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Privacy of Federated QR Decomposition Using
Additive Secure Multiparty Computation

Anne Hartebrodt , Member, IEEE, and Richard Röttger

Abstract— Federated learning (FL) is a privacy-aware data
mining strategy keeping the private data on the owners’ machine
and thereby confidential. The clients compute local models and
send them to an aggregator which computes a global model.
In hybrid FL, the local parameters are additionally masked
using secure aggregation, such that only the global aggregated
statistics become available in clear text, not the client specific
updates. In this context, we investigate the data leakage of
three popular algorithms for QR decomposition, Gram-Schmidt
orthonormalization, the Householder algorithm and Givens rota-
tion. We show that, even when using additive SMPC, Givens
rotation and the Householder matrix leak raw data and are
therefore not suited for this computation paradigm. Gram-
Schmidt orthonormalization relies on inner vector products and
does not leak raw data points.

Index Terms— Federated learning, federated matrix orthonor-
malization, privacy analysis, linear regression, QR factorization.

I. INTRODUCTION

FEDERATED learning has risen in popularity following
the seminal article by McMahan et al [1], and possibly

accelerated by a search for new privacy preserving data
analysis techniques following the introduction of the GDPR in
Europe. Federated learning is a data analysis paradigm, where
the data stays on the data owners’ machine and only aggre-
gated parameters are exchanged with the other participants or
a central aggregator. There are two main versions of federated
learning, cross-silo federated learning and cross-device feder-
ated learning. Cross-device FL connects many devices with
relatively low computational power, such as mobile phones
or sensors in a learning process. The devices have access to
limited data, for example for one user. Cross-silo federated
learning, the learning paradigm adopted in this article, joins
multiple data silos containing records for a larger group of
participants together [2]. The federated setting adopted in this
article is a type of hybrid federated learning which relies
on secure parameter aggregation (SMPC). This means the
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computations at the client sides are done on clear text, but the
aggregation is performed using secure multiparty computation.
Therefore, only the aggregated parameters become known
to the participants, not the individual clients’ updates. The
participants are honest-but-curious, following the protocol, but
trying to infer as much information as possible from the
updates they receive [3]. Since we “only” use secure aggrega-
tion and allow the disclosure of intermediate and final results,
the advantage is, that we can directly chain together different
algorithms into pipelines. Modern data analysis workflows
rarely only use a single tool, therefore the use of secure
aggregation allows reasonable privacy guarantees, without the
need to develop new protocols for every workflow.

We recently identified federated QR orthonormalization as
a contributor to a more privacy preserving principal com-
ponent analysis (PCA) algorithm [4]. Using federated QR
orthonormalization for singular value decomposition allows
the right, patient-associated singular vectors to remain private
when using federated power iteration. QR decomposition is a
versatile tool used for many more applications in linear alge-
bra, including the solution of systems of linear equations [5].

In centralized learning, the traditional machine learning
setup, where all data is on a global server, three algo-
rithms for QR factorization are available. They are based
on Householder reflection, Givens rotation and the Gram-
Schmidt procedure. The Householder algorithm is the most
efficient for general applications, while Givens rotation is
advantageous for sparse matrices and parallel computing archi-
tectures [6]. Gram-Schmidt orthonormalization is not used as
much in practice due to numerical instabilities on special
matrices [5]. However, a stabilized version of the algorithm
exists and privacy considerations may take precedence over
numerical issues. Consequently, it is interesting to evaluate
the algorithms with regards to their suitability for federated
learning. The primary goal of this article is to evaluate the
data disclosure of the three algorithms when deployed in a
federated setting. In an earlier article, we introduced federated
Gram-Schmidt orthonormalization [4], but it does not return
the full decomposition. Therefore, it needs to be extended
to return a full QR factorization. The other algorithms have
not been explicitly introduced for cross-silo FL, therefore in
this article we develop prototypes of their federated versions.
The main objective of this article is to show that Householder
reflection and Givens rotation have properties that render them
unsuitable for federated computation, when secure additive
aggregation is used.

There are many federated algorithms that can be used for
PCA, including a QR based scheme which has been introduced
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by [7] and which we extend using the orthonormalization
scheme developed in this article. We consider the privacy of
this scheme, when using federated QR orthonormalization.
Notably, the question we want to answer is whether the
introduction of the federated QR scheme increases the privacy
of the algorithm. We find, that upper triangular matrices are
vulnerable to data leakage even when applying Gram-Schmidt
orthogonalization.

