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Polarized Image Translation From Nonpolarized
Cameras for Multimodal Face Anti-Spoofing
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Abstract— In face antispoofing, it is desirable to have mul-
timodal images to demonstrate liveness cues from various
perspectives. However, in most face recognition scenarios, only
a single modality, namely visible lighting (VIS) facial images
is available. This paper first investigates the possibility of
generating polarized (Polar) images from VIS cameras without
changing the existing recognition devices to improve the accuracy
and robustness of Presentation Attack Detection (PAD) in face
biometrics. A novel multimodal face antispoofing framework is
proposed based on the machine-learning relationship between
VIS and Polar images of genuine faces. Specifically, a dual-modal
central differential convolutional network (CDCN) is developed
to capture the inherent spoofing features between the VIS and
the generated Polar modalities. Quantitative and qualitative
experimental results show that our proposed framework not only
generates realistic Polar face images but also improves the state-
of-the-art face anti-spoofing results on the VIS modal database
(i.e. CASIA-SURF). Moreover, a polar face database, CASIA-
Polar, has been constructed and will be shared with the public
at http://biometrics.idealtest.org to inspire future applications
within the biometric anti-spoofing field.

Index Terms— Face antispoofing, image translation, polariza-
tion, multimodal.
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I. INTRODUCTION

WITH its noncontact, low cost, and convenient features,
face recognition is widely used in daily life in scenarios

such as mobile phone unlocking, face swipe payment, and
access control. However, existing face recognition systems
are susceptible to various spoofing attacks, such as print-
ing attacks, video playback, and 2D/3D masks, leading to
challenges in system security. Therefore, improvement of the
security of face recognition systems to safeguard user privacy
and enhance data security is a pressing issue.

Many face antispoofing (FAS) methods have been pro-
posed, with most approaches focusing on visible light (VIS)
images. Early methods have relied on handcrafted features to
distinguish between genuine faces and presentation attacks
according to texture [1], color [2], and image quality [3],
motion cues [4], vital signs [5], and other characteristics.
These approaches perform well in controlled environments;
however, their performance declines when the environment
changes or new attacks emerge. With the development of
deep learning, several convolutional neural network (CNN)-
based FAS methods have been proposed [6], [7], [8]. These
CNN-based methods significantly improve FAS performance
by extracting high-level semantic features with deep neural
networks. However, despite the usefulness of VIS cues in face
liveness detection studies, intrinsic and robust FAS features are
difficult to characterize by relying solely on the intensity and
RGB information in VIS images. As a result, VIS-based meth-
ods typically show poor generalizability when facing several
attacks and when image acquisition devices and illumination
conditions change.

Some recent work [9], [10], [11], [12] has explored the
complementary strengths of different modalities using NIR
reflections and the depth of the face structure as supervi-
sion to improve FAS performance. First, because genuine
faces and spoofing attacks react differently to changes in
illumination, reflectance differences are a reliable cue [9].
Second, structural facial depth differences between genuine
faces and spoofing attacks are important cues for identifying
2D spoofing attacks [10]. Although these new modal data
improve modeling capabilities by analyzing both 3D structures
and reflectance cues, depth labels can easily be deceived by
increasingly realistic 3D masks, while the infrared approach
requires an infrared imaging device with an infrared light
source to capture the infrared image. This not only increases
the cost but also makes the imaging process prone to overex-
posure and thus the loss of detailed information in the image.
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Fig. 1. Outline of the proposed technique. When unpolarized light is reflected
from a surface, it becomes partially polarized and the Polar information is
usually recorded by Polar imaging systems such as the division of ampli-
tude polarimeters, division of time polarimeters, and division of focal-plane
polarimetry. These systems require optical path or chip modifications to
existing VIS imaging equipment, adding cost and equipment complexity.
We expect to use machine learning to generate Polar images from VIS cameras
to establish a mapping between VIS and Polar images to improve the accuracy
and robustness of PAD in facial biometrics without changing the existing face
recognition devices.

Presentation attacks are always carried out by physical
carriers (e.g., paper, LCDs, silicone, rubber) that have different
material properties than human facial skin. Upon exposure to
natural light, significant differences in the polarization states of
the light reflected from various material surfaces are observed,
as shown in Fig. 1. Intuitively, sunlight and typical light are
both nonpolarized (the vibrational component of the electric
field remains constant in all directions). Reflected and trans-
mitted light becomes partially polarized as the light propagates
through different material surfaces due to physical properties
such as the surface material and roughness [13]. Thus, polar-
ization (Polar), as a passive method, is closely related to the
intrinsic physical properties of the material and can provide
more robust features for FAS (material classification).

Motivated by the above discussion, several Polar-based FAS
methods have been proposed [14], [15], [16]. These works
demonstrate that Polar is highly correlated with face material
and can uncover the intrinsic differences between genuine
and fake faces. Additionally, they verified that face images
in the Polar mode are indeed more discriminative than faces
in the NIR, depth, and VIS modes. Furthermore, Polar-based
FAS methods inevitably require modal consistency across
the training and testing phases, similar to NIR-based and
depth-based methods. This limits the use of such solutions
because the Polar-based approach is not directly compatible
with current VIS face anti-spoofing systems. Fig. 1 depicts
many typical polarization imaging systems. These designs
commonly require the VIS imaging equipment to have its opti-
cal paths or chips modified, which incurs a highly significant
additional cost in large-scale manufacturing.

In this paper, we focus on two interesting and important
questions related to the FAS task: 1) How can intrinsic,
robust features be applied to distinguish between genuine
and spoofing faces? 2) How can translation between VIS-
Polar modes be accomplished such that the existing VIS
equipment may also benefit from the Polar mode for better
PAD?

