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Abstract— Secret-key agreement using physical identifiers is a
promising security protocol for the authentication of users and
devices with small chips, owing to its lightweight security. In the
previous studies, the fundamental limits of such a protocol were
analyzed, and the results showed that two auxiliary random
variables were involved in the capacity region expressions.
However, with two auxiliary random variables, it is difficult to
directly apply the expressions to derive the computable forms
of the capacity regions for certain information sources such as
binary and Gaussian sources, which hold importance in practical
applications. In this paper, we explore the structure of authentica-
tion channels and reveal that for the classes of degraded and less
noisy authentication channels, a single auxiliary random variable
is sufficient to express the capacity regions. As specific examples,
we use the expressions with one auxiliary random variable to
derive the computable forms for binary and Gaussian sources.
Numerical calculations for the Gaussian case show the trade-off
between secret-key and privacy-leakage rates under a given
storage rate, which illustrates how the noise in the enrollment
phase affects the capacity region.

Index Terms— Secret-key agreement, physical identifiers,
degraded and less noisy channels, binary and Gaussian sources.

I. INTRODUCTION

IN THE age of fast and momentous advancements in com-
munication technologies, the number of Internet-of-Things

(IoT) devices has increased remarkably. Since IoT devices
equipped with small chips have resource-constrained capabili-
ties, they may not be suitable for deploying high-profile cryp-
tography schemes such as public-key encryption/decryption
for device authentication. Lightweight security protocols
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handily feasible on physical layers have been receiving recent
attention to a greater extent since they enable the devices to
securely communicate with low latency as well as low power
consumption [2].

Secret-key agreement in which physical identifiers are used
as information sources to generate secret keys for authentica-
tion, called authentication system in this paper, has emerged
as a promising candidate since it provides a low-complexity
design, consumes less power, and preserves secrecy [3].
As authentication can be performed on demand, the cost
is lower than that of key storage in non-volatile random
access memories [4], [5]. Physical identifiers could be physical
unclonable functions (PUFs), making use of intrinsic manu-
facturing variations of the integrated circuit to produce source
sequences [6]. Several PUF designs have been proposed over
the last few decades and can be largely classified into either
strong PUFs or weak PUFs. We focus on weak PUFs such as
static random-access memory (SRAM) PUFs and ring oscilla-
tor (RO) PUFs since they produce reliable challenge-response
pairs that can be used as unique cryptographic keys for
IoT device security [7]. Although generating processes are
different, PUFs and biometric identifiers have several aspects
in common, and nearly all assumptions and analyses of PUFs
can be applied to biometric identifiers [8]. Thus, the theoretical
results developed in this study should be applicable to the
scenario where biometric identifiers are treated as sources.

A block diagram related to the data flows of an authen-
tication system with PUFs is illustrated in Figure 1, and
the system consists of two phases, i.e., enrollment (top)
and authentication (bottom) phases. In the enrollment phase,
observing a measurement of the source sequence via a channel,
which is assumed to be noise-free in some previous studies,
the encoder generates a pair of secret key and helper data.
The helper data is shared with the decoder via a noiseless
public channel to assist in the reconstruction of the secret key.1

In the authentication phase, the decoder estimates the secret
key using the helper data and another measurement observed
through a channel in this phase [9], [10]. In this paper, the
channels in the enrollment and the authentication phases are
called the enrollment channel (EC) and authentication channel
(AC), respectively. EC and AC are modeled to represent the

1It is assumed that the secret key is stored in a secure database whose
location is unknown to an eavesdropper; however, the eavesdropper eavesdrops
on the helper data from the public database, which can be thought of as a
public channel connecting the encoder and decoder, and utilizes it to examine
the statistical behavior of the secret key.
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Fig. 1. A basic concept of secret-key agreement using physical and biometric
identifiers [9].

noises added to the identifiers during the enrollment and
authentication phases, respectively.

Relevant practical applications of the system described
above include biometrics-based access control systems [11],
fuzzy extractor schemes [12], [13], and field-programmable
gate array (FPGA) based key generation with PUFs for IoT
device authentication [14]. As a connection to physical layer
security, PUFs are deployed to assist with key generation in
poor scattering environments to enhance the randomness of
bit sequences extracted from wireless channels, and it has
been demonstrated that a higher secret-key generation rate is
realizable [15].

A. Related Work
Seminal studies [9] and [10] independently investigated the

fundamental limits of secret-key and privacy-leakage rates,
called the capacity region, of the authentication systems.
The capacity region elucidates the best possible trade-off
between secret-key and privacy-leakage rates. The revealed
trade-off may provide direct insights and serves as significant
indicators for researchers seeking to design good practical
codes that could achieve the largest achievable secret-key
rate and the lowest implementable privacy-leakage rate for
an authentication system.2 In [9], eight different systems were
taken into consideration, but among them, the generated-secret
(GS) and chosen-secret (CS) models are the two major systems
that are closely related to real-life applications and have been
frequently analyzed in subsequent studies.3

The secret-key capacity increases for multiple rounds of
enrollments and authentications in the GS model [16] and
CS model [17] with static random-access memory PUFs
(SRAM PUFs). The work [9] is extended to include a storage
constraint [18], a multi-identifier scenario with joint and

2Note that when referring to the capacity region in the upcoming sections,
it includes an extra dimension, the storage rate, along with the secret-key and
privacy-leakage rates. To decrease memory usage in the public database, the
storage rate should be minimized, similar to the privacy-leakage rate.

3The difference between the two models appears in the enrollment phases.
In the GS model, the secret key is extracted from the measurement of
identifiers observed at the encoder and does not need to be saved in the public
database. By contrast, in the CS model, the secret key, chosen uniformly and
independently of other random variables, is combined with the measurement.
The combined information, which contains data relevant to the secret key but
not the plain form of the key, is stored in the database so that the decoder
can reliably estimate the secret key. Hence, compared with the GS model,
the minimum amount of storage rate required for the CS model is larger in
general. See [9, Section III] for a more comprehensive explanation.

distributed encoding [19], and polar codes for achieving the
fundamental limits [20]. All the theoretical results mentioned
above [9], [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20] are clarified under a common assumption, i.e.,
the EC is noiseless, and this particular model is known as
a visible source model. Recently, the capacity regions of
the GS and CS models have been characterized in a more
realistic setting where EC is noisy [21], and this model is
called a hidden source model. As an extended scenario of
authentication systems, the GS and CS models that involve
not only secret-key authentication but also user identification
can be found in, e.g., [22], [23], and [24].

For practical code constructions on the authentication
systems, some state-of-the-art approaches for binary source
sequences are investigated in [25] for polar codes and in [26]
for both Wyner-Ziv and nested polar codes. Compared to the
simulation results in [25] and [26], better performance in terms
of secret-key versus storage ratio is achieved by deploying
nested randomized polar subcodes [27]. Lately, a model with
non-binary sources is developed in [28] with multilevel cod-
ing, and its performance is also evaluated by taking coded
modulation and shaping techniques into consideration [29].

The capacity region of a GS model with the structure of AC
following the channel of the wiretap channels or two-receiver
broadcast channels with confidential messages [30] was inves-
tigated in [31]. In this model, AC is composed of the
channel to the encoder, referred to as the main channel, and
the channel to the eavesdropper (Eve), referred to as Eve’s
channel. Eve can obtain not only the helper data transmitted
over public channels but also a correlated sequence of the
source identifiers via her channel. This setup can be viewed as
the source model of key-agreement problems [32], [33], [34]
with one-way communication only and a privacy constraint.
The privacy constraint is imposed to minimize the information
leakage of the identifiers, and in general, its analysis becomes
challenging especially when the noise in the enrollment phase
is taken into account [21]. An extension of the work [31]
by considering noisy EC and action cost at the decoder was
presented in [35], and in both [31] and [35], it was shown that
the resulting expressions of the capacity regions involve two
auxiliary random variables for a general class of ACs.

In a different setting, the GS and CS models with joint-
measurement channels, where EC and AC are modeled
as broadcast channels [36] to assume correlated noises in
the measurements, were examined in [37]. Models with
joint-measurement channels that incorporate Eve’s channel can
be found in [38]. These studies analyzed the capacity regions
for some classes of broadcast channels, e.g., degraded and less
noisy channels [36]. In a similar manner, we also investigate
the capacity regions of the authentication systems for similar
classes of channels, but the models and the point to which we
direct our attention are different from those of [37] and [38].
More precisely, we deal with the models with separate mea-
surements as in [35], and focus on the structure of AC,
e.g., the main channel is less noisy than Eve’s channel or
Eve’s channel is degraded with respect to the main channel,
to simplify the expressions of the capacity regions with two
auxiliary random variables that have been characterized in
the paper.
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B. Motivations

In real-life applications, the observations of PUFs and bio-
metric identifiers are usually corrupted by noise. For instance,
the measurements of PUFs’ signals are affected by surrounding
environments of integrated circuits such as temperature vari-
ation, change of supply voltage, and electronic noise [3], [8].
Likewise, a scanned picture of a fingerprint corresponds to a
noisy version of its original image. Therefore, the assumption
of the hidden source model as in [35] is considered to be a
more realistic setting compared to that of the visible source
model [31]. We thus adopt the setting of [35] on our model.

As we mentioned in the previous subsection, the expressions
of the capacity regions of the GS and CS models charac-
terized in [35] under a general class of AC involve two
auxiliary random variables. Nevertheless, these expressions are
impractical for developing the computable and tight bounds
for some specific information sources and channels directly.
Therefore, we explore and identify the classes of ACs that
require only one auxiliary random variable for expressing the
capacity regions, and use the simplified expressions to derive
the computable forms for those specific sources and channels.