Furthermore, to highlight the use for the federated QR
procedure in other applications, we apply federated QR
decomposition to compute linear regression. This could be
used as an alternative solver for the federated linear regression
computation suggested for instance in [8]. Our experiments
demonstrate the same accuracy of the federated linear regres-
sion as standard standalone tools. Additionally, we provide
a federated implementation of the Gram-Schmidt algorithm
using secure multiparty computation with competitive runtime.

To summarize, our contributions are the following:
• We analyze the Householder, Givens and Gram-Schmidt

algorithms for QR decomposition with respect to their
privacy when using hybrid federated learning with secure
additive aggregation.

• In order to do so, we develop prototypes of federated
Householder reflection and Givens rotation and extend a
previous algorithm to return the full QR decomposition.

• We conclude that both federated Householder reflection
and Givens rotation introduce critical data leaks even
when using secure additive aggregation.

• We investigate a special application case of feder-
ated Gram-Schmidt orthogonalization on upper triangular
matrices which may expose the input data.

• We provide a realistic use case of federated QR decom-
position, linear regression.

The remainder of this manuscript is organized as fol-
lows: in Section II, the preliminaries, including the three
centralized QR algorithms are introduced. Section III intro-
duces related work. Based on the centralised descriptions,
in Section IV, we develop federated QR schemes for all
algorithms, and a more detailed description for the most
suitable QR algorithm, the federated Gram-Schmidt procedure
(Section IV-C). In Section V, we evaluate the privacy of a
QR based PCA scheme. Section VI describes how to com-
pute federated linear regression based on QR decomposition.
We provide empirical results for our analyses in Section VII.
Lastly, the results are briefly discussed in Section VIII.
Section IX concludes the work.

II. PRELIMINARIES

A. Data Model and Architecture

In this manuscript we assume matrix A ∈ Rn×m to be
partitioned into a set of s ∈ [S] partial data sets such that
As
∈ Rns

×m . [S] denotes the set of clients joining the
learning system. This partitioning is referred to as horizontal.
We assume all participants have a share of the data, and
the ordering of the rows is known and fixed. We describe
our algorithm using a star-like architecture. We expect the
parameters to be masked using additive secure aggregation

TABLE I
NOTATION TABLE

(cf. Section II-C), therefore we assume that peer-to-peer
communication is possible via secure channels, regardless of
the underlying architecture. This implies that our algorithms
could be run on a fully decentralized architecture. The main
reason for the choice of an aggregator-based architecture is the
reduction in overall communication, because without SMPC
the clients do not have to transmit the intermediate parameters
to all their peers, only to the aggregator.

B. Notation

Vectors and matrices are denoted in boldface, scalars in
normal font. Matrices are noted in upper case letters and
consist of column vectors which are noted in lower case letters.
For instance, the matrix An×m consists of m column vectors
ai where i is the index of the column. Sometimes we refer to
columns and rows of a matrix as A•,i and Ai,• respectively.
Table I contains an overview over the most frequently used
variables in this work.

C. Secure Aggregation

The secure aggregation scheme used in this work relies
on the additive aggregation protocol used by [3]. It assumes
honest-but-curious participants, i. e. all clients perform the
computations following the protocol but try to infer as much
information as possible from the exchanged parameters [9].
All s clients create i = S random shares xs,i of their secret
value xs such that

∑S
i xs,i mod p = xs , where p is a large

prime known to all participants. One can think of the “s”
in xs,i as the source of the share and “i” the destination.
All clients send the respective shares xs,i to the respective
recipients i where the sum of the shares is computed as∑S

s xs,i = xi . None of the shares disclose any information
on the original values. Lastly, the clients announce their
aggregated secret share xi , such that the global sum x =

∑S
i xi

mod p of all private shares can be formed. This scheme is
suitable for a cross-silo federated learning system with reliable
clients (i. e. they do not randomly drop out) and relatively
few participants. Other secure aggregation schemes, such as
Shamir’s protocol, which are more fault tolerant to client
dropout [3] could be used instead without conceptual change
of the algorithm.
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D. Centralized QR Decomposition

The QR decomposition is the factorization of a square
matrix into a square orthonormal matrix Q and an upper
triangular matrix R.