With the rapid development of deep generative models,
“recognition by generation” has become a popular research

topic in the field of computer vision. For example, the depth
maps generated from VIS images in [17] were used for feature
learning in a genuine and deceptive face classification task
using texture differences between genuine and fake faces in
the VIS images and structural differences in the depth maps.
References [18] and [19] fused the VIS modalities with the
generated NIR modalities to achieve FAS. These methods
show that image-to-image translation can to some extent be
applied to generate features for new modalities.

Inspired by this, we propose the polarized image trans-
lation generator (PTG-Face) detection framework, a new
approach for detecting FAS that performs cross-modal trans-
lation between VIS and Polar images. The proposed modal
translation network is shown in Fig. 3. PTG-Face is divided
into two stages: (1) Pairs of VIS and Polar modal images
are fed into FC-Net that learns the mapping relationships
and feature differences between the two image modalities
and transfers the VIS modality images to Polar modality.
(2) A dual-modal face PAD network is constructed to mine
the intrinsic and robust features of genuine and fake faces by
fusing the VIS modalities with the generated Polar modal-
ities. Specifically, we built FC-Net using CycleGAN as a
backbone to translate the samples from the VIS modality to
the Polar modality. We analyzed the impact on the generated
images due to the frequency domain gap in the generation
process and explored methods to improve the quality of the
generation by narrowing this gap. We propose a frequency
domain consistency loss that directly optimizes the generative
model in the frequency domain. This will help to make the
generated Polar modality closer to the distribution of the real
Polar modality. For PAD, translated Polar modalities were
used to learn polarization spoofing cues that arise from the
material differences between genuine and fake faces. As shown
in Fig. 5, these spoofing cues cannot be easily detected in
VIS spectra but show significant differences in Polar images.
We take advantage of the CDCN’s adeptness at describing
fine-grained invariant information to propose a dual-stream
CDCN that fuses the VIS modalities with the generated polar
modalities to learn the intrinsic features of PAD. Similar to
the NIR generation method, we do not use the generated
Polar modes separately but rather fuse them with VIS features.
This design, on the one hand, makes full use of existing
VIS imaging equipment and data, and on the other hand, the
multimodal approach provides a richer set of PAD features for
the FAS task to some extent, obtaining improved accuracy and
robustness.

To the best of our knowledge, the proposed PTG-Face
method is the first approach to generate Polar images for
FAS detection. The main contributions of this work can be
summarized as follows.

1. This is the first work to fully explore the advantages
of the Polar modality in a VIS-based FAS system, which is
achieved using the proposed novel PTG-Face framework.

2. In the PTG-Face framework, we designed a frequency
domain-constrained network (FC-Net) module and proposed a
novel frequency domain consistency loss as a complement to
the existing spatial losses. The generation of polarization-style
face images from VIS face images is achieved and preserves
the polarization features of both genuine and spoofed faces.
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3. We created a dual-stream central differential convo-
lutional network (CDCN) to learn and fuse discriminative
presentation attack detection features in translated polarization
modalities and real visible light modalities by utilizing the
remarkable ability of CDCN to represent fine-grained features
invariantly in different environments.

4. As part of this work, we present CASIA-Polar which
to the best of our knowledge is the only publicly available
polarized face dataset. We have conducted extensive quantita-
tive and qualitative experiments on publicly available visible
light datasets and our CASIA-Polar dataset to demonstrate
that the proposed method not only shows reliable polarization
generation performance but also achieves state-of-the-art face
anti-spoofing performance.

II. RELATED WORK

A. Spectrum-Based Methods

With the decreasing cost of multi-spectral sensors and the
increasingly popular usage scenarios, some methods for live
face detection based on spectral feature analysis have been
proposed.

Initially, handcrafted features such as HOG [20], LBP [21],
SIFT [22], and SURF [1] were used to distinguish between
genuine and fake faces, and support vector machines (SVMs)
were used for binary classification. These methods often
rely on human liveness cues, which require significant task-
aware prior knowledge for their design. Several CNN-based
methods have been proposed with the advances in deep
learning. Yang et al. [23] were the first to use CNNs in face
antispoofing research. Subsequent work, such as [6], [24],
and [25], developed CNN-based FAS methods by extracting
feature differences between genuine and fake faces, such
as texture details, color distortion, and specular reflections.
Unfortunately, most of these methods are specifically designed
for 2D attacks and perform poorly against challenging 3D and
video replay attacks.

Moreover, VIS-based methods are often not sufficiently
robust in handling complex and variable attack types and
detection scenarios. Therefore, several near-infrared (NIR)
[9], shortwave infrared (SWIR) [26], and multispectral-based
methods [27] have been proposed for FAS. George et al. [28]
proposed a multichannel CNN-based PAD approach and intro-
duced the WMCA dataset that contains data from different
channels such as color, depth, NIR, and thermal imaging.
Heusch et al. [29] used a CNN model for face PAD on
SWIR images. The experimental results demonstrate that the
method performs better on SWIR images than on VIS images.
Zhang et al. [30] proposed a multispectral PAD method by
analyzing the multispectral properties of human skin and
materials other than skin and selecting wavelengths with
discriminative properties. This use of complementary infor-
mation between different spectra effectively improves the
robustness of FAS systems. However, even though these
methods are more powerful than the previous methods,
they are spectrum-dependent and have considerable hardware
costs, increasing the difficulty of deployment in widespread
applications.

B. Physical-Based Methods
Due to the limitations of the existing spectroscopic

approaches, some physical analysis-based methods have been
proposed. Many advanced approaches have attempted to
improve the generalizability of FAS algorithms by learning
cues inherent in genuine and fake faces. For example, the use
of impulse signal feedback from remote photoplethysmogra-
phy (rPPG) to detect genuine faces and spoofing attacks is
an effective FAS measure. Liu et al. [31] developed a local
rPPG model that detects 3D mask attacks by extracting
discriminative local heartbeat signals. However, rPPG signals
are easily distorted by background noise and object motion.
Yao et al. [32] proposed an rPPG-based PAD method that
used multiple regions of interest (ROIs) to cover the whole
face and applied larger weights to emphasize the regions with
richer rPPG signals. However, the performance of such meth-
ods is generally not stable due to illumination effects; thus,
some PAD schemes based on the fusion of rPPG with NIR,
depth [33], [34] and other information have been proposed to
improve the robustness of rPPG methods.