In this paper, we first investigate and characterize the
capacity region with a single auxiliary random variable of the
authentication systems for discrete sources and then apply this
result to derive the capacity regions of GS and CS models
for binary sources and channels. As an application of the
systems with binary sources, it is well-known that SRAM-PUF
responses are binary, and the outputs of sources and channels
of SRAM PUFs can be modeled as binary bit sequences [16].

Furthermore, the measurements of the majority of PUFs are
represented by continuous values. As an instance, the samples
generated by RO PUFs obey a Gaussian distribution [39].
In addition, the noise in most communication channels is
modeled as additive white Gaussian noise (AWGN). Motivated
by this nature, we later extend the GS and CS models
considered in [35] to characterize the capacity regions for
Gaussian sources and channels.

C. Summary of Contributions
Unlike the technique used in [31] and [35], we apply

information-spectrum methods [34], [40] to derive our main
results. An advantage of leveraging these methods is that
the argument does not depend on the size of the source
alphabet, so it can also encompass continuous sources. The
main contributions of this work are listed as follows:

• We demonstrate that one auxiliary random variable suf-
fices to characterize the capacity regions of the GS and
CS models when ACs are in the class of less noisy
channels. Though less noisy ACs are a subclass of a
general class of ACs, our results are not obtainable by
a trivial reduction from the result derived in [35] under
the general class of ACs.

• We apply the simplified expressions to derive the capacity
regions for binary sources under less noisy ACs, which
is a more general setting than the one discussed in [35,
Section IV]. To obtain the tight regions, we establish
a new lemma and use it to match the inner and outer
bounds.

• The work [41] is extended to characterize the closed-form
expressions of the capacity regions for a hidden source
model. Also, numerical calculations of the Gaussian case
are provided to demonstrate the trade-off between secret-
key and privacy-leakage rates in the visible and hidden
source models and to capture the effects of noise in the
enrollment phase toward the capacity region.

D. Modeling Assumptions

We assume that each symbol in the source sequences is
independently and identically distributed (i.i.d.). Techniques
such as principal component analysis [42] and transform-
coding-based algorithms [43] can be applied to convert
biometric and physical identifiers into a vector having
(nearly) independent components. However, under various
environments and conditions, it may not be feasible to
completely remove the correlations among symbols in the
source sequence. For simplicity in the analysis, in this paper,
we derive all the results under the assumption that every sym-
bol of the source and measurement vectors is i.i.d. generated
according to a joint distribution.

In principle, Eve can be classified as either a passive or
active eavesdropper. In this paper, we only focus on a passive
attack and do not address the issues of active attacks on
PUFs, e.g., machine learning and side-channel attacks [35,
Section IV]. The obtained results are analyzed under the
common assumption that a PUF is capable of fending off these
invasive attacks that may transform the physical features of
PUF outputs permanently [8].

E. Notation and Organization

Italic uppercase A and lowercase a denote a random variable
and its realization, respectively. An

= (A1, · · · , An) represents
a string of random variables and subscript represents the
position of a random variable in the string. PA(·) denotes
the probability mass function of the random variable A. H(·)
and Hb(·) denote the Shannon entropy and the binary entropy
function, respectively. For other notation, refer to Table I.

The rest of this paper is organized as follows: In Section II,
we introduce the system models and formulate achievability
definitions. Section III derives the capacity regions of the
authentication systems with one auxiliary random variable, and
Section IV focuses on binary and Gaussian examples. Finally,
concluding remarks and future work are given in Section V.

II. SYSTEM MODELS AND PROBLEM FORMULATIONS

A. System Models

The GS and CS models, with mathematical notations, are
depicted in Figure 2. The sequences (X̃n, Xn, Y n, Zn) are
i.i.d., and their joint distribution is factorized as PX̃n XnY n Zn =∏n

t=1 PX̃ t |X t
· PX t · PYt Zt |X t .

Let Sn = [1 : MS] and Jn = [1 : MJ ] be the sets of secret
keys and helper data, respectively. Here, MS and MJ stand for
the largest values in the sets from which secret key and helper
data take values. The random vectors X̃n and (Y n, Zn) denote
the measurements of the identifier Xn , generated from i.i.d.
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TABLE I
LIST OF NOTATION

Fig. 2. System models in the presence of Eve: The arrows attached with
(GS) and (CS) denote the directions of the secret keys in the GS and CS
models, respectively.

source PX , via EC (X , PX̃ |X , X̃ ) and AC (X , PY Z |X ,Y×Z),
respectively. Assume that all alphabets X̃ , X , Y , and Z are
finite, but this assumption will be relaxed in Section IV-B.

In the GS model, observing the measurement X̃n , the
encoder e generates a helper data J ∈ Jn and a secret key
S ∈ Sn ; (J, S) = e(X̃n). The helper data J is shared with
the decoder via a noiseless public channel. Detecting Y n , the
decoder d estimates the secret key generated at the encoder
using Y n and helper data J ; Ŝ = d(Y n, J ), where Ŝ denotes
an estimation of the secret key S. In the CS model, the secret
key S is chosen uniformly from Sn and is independent of other
random variables. It is embedded into the measurement X̃n to
form the helper data J ; J = e(X̃n, S). For the decoder, similar
to the decoder of the GS model, the estimate is produced as
Ŝ = d(Y n, J ).

As the helper data J is sent over public channels, Eve can
completely eavesdrop on this information. In addition to the
helper data, Eve has a sequence Zn , an output of the marginal
channel PZ |X , and both J and Zn are exerted to learn the
secret key S as well as the source identifier Xn . In essence, the
information leaked to Eve regarding the identifier can not be

made negligible because of the high correlation among Xn , J ,
and Zn . However, it is possible to decelerate the distributions
of S and (J, Zn) and make them almost independent, so Eve
may be able to recover only some insignificant bits but not
the entire secret key based on the data available on her side.

B. Problem Formulations for the GS and CS Models

In this section, the formal achievability definitions of the GS
and CS models are provided. We begin with the GS model.

Definition 1: A tuple of secret-key, storage, and privacy-
leakage rates (RS, RJ , RL) ∈ R3

+ is said to be achievable for
the GS model if for sufficiently small δ > 0 and large enough
n there exist pairs of encoders and decoders satisfying

Pr{Ŝ ̸= S} ≤ δ, (error probability) (1)
H(S)+ nδ ≥ log MS ≥ n(RS − δ), (secret-key) (2)

log MJ ≤ n(RJ + δ), (storage) (3)
I (S; J, Zn) ≤ δ, (secrecy-leakage) (4)

I (Xn
; J, Zn) ≤ n(RL + δ). (privacy-leakage) (5)

Also, RG is defined as the closure of the set of all achievable
rate tuples for the GS model, called the capacity region. □

The technical meaning of each constraint in Definition 1
can be interpreted as follows: Condition (1) evaluates the
error probability of estimating the secret key. This is related
to the reliability of the authentication systems and the prob-
ability must be bounded by a sufficiently small number δ.
Equation (2) is the constraint on the secret-key rate, and
the generated key should be forced to be nearly uniform in
the entropy sense so as to extract as large a key size as
possible. Constraint (3) is imposed to minimize the size of
the local random codebook that is required for enrollment and
authentication. The rate of the codebook must not exceed a
given storage rate RJ .

Equation (4) measures the information leaked about the
secret key to Eve, called secrecy leakage, and the secrecy
leakage is evaluated under a strong secrecy criterion, which
requires that the amount of leakage should be bounded by a
small value regardless of the block length n. In other words,
Eve can only obtain an ignorable amount of information
regarding the secret key through the helper data and the
correlated sequence. The last condition (5) assesses the amount
of privacy leakage for the biometric or physical identifiers to
Eve. In general, unlike the secrecy leakage (4), it is infeasible
to make this amount vanish since the helper data itself are
generated from X̃n , a correlated sequence of Xn , and Zn is
also correlated to Xn . However, it is important to minimize
this quantity to protect the sensitive data of users or the
characteristics of PUFs embedded inside the integrated circuits
of IoT devices.

The achievability definition of CS model is defined below.
Definition 2: A tuple of (RS, RJ , RL) ∈ R3

+ is said to be
achievable for the CS model if for any δ > 0 and large enough
n there exist pairs of encoders and decoders satisfying all the
requirements imposed in Definition 1 with replacing (2) by

log MS ≥ n(RS − δ). (6)

We define RC as the capacity region of the CS model. □
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The interpretations of the constraints in Definition 2 are the
same as that in Definition 1; therefore, the details are omitted.
In (6), the enforcement of the secret key to be uniform is no
longer needed for the CS model as the secret key is uniformly
chosen from the set Sn .

There are other possible ways to define the secrecy-leakage
and privacy-leakage in the authentication systems such as
conditional entropy and variational distance. Nevertheless,
in this paper, we adopt mutual information as the main metric,
as in [31] and [35], so that it would be easy for us to connect
our main results with those clarified in the previous studies.

C. The Capacity Regions With Two Auxiliary
Random Variables

To facilitate the understanding of our main contributions in
Section III, we highlight a complete characterization of the
capacity regions of the GS and CS models (without action
costs) derived in [35] for discrete sources.

Theorem 1 (Günlü et al. [35, Theorems 3 and 4]): The
capacity regions of the GS and CS models under the general
class of ACs are given by

RG =

⋃
PU |X̃ ,PV |U

{
(RS, RJ , RL) ∈ R3

+ :

RS ≤ I (Y ; U |V )− I (Z; U |V ), RJ ≥ I (X̃; U |Y ),

RL ≥ I (X; U, Y )− I (X; Y |V )+ I (X; Z |V )
}
, (7)

RC =

⋃
PU |X̃ ,PV |U

{
(RS, RJ , RL) ∈ R3

+ :

RS ≤ I (Y ; U |V )− I (Z; U |V ),

RJ ≥ I (X̃; U |Y )+ I (Y ; U |V )− I (Z; U |V ),

RL ≥ I (X; U, Y )− I (X; Y |V )+ I (X; Z |V )
}
, (8)

where auxiliary random variables U and V satisfy the Markov
chain V −U − X̃ −X −(Y, Z) and their cardinalities are limited
to |V| ≤ |X̃ | + 6 and |U | ≤ (|X̃ | + 6)(|X̃ | + 5). □

The single-letter expressions of the regions above associate
two auxiliary random variables U and V . Theorem 1 tells
us that similar to the conclusion drawn in [33] for the
key-agreement problem, two auxiliary random variables are
required for expressing the capacity regions of the authentica-
tion systems for the general class of ACs.