A = QR (1)

It exists also for non-square matrices (reduced QR decom-
position) which is significantly more memory efficient if
n > m. Three popular schemes exist for the computation of the
decomposition, the Householder, Givens and Gram-Schmidt
algorithms. In centralized systems, the Householder algorithm
and Givens rotation are more popular, because they do not
suffer numerical instability as the canonical version of Gram-
Schmidt orthonormalization. Generally, Householder reflection
is more efficient, and preferred unless the matrices are sparse
or parallel compute architecture can be used [6]. See [5] for
more details on the algorithms.

1) Householder Transformation: The Householder reflec-
tion proceeds column-wise, setting all the elements below
the diagonal to 0 using a Householder reflector. Therefore,
it requires m − 1 Householder reflections to form an upper
triangular matrix R starting from a matrix A ∈ Rn×m .
A Householder reflector is defined as

Qu
= I −

2uu⊤

u⊤u
, u ̸= 0 (2)

For each column vector ai in matrix A the Householder
reflection is computed using the following steps. First, a is
normalized as ai =

ai
||ai ||∞

to avoid numerical overflow. Then
the vector u, i. e. the vector required for the construction of
the Householder reflector, is computed as ui = ai ± ||ai ||2 · e,
where e = [1 0 · 0]⊤ ∈ Rm×1 denotes a vector of length m
containing a 1 in the first position and 0 otherwise. For ease of
notation, the scaling factor 2

u⊤u is denoted β. The Householder
reflection is computed implicitly to increase the computational
performance. The resulting matrix QuA = A − βuuT A
contains 0 in the column corresponding to vector ai . Algorithm
1 summarizes a single Householder reflection. In the House-
holder QR algorithm this operation is performed for all vectors
ai of A, transforming in each step only the sub matrix, which is
not yet upper triangular by choosing the remaining reflection
matrix as the identity matrix I . The full description of the
Householder algorithm is shown in Algorithm 2.

Algorithm 1 Householder Reflection
Input: Data matrix As

∈ Rm×m

Output: Matrix A upper triangular up to ai , reflection vector
ui

1 ā = A•,i
||A•,i ||∞ ;

2 u = ā+ sgn(A1,i ) · ||ā||2 · e;
3 Qi A = A− βuuT A;

2) Givens Rotation: Givens QR algorithm sequentially sets
subdiagonal elements of the matrix A ∈ Rm×n to 0 by multi-
plying the matrix with the corresponding “Givens matrix” [5].
After n·(m−1)

2 operations all elements below the diagonal are
0 resulting in an upper triangular matrix R. Through careful

Algorithm 2 Householder Algorithm
Input: Data matrix As

∈ Rm×m

Output: Orthonormal matrix Q and upper triangular matrix
R

1 R← A Q← I;
2 for i ∈ m − 1 do

// Update relevant entries of R
3 Ri :m,i :m , u←

householder-reflection(Ri :m,i :m);
// Implicit multiplication of Q

4 Q1:m,i :m ← Q1:m,i :m − ( 2
||u||22

)Q1:m,i :m(uu⊤);

choice of the parameters in the Givens matrices, their product
results in an orthogonal matrix Q which is the desired result.

A Givens matrix has the following form, where i and j are
the indices of c and s.

J (i, j, c, s) =



1 · · · 0 · · · 0 · · · 0

0
. . .

...

0 c · · · s 0
...

...
. . .

...
...

0 − s · · · c 0
...

. . . 0
0 · · · 0 · · · 0 0 1


(3)

J (i, j, c, s) is orthogonal if c2
+ s2
= 1.

Let A be the matrix of interest and i and j with i < j
indices of the element to be set to 0. Then one can set

c =
xi,i√

x2
i,i + x2

j,i

(4)

and

s =
xi, j√

x2
i,i + x2

i, j

(5)

and compute the respective Givens matrix according to
Equation (3).

Then A′ = J (i, j, c, s)A contains a 0 at position (i, j).
The product of a Givens matrix with a general matrix can be
computed efficiently, by updating only rows i and j of the
matrix as

Ai,• = [cai,1 + sa j,1, cai,2 + sa j,2, · · · , cai,m + sa j,m] (6)

and

A j,• = [ca j,1 + sai,1, ca j,2 + sai,2, · · · , ca j,m + sai,m] (7)

The full QR decomposition in a centralized setting is
summarized in Algorithm 3.