Face structure analysis-based methods can also be applied
to detect spoofing attacks. Kim et al. [35] captured light
distribution changes in light field data and detected edge
and ray difference features to implement FAS based on the
characteristics of microlens images and subaperture images.
Liu et al. [36] combined light field camera data with a CNN
to detect subject depths in light field images to distinguish
between spoofing attacks and genuine faces. Similar to the
approach of Liu et al. [36], Sun et al. [37] used infrared struc-
tured light to analyze the surface material and spatial structure
of genuine and fake faces to achieve FAS. While these methods
explore differences such as pulse detection and geometric
structure between genuine faces and presentation attacks, the
development of high-precision 3D masks, video playback,
and other types of attacks poses substantial challenges to the
robustness of such methods.

Different from existing works, Polar-based methods reflect
material, texture, and roughness differences between genuine
faces and presentation attacks. These features are not affected
by the external environment and they are difficult to imi-
tate. Therefore, Polar-based methods have great potential in
FAS applications. Polar techniques were first applied to FAS
by [14], who demonstrated the feasibility of applying the
Polar modality in FAS tasks by showing the differences in
Polar images between genuine faces, LCDs, and paper masks.
Aziz et al. [15] quantitatively analyzed the intensity of Polar
images of genuine faces and paper masks by performing
statistical analyses; however, only a few types of presentation
attacks were considered, and the experimental analyses were
insufficient. Our previous work [16] is the only reported
FAS study that uses CNNs combined with Polar images,
demonstrating that the Polar modality has stronger robustness
and generalizability than the VIS modality for the same
network structure. Moreover, [16] proposed the CASIA-DoLP
FAS dataset (the predecessor of the CASIA-Polar dataset)
for the Polar modality. Although these Polar-based methods
show strong generalizability and robustness in PAD tasks,
these methods require the use of specialized Polar imaging



5654 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 2. The overall framework of PTG-Face. This work is a novel face antispoofing method based on existing VIS cameras that translates VIS images to
Polar images via FC-Net and performs face antispoofing via a dual-stream CDCN network without utilizing any polarization imaging equipment during the
testing process.

equipment to obtain Polar information, which is difficult to
apply in existing VIS-based recognition systems.

If we can translate between the VIS and Polar modalities,
we can take advantage of the generalizability and robustness
of the Polar modality while only using VIS devices.

C. Cross-Modality Image Translation

In recent years, several generative models have shown
promise in image translation studies [38], [39], [40].

Image translation is a constrained image generation pro-
cess that maps an image from one modality to another.
This approach is widely used in applications such as face
image generation, attribute editing, and superresolution stud-
ies. Image translation is achieved due to the powerful ability
of generative adversarial networks (GANs) to fit various data
distributions. Isola et al. [41] proposed a “pix2pix” framework
based on conditional GANs and used the input image to gener-
ate the corresponding output image. Zhu et al. [40] extended
the pix2pix framework with CycleGANs to learn the mapping
function between two unpaired domain images, X and Y , for
image generation. On this basis, several generative networks
have been proposed. The starGAN [42] algorithm was devel-
oped for unpaired multidomain image-image translation. The
styleGAN [43] is a style-based generator that automatically
separates facial attributes.

GANs have demonstrated great potential in the generation
of stylized modalities, such as cross-spectral modalities [44],
Sketch-Photo [45], and Profile-Frontal Photo [46]. Moreover,
some novel GANs have been considered in FAS applica-
tions. [17] generated depth maps from VIS images and
detected 2D spoofing attacks by using the face structure
information in the depth map. Jiang et al. [19] proposed a FAS
approach that fused the VIS and generated NIR modalities.

Liu et al. [18] proposed an effective strategy for generat-
ing NIR modalities to assist VIS-based FAS systems based
on [19], using a partially shared fusion strategy to learn the
complementary information of multiple modalities.

Despite their great success, in most cases, a gap between the
real and generated images is still observed, particularly in the
frequency domain. The frequency domain gap between real
and fake images has been attributed to some inherent biases
in the neural networks when applied to the generation task.
In this paper, we design an FC-Net to learn the VIS-Polar
face modal translation that translates face images from VIS
to the Polar modality. Additionally, we design frequency
domain constraints to narrow the gaps between the generated
image and the real image in the frequency domain. This loss
is complementary to the existing spatial loss in CycleGAN
for adjusting the distribution of the generated Polar modali-
ties to approximate the spatial distribution of the real Polar
modalities.

III. PROPOSED METHOD

The goal of our approach is to exploit the full potential
of the VIS and Polar modalities in order to improve FAS
performance. Accordingly, our approach is divided into two
parts to address the following issues: (1) how to generate
Polar modal information from nonpolarized data and (2) how
to use the generated Polar data for FAS. These two parts are
presented separately in the following subsections.