In general, once the single-letter expressions for discrete
sources are established, it is common to characterize a com-
putable form of the capacity region for special cases via such
expressions. However, it is challenging to directly employ the
expressions in (7) and (8) so as to derive a computable form on
the capacity regions for binary and Gaussian sources due
to the difficulty of handling two auxiliary random variables.
In the next section, we explore the classes of ACs such that
the capacity regions can be expressed by one auxiliary random
variable.

III. STATEMENT OF MAIN RESULTS

As mentioned in the introduction, the structure of AC in
the system model is similar to the channel of two-receiver

broadcast channels with confidential messages. When it comes
to the discussion on broadcast channels, degraded, less noisy,
and more capable channels are three important classes of
channels that are often discussed because the single-letter
characterization for the capacity region of these types of broad-
cast channels is determinable [36, Chapter 5]. The class of
degraded channels can be further subdivided into two classes:
the classes of physically and statistically degraded channels.
It is known that the latter class is larger than the former. In this
section, we will take a look into each characterization of the
capacity regions for these important channel classes.

Prior to the presentation of our main results, the formal defi-
nitions of physically and stochastically degraded channels, less
noisy, and more capable channels [36] are defined. In order not
to confuse with AC of the authentication systems, we denote
the conditional probability of the channel of two-receiver
broadcast channels as PBC |A(b, c|a) for (a, b, c) ∈ A×B×C,
and PB|A(b|a) and PC |A(c|a) correspond to the conditional
marginal distributions of the broadcast channels.

Definition 3 Physically Degraded Channel: (A, PC |A, C)
is physically degraded with respect to (A, PB|A,B) if
PBC |A(b, c|a) = PB|A(b|a) · PC |B(c|b) for some transition
probabilities PC |B .

(Stochastically Degraded Channel): We say that
(A, PC |A, C) is stochastically degraded with respect to
(A, PB|A,B) if there exists a channel (B, PC |B, C) such that
PC |A(c|a) =

∑
b∈B PC |B(c|b)PB|A(b|a).

(Less Noisy Channel): (A, PB|A,B) is less noisy than
(A, PC |A, C) if I (B; W ) ≥ I (C; W ) for every random vari-
ables W such that W − A − (B,C).

(More Capable Channel): (A, PB|A,B) is more capable
than (A, PC |A, C) if I (A; B) ≥ I (A; C) for all PA. □

A clear relation among these classes of channels is that
degraded channels are a subclass of less noisy channels, and
less noisy channels are a subclass of more capable channels.

In some literature, e.g., [44], less noisy channels are called
noisier channels. More precisely, it is said that (A, PC |A, C)
is noisier than (A, PB|A,B) if for every random variables W
such that W − A − (B,C), we have that I (B; W ) ≥ I (C; W ).
In this manuscript, we sometimes use the terms “less noisy
channels” and “noisier channels” interchangeably.

In order to simplify the statement of our main results,
we define five new rate regions. The following rate constraints
are used in the newly defined rate regions.

RS ≤ I (Y ; U |Z), (9)
RS ≤ I (Y ; U )− I (Z; U ), (10)

RJ ≥ I (X̃; U |Y ), (11)

RJ ≥ I (X̃; U |Z), (12)
RL ≥ I (X; U |Y )+ I (X; Z). (13)

Definition 4: Rate regions of secret-key, storage, and
privacy-leakage rates are defined as

A1 =

⋃
PU |X̃

{
(RS, RJ , RL) ∈ R3

+ : The auxiliary random

variable U satisfies (9), (11), and (13)
}
, (14)
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A2 =

⋃
PU |X̃

{
(RS, RJ , RL) ∈ R3

+ : The auxiliary random

variable U satisfies (9), (12), and (13)
}
, (15)

A3 =

⋃
PU |X̃

{
(RS, RJ , RL) ∈ R3

+ : The auxiliary random

variable U satisfies (10), (11), and (13)
}
, (16)

A4 =

⋃
PU |X̃

{
(RS, RJ , RL) ∈ R3

+ : The auxiliary random

variable U satisfies (10), (12), and (13)
}
, (17)

where auxiliary random variable U in the regions (14) and
(15) satisfies the Markov chain U − X̃ − X − Y − Z and
auxiliary random variable U in the regions (16) and (17)
satisfies U − X̃ − X − (Y, Z). The cardinality of the alphabet
U on the auxiliary random variables U in all regions above
is constrained by |U | ≤ |X̃ | + 3. Also, define

A5 = {(RS, RJ , RL) : RS = 0, RJ ≥ 0, RL ≥ I (X; Z)}.
(18)

□
The regions A1 and A2 in Definition 4 correspond to the

capacity regions of the GS and CS models when the AC is
physically or statistically degraded, and the regions A3 and
A4 are related to the capacity regions of the GS and CS models
for less noisy ACs. The region A5 is used in a special case
for degraded, less noisy, and Gaussian ACs, and no auxiliary
random variable is involved in the expression in this region.

We start presenting our main results by showing a theorem
when AC is degraded.

Theorem 2: Suppose that AC PY Z |X has a structure such
that Eve’s channel PZ |X is physically degraded with respect
to the main channel PY |X , meaning that the Markov chain
X − Y − Z holds. The capacity regions among secret-key,
storage, and privacy-leakage rates of the GS and CS models
are given by

RG = A1, RC = A2. (19)

Reciprocally, if the Markov chain X − Z −Y holds, the regions
are characterized as

RG = RC = A5. (20)

□
The proof of Theorem 2 is similar to that of Theorem 3;

therefore, it is omitted.
Remark 1: The capacity regions of physically and stochas-

tically degraded ACs are given in the same form as in
Theorem II-C. This is because the capacity region depends
on the marginal distributions (PX̃ |X , PY |X , PZ |X ), and for the
model considered in this paper, these distributions coincide
for both physically and stochastically degraded ACs.

The following theorem states the capacity regions of the GS
and CS models for less noisy ACs.

Theorem 3: If AC PY Z |X has a structure such that PY |X
is less noisy than PZ |X , i.e., I (Y ; W ) ≥ I (Z; W ) for every

random variable W such that W − X − (Y, Z), we have that

RG = A3, RC = A4. (21)

For the case where PZ |X is less noisy than PY |X , i.e.,
I (Y ; W ) ≤ I (Z; W ) for every W such that W − X − (Y, Z),
the capacity regions of the systems are provided by

RG = RC = A5. (22)

□
The proof of Theorem 3 is available in Appendix A. By a

similar method used in [9, Section V-A], it can be checked
that both RG and RC are convex. In case of no presence of
Eve (Z is independent of other random variables), Theorems 2
and 3 naturally reduce to the capacity regions given in [21].

Note that the assumption of less noisy channels seen in
Theorem 3, i.e., I (Y ; U ) ≥ I (Z; U ) (or I (Y ; U ) ≤ I (Z; U )),
is satisfied for every U satisfying the Markov chain U − X̃ −

X − (Y, Z). This fact is utilized in the proof of this theorem.
Remark 2: The class of more capable channels includes

less noisy channels as a special case [36]. When the AC is in
the class of more capable channels, i.e., I (X; Y ) ≥ I (X; Z)
or I (X; Y ) ≤ I (X; Z), it is not yet known whether the
capacity region can be characterized by one auxiliary random
variable. More specifically, due to the impact of noise on the
enrollment phase, the condition I (X; Y ) ≥ I (X; Z) does not
guarantee that I (Y ; U ) ≥ I (Z; U ) and I (X̃; Y ) ≥ I (X̃; Z),
making it difficult to identify the sign in the right-hand side of
the secret-key rate constraint in (10). The same observation
applies to the case in which I (X; Y ) ≤ I (X; Z).

An observation from the theorems and remarks shown above
is that in the wiretap channels, the fundamental limits, e.g, the
capacity-equivocation regions, depend on the channel PY Z |X
only through the marginal distributions of the main channel
PY |X and Eve’s channel PZ |X [45]. This conclusion may be
applicable to a visible source model of the authentication
systems. However, for the settings of hidden source model,
the capacity regions are hinged on by not only the marginal
distributions of AC PY Z |X but also the EC PX̃ |X .

IV. EXAMPLES

A. Binary Sources

In this section, the characterization of a binary example for
Theorem 3 in the case where Eve’s channel is noisier than the
main channel is presented.

Consider the source random variable X ∼ Bern( 1
2 ), PX̃ |X

is a binary symmetric channel with crossover probability
p ∈ [0, 1/2], PY |X is a binary erasure channel with an erasure
probability q ∈ [0, 1], and PZ |X is a binary symmetric channel
with crossover probability ϵ ∈ [0, 1/2]. Note that if the
relation of ϵ and q is such that 2q < ϵ < 4q(1 − q), PY |X is
less noisy than PZ |X , but PY |X is not a degraded version of
PZ |X . An illustration of this setting is described in Figure 3.

Let the test channel PU |X̃ be a binary symmetric channel
with crossover probability β ∈ [0, 1/2]. The optimal rate
regions of the GS and CS models in this case are given below.