3) Gram-Schmidt Orthonormalization: The Gram-Schmidt
algorithm produces an orthonormal matrix Q = [q1 . . . qk] and
an upper triangular matrix R = [r1 . . . rk] [10]. With a matrix
A = [a1 . . . ak] ∈ Rn×m of m linearly independent column
vectors, the matrix U = [u1 . . . uk] ∈ Rn×m of orthogonal
column vectors is computed, such that it has the same span as



HARTEBRODT AND RÖTTGER: PRIVACY OF FEDERATED QR DECOMPOSITION 5125

Algorithm 3 QR Factorization Using Givens Rotation
Input: Data matrix As

∈ Rn×m

Output: Orthonormal matrix Q and upper triangular matrix
R

1 foreach i ∈ [1, . . . , m − 1] do
2 foreach j ∈ [i + 1, . . . , m] do
3 [s, c] ← compute-givens-parameter();
4 A = J (i, j, c, s)A;
5 Q = J (i, j, c, s)Q;

6 R = A;
7 Q = Q⊤;

A. Let ri, j = u⊤j ai/n j and n j = u⊤j u j then

ui =


ai if i = 1

ai −

i−1∑
j=1

ri, j · u j if i ∈ [k] \ {1},
(8)

qi =
u j

||u j ||
(9)

r j,i =

{
q j · ai if j ≤ i
0 if j > i

(10)

E. Centralized Singular Value Decomposition

Singular value decomposition (SVD) is a matrix decompo-
sition frequently used in data mining applications. A matrix
A ∈ Rn×m is decomposed into two orthonormal matrices of
singular vectors U ∈ Rn×kand V ∈ Rk×m and a diagonal
matrix 6 ∈ Rk×k containing the singular values in non-
increasing order A ∈= U6V⊤ [5]. In the federated domain,
SVD has been studied extensively, and multiple algorithms
exist (e. g. [4], [7], [11]). Given the vertically distributed
matrix As

∈ Rm×ns
with dimension m × ns at sites s the

federated singular value decomposition is defined as

As
= U6Vs⊤ (11)

where U is the full left singular vector and Vs are the partial
right singular vectors. The right singular vectors should not be
shared due to potential privacy breaches [4].

F. Solution of Systems of Linear Equations

In centralized computation, QR factorization can be used to
compute the solution of systems of linear equations. Given a
system Ax = b, one can compute A = QR. By setting QRx =
b⇔ Rx = Q−1b the system can be solved efficiently because
due to the orthonormality of Q, Q−1

= Q⊤ and y = Q−1b
can be computed. This leaves to solve a system of the form
Rx = y, which can be solved efficiently as R is an upper
triangular matrix [10]. This can be used for instance for linear
regression [8].

III. RELATED WORK

Recently, the authors of [12] have developed a federated
PCA algorithm which includes a QR subroutine. The whole
computation is performed under encryption, including the

Fig. 1. Schematic QR decomposition with 3 participants. A and Q remain
private. R is known to all participants.

intermediate parameters, and the results can be obtained in
a realistic run time with high accuracy. Previously, feder-
ated QR algorithms have been suggested mainly in the field
of peer-to-peer networks relying on the PushSum algorithm
and gossiping [13], [14], [15]. While these schemes can
be implemented in a modern federated learning system, the
assumptions governing FL make these algorithms unsuited.
Notably, in cross-device FL, the client-to-client communica-
tion is assumed to be a bottleneck [2] and client-aggregator
communication is preferred. Secondly, cross-silo FL assumes
more data and higher compute power at the nodes, so local
computational constraints do not impact the computations as
severely. In medical systems, practitioners might want to avoid
approximation errors at the cost of higher compute time [16].
In distributed memory contexts, diverse schemes have been
proposed to efficiently and quickly compute the QR decom-
position (e.g. [17]). In these systems, there is usually one
owner of the data, so we are unaware of privacy analyses in
this context. Outsourcing the data is a fundamentally different
compute set up, it is mentioned here for completeness. In the
outsourced, encrypted domain, the work of [18] and [19]
still suggest very high expected execution times due to the
encryption or masking overhead.