A. Overall Architecture of the PTG-Face Framework
In this section, we introduce the PTG-Face framework

that focuses on exploiting the Polar modality to improve the
performance of VIS-based PADs. Our PTG-Face framework is
depicted in Fig. 2. We first trained the generator network with
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pairs of heterogeneous data (VIS and Polar). We designed FC-
Net with CycleGAN as the backbone to generate Polar images
according to the VIS images. Frequency domain gaps between
the generated image and the real image often exist due to
some inherent bias in neural networks, resulting in distortion
of the generated image [47]. In this paper, we improve the
quality of image translation by constraining the frequency
domain gap between the real and generated modalities. The
framework uses sample pairs of VIS and Polar images as
input, and the VIS to Polar mode translation is achieved by
adversarial training with a discriminator against the generator.
This operation generates Polar data and does not require the
involvement of any Polar imaging equipment. These generated
Polar images and the original VIS images are input into
the FAS network. The network, in order to extract more
fine-grained and robust features for PAD, consists of a dual-
stream central difference convolutional network (CDCN) with
independent component channels for the VIS and generated
Polar images that achieve live versus prosthetic discrimination
by performing feature fusion.

B. Theoretical Foundation of Polarization Approach

In the Polar modality, the differences in Polar characteristics
between genuine faces and presentation attacks are apparent.
The visualization results in Fig. 5 and previous research [48]
both show that the differences between faces and presentation
attacks are easier to distinguish in Polar images than in VIS
images.

From Maxwell’s electromagnetic field theory, it is known
that for an arbitrary plane light wave, its light vector can
be decomposed into two mutually orthogonal components,
the s-wave component vertically to the incident plane and
the p-wave component parallel to the incident plane. When
an unpolarized beam of light interacts with a surface and is
reflected or transmitted, the amount of s- and p-waves will
change depending on the surface properties such as surface
material, texture, and roughness, causing the unpolarized light
to become partially polarized. In other words, the polarization
of the light reflected from a surface is determined by the
surface material. In FAS studies, diffuse reflection is dominant
for most surfaces.

According to the Fresnel formula, the degree of polarization
(DoP) at each point u in the perspective case can be expressed
in terms of the refractive index η as follows:

1
DoP(u)

=

4 cos θ(u)

√
η2 − sin2 θ(u)(

η − 1/η2
)

sin2 θ(u)

+
2

(
1 + η2)(

η − 1/η2
)

sin2 θ(u)
−

(
η + 1/η2)(
η − 1/η2

) (1)

where θ is the zenith angle to the target surface that varies
with the texture and roughness of the target, and u = (x, y)

is a location in the polarization image.
Equation (1) relates the DoP to a function f (η, θ) that

depends on the microsurface structure and refractive index
of the target. A detailed description of the DoP images can
be found in [49]. Moreover, in the supplementary material,
we show a more detailed derivation of the DoP images.

As mentioned previously, reflections and refractions on
different material surfaces produce idiosyncratic polarized
light. While an in-depth quantification of the Polar effects
of different materials is beyond the scope of this paper,
we note that Polar properties are highly dependent on the
material (η) and texture (θ). Although spoofing faces have
become increasingly realistic, it is difficult for a spoofing face
to exactly match the material and texture of a genuine face.
Therefore, spoofing attacks can be distinguished from genuine
faces by examining the differences in Polar properties.

However, the acquisition of Polar information requires the
use of Polar imaging equipment, which is difficult in existing
PAD frameworks that typically utilize only VIS equipment.
We hope that generating Polar images based on VIS data
acquired by existing VIS equipment, reducing costs (Polar
cameras cost approximately 10 times more than VIS cameras
with the same imaging parameters) while improving PAD
performance.

C. Polarization Translation

In this paper, we generate Polar images instead of acquiring
Polar data. Furthermore, we fuse the generated Polar images
with real VIS images to improve the PAD performance.
In order to transform genuine faces and spoofing attacks from
the VIS modality to the Polar modality, we designed the
frequency domain-constrained CycleGAN network (FC-Net).

FC-Net uses CycleGAN as a backbone and has a ring-
shaped structure with two generators, G and F , and two
discriminators, DX and DY . The X -domain image is a VIS-
domain image, and the Y -domain image is a Polar-domain
image. The X -domain image is passed through generator G
to produce the Y -domain image G(X). The X -domain image
F(G(X)) is then reconstructed by generator F . The Y -domain
image is passed through generator F to produce an image in
the X domain, F(Y ). Similarly, F(Y ) is reconstructed through
generator G to produce a Y -domain image, G(F(Y )). The
discriminators DX and DY ensure that the appropriate image
style is converted.

As shown in Fig. 3, to generate Polar faces G(X) and ensure
that they have the same characteristics as real Y , we add
the frequency domain consistency loss L f to the constraints
imposed by the cycle consistency loss Lc and adversarial loss
La . The loss function of our goal can be expressed as:

L = Lc (G, F) + La(G, D) + L f (X f , Y f ) (2)

where the cycle consistency loss Lc is a regularizer that drives
G and F to be consistent with each other in the source
modality but not in the target modality. In other words, it aims
to minimize the difference between the reconstructed image
G(F(Y )) (F(G(X))) and the original input image Y (X ). The
specific expression is shown below.

Lc(G, F) = EX∼pdata (X) [∥F(G(X)) − X∥1]
+ EY∼pdata (Y ) [∥G(F(Y )) − Y∥1] (3)

The adversarial loss La is used by discriminator D to
distinguish between the original X (Y ) domain image and the
generated F(Y ) (G(X)) domain image. The adversarial loss
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Fig. 3. The overall framework of FC-Net. In the left half of the figure above, the VIS image X is fed into generator G to generate the polarization domain
picture G(X), and then the image G(X) is fed into generator F to generate the original domain image F(G(X)). The purpose of generating F(G(X)) is to
use it with the input true image X to calculate the Lc Loss. The right half is similar, with the input being the polarization domain image Y , which generates
the VIS image F(Y ) and the polarization image G(F(Y )), respectively. During the generation of X → G(X) → F(G(X)) and Y → F(Y ) → G(F(Y )),
we imposed a La Loss by training the discriminator DY (DX ) against the generator G (F). In addition, a frequency domain consistency loss was imposed
between the generated image G(X) (F(Y )) and the real image X (Y ) to ensure the consistent frequency domain distribution.