Theorem 4: For binary sources when the main channel is
less noisy than Eve’s channel, the capacity regions of the GS
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Fig. 3. Transition probabilities of each channel for binary example.

and CS models are given as

RG =

⋃
0≤β≤1/2

{
(RS, RJ , RL) ∈ R3

+ :

RS ≤ Hb(β ∗ p ∗ ϵ)− (1 − q)Hb(β ∗ p)− q,

RJ ≥ q + (1 − q)Hb(β ∗ p)− Hb(β),

RL ≥ 1 + q − q Hb(β ∗ p)− Hb(ϵ)
}
, (23)

RC =

⋃
0≤β≤1/2

{
(RS, RJ , RL) ∈ R3

+ :

RS ≤ Hb(β ∗ p ∗ ϵ)− (1 − q)Hb(β ∗ p)− q,

RJ ≥ Hb(β ∗ p ∗ ϵ)− Hb(β),

RL ≥ 1 + q − q Hb(β ∗ p)− Hb(ϵ)
}
, (24)

where the convolution operation ∗ is defined as x ∗ y = x(1−

y)+ (1 − x)y for x ∈ [0, 1] and y ∈ [0, 1]. □
The proof of Theorem 4 is given in Appendix C. In [35],

the rate region of the GS model for binary sources was derived
under the assumptions that X̃ = X (EC is noiseless) and the
AC is physically degraded, i.e., the Markov chain X − Y − Z
holds. Theorem 4 is provided under a more general setting,
and the key idea for deriving this theorem is to apply Mrs.
Gerber’s Lemma [46] in the reverse direction of Eve’s channel
to obtain an upper bound on the conditional entropy H(Z |U ).
However, the obtained bound is not yet tight. We establish a
simple lemma (Lemma 3) to acquire the optimal upper bound
on H(Z |U ) to match the outer region with the inner region.

B. Scalar Gaussian Sources

Unlike the discrete sources, for Gaussian sources, we pro-
vide the capacity regions of the system for a general class of
Gaussian ACs. A picture of data flows for Gaussian sources
is depicted at the top of Figure 4. Assume that the source is
given by X ∼ N (0, 1), and the channels PX̃ |X , PY |X , and
PZ |X are modeled as

X̃ = ρ1 X + N1, Y = ρ2 X + N2, Z = ρ3 X + N3, (25)

where |ρ1|, |ρ2|, |ρ3| < 1 are the correlation coefficients of
each channel, N1 ∼ N (0, 1 − ρ2

1), N2 ∼ N (0, 1 − ρ2
2),

and N3 ∼ N (0, 1 − ρ2
3) are Gaussian random variables, and

independent of each other and of other random variables.
Using a technique of transforming the exponent part of

the joint distributions used in [47] or covariance matrix

Fig. 4. Data flows of the original system model (top) and transformed one
(bottom) for Gaussian sources and channels.

transformations in [34, Appnedix C.1], (25) can be rewritten
as

X = ρ1 X̃ + Nx , Y = ρ2 X + N2, Z = ρ3 X + N3, (26)

where Nx ∼ N (0, 1−ρ2
1) and is independent of other random

variables. A depiction of the data flows for (26) is displayed at
the bottom of Figure 4, and the capacity regions for Gaussian
sources are derived via (26) instead of (25). The result is given
below.

Theorem 5: Under the condition of ρ2
2 > ρ2

3 , i.e., X̃ − X −

Y − Z (cf. [34, Lemma 6]), the capacity regions of the GS and
CS models for Gaussian sources are given by

RG =

⋃
PU |X̃

{
(RS, RJ , RL) ∈ R3

+ : The auxiliary random

variable U satisfies (9), (11), and (13)
}
, (27)

RC =

⋃
PU |X̃

{
(RS, RJ , RL) ∈ R3

+ : The auxiliary random

variable U satisfies (9), (12), and (13)
}
, (28)

where auxiliary random variable U satisfies the Markov chain
U − X̃ − X − Y − Z. Unlike Theorem 2, the random variable
U is a continuous random variable and its cardinality is
unbounded. For the case of ρ2

2 ≤ ρ2
3 , i.e., X̃ − X − Z − Y , the

regions are characterized in the same form

RG = RC = A5. (29)

□
Theorem 5 can be proved by a similar method for deriv-

ing Theorem 3, and thus we omit the detailed proof. In
Theorems 2, 3, and 5, when the structure of ACs is such
that the main channel is degraded with respect to Eve’s
channel or is noisier than Eve’s one, the capacity regions
of the GS and CS models are given in the same form. The
secret-key generation at a positive rate is not possible, and
the minimum value of the storage rates is zero, but that of
the privacy-leakage rate can still be positive depending on the
joint marginal densities of (X, Z). Even when the encoding
procedure is not needed, e.g., U is set to be a constant, the
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information leaked to Eve via her channel PZ |X is at minimum
rate I (Z; X), which is equal to the capacity of this channel.
This quantity corresponds to an uncontrollable amount of the
privacy-leakage rate at the encoder, and it is avoidable if
the privacy-leakage rate is constrained by conditional mutual
information, i.e., I (Xn

; J |Zn), as in [48].
Note that due to the unbounded cardinality of the auxiliary

random variable, the regions in (27) and (28) are not directly
computable. Next, we show that the parametric forms, i.e.,
computable expressions, of Theorem 5 are determined by
a single parameter. The parameter α which appears in the
following corollary acts as an adjusting parameter for the
variance of the auxiliary random variable U . Unlike random
variables (X̃ , X, Y, Z), in which their variances are always
one, the auxiliary random variable U could be any Gaussian
random variable with a variance in the range (0, 1].

Corollary 1: When the condition ρ2
2 > ρ2

3 is satisfied,
we can compute the regions in (27) and (28) as

RG =

⋃
α∈(0,1]

{
(RS, RJ , RL) ∈ R+

3 :

RS ≤
1
2

log

(
αρ2

1ρ
2
3 + 1 − ρ2

1ρ
2
3

αρ2
1ρ

2
2 + 1 − ρ2

1ρ
2
2

)
,

RJ ≥
1
2

log

(
αρ2

1ρ
2
2 + 1 − ρ2

1ρ
2
2

α

)
,

RL ≥
1
2

log

(
αρ2

1ρ
2
2 + 1 − ρ2

1ρ
2
2

(αρ2
1 + 1 − ρ2

1)(1 − ρ2
3)

)}
, (30)

RC =

⋃
α∈(0,1]

{
(RS, RJ , RL) ∈ R+

3 :

RS ≤
1
2

log

(
αρ2

1ρ
2
3 + 1 − ρ2

1ρ
2
3

αρ2
1ρ

2
2 + 1 − ρ2

1ρ
2
2

)
,

RJ ≥
1
2

log

(
αρ2

1ρ
2
3 + 1 − ρ2

1ρ
2
3

α

)
,

RL ≥
1
2

log

(
αρ2

1ρ
2
2 + 1 − ρ2

1ρ
2
2

(αρ2
1 + 1 − ρ2

1)(1 − ρ2
3)

)}
, (31)

respectively, and that of (29) is given as

RG = RC =

{
(RS, RJ , RL) : RS = 0, RJ ≥ 0,

RL ≥
1
2

log

(
1

1 − ρ2
3

)}
. (32)

□
The full proof of Corollary 1 is available in [1, Appendix

D] and the convexity of these regions is verified in [1,
Appendix E]. When EC is noiseless (i.e., ρ2

1 → 1), Corollary 1
reduces to the parametric forms derived in [41, Corollary 1].
In addition, when Eve can observe only the helper data,
corresponding to the case in which Z is independent of other
random variables (ρ2

3 = 0), Corollary 1 matches with the
parametric expressions of the GS and CS models provided
in [47, Corollary 1].

C. Behaviors of the Capacity Region for Gaussian Sources

In this section, we investigate the ultimate (asymptotic)
limits of the secret-key and privacy-leakage rates and provide
some numerical results under Gaussian sources. For brevity,
we focus only on the GS model.

First, we find expressions for the optimal secret-key and
privacy-leakage rates under a fixed condition of RJ for the
hidden source model. Let us fix the storage rate

RαJ =
1
2

log

(
αρ2

1ρ
2
2 + 1 − ρ2

1ρ
2
2

α

)
, (33)

equivalent to α =
1−ρ2

1ρ
2
2

e2RαJ −ρ2
1ρ

2
2

. Now define two rate functions

R∗

S(R
α
J ) = max

(RS ,RαJ ,RL )∈RG
RS,

R∗

L(R
α
J ) = min

(RS ,RαJ ,RL )∈RG
RL . (34)

Using the value of α, we can write that

R∗

S(R
α
J ) =

1
2

log

(
1 − ρ2

1ρ
2
3 − ρ2

1(ρ
2
2 − ρ2

3)e
−2RαJ

1 − ρ2
1ρ

2
2

)
,

R∗

L(R
α
J ) =

1
2

log

(
1 − ρ2

1ρ
2
2

(1 − ρ2
3)(1 − ρ2

1 + ρ2
1(1 − ρ2

2)e
−2RαJ )

)
.