IV. FEDERATED QR DECOMPOSITION

In this section, we describe and analyse approaches to
federate QR factorization. To our knowledge, there exist no
descriptions of federated versions of the Householder reflec-
tion or Givens rotation-based algorithms. Therefore, we first
provide descriptions of the federated algorithms and demon-
strate that they are not suitable for the chosen federated setting.
Lastly, we describe the extended Gram-Schmidt algorithm
which also returns the upper triangular matrix R. Recall that
we assume the data A ∈ Rn×m to be partitioned row-wise into
chunks As

∈ Rns
×m . The goal of federated QR decomposition

is to compute Qs and R such that As and Qs stay confidential,
meaning the raw data does not leave site s and Q can only be
computed at s. R is common to all sites.

A. Federated Householder Algorithm

We describe a straightforward algorithm for a federated
Householder reflector. This subroutine could be used to com-
pute the full QR decomposition in a federated manner. Let ts
be the row index set of As at site s.

In Algorithm 4 we describe a federated Householder reflec-
tor. The algorithm proceeds column wise. Initially, the global
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Algorithm 4 Federated Householder Reflection
Client-Side Computations Are Marked in Blue

Input: Data matrices As
∈ Rns

×m at sites s ∈ [S].
Output: Partial matrices As upper triangular up to ai ,

‘oracle’ reflection vector ui
// ts is the index set for the rows of As

// Compute the global max element ||A•,i ||∞

1 ms
← send-to-aggregator(||Ats ,i ||∞);

2 ||A•,i ||∞ = maxs∈[S] ms ;
// Run at all clients

3 for s ∈ [S] do
// Compute the local portion of u

4 ās
←

Ats ,i
||A•,i ||∞ ;

// Compute the norm of ā

5 ns
← ās

⊤ās ;

6 ||ā|| ←
√∑

s ns ;
7 us
← ās ± ||ā||2 · e;

// Oracle step: stack us to form uu⊤

8 u← stack-vertically([u1, · · · us
]);

// Update A

9 for s ∈ [S] do
10 Hs

A = βuuT As ;

11 HA =
∑

S Hs
A;

12 for s ∈ [S] do
13 As

= Qs
i As
= As

−HA;

infinity norm ||A•,i ||∞ is computed as the max over all local
infinity norms (lines 1 to 2)) and the norm of the scaled vector
is computed (lines 3 to 6). Then, the clients locally compute
u (Line 7). In order to compute the Householder reflector, the
clients send their partial vectors us to the aggregator (Line 8).
We call this step an “oracle step” to indicate that under the
chosen secure computation paradigm, the aggregation itself
cannot be performed privately. The reflection matrix HA
needs to be computed collaboratively by adding up the local
shares (lines 9 to 11). Finally, at the clients, the reflection is
performed (lines 13).

Ad-hoc, this naive federated implementation of the pro-
cedure would take four communication rounds per column
vector, one for the computation of the maximal element, one
for the computation of the norm, and two for the computation
of the reflector HA and the reflection.

In the federated setting, the computation of the House-
holder reflector itself is immediately problematic regarding
the confidentiality of the data. Recall that algorithm relies on
the computation of the outer product of u which is a direct
transformation of the original column vectors of A. In step 8,
we call this operation an oracle step because it cannot be
performed using the SMPC scheme we choose. Furthermore,
even if secure multiplication is used, this “summary statistics”
constitutes a privacy breach because the diagonal of uu⊤ con-
tains the squared entries of u. If u, and ||a||∞ are known, then
the original vector A•,i can be reconstructed. (We still assume,

that all aggregate statistics are known, but we assume that the
‘oracle step’ can be computed using secure multiplication.)

Proposition 1: Assuming that only aggregate statistics,
excluding u, but including the Householder projector HA =

βuu⊤ become known in clear text to any of the participants,
they can reconstruct the entire input data based on the
summary statistics they know.

Proof: Recall that during the computation of the reflector,
m and n the maximal element and norm of A•,i ; β, the
scaling factor and uu⊤ become known to the participants. The
diagonal of uu⊤ contains the squared elements of u, which can
hence be computed up to the sign. Using the fact, that every
participant can compute their share us of u, it is possible to
infer the sign of u for all participants using the off diagonal
entries of uu⊤. For two sites s, and s′, with index set ts′
denoting the entries belonging to s′ in uu⊤, we can compute
the sign of us′ at site s: sgn(us′) = sgn(us

1) · sgn(uu⊤ts′ ,1).
Once the sign of u is known, the linear transformations can
be reversed and A•,i becomes known. □

Therefore, it is not straightforward to privately compute
the Householder transform using hybrid federated learning
with secure aggregation. Knowledge of the procedures allows
the reverse engineering of the data. This can potentially
be prevented by performing the entire computation under
homomorphic encryption, or an SMPC scheme which allows
the evaluation of arbitrarily complex circuits. When using
SMPC, it would not be sufficient to compute the outer product
securely, the intermediate parameters cannot become known
to any of the computing parties. Based on the incompati-
bility of the Householder reflection with secure aggregation,
we exclude federated Householder reflection from further
considerations.