La directly uses the expression proposed in [50], which is
shown below.

LaX (F, DX , X, Y )

= EX∼pdata(X)
[
log DX (X)

]
+ EY∼pdata(Y )

[
log (1 − DX (F(Y ))] (4)

LaY (G, DY , X, Y )

= EY∼pdata(Y )
[
log DY (Y )

]
+ EX∼pdata(X)

[
log (1 − DY (G(X))] (5)

We aim to ensure that the generated Polar image G(X) has
as consistent a feature distribution as possible with the real
Polar image Y .

In this case, the generated Polar image will effectively
work as the real Polar image for FAS. However, the gener-
ative model has difficulty in maintaining important frequency
information as it tends to generate frequencies with higher
priority [47]. This will result in a frequency domain gap
between the generated image and the real image. Improvement
of the quality of image generation through the frequency
domain is still largely unexplored.

In this paper, we explore the methods to improve the gen-
erated quality by narrowing the gap. We performed the
two-dimensional discrete Fourier transform to convert the
image into its frequency representation.

F(u, v) =

M−1∑
x=0

N−1∑
y=0

f (x, y) · e−i2π( ux
M +

vy
N ) (6)

where M × N is the image size, (x, y) denotes the coordinates
of the image pixels in the spatial domain, f (x, y) is the
original image, (u, v) are represents the coordinate of a spatial
frequency on the frequency spectrum, F(u, v) is the result
after the Fourier transform, and e and i are the Euler’s number
and imaginary units, respectively.

It can be found that in Equation (6), F(u, v) depends on
the sum of the function of each image pixel in the spatial
domain.

We suppress different regions in the spectrum and visualize
their physical significance in the spatial domain to simulate

Fig. 4. Standard bandlimiting operations on the frequency spectrum with the
origin (low frequencies) center shifted and respective images in the spatial
domain. These manual operations can be regarded as a simulation to show
the effect of missing frequencies.

the loss of spectrum during generation, as shown in Fig. 4.
In Fig. 4, we suppress the low-frequency information of
the spectrum (column 2), and the image edges are better
preserved, but the overall contrast is reduced. In column 3, the
lack of high-frequency information results in a blurred image
and typical ringing artifacts. In the fourth and fifth columns,
we selectively remove certain frequencies from the image, and
it is observed that both images produce varying degrees of
distortion, along with the usual checkerboard artifacts.

Clearly, the losses in different regions of the spectrum will
produce different artifacts in the image. Therefore, we deduce
that constraining the frequency domain during the generation
process can reduce artifacts and improve the quality of the
generated image. Therefore, a novel frequency domain consis-
tency loss mathcal L f is proposed to encourage the mapping
of the G(X) (or F(Y )) modality to the Y (or X ) modality.

The L f in FC-Net is the sum of L f x and L f y , where
L f x (X, F(Y )) denotes the difference between X and F(Y )

in the frequency domain and L f y(Y, G(X)) denotes the dif-
ference between Y and G(X) in the frequency domain. The
objective function of our goal can be expressed as:

L f x (X, F(Y )) = EX∼pdata (X) [∥F(X) − F(F(Y ))∥1]
L f y(Y, G(X)) = EY∼pdata (Y ) [∥F(Y ) − F(G(X))∥1] (7)
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The frequency domain constraint will encourage finer-
grained feature consistency between the generated image and
the real image, which is better demonstrated in Figs. 6 and 7.

Our source VIS and target Polar images both contain images
of genuine faces and spoofing attacks. We perform only
modality translation in FC-Net, and by learning, we train FC-
Net using paired VIS and Polar images of genuine faces and
spoofing attacks as input data. We perform feature fusion on
paired VIS and Polar images to take full advantage of both
types of images.

D. Face Anti-Spoofing

After the cross-modal face translation, we will obtain the
generated Polar modality (Polar_G) from the VIS modality.
Pairs of VIS source images and Polar_G images are fed into
a dual-stream CDCN network to learn the PAD features.

CNN-based approaches focus on deeper semantic features,
are weak in describing detailed intrinsic information between
living and spoofing faces, and are prone to fail when dealing
with heterogeneous images (e.g., images captured when light-
ing and camera conditions change). Because spatial differential
features are strongly illumination-invariant and contain finer-
grained spoof cues, inspired by the traditional LBP difference
idea, the CDCN [55] is proposed.

The central difference convolution (CDC) can effectively
improve the representation of invariant fine-grained features in
different environments. Specifically, sampling and aggregation
are the two steps that make up the CDC. The sampling phase
resembles vanilla convolution. The CDC tends to aggregate the
sampled values’ center-oriented gradient during the aggrega-
tion stage, giving the CDC a richer representation of detailed
features compared to the conventional convolution.

The CDC operator has performed well in the VIS, depth,
and NIR modalities [55], [56], but there is no relevant investi-
gation in Polar modalities. We extend the state-of-the-art single
modal network CDCN to a dual-modal version for learning
PAD features in VIS and Polar_G modes.

We designed our network according to two considerations.
First, VIS images are rich in intensity-level semantic infor-
mation, and Polar_G images retain pixel-level intrinsic feature
information. Thus, by using CDCN for feature fusion between
VIS and Polar_G images, the information in two modalities
can be fully utilized for FAS. Second, the CDCN reliability
represents detailed intrinsic patterns and is thus more suitable
for Polar feature extraction. The effective learning of these
fine-grained “discriminative” and “robust” features is essential
for improving PAD performance.