(35)

The asymptotic limits of secret-key and privacy-leakage rates
when RαJ tends to infinity are given by

lim
RαJ →∞

R∗

S(R
α
J ) =

1
2

log

(
1 − ρ2

1ρ
2
3

1 − ρ2
1ρ

2
2

)
= I (Y ; X̃ |Z),

lim
RαJ →∞

R∗

L(R
α
J ) =

1
2

log

(
1 − ρ2

1ρ
2
2

(1 − ρ2
1)(1 − ρ2

3)

)
= I (X; X̃ |Y )+ I (X; Z). (36)

For the visible source model, the asymptotic limits of
secret-key and privacy-leakage rates for a given storage rate
are determinable by substituting ρ2

1 = 1 into (36), i.e.,

lim
R̃αJ →∞

R̃∗

S(R̃
α
J ) =

1
2

log

(
1 − ρ2

3

1 − ρ2
2

)
= I (X; Y |Z),

lim
R̃αJ →∞

R̃∗

L(R̃
α
J ) = lim

R̃αJ →∞

(
1
2

log

(
1

1 − ρ2
3

)
+ R̃αJ

)
→ ∞,

(37)

where R̃αJ =
1
2 log

(
αρ2

2+1−ρ2
2

α

)
and R̃∗

S(R̃
α
J ) and R̃∗

L(R̃
α
J ) are

defined in the same manner as (34) and correspond to the max-
imum secret-key rate and the minimum privacy-leakage rate
for this model under fixed R̃αJ . One can see that in the second
equation of (37), the optimal value of the privacy-leakage rate
increases linearly with the storage rate.

Next, we provide some numerical calculations of the region
RG in (30), and take a look into special points of both the
visible source model (ρ2

1 = 1) and hidden source model (ρ2
1 <

1). The following two scenarios are considered.
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Fig. 5. Projection of the capacity region RG in (30) with different ρ2
1 onto

RJ RS -plane.

Fig. 6. Projection of the capacity region RG in (30) with different ρ2
1 onto

RJ RL -plane.

1) ρ2
1 varies over three values 1.0, 0.9, and 0.7, but (ρ2

2 , ρ
2
3)

is fixed at (0.8, 0.5). This is the case where the probability
of enrollment channel PX̃ |X could be changed, but that
of the authentication channel PY Z |X remains the same.

2) ρ2
1 is fixed at 0.9, but (ρ2

2 , ρ
2
3) could be either one of

the pairs (0.8, 0.5), (0.7, 0.6), or (0.6, 0.7). This is the
opposite example of Scenario 1).

Figures 5 and 6 plot the optimal values between secret-key
and storage rates (RαJ , R∗

S(R
α
J )) and privacy-leakage and

storage rates (RαJ , R∗

L(R
α
J )), respectively, for Scenario 1).

Figures 7 and 8 illustrate the relations of the same rate pairs
for Scenario 2). These figures are obtained by calculating the
values of RαJ defined in (33), and R∗

S(R
α
J ) and R∗

L(R
α
J ) defined

in (35) with respect to the parameter α. In this calculation,
we set the step size of α to be 10−5, which was found to be
sufficiently small for numerical implementation.

From Figures 5 and 6, the visible source model produces a
better secret-key rate but leaks more privacy of physical identi-
fiers to Eve compared to the performances of the hidden source
model. More precisely, the asymptotic values of secret-key rate
are limRαJ →∞ R∗

S(R
α
J ) =

1
2 log( 5

2 ) = 0.458 nats, 0.338 nats,

Fig. 7. Projection of the capacity region RG in (30) with different ρ2
2 and

ρ2
3 onto RJ RS -plane.

Fig. 8. Projection of the capacity region RG in (30) with different ρ2
2 and

ρ2
3 onto RJ RL -plane.

and 0.195 nats when ρ2
1 is equal to 1.0, 0.9, and 0.7,

respectively. This indicates that when ρ2
1 decreases, implying

that the noise introduced to the identifiers in the enrollment
phase increases, the secret-key rate becomes smaller.

Conversely, in terms of the privacy-leakage rate, the
asymptotic limits become limRαJ →∞ R∗

L(R
α
J ) → ∞,

0.861 nats, and 0.538 nats when ρ2
1 is equal to 1.0, 0.9, and

0.7, respectively. Evidently, when ρ2
1 is low, less information

about the identifiers leaks to Eve. By the reason that the noise
in the enrollment phase serves as a fixed filter [49] to obscure
the privacy of identifiers, when ρ2

1 is small (the variance of
noise added to the identifiers in the EC is large), the amount
of information leaked to Eve is also small. By contrast, when
ρ2

1 approaches 1, the effectiveness of the filter is lessened, and
the hidden source model behaves similarly to the visible source
model. Thus, a larger amount of privacy of the identifiers could
be leaked.

For Scenario 2), Figures 7 and 8 show that the achievable
secret-key rate gradually decreases and the privacy-leakage
rate rises as the value of ρ2

2 declines and that of ρ2
3 increases,

which can explicitly be verified by comparing two distinct
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values of the secret-key and privacy-leakage rates in (35)
with different pairs (ρ2

2 , ρ
2
3) under the same storage rate.

These behaviors suggest that when the noise variance of the
measurements observed through the main channel is large,
corresponding to the case where a low-quality quantizer, e.g.,
quantizer with few quantization levels, is deployed at the
decoder, it leads to a small secret-key generation rate and
a high privacy-leakage rate. This effect becomes particularly
remarkable when Eve uses a high-quality quantizer.

In the authentication systems, it is favored for achieving
a high secret-key rate while maintaining low storage and
privacy-leakage rates, but these simulation results reflect the
difficulty of achieving such a tuple simultaneously. Therefore,
to prevent a circumstance such that a significant loss of privacy
occurs, it may be important not only to focus on increasing the
gain for the secret-key rate but also to weigh its balance with
the storage and privacy-leakage rates as well when designing
practical codes for an authentication system.

V. CONCLUSION

In this paper, we investigated the classes of ACs for
which the capacity regions of the GS and CS models can be
characterized by one auxiliary random variable. The obtained
results revealed that only a single auxiliary random variable
is required to characterize the capacity regions for degraded
and less noisy ACs. Moreover, the capacity regions of the
authentication systems for both binary and Gaussian sources
were derived. All the expressions derived in this work are not
only tight but also readily computable. They may serve as a
performance benchmark when practical channel codes such as
LDPC and polar codes are constructed for the authentication
systems as in [25] for a visible source model. We also
provided some numerical calculations for the Gaussian case
to demonstrate the impact of noise in the enrollment phase on
the capacity region as well as to examine the trade-off between
secret-key and privacy-leakage rates for a given storage rate.

For future work, a natural extension of this work is to
investigate whether polar codes can achieve all the rate points
in the capacity region of binary sources. In fact, for the
typical key-agreement problem [20], polar codes were shown
to achieve the fundamental limits by exploiting the degraded
and less noisy properties of the main and Eve’s channels.
Due to the similarities of the key-agreement problem and
our model, it may be possible to demonstrate that the code
achieves the fundamental limits of the authentication systems
as well. Furthermore, extending the results in Section IV-B to
vector Gaussian case is another interesting research topic.

APPENDIX A
PROOF OF THEOREM 3

This appendix deals with the proof of the capacity regions
for less noisy ACs. We only provide the proof of (21) since
that of (22) follows similarly by simply setting the auxiliary
random variable U to be constant. The entire proof is divided
into two parts, namely, the converse and achievability parts.
For the converse part, the derivation of each rate constraint
for the GS and CS models is discussed in detail, while in the
achievability part, only the key point is addressed.

Fig. 9. The possibility of a reduction in Theorem 1 to obtain the outer
regions of GS and CS models for less noisy ACs.

A. Converse Part

Note that following the same technique used in [35], the
capacity regions derived under the general class of ACs also
hold for less noisy ACs. Figure 9 illustrates the possibility
of a direct deduction of the capacity regions of the GS and
CS models for less noisy ACs via the expressions with two
auxiliary random variables that we have seen in Theorem 1.

More specifically, it is possible to derive the outer region on
RG in Theorem 3 directly via the region in (7) by exploiting
the long Markov chain V − U − X̃ − X − (Y, Z), as shown
in Figure 10, and the property of less noisy channels, but the
same approach cannot be applied to the CS model. In the
proof, we demonstrate the proofs of the GS and CS models
via different approaches. The proof begins with the GS model
and follows by the detailed argument of the CS model.

Converse Proof of GS Model: Since the bounds on RJ in
both the regions in (7) and (21) remain unchanged, we need
to check the constraints on the secret-key and privacy-leakage
rates. Transform the bound on the secret-key rate as follows:

RS ≤ I (Y ; U |V )− I (Z; U |V )
(a)
= I (Y ; U )− I (Y ; V )− (I (Z; U )− I (Z; V ))

= I (Y ; U )− I (Z; U )− (I (Y ; V )− I (Z; V ))
(b)
≤ I (Y ; U )− I (Z; U ), (38)

where (a) follows by the Markov chains V −U−Y and V −U−

Z , derivable from the Markov chain V −U − X̃ − X − (Y, Z)
(cf. Figure 10), and (b) follows because less noisy ACs fulfill
the condition I (Y ; V ) ≥ I (Z; V ) for every V − X − (Y, Z).

Likewise, for the bound on the privacy-leakage rate, we have

RL ≥ I (X; U, Y )− I (X; Y |V )+ I (X; Z |V )
(a)
= I (X; U, Y )− (I (X; Y )− I (Y ; V ))

+ I (X; Z)− I (Z; V )

= I (X; U |Y )+ I (X; Y )− (I (X; Y )− I (Y ; V ))

+ I (X; Z)− I (Z; V )

= I (X; U |Y )+ I (X; Z)+ I (Y ; V )− I (Z; V )
(b)
≥ I (X; U |Y )+ I (X; Z), (39)

where (a) is due to the Markov chain V − X − (Y, Z) and
(b) is due to the property that I (Y ; V ) ≥ I (Z; V ) for less
noisy ACs. Hence, the converse proof of the GS model is
attained. □

Converse Proof of CS Model: Observe that the right-hand
side of the storage rate of the CS model with two auxiliary
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Fig. 10. Some shorter Markov chains that can be derived from the long
Markov chain in Theorem 1.

random variables can be reshaped as

RJ ≥ I (X̃; U |Y )+ I (Y ; U |V )− I (Z; U |V )
(a)
= I (X̃; U )− I (Y ; U )+ I (Y ; U )− I (Y ; V )

− (I (Z; U )− I (Z; V ))

= I (X̃; U )− I (Z; U )− (I (Y ; V )− I (Z; V ))
(b)
= I (X̃; U |Z)− (I (Y ; V )− I (Z; V )), (40)

where (a) is due to the Markov chains U − X̃ −Y and V −U −

(Y, Z), and (b) follows from the Markov chain U − X̃ − Z .
In (40), since I (Y ; V ) ≥ I (Z; V ) for less noisy ACs, this

lower bound cannot be further reduced to the one seen in
(12). We cannot apply the technique used for the GS model
to derive the outer bound directly from the region with two
auxiliary random variables (cf. eq. (8)) for the CS model, and
thus an alternative approach is required. Here, we make use of
a standard technique that relies on the assumption of auxiliary
random variables and Fano’s inequality.