B. Federated Givens Rotation

In this section, we describe a direct translation of a Givens
rotation to a federated setting. Again, we only describe the rel-
evant subroutine which would allow the implementation of the
complete QR decomposition, albeit inefficiently. Realistically,
one would choose a parallelized version of the operator.

Algorithm 5 summarizes the federated procedure described
in the following. As precomputations, the clients perform
Givens rotations to set all elements to 0 which only depend on
their data. Then, the clients communicate all remaining non-
zero indices below the diagonal to the aggregator. Setting an
element to 0 requires only two rows i , and j to be manipulated.
The clients associated with these rows are called k1 and k2.
In the main loop, the aggregator announces the current i and
j to the current clients k1 and k2 (Line 3). Client k1 and
k2 compute and announce the Givens parameters s and c in
collaboration with the aggregator (Lines 6 to 7). This is an
“oracle step”, as this implies the communication of xi and x j ,
because the Givens parameters cannot trivially be to compute
using secure addition. The aggregator announces c and s to
k1 and k2 and the clients update R and Q. The broadcast
can be combined with the new index broadcast (Line 3) if
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Algorithm 5 QR Factorization Using Givens Rotation
Client-Side Computations Are Marked in Blue

Input: Data matrices As
∈ Rns

×m at sites s ∈ [S].
Output: Partial matrices Qs and full matrix R at sites

s ∈ [S]

/* Perform local precomputations, setting all possible elements to 0, send all

non-zero indices to the aggregator */

1 foreach i ∈ [1, . . . , m − 1] do
2 foreach j ∈ [i + 1, . . . , m] do

// Compute c and s, using values from two clients k1, k2 ∈ [S]

3 send-to-client(i, j);
4 xi,i ← send-to-aggregator(ak1

ai,i );
5 x j,i ← send-to-aggregator(ak2

a j,i );
6 c = xi,i√

x2
i,i+xs

j,i

;

7 s = xi, j√
x2

i,i+xs
i, j

;

// Exchange the relevant entries required for the rotation

8 send-to-aggregator[sa j,1, sa j,2, · · · , sa j,m];
9 send-to-aggregator([sai,1, sai,2, · · · , sai,m]);

// Perform rotation following Equation (6) and (7)

10 As
= J (i, j, c, s)As ;

11 Qs
= J (i, j, c, s)Qs ;

12 R = A;
13 Qs

= Qs⊤;

applicable. Lines 3 to 11 are repeated until all elements below
the diagonal are 0.

The naive implementation of this procedure would require
in the order of N = O(

2·n·(m−1)
2 ) transmission rounds. Each

element, would required an index broadcast and a Givens
parameter broadcast. The procedure can be parallelized to zero
out n

2 elements per round [6], reducing the communication
complexity to O(n). Local precomputation would decrease the
effective number of transmission costs. Furthermore, the index
broadcast can most likely be done with fewer communications
rounds.

However, there is a critical privacy breach when using
Givens rotations. Recall that we assume the data to partitioned
into s partitions As

∈ Rns
×m . Assuming rows i and j are

located in silo S1 and S2 respectively, the aggregator can
compute the values c and s using xi and x j (cf. Equation (6),
Equation (7)). Even if c and s are computed using SMPC
and P2P communication (so that the aggregator does not gain
knowledge of the parameters), xi and x j can be reconstructed
at the current clients k1 and k2.

Proposition 2: A client S can reconstruct an entire row of
the sub matrix AS′ of another participant S′, if the Givens
parameters as well as a0

i and a1
i , the rows of AS before and

after the update are available in clear text at client S.

Proof: Let a0
i denote the i th row of A at client k before

the rotation and a1
i denote the i th row at client k after the

update. Given the Givens parameters c and s, client k can
compute the j th row at client k′ as a0

j = [(a
1
il − c · a0

il)/s]
with l the column index. □

In order to prevent this breach, the whole algorithm would
have to be performed under encryption, such that S1 does not
gain access to the intermediate matrices AS′ . These consid-
erations render this algorithm unsuitable for hybrid federated
learning with secure parameter aggregation. This leaves the
Gram-Schmidt algorithm as the final possible algorithm.