As a result, we use the Polar_G and the original VIS
modality X as bimodal inputs to learn the FAS features
of the samples. We adopt the configuration CDCN as the
backbone network for both modality branches, and the details
are shown in Fig. 2. For both modalities, given a face image
of size 256 × 256, the CDCN can extract multilevel (low-
level, medium-level, and high-level) fusion features [55]. The
backbone networks of the two modality branches are not
shared. Therefore, each branch learns modality-aware features
independently. Finally, the two head layers aggregate the

Fig. 5. The attacks present in our extended CASIA-Polar dataset include
(a) genuine face, (b) computer screen replay, (c) photo paper prints, (d) A4
paper prints, (e) silicone masks, (f) rubber masks, and (g) and (h) custom-made
prosthetic heads using real hair and silicone.

multimodal features and predict the genuine and false face
categories using a classifier.

IV. EXPERIMENTS

In this section, we conduct extensive experiments to demon-
strate the efficacy of our approach. The following sections
describe the experimental setup, implementation details, and
results.

A. Experimental Setup

1) Dataset: While our method requires only VIS data dur-
ing the testing phase, the model training phase requires Polar
data. Unfortunately, although numerous large-scale bench-
mark datasets have been proposed for FAS research, such
as CASIA-SURF [53], CeFA [54], OULU-NPU [51], SiW
[52], HiFiMask [57] and WMCA [28], the images and video
streams in these datasets are mainly VIS, NIR, and depth
modalities. Thus, we cannot easily train our algorithms on
existing benchmark datasets, as we need real-time Polar data.
To address this need, we collected a Polar FAS dataset known
as CASIA-Polar, as shown in Table I. CASIA-Polar is an
extension of our CASIA-DOLP. Compared to CASIA-DOLP,
the number of subjects was increased to 121 and the amount
of attack data was greatly expanded, while the variety of
presentation attacks was expanded by customizing lifelike
counterfeit heads.

To the best of our knowledge, the CASIA-Polar dataset
is the only publicly available Polar face dataset for FAS.
We acquired the data using a Lucid Phoenix PHX050S-P
polarized camera with the Sony polarization sensor to capture
paired VIS images and Polar images. The CASIA-Polar dataset
consists of two-dimensional and three-dimensional attack
subsets. The 2D attack subset includes photo paper prints,
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TABLE I
COMPARISON OF PUBLIC FACE ANTISPOOFING DATASETS

Fig. 6. Comparison with CycleGAN-generated results. The first row shows the VIS modality, the second row shows the results generated using CycleGAN,
the third row shows the results generated by our FC-Net, and the last row shows the real acquired polar image.

A4 paper prints, and computer screen replay attacks, and the
3D attack subset includes silicone masks, rubber masks, and
custom-made prosthetic heads. A total of 121 subjects were
recruited for this study. Three types of 2-D attack samples
were collected for each subject. Real samples were collected
for each subject at the distances of 1, 2, and 3 m from the col-
lection device. Fig. 5 shows several representative examples of
the demonstrated attacks in the CASIA-Polar dataset. Due to
the strong correlations between Polar features and the target’s
intrinsic physical characteristics, such as material and texture
traits, the Polar modality exhibits prominent discrimination
between genuine and artificial faces.

We assessed the CASIA-Polar dataset using four protocols:
cross-illumination, cross-attack, cross-distance, and cross-face
pose and expression change tests. Because we aimed to
improve FAS performance by generating Polar images, all
of the experiments were conducted according to protocol 4
(cross-face pose and expression change).

For a quantitative evaluation, we performed a Polar face
generation test on the CASIA-SURF dataset and evaluated
the FAS performance of PTG-Face on this dataset. For a
fair comparison with earlier techniques, we only used VIS
modality data from CASIA-SURF; hence, our experiments
employed the official test protocol 1 (within-modal evaluation)
for this dataset.

2) Evaluation Metrics: To evaluate the algorithms, we used
the ISO/IEC 30107-3 metrics [58], the Attack Presentation
Classification Error Rate (APCER), the Bonafide Presentation
Classification Error Rate (BPCER), and the Average Classifi-
cation Error Rate (ACER) metric on the evaluation set.

In addition, the F_score and accuracy rate were compared
to assess the classification accuracy of the algorithms.

3) Strategy for Training and Testing: The proposed PTG-
Face framework was implemented in parallel on eight NVIDIA
GTX-3090 GPUs. The cropped face region was resized to
256 × 256, and homomorphic filtering was used to remove
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Fig. 7. In (a), the first row from left to right, the generated CycleGAN
results, the results generated by our method, and the true images captured by
the polarization camera. The second row shows the corresponding frequency
domain images. For the CycleGAN generation model, there is a larger
frequency domain gap between the real image and the generated image, and
important frequencies are lost during the generation process, leading to blurry
images. Additionally, the loss of high-frequency information leads to serious
distortion of image details, as shown in the left panel in (b). By contrast, our
FC-Net can maintain maximum frequency domain consistency with the real
Polar image due to the addition of L f , resulting in lower generation errors,
as shown in the right panel in (b).

lighting effects. In all experiments, the models were trained for
200 epochs using the Adam solver. All models were trained
with a batch size of four and an initial learning rate of 0.0002.
We kept the learning rate constant for the first 100 epochs and
then linearly decayed the learning rate to zero over the next
100 epochs. After training, the parameters were saved as modal
translators for future experiments.

B. Experimental Results

1) Generation of Results Visualization and Analysis:
We qualitatively and quantitatively evaluated the Polar image
generation results. The collected Polar data were used as the
ground truth. To verify the trained FC-Net model’s capacity
to generate Polar data by the VIS data, a comparison of the
results obtained by the CycleGAN [40] and FC-Net models
for consistent input data is provided in Fig. 6.

Compared to CycleGAN, FC-Net generates images with
higher quality and better preservation of image sharpness and
signal-to-noise ratio. The generated Polar images are more
accurate and detailed. The results produced using CycleGAN
directly have a higher overall contrast, but the generated

images have more noise and some local distortion (such as
the position of the eyes and mouth).

