection attacks. It uses multiple replicas of differ-
ent software components of the webserver that are changed at
runtime. All these works are orthogonal to our proposal and
can be used in conjunction to DOLOS to offer additional pro-
tection to production systems. However, it is worth noting that
many of these techniques introduce considerable additional
complexity in the management of systems, as well as some-
times prohibitive overhead [3]. On the other hand, by limiting
the application of MTD techniques only to deceptive services
and system properties DOLOS provides strong security at low
complexity and overhead cost.
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D. Deception-Based Techniques
At a high level, deception-based techniques can be divided

into two categories: (1) system-level deceptive techniques
and (2) service-level deceptive techniques. System-level tech-
niques provide complete, fake systems aimed at attracting
the attacker’s focus and slowing down his progress. Service-
level techniques aim at altering the properties of existing
services in deceptive ways to confuse adversaries. System-
level techniques (1) are the most closely related to DOLOS,
since both are designed to limit changes to the production
services, while at the same time slowing down attackers.
Service-level techniques (2) are inherently orthogonal to our
proposal, as they require changes to the real production
services running on the systems, which is directly against one
of the key design principles of DOLOS. This section reviews
both categories of deception based techniques.

1) System-Level Deception Techniques: The authors of [51]
propose a decoy-based shuffling approach to protect IoT
devices. They exploit SDN to randomly perform network
topology shuffling, hiding real IoT devices among fake decoy
devices. In [52] the authors propose an adaptive cyber decep-
tion approach to predict the most likely attack path an
adversary will follow, and successively deploy decoy nodes
along the predicted path. Similarly to other deception-based
approaches, these proposals suffer from the limitation that
an adversary can typically detect decoy nodes with limited
effort, and simply avoid them. DOLOS avoids this drawback
by embedding deceptive services directly into the production
systems through the DOLOS Agent, forcing attackers to either
sift through numerous fake services to pinpoint the real ones,
or drop the system entirely and move to a different target.
Recently Qin et al. [13] provide a thorough evaluation on
hybrid defense strategies relying on honeypots, honeynets,
honeyfarms, honeytokens to provide cyberthreat intelligence
and protect against attacks. Specifically, Honeynets [53], [54]
consist of a virtual replica of a real-world production system
that lacks production activities and authorized services. This
deployment is primarily used for data collection, data which
are further used in the detection and mitigation pipeline.
Honeyfarms is a technique similar to honeynet used to simplify
the deception network management that allows large-scale
honeypot deployments. Similar to the above, these techniques
suffer from limitations that they can be easily detected by
the adversary due to the lack of production activities. Hon-
eytokens [55], [56] are another set of intrusion detection
mechanisms that consist of the deployment of bait files.
Honeytokens are similar to decoy files in working, which are
already implemented in DOLOS.

2) Service-Level Deception Techniques: In [57], the authors
propose a deception-based technique to defend systems against
attacks exploiting known vulnerabilities. The core idea is
that if a vulnerability is patched, an attacker exploiting it
will immediately know because the attack fails. The authors
propose that security patches should include a deceptive
component such that whenever an exploit against the patched
vulnerability is attempted, the attack is transparently redi-
rected to an unpatched decoy system, making the attacker
believe the exploit succeeded. This approach is orthogonal

to DOLOS, which was designed with the specific goal of
requiring no modification to the production systems, except
for the deployment of the DOLOS Agent. Furthermore, this
approach requires manual activity to securely redact sensi-
tive information before decoy generation. Nonetheless, the
approach proposed by the authors can be adopted in con-
junction with DOLOS to increase the deceptive capabilities
of the systems. Albanese et al [58] propose a graph-based
approach to cyber deception aimed at altering the view an
attacker has of a target system. The authors define a theoretical
approach and algorithmic solution to maximize the distance
between the attacker’s view of a system and the real state
of the system. The main limitation of this proposal is that it
requires modification to the real production systems and to
the network traffic generated, which goes against the design
principle of DOLOS of not interfering with the behavior
of real services in any way. In [59], the authors analyze
the effectiveness of decoy file-based defenses against cryp-
tographic ransomware. Similarly, Ganfure et al. [60] study a
similar decoy file-based defense called RTrap. Both these
approaches focus on how to generate reliable decoy files
that are hard to avoid by modern decoy-aware ransomware.
These approaches are essentially an advanced version of
traditional decoy files. DOLOS already provides modules
implementing decoy files, and RTrap’s advanced functional-
ities can be easily incorporated into these modules. In [61]
the authors propose a system-level approach to MTD to
defend against Stuxnet-like malware, by including MTD in
the control and sensing units of cyber-physical systems. The
authors show the effectiveness of this approach through sim-
ulations of multiple attacks. This proposal is orthogonal to
our approach, as DOLOS is not specifically designed to run
on resource-constrained cyber-physical systems. We plan to
study the applicability of DOLOS in these settings in future
work.