Suppose that a rate tuple (RS, RJ , RL) is achievable, imply-
ing that there exists a pair of encoders and decoders such that
all requirements in Definition 2 are satisfied for small enough
δ > 0 and block length n ≥ n0 (n0 ≥ 1). For t ∈ [1 : n],
define auxiliary random variables Ut = (J, S, Y n

t+1, Z t−1) and
Vt = (J, Y n

t+1, Z t−1). Under these settings, it is easy to verify
that the Markov chain Vt −Ut − X̃ t − X t −(Yt , Z t ) is satisfied.

Analysis of Secret-key Rate: Define δn =
1
n (1 + δ log MS),

and this quantity is related to an upper bound of Fano’s
inequality. From (6), the secret-key rate can be bounded by

n(RS − δ) ≤ log MS = H(S)

(a)
≤

n∑
t=1

{I (Yt ; Ut |Vt )− I (Z t ; Ut |Vt )} + n(δn + δ)

(b)
=

n∑
t=1

{I (Yt ; Ut )− I (Z t ; Ut )−(I (Yt ; Vt )

−I (Z t ; Vt ))} + n(δn + δ)

(c)
≤

n∑
t=1

{I (Yt ; Ut )− I (Z t ; Ut )} + n(δn + δ), (41)

where (a) is due to a similar argument in [21, eq. (40)], (b)
holds since the Markov chains Vt − Ut − Yt and Vt − Ut − Z t
are applied, and (c) follows from the Markov chain Vt −

Ut − (Yt , Z t ) and the property of less noisy channels that
I (Yt ; Vt ) ≥ I (Z t ; Vt ) for any random variable Vt such that
Vt − X t − (Yt , Z t ).

Analysis of Storage Rate: For the CS model, note
that the secret key S is independent of random variables
(X̃n, Xn, Y n, Zn), and the helper data J is a function of
(X̃n, S). From (3), we have that

n(RJ + δ)

≥ log MJ ≥ H(J ) = I (X̃n, S; J )

= I (X̃n, S; J, Zn)− I (X̃n, S; Zn
|J )

≥ I (X̃n
; J, Zn

|S)− I (X̃n
; Zn

|J, S)
(a)
= I (X̃n

; J, Zn
|S)− H(Zn

|J, S)+ H(Zn
|X̃n)

≥ I (X̃n
; J, Zn

|S)− I (X̃n
; Zn)

= I (X̃n
; J |Zn, S)+ I (X̃n

; Zn
|S)− I (X̃n

; Zn)

= I (X̃n
; J |S, Zn) = H(X̃n

|Zn)− H(X̃n
|J, S, Zn) (42)

=

n∑
t=1

{H(X̃ t |Z t )− H(X̃ t |X̃ t−1, J, S, Zn)}

(b)
=

n∑
t=1

{H(X̃ t |Z t )− H(X̃ t |X̃ t−1, J, S, Zn, Y n
t+1)}

(c)
≥

n∑
t=1

{H(X̃ t |Z t )− H(X̃ t |J, S, Y n
t+1, Z t )}

=

n∑
t=1

{H(X̃ t |Z t )− H(X̃ t |Z t ,Ut )} =

n∑
t=1

I (X̃ t ; Ut |Z t ),

(43)

where (a) is due to the Markov chain Zn
− (X̃n, S) − J and

S is independent of other random variables, (b) is due to the
Markov chain X̃ t − (X̃ t−1, J, S, Zn) − Y n

t+1, and (c) follows
because conditioning reduces entropy.

Analysis of Privacy-Leakage Rate: We can develop the
right-hand side of (5) as

n(RL + δ) ≥ I (Xn
; J, Zn)

= I (Xn
; J, S, Zn)− I (Xn

; S|J, Zn)

≥ I (Xn
; J, S, Zn)− H(S)

= I (Xn
; J, S|Zn)+ nI (X; Z)− H(S)

= I (Xn
; J |S, Zn)+ nI (X; Z)− H(S)

(a)
≥

n∑
t=1

I (X t ; Ut |Z t )+ nI (X; Z)− H(S)

(b)
≥

n∑
t=1

I (X t ; Ut |Yt )+ nI (X; Z)− n(δn + δ),

(44)

where (a) follows from similar steps between (42) and (43),
and (b) follows since H(S) is upper bounded by the last
inequality in (41).

The proof wraps up with the standard argument for single
letterization using a time-sharing random variable Q, where
the random variable Q is uniformly distributed on [1 : n]

and independent of other random variables. More specifically,
define X = X Q , X̃ = X̃ Q , Y = YQ , Z = Z Q , and U =

(UQ, Q), so that U − X̃ − X − (Y, Z) forms a Markov chain,
and finally, letting n → ∞ and δ ↓ 0, from (41), (43), and
(44), we obtain RC ⊆ A4.
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For the cardinality bound on the set U of the auxiliary ran-
dom variable U , we apply the support lemma [36, Lemma 3.4]
to show that |U | ≤ |X̃ | + 3. More precisely, |X̃ | − 1 con-
tinuous functions suffice to preserve H(X̃), and other four
more elements are necessary for preserving the conditional
entropies H(X |U ), H(X̃ |U ), H(Y |U ) and H(Z |U ). See [21,
Appendix A] for a detailed discussion. Now the converse proof
for the CS model is attained. □

B. Achievability Proof

In the proof, we provide only the main contribution of
this part, which is the analysis of the privacy-leakage rate
for the GS models, since other constraints can be proved by
techniques developed in previous studies. As we have seen
in the reduction of (39), the maximum lower bound on the
privacy-leakage rate for less noisy ACs decreases compared to
that of general ACs, so the important objective in the analysis
is to check whether the decreased bound can be achieved or
not. For the proof of the CS model, it follows similarly to that
of the GS model with one-time pad operation to conceal the
secret key, and thus it is omitted. The readers may refer to
[1, Appendix A] for a detailed discussion.

Fix the test channel PU |X̃ and let γ be small enough posi-
tive. Set RS = I (Y ; U )−I (Z; U )−6γ , RJ = I (X̃; U |Y )+4γ ,
and RL = I (X; U |Y ) + I (X; Z) + 7γ , and the sizes of the
set of helpers |Jn| = exp{n RJ } and the set of secret keys
|Sn| = exp{n RS}. Define the sets

Tn =

{
(un, x̃n) :

1
n

log
PU n |X̃n (un

|x̃n)

PU n (un)
≤ I (X̃; U )+ γ

}
,

An =

{
(un, yn) :

1
n

log
PY n |U n (yn

|un)

PY n (yn)
≥ I (Y ; U )− γ

}
,

Kn =

{
(un, x̃n, xn) :

1
n

log
PX̃n |U n Xn (x̃n

|un, xn)

PX̃n |Xn (x̃n|xn)
≥ I (X̃; U |X)− γ

}
,

where U n
∼
∏n

t=1 PUt with PUt = PU for t ∈ [1 : n].
Next, we determine the codebook, and the enrollment

(encoding) and authentication (decoding) procedures.
Random Code Generation: Generate exp{n(I (X̃; U )+2γ )}

i.i.d. sequences of ũn from PU and denote the set of these
sequences as Qn . Let gn : X̃ n

→ Qn ⊂ Un be the mapping of
measurement x̃n into ũn . The mapping rule is that it searches
ũn such that (ũn, x̃n) ∈ Tn . In case there are multiple such
ũn , the encoder picks one at random. On the contrary, if there
does not exist such a sequence, ũn

1 is chosen. Now prepare
MJ = en RJ bins. Assign each sequence ũn

∈ Qn to one
of MJ bins according to a uniform distribution on Jn . This
random assignment is denoted by φn(ũn). Let j = φn(ũn),
j ∈ Jn , denote the bin’s index to which ũn belongs. Also, let
Fn be a universal hash family of functions [50] from Qn to
Sn . A function fn : Qn → Sn is selected uniformly from Fn
and satisfies that PFn ({ fn ∈ Fn : fn(ũn) = fn (̂un)}) ≤

1
|Sn |

for any distinct sequences ũn
∈ Qn and ûn

∈ Qn , where PFn

is a uniform distribution on Fn .
In the actual encoding and decoding processes, the set Qn

and the random functions φn and fn are fixed.

Encoding: Observing x̃n , the encoder first uses gn to map
this sequence to ũn

∈ Qn . It then determines the index j of
the bin to which ũn belongs, i.e., j = φn(ũn), and generates a
secret key s = fn(ũn). The index j is shared with the decoder
for authentication.