Both CycleGAN and FC-Net generate near-Polar style
images and retain the same face structure information as the
source input image. However, FC-Net generates higher-quality
images compared to CycleGAN which produces results with
higher overall contrast but generates images with more noise
and local distortion (e.g., eye and mouth positions). By con-
trast, FC-Net results are more accurate than the CycleGAN
and have richer detailed information, e.g., details in the regions
such as eyes and nostrils, as well as the color and texture of
the facial skin.

The priority of fitting particular frequencies in a network
varies throughout the training, often going from low to
high [59]. We found that CycleGAN tends to eschew difficult-
to-synthesize frequency components, i.e., hard frequencies,
and converge to a lower point during generation, as other
generative networks do. As a result, it is difficult for the
model to maintain important frequency information, resulting
in a large error between the generated effect, and the true
value. We provide a quantitative and qualitative evaluation,
as shown in Fig. 7. The generated results of CycleGAN
retain the structural information of the face but lose some
frequency domain information so that the generated images
lack sufficient texture details.

To prevent the loss of frequency details by the network,
we add L f loss to the generation process to supervise the
frequency domain information so that the results of the method
proposed in this paper agree with the true values, particularly
in detailed regions such as nostrils and eyes. Fig. 7(a) depicts
a visual comparison of the generated results with the original
Polar image. The errors of CycleGAN and our method are
shown in Fig. 7(b). It can be easily concluded that the
frequency domain agreement between our generated results
and the real image is higher, the generation error is lower
and therefore the detailed features of the image are better
preserved (quantitative analyses of other samples can be found
in the supplementary material). These results demonstrate the
effectiveness of frequency domain consistency loss that can
increase the sensitivity of our generation network to detailed
regions.

In addition to genuine faces, we generated images of
several types of presentation attacks. The VIS image of the
presentation attack was generated as a Polar image (Polar_G)
via FC-Net, and the Polar_G images were compared with the
Polar images captured by a Polar imaging device. Examples
of the captured real Polar image and the Polar_G images are
shown in the second and third rows of Fig. 8, respectively.
As mentioned above, the generated presentation attacks and
real Polar images contain some Polar characteristics of the
corresponding class. For example, the skin of a genuine face
appears smoother than the presentation attack. Genuine faces
have sharper hair details, whereas presentation attacks have
blurrier hair details. Furthermore, the generated Polar images
and captured Polar images have some differences in visual. For
example, the screen replay attack results shown in column 2 of
Fig. 8 demonstrate chromaticity differences between the gener-
ated and captured Polar images, which may be due to the small
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Fig. 8. A visual presentation of the CASIA-Polar generation results, including a real face and seven attack types, e.g., computer screen, photo print, A4
paper print, two dummy heads, a silicone mask, and a rubber mask. The second row shows real polar images captured by the polarization camera, and the
third row shows the results translated by our FC-Net.

TABLE II
STATISTICS OF THE CASIA-POLAR DATASET

number of data samples in this category. In addition, the colors
and textures in some of the generated Polar images are not as
smooth and natural as those in the captured Polar images.
There are two reasons for this phenomenon. First, there is a
large intraclass variation in the spoofing attack itself, such as
differences in the display of the same picture by monitors of
different resolutions. Second, the number of genuine faces and
spoof attacks in CASIA-Polar is approximately 1:1, leading to
a low number of each class in the spoofing attack.

2) FAS Results on CASIA-Polar: Since the effectiveness
and feasibility of FC-Net-generated Polar images are demon-
strated, we compare the performance of the Polar_G images in
FAS tasks on the CASIA-Polar dataset. Specifically, we com-
pare the performance of the CASIA-Polar dataset when using
VIS images, Polar images, and Polar_G as input data. The
PTG-Face model is used for genuine-false face classification
to evaluate the use of VIS and Polar_G images as input data.

We studied seven models separately on protocol 4 and
report the results in Table II. Comparing ResNet, CDCN,
and our PTG-Face method under three modalities, namely,
VIS, Polar, and Polar_G, we find that the Polar_G modality
performs slightly better than the VIS modality and slightly
worse than the real Polar modality. When the VIS modality
is replaced by the Polar_G modality, compared with the

ResNet and CDCN methods, the ACER value of our method
decreases by 0.6% and 1.23%, the accuracy improves by
3.17% and 5.48%, and the F_score improves by 0.39% and
2.5%, respectively. These results demonstrate that the Polar
information provided by FC-Net has a significant effect on
improving PAD performance, and on the other hand, proves
that our FC-Net can generate convincing Polar modalities.

In addition, FAS performance improved after the VIS and
Polar_G modalities were fused by PTG-Face, as shown in
Table III. PTG-Face achieved the best performance compared
to the single-modal methods using either VIS or Polar. In par-
ticular, compared to the ResNet (VIS) and CDCN (VIS) meth-
ods, PTG-Face shows a 3.20% and 3.77% reduction in ACER,
4.32% and 7.05% improvements in accuracy, and 4.52% and
5.94% improvements in F_score, respectively. These results
demonstrate that our approach significantly improves the
PAD performance by generating Polar images when only
the authentic VIS mode is available as input. An interesting
finding is that while the results of the lightweight CDCN
network are inferior overall to those of ResNet that have
more parameters, PTG-Face with CDCN as the backbone
outperforms ResNet, demonstrating that our generated Polar
modality provides more discriminative features than the VIS
modality. These results highlight the significant improvement
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TABLE III
FINE-GRAINED MATERIAL CLASSIFICATION IDENTIFICATION FOR THE CASIA-POLAR DATASET

Fig. 9. The generated polar images in the CASIA-SURF dataset are shown, with the first two rows showing the VIS and generated polar images corresponding
to the real face and the last two rows showing the VIS and generated polar images corresponding to the spoofing attack.

in FAS performance via generating Polar images from authen-
tic VIS input only without the use of a polarized camera.