E. Autonomous Agents-Based Techniques

The family of works that are conceptually closest to DOLOS

is on autonomous cyber defense agents [62], [63], [64], [65].
Works in this family propose the use of agents based on arti-
ficial intelligence to reduce reliance on human cybersecurity
experts and define a high-level architecture for the agents.
These agents should be capable of autonomously planning and
executing complex cyber defense activities to slow down and
defeat automated malware. This family of works proposes only
a high-level approximation of the architecture of such agents,
and no implementation or detailed instantiation of the concept
is given. In [66] the authors propose an orchestration frame-
work, SODA, for cyber deception. SODA analyzes real-world
malware behavior in the form of WinAPIs and maps them
to MITRE ATT&CK techniques. A set of deception-based
techniques are then designed to deceive the specific threat
detected in the systems. SODA relies on traditional detection
agents to identify malware running on the system and builds
a profile of the malware based on WinAPIs calls. A subset
of the suggested deception techniques is then selected by the
user and applied through API hooking to deceive the malware.
SODA has several differences and limitations compared to
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DOLOS. The first, important difference is that SODA follows
a traditional reactive approach to cyber defense — it requires
an agent to detect the malware running —. Reactive measures
typically have poor effectiveness against quickly mutating
threats, as adversaries can evolve their strategies to avoid static
defenses. DOLOS employs proactive techniques that are always
active and don’t rely on detection to thwart attackers. Secondly,
SODA can provision systems only with limited deception
capabilities at the API level, while DOLOS can implement
essentially any MTD/deception technique. Moreover, SODA
implements deception capabilities as hooks in the underlying
system, which requires tight integration with the production
system. Third, SODA is limited in interacting only with
malware that is already running on the production system,
since it requires analysis of the WinAPIs calls performed by
the malware. This limitation heavily restricts its applicability
compared to DOLOS. Finally, SODA is designed against static
malware employing well-known attack patterns, and is not
designed to defend against human adversaries. In contrast,
DOLOS is very effective in thwarting and slowing down
even expert human attackers. In [67] the authors propose an
evolutionary approach to select the optimal MTD strategy
based on a Wright-Fisher process. The proposed approach
is designed to learn and describe the evolution trajectories
of the attacker’s and defender’s strategies. This proposal is
orthogonal to DOLOS, as it focuses on the optimal orchestra-
tion of MTD tools. Nonetheless, this related work provides
an interesting direction for future extensions of an intelligent
DOLOS Controller.

VII. CONCLUSION

This paper presented DOLOS, a novel architecture that
unifies cyber deception and moving target defense approaches.
DOLOS is motivated by the insight that deceptive techniques
are much more powerful when integrated into the produc-
tion systems rather than deployed alongside them. DOLOS
combines typical MTD techniques such as randomization,
diversity, and redundancy to deception, and brings all these
functionalities directly into the production systems through the
DOLOS Agent. We showed that DOLOS can seamlessly and
securely integrate into production systems through multiple
layers of isolation, making it much more effective compared
to typical deception techniques. Through an extensive and
thorough evaluation of DOLOS against several different types
of attackers, ranging from automated malware to professional
penetration testers, we conclude that DOLOS is highly effective
in slowing down attackers and protecting the integrity of
production systems.

Future work is needed to investigate the applicability of
autonomous agents to the DOLOS control logic for MTD mod-
ules deployment and orchestration. Furthermore, to provide
a more complete context for autonomous decision-making,
the Controller should correlate data coming from multiple
Agents in real time. These improvements require a thorough
comparison between synchronous and asynchronous commu-
nication paradigms with the controller, and an analysis of the
advantages and limitations of each approach.
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