Decoding: Seeing yn , the decoder looks for a unique ûn

such as j = φn (̂un) and (̂un, yn) ∈ An . If such a ûn is found,
then the decoder sets ψn( j, yn) = ûn , and distills the secret
key ŝ = fn (̂un). Otherwise, the decoder outputs ŝ = fn(ũn

1)

and error is declared.
The random codebook Cn consists of the set Qn =

{U n
i : i ∈ [1 : exp{n(I (X̃; U ) + 2γ )}]} and the functions

(gn, φn, ψn, fn), and it is revealed to all parties.
By a similar argument for evaluating the error probability

for the Wyner-Ziv problem for general sources in [51], the
error probability of the authentication systems averaged over
the random codebook vanishes for large enough n. The bound
on the storage rate is straightforward from the rate setting.
The secret-key rate can be proved via [52, Lemma 3], and
using [34, Lemma 12] and [52, Lemma 3] together, the
secrecy-leakage can be made negligible for large enough n.

In the remainder of this proof, we evaluate the average
performance of the privacy-leakage rate (5) over all possible
Cn . Before diving into the detailed analysis, we introduce some
useful lemmas for the analysis.

Lemma 1: It holds that

ECn [Pr{(gn(X̃n), X̃n, Xn) /∈ Kn}] ≤ γ (45)

for large enough n, where ECn [·] denotes the expectation over
the random codebook Cn . □

By the definition of the set Kn , the probability
Pr{(U n, X̃n, Xn) /∈ Kn} → 0 for large enough n, and therefore
using [51, Lemma 1], it guarantees that (45) holds. For detailed
discussions of the above lemma, the readers may refer to the
appendix in [51].

The following lemma is needed for the analysis of the
privacy-leakage rate. The lemma was proved in [53, Lemma 4]
for a strong typicality set [36] and [47, Lemma A4] for a
modified-weak typicality set [9]. Here, a different proof, based
on the information-spectrum methods, is given.

Lemma 2: We have that

H(X̃n
|Xn, gn(X̃n), Cn) ≤ n(H(X̃ |X,U )+ 2γ + rn), (46)

where rn = 1/n(1 − log(1 − γ ))+ γ log |X̃ |, and rn tends to
zero as n approaches infinity and γ ↓ 0.

Proof: The proof is given in Appendix B. □
Analysis of Privacy-Leakage Rate: For (5), we have that

I (Xn
; J, Zn

|Cn) = I (Xn
; J |Cn)+ I (Xn

; Zn
|J, Cn)

(a)
= I (Xn

; J |Cn)+ H(Zn
|J, Cn)− H(Zn

|Xn)

(b)
≤ I (Xn

; J |Cn)+ nI (X; Z), (47)

where (a) holds because for a given Cn , the Markov
chain J − Xn

− Zn holds, and (Xn, Zn) are indepen-
dent of Cn , and (b) follows because conditioning reduces
entropy.
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Next, we focus on bounding the term I (Xn
; J |Cn) in (47):

I (Xn
; J |Cn) = H(J |Cn)− H(J |Xn, Cn)

≤ n RJ − H(J |Xn, Cn)

= n RJ − H(X̃n, J |Xn, Cn)+ H(X̃n
|Xn, J, Cn)

(c)
≤ n RJ − nH(X̃ |X)+ H(X̃n

|Xn, J, Cn)

(d)
= n RJ − nH(X̃ |X)+ H(X̃n

|Xn, gn(X̃n), Cn)

+ I (X̃n
; gn(X̃n)|Xn, J, Cn)

= n RJ − nH(X̃ |X)+ H(X̃n
|Xn, gn(X̃n), Cn)

+ H(gn(X̃n)|Xn, J, Cn)

(e)
= n RJ − nH(X̃ |X)+ H(X̃n

|Xn, gn(X̃n), Cn)

+ H(gn(X̃n)|Xn, J, Y n, Cn)

(f)
≤ n RJ − nH(X̃ |X)+ H(X̃n

|Xn, gn(X̃n), Cn)

+ H(gn(X̃n)|J, Y n, Cn)

(g)
≤ n RJ −nH(X̃ |X)+H(X̃n

|Xn, gn(X̃n), Cn)+nδn
(h)
≤ n(RJ −H(X̃ |X)+H(X̃ |X,U )+2γ+rn +δn)

= n(RJ − I (X̃; U |X)+ 2γ + rn + δn)

(i)
= n(RJ − (I (X̃; U )− I (X; U ))+ 2γ + rn + δn)

= n(I (X; U )− I (Y ; U )+ 6γ + rn + δn), (48)

where (c) holds as (X̃n, Xn) are independent of Cn , (d) follows
because J is a function of gn(X̃n), i.e., J = φ(gn(X̃n)),
(e) is due to the Markov chain gn(X̃n) − (Xn, J ) − Y n , (f)
follows because conditioning reduces entropy, (g) follows as
the codeword gn(X̃n) can be estimated from (J, Y n) with high
probability, and thus Fano’s inequality is applied, (h) follows
from Lemma 2, (i) is due to the Markov chain U − X̃ − X ,
and the last equality holds as we set RJ = I (X̃; U |Y )+ 4γ .

Merging (47) and (48), we obtain that

I (Xn
; J, Zn

|Cn) ≤ n(I (X; U |Y )+ I (X; Z)+ 8γ )
= n(RL + γ ) (49)

for large enough n, which gives the desired bound on the
privacy-leakage rate constraint (5) in Definition 1, and this also
hints that the decreased lower bound on the privacy-leakage
rate in (39) is achievable.

Finally, applying the selection lemma [44, Lemma 2.2],
there exists at least one good codebook that satisfies all
conditions in Definition 1.

APPENDIX B
PROOF OF LEMMA 2

Define a binary random variable T = 1{(gn(X̃n), X̃n, Xn) ∈

Kn}, where 1{·} denotes the indicator function. When T = 0,
using Lemma 1, it is straightforward that ECn [PT (0)] ≤ γ.

In the rest of equation developments, let cn and ũn be
realizations of the random codebook Cn and the mapping
function gn(X̃n), namely, ũn

= gn(x̃n), respectively. The
conditional entropy on the left-hand side of (46) can be
evaluated as

H(X̃n
|Xn, gn(X̃n), Cn)

≤ H(X̃n, T |Xn, gn(X̃n), Cn)

≤ H(T )+ H(X̃n
|Xn, gn(X̃n), T, Cn)

≤ 1 + ECn [PT (0)]H(X̃n)

+

∑
cn

PT,Cn (1, cn)H(X̃n
|Xn, gn(X̃n), T = 1, Cn = cn)

≤ 1 + nγ log |X̃ |

+

∑
cn

PT,Cn (1, cn)H(X̃n
|Xn, gn(X̃n), T = 1, Cn = cn),

(50)

where the last inequality is due to Lemma 1. Next,
we concentrate only on bounding the conditional entropy
H(X̃n

|Xn, gn(X̃n), T = 1, Cn = cn) in (50). For a given
Cn = cn , we define the following probability distribution

Pgn(X̃n)X̃n Xn |T (ũ
n, x̃n, xn

|1)

=


Pgn(X̃n)X̃n Xn (ũn, x̃n, xn)

PT (1)
if (ũn, x̃n, xn) ∈ Kn

0 otherwise
,

(51)

and PT (1) =
∑
(ũn ,x̃n ,xn)∈Kn

Pgn(X̃n)X̃n Xn (ũn, x̃n, xn), which
is obvious from the definition of the random variable T . For
every tuple (ũn, x̃n, xn) ∈ Kn , observe that

PX̃n |Xn gn(X̃n)T (x̃
n
|xn, ũn, 1)

(a)
=

Pgn(X̃n)X̃n Xn (ũn, x̃n, xn)

Pgn(X̃n)Xn T (ũ
n, xn, 1)

≥

Pgn(X̃n)X̃n Xn (ũn, x̃n, xn)

Pgn(X̃n)Xn (ũn, xn)
= PX̃n |gn(X̃n)Xn (x̃n

|ũn, xn),

(52)

where (a) is due to (51). Also, we have that

log
1

PX̃n |Xn gn(X̃n)(x̃
n|xn, ũn)

= log
PX̃n |XnU n (x̃n

|xn, ũn)

PX̃n |Xn gn(X̃n)(x̃
n|xn, ũn)

+ log
PX̃n |Xn (x̃n

|xn)

PX̃n |XnU n (x̃n|xn, ũn)
+ log

1
PX̃n |Xn (x̃n|xn)

(b)
≤ log

PX̃n |XnU n (x̃n
|xn, ũn)

PX̃n |Xn gn(X̃n)(x̃
n|xn, ũn)

− n(I (X̃; U |X)− γ )+ n(H(X̃ |X)+ γ )

= log
PX̃n |XnU n (x̃n

|xn, ũn)

PX̃n |Xn gn(X̃n)(x̃
n|xn, ũn)

+ n(H(X̃ |X,U )+ 2γ ) (53)

for all large n, where (b) follows because the condition of the
set Kn is applied to the second term, and using the law of
large numbers, the i.i.d. property of (X̃n, Xn) guarantees that
log 1

PX̃n |Xn (x̃n |xn)
≤ n(H(X̃ |X)+ γ ) for large enough n.

In light of (50), we have that

H(X̃n
|Xn, gn(X̃n), T = 1, Cn = cn)

≤ H(X̃n
|Xn, gn(X̃n), T = 1)

=

∑
(ũn ,x̃n ,xn)∈Kn

Pgn(X̃n)X̃n Xn T (ũ
n, x̃n, xn, 1)
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·

(
log

1
PX̃n |Xn gn(X̃n)T (x̃

n|xn, ũn, 1)

)
(c)
≤

∑
(ũn ,x̃n ,xn)∈Kn

Pgn(X̃n)X̃n Xn T (ũ
n, x̃n, xn, 1)

·

(
log

1
PX̃n |Xn gn(X̃n)(x̃

n|xn, ũn)

)
(d)
≤

∑
(ũn ,x̃n ,xn)∈Kn

PT (1) · Pgn(X̃n)X̃n Xn |T (ũ
n, x̃n, xn

|1)

·

(
log

PX̃n |XnU n (x̃n
|xn, ũn)

PX̃n |Xn gn(X̃n)(x̃
n|xn, ũn)

+ n(H(X̃ |X,U )+ 2γ )
)

(e)
≤ n(H(X̃ |X,U )+ 2γ )− log(1 − γ ), (54)

where (c) and (d) follow from (52) and (53), respectively, and
(e) is due to (55) shown below. To derive (55), we define
An

= (gn(X̃n), X̃n, Xn) and an
= (ũn, x̃n, xn) for brevity.