3) FAS Results on Cross-Dataset: The CASIA-SURF pub-
lic FAS dataset was used to evaluate the generalization of
the proposed method to an unknown domain, namely the
CASIA-Polar and CASIA-SURF datasets were each used as
independent domains in our experiments. We chose CASIA-
Polar as the source domain and CASIA-SURF as the unknown
domain for testing that was not accessible during the training
process.

CASIA-SURF is one of the most widely used datasets in
FAS research and consists of three data modalities: VIS, NIR,

and depth. CASIA-SURF does not contain Polar data and can
demonstrate the superiority of our method in a more objective
and significant manner. We first used the FC-Net trained in
the CASIA-Polar dataset to generate Polar modes according
to the VIS modal data in the CASIA-SURF dataset, and the
generated results are shown in Fig. 9.

The performance of the ResNet, CDCN, and PTG-Face
methods is then compared by varying the input modalities.
By comparing the results of the ResNet and CDCN methods
for three modes, namely, VIS, NIR, and Polar_G, that are
presented in Table IV, we can see that the Polar_G mode
results in better ACER than the other two modes.
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TABLE IV
STATISTICS OF THE CASIA-SURF DATASET

When we replaced the VIS modality with the Polar_G
modality, the performance of ACER was reduced by 8.36%
and 15.50% in ResNet and CDCN, respectively. This is
because the Polar modality contains more discriminative cues
that are not apparent in the VIS modality.

In addition, the performance of the dual-stream CDCN
was evaluated. With the dual-stream CDCN network, the VIS
mode is fused with the NIR and Polar_G modes respectively.
Compared to the ResNet and single-mode CDCN methods,
the dual-stream CDCN obtained significantly lower ACER
results both using VIS & NIR as input and VIS & Polar_G as
input, as shown in Table IV. It is noteworthy that the ACER
of our method is reduced by 0.02% even when compared to
VIS & NIR as input. These findings indicate two important
aspects. Firstly, the utilization of dual-stream CDCN for modal
fusion can notably enhance the performance of FAS. Secondly,
the PTG-Face introduced in this study not only offers PAD
features absent in the VIS modality but also effectively utilizes
Polar information to augment the learning of the VIS modality.

In summary, the above results show that PTG-Face can pro-
vide more recognizable features for FAS tasks. Our algorithm
can achieve better FAS performance in FAS systems equipped
with only equipped VIS cameras. To further demonstrate the
performance of our approach, the results from our tests in
real-world scenarios are given in the supplementary material.

4) Comparison With State-of-the-Art Methods: We con-
ducted experiments on the CASIA-Polar dataset to compare
our method with state-of-the-art (SOTA) methods. Table V
provides comparison results that show that our method signifi-
cantly outperforms SOTA methods in VIS modality. Compared
to the LBP, ResNet, CDCN, and BAS methods, the ACER
increased by 6.39%, 3.20%, 4.42%, and 35.05%, respectively,
in our method. Additionally, when compared to the SOTA
methods in Polar modality, our results are impressive, with
the ACER score outperforming the ACER values of the
2D_Polar [15] and PAAS methods by 9.56% and 1.51%,
respectively. Moreover, we note that the 2D_Polar method
uses statistical methods such as the mean, standard deviation,
and kurtosis for FAS; thus, the best results under these
three metrics were chosen for comparison. In addition to the
comparison with the unimodal method, the performance of

TABLE V
COMPARISON OF TEST RESULTS ON THE CASIA-POLAR DATASET

TABLE VI
COMPARISON OF TEST RESULTS FOR THE GENERATION

METHODS ON THE CASIA-SURF DATASET

our method compared to the conventional multimodal FAS
method PSMM-Net [53] when using the VIS mode and
generated Polar mode as inputs, the ACER of our method
is approximately 1.16% better than that of PSMM-Net. The
results in Table V demonstrate that the proposed method learns
discriminative features of genuine and fake faces from the VIS
and generated Polar images. According to the comparison of
the three input modalities, our approach achieved SOTA levels
on the ACER, APCER, and BPCER metrics.

In Table VI, we show the comparison between the results
of our method and the results of the method described in [18]
under the CASIA-SURF dataset. The ACER result for PSMM-
Net is 0.53% lower in the Polar_G modality than in NIR_G.
The ACER result for PTG-Face is 0.42% lower than those for
MA-Net.

To better analyze our proposed method, we compared it
with the SOTA NIR generation method [18] in CASIA-SURF,
where all experiments were performed on the setup in [18].
Compared to [18], lower ACER results were achieved using
our Polar_G modal in PSMM-Net than the NIR modal gener-
ated in [18], with an ACER reduction of 0.53%. Meanwhile,
the ACER result for PTG-Face is 0.42% lower than that of
MA-Net. Thus, our method and the Polar_G modes outperform
the SOTA methods.
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V. CONCLUSION

In this paper, we revisit the application of polar patterns in
FAS missions. We propose PTG-Face, a new FAS method that
uses physical cues from VIS and Polar images in the FAS task
without the need for additional polarized imaging equipment.
We design an FC-Net and propose a novel frequency domain
consistency loss that translates VIS images to Polar images
based on the collected VIS images to obtain discriminable
Polar genuine and false face images. Then, we use a dual-
stream CDCN model to learn and extract features from the
real VIS face images and the generated Polar face images for
genuine-fake face classification via feature fusion. Extensive
experimental results show that our approach can not only
generate realistic Polar face images, but also tap the intrinsic
features of genuine and fake faces, and achieve excellent
results in FAS classification performance. Our planned future
work includes 1) optimizing the Polar generation network by
in-depth analysis of Polar features, and 2) establishing a more
suitable Polar-based FAS benchmark dataset.
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