From (51), it follows that Pg(X̃n)X̃n Xn (ũn, x̃n, xn) = PT (1) ·

PAn |T (an
|1), and thus we have that∑

an
∈Kn

PAn |T (an
|1) log

PX̃n |XnU n (x̃n
|xn, ũn)

PX̃n |Xn gn(X̃n)(x̃
n|xn, ũn)

(f)
≤ log

( ∑
an

∈Kn

PAn |T (an
|1) · PX̃n |XnU n (x̃n

|xn, ũn)

PX̃n |Xn gn(X̃n)(x̃
n|xn, ũn)

)

= log
( ∑

an
∈Kn

Pgn(X̃n)Xn (ũn, xn) · PX̃n |XnU n (x̃n
|xn, ũn)

PT (1)

)

≤ log
( ∑
(ũn ,xn)∈Qn×X n

Pgn(X̃n)Xn (ũn, xn)

·

( ∑
x̃n

∈X̃ n

PX̃n |XnU n (x̃n
|xn, ũn)

))
− log PT (1)

(g)
≤ − log(1 − γ ), (55)

where (f) is due to Jensen’s inequality and (g) follows because
Lemma 1, implying that PT (1) ≥ 1 − γ , is used.

Lastly, substituting (54) into (50), it follows that

H(X̃n
|Xn, gn(X̃n), Cn) ≤ n(H(X̃ |X,U )+ 2γ + rn), (56)

where rn = 1/n(1 − log(1 − γ ))+ γ log |X̃ |. □

APPENDIX C
PROOF OF THEOREM 4

Note that due to the uniformity of the sources, the reverse
channel PX |X̃ also results in a binary symmetric channel with
crossover probability p, and the entropies H(X̃), H(X), and
H(Z) are all equal to one.

Achievability: We begin by proving the inner region of RG .
Observe that each rate constraint in the region can be bounded
as follows:

RS ≤ I (Y ; U )− I (Z; U )
(a)
= (1 − q)I (X; U )− I (Z; U )

= H(Z |U )− (1 − q)H(X |U )−q (57)
(b)
= Hb(β ∗ p ∗ ϵ)− (1 − q)Hb(β ∗ p)− q, (58)

RJ ≥ I (X̃; U |Y ) = I (X̃; U )− I (Y ; U )

= I (X̃; U )− (1 − q)I (X; U )

= q + (1 − q)H(X |U )− H(X̃ |U ) (59)
(c)
= q + (1 − q)Hb(β ∗ p)− Hb(β), (60)

RL ≥ I (X; U |Y )+ I (X; Z) = q I (X; U )+ I (X; Z)

= 1 + q − q H(X |U )− H(X |Z) (61)
(d)
= 1 + q − q Hb(β ∗ p)− Hb(ϵ), (62)

where (a) follows because Y = X with probability 1 − q,
and (b), (c), and (d) are achieved by considering the test
channel PU |X̃ to be a binary symmetric channel with crossover
probability β. For the CS model, we argue only for the storage
rate as the others follow the same analysis seen in the GS
model:

RJ ≥ I (X̃; U |Z)
(a)
= I (X̃; U )− I (Z; U )

= H(Z |U )− H(X̃ |U ) (63)
= Hb(β ∗ p ∗ ϵ)− Hb(β), (64)

where (a) follows from the Markov chain U − X̃ − Z . □
Converse Part: Before the proof, we introduce a simple

lemma that will be used to match the inner and outer bounds
of the capacity regions for binary sources.

Lemma 3: Given p ∈ [0, 1
2 ] and ϵ ∈ [0, 1

2 ], and for any
λ ∈ [0, 1/2], it holds that

λ ∗ p − ϵ

1 − 2ϵ
≤ λ ∗ p ∗ ϵ ≤

1
2
, (65)

where the special case of ϵ =
1
2 for the fraction of the left-hand

side in (65) should be interpreted as lim
ϵ→ 1

2
−
λ∗p−ϵ
1−2ϵ .

Proof: First, the second inequality in (65) follows from the
reason that for given p and ϵ, the function λ ∗ p ∗ ϵ is non-
decreasing with respect to λ, and its peak is 1/2 at the point
λ = 1/2.

Next, the relation of the first inequality in (65) is verified.
We begin by mentioning an extreme case where ϵ =

1
2 . When

ϵ approaches 1
2 , we consider other two subcases where (p =

1
2 ,

λ ∈ [0, 1
2 ]) and (p < 1

2 , λ ∈ [0, 1
2 ]). For the former subcase,

the limit value lim
ϵ→ 1

2
−
λ∗p−ϵ
1−2ϵ is 1

2 regardless of λ. The first

inequality in (65) holds for this subcase as λ ∗ p ∗ ϵ =
1
2 for

p =
1
2 . For the latter subcase, we have that

lim
ϵ→ 1

2
−

λ ∗ p − ϵ

1 − 2ϵ
=


−∞ (λ <

1
2
)

1
2

(λ =
1
2
)

. (66)

Since λ ∗ p ∗ ϵ ≥ 0 and λ ∗ p ∗ ϵ =
1
2 at λ =

1
2 , the first

inequality in (65) also holds for the latter subcase.
In the remaining of the proof, we focus on the range of

ϵ ∈ [0, 1
2 ). Due to the same reason for the second inequality

in (65), it is obvious that λ ∗ p ≤ 1/2 or 2(λ ∗ p) ≤ 1, and
since ϵ ≥ 0, it follows that −2ϵ(1 − ϵ) ≤ −4ϵ(1 − ϵ)(λ ∗ p).
Adding λ ∗ p to both sides of this inequality, we have that
−2ϵ + 2ϵ2

+ λ ∗ p ≤ −4ϵ(λ ∗ p) + 4ϵ2(λ ∗ p) + λ ∗ p.
Rearrange both sides as follows:

−ϵ + λ ∗ p ≤ ϵ − 2ϵ2
− 4ϵ(λ ∗ p)+ 4ϵ2(λ ∗ p)+ λ ∗ p
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= (1 − 2ϵ)(ϵ − 2ϵ(λ ∗ p)+ λ ∗ p)

= (1 − 2ϵ)(λ ∗ p ∗ ϵ), (67)

indicating that Lemma 3 holds. □
To derive the outer region of the GS model, we need to

further bound (57), (59), and (61). In order to do so, we fix
H(X |U ) and derive tight upper bounds for both H(Z |U ) and
H(X̃ |U ). Since Hb(p) = H(X |X̃) ≤ H(X |U ) ≤ H(X) = 1,
we fix λ ∈ [0, 1/2] such that

H(X |U ) = Hb(λ ∗ p). (68)

In the direction from Z to X , using Mrs. Gerber’s Lemma [46],
it follows that

H(X |U ) ≥ Hb(H−1
b (H(Z |U )) ∗ ϵ). (69)

Now substituting the value of H(X |U ) that we have set in
(68) into the left-hand side of (69), we have that

Hb(λ ∗ p) ≥ Hb(H−1
b (H(Z |U )) ∗ ϵ). (70)

Since all λ, p, ϵ ≤
1
2 and the binary entropy function is

monotonously increasing in the interval [0, 1
2 ], it follows that

λ ∗ p ≥ H−1
b (H(Z |U )) ∗ ϵ

(a)
= H−1

b (H(Z |U ))(1 − 2ϵ)+ ϵ,

where (a) follows from the definition of the operator-∗ defined
in Table I, which implies that

H−1
b (H(Z |U )) ≤

λ ∗ p − ϵ

1 − 2ϵ
≤ λ ∗ p ∗ ϵ, (71)

where the second inequality follows because the first inequality
in (65) is used, and thus

H(Z |U ) ≤ Hb(λ ∗ p ∗ ϵ). (72)

Likewise, in the direction from X̃ to X , again using
Mrs. Gerber’s Lemma, we have that H(X |U ) ≥

Hb(H−1
b (H(X̃ |U )) ∗ p). This equation implies that

λ ∗ p ≥ H−1
b (H(X̃ |U )) ∗ p. Since 0 ≤ p ≤ 1/2,

it follows that H−1
b (H(X̃ |U )) ≤ λ or equivalently,

H(X̃ |U ) ≤ Hb(λ). (73)

Plugging eqs. (68), (72), and (73) into eqs. (57), (59), and
(61), we obtain that

RS ≤ Hb(λ ∗ p ∗ ϵ)− (1 − q)Hb(λ ∗ p)− q, (74)
RJ ≥ q + (1 − q)Hb(λ ∗ p)− Hb(λ), (75)
RL ≥ 1 + q − q Hb(λ ∗ p)− Hb(ϵ). (76)

From (74)–(76), by varying λ over the range [0, 1
2 ] and taking

the union, the inner and outer bounds on the capacity region
match. Hence, the proof of the GS model is completed.

For the CS model, also fix λ such that (68) is satisfied. In the
direction from X to Z , using Mrs. Gerber’s Lemma [46] yields
that

H(Z |U ) ≥ Hb(H−1
b (H(X |U )) ∗ ϵ) = Hb(λ ∗ p ∗ ϵ). (77)

Substituting (73) and (77) into (63), one can derive that
RJ ≥ Hb(λ ∗ p ∗ ϵ) − H(λ), and by varying λ ∈ [0, 1

2 ],
the optimal rate region of the CS model for binary sources is
obtained. □
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