C. Federated Gram-Schmidt Algorithm Including the
Computation of R

Based on the algorithm described in [4] and [20], where
we showed that the orthogonal matrix Q can be computed
solely based on the exchange and aggregation of vector norms
and co-norms, we extend the algorithm such that the R
matrix can be computed simultaneously. This can be done
without further communication steps in comparison to the
previously presented method. The main modifications are that
the orthonormal vectors in Q need to be computed right away
in order to compute the inner product of qlai−1 contained in
the matrix R at position l, i − 1. Note, that the procedure also
requires the orthogonal vectors ui . Please see [20] for details
on the theoretical and empirical accuracy of federated Gram-
Schmidt orthonormalization.

Therefore, we develop a detailed description of a fed-
erated Gram-Schmidt orthonormalization procedure (see
Algorithm 6). First, the global vector norm ni of ui is cal-
culated by computing the local vector norms ns

i at the clients
and aggregating them at the central server (Lines 1 to 4). The
main loop starts at index i = 2 and proceeds in 4 stages. Let
R be the upper triangular matrix completed up to vector i ∈ d .
First, es

i−1, is computed by dividing ui−1 through the global
norm (Lines 7). Then, the i − 1st local column rs

l,i−1 of R
is computed as the inner product of the partially normalized
vector qs

i−1 and the partial data column as (Lines 1 to 8).
Then the local residuals r s

i j for vector i w. r. t. to the previous
i − 1 vectors are computed (Lines 9 to 10). In stage 2, the
two parameters rs

l,i−1 and r s
i j are sent to the central server

and aggregated via element-wise addition (Lines 11 to 14) to
form the global copy of R up until i − 1. The global rl,i−1,
and ri j are returned to the clients, where the orthogonal vector
us

i is computed (Lines 15 to 17). In the last stage, the norm of
the current vector ui , ni is computed by summing up the local
norms of us

i (Lines 18). The procedure is repeated for all d
vectors of A. After exiting the main loop, the last column of
A is computed, and the partial orthonormal matrices Qs and
R are returned (Lines 9 to 23). This procedure is equal to the
centralized Gram-Schmidt algorithm because the vector inner
products can be computed exactly in a federated fashion.

D. Privacy Considerations

Recall that according to our privacy definition, private
federated QR decomposition returns Qs and R such that As



5128 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Algorithm 6 Federated Gram-Schmidt. Client-Side
Computations Are Marked in Blue

Input: Data matrices As
∈ Rns

×m at sites s ∈ [S].
Output: Partial matrices Qs and full matrix R at sites

s ∈ [S]

// Compute norm of first orthogonal vector.

1 for s ∈ [S] do
2 us

1 ← as
1;

3 ns
1 ← us

1
⊤us

1;

4 n1 ←
∑S

s=1 ns
1 ;

// Orthogonalize all subsequent vectors.

5 for i ∈ [d] \ {1} do
// For each client s

6 for s ∈ [S] do
// Normalise to unit norm

7 qs
i−1 ← us

i−1/
√

ni−1 ;
// Compute relevant entries for R

8 rs
l,i−1 ← qs⊤

l as
i−1;

// Compute client residuals for current vector.

9 for j ∈ [i − 1] do
10 r s

i j ← us
j
⊤as

i /n j ;

// Aggregate residuals

11 for j ∈ [i − 1] do
12 ri j ←

∑S
s=1 r s

i j ;
// Aggregate R

13 for l ∈ [i] do
14 rl,i−1 ←

∑S
s=1 as

l,i−1;

// Orthogonalize vector and compute norm.

15 for s ∈ [S] do
16 us

i ← as
i −

∑i−1
j=1 ri j · us

j ;

17 ns
i ← us

i
⊤us

i ;

18 ni ←
∑S

s=1 ns
i ;

19 for s ∈ [S] do
// Compute last column of R

20 qs
d ← us

d/
√

ni−1;
21 for l ∈ [k] do
22 rd ← qs

das
l ;

23 Qs
= [qs

1 · · · q
s
d ] ;

and Qs stay private, meaning the raw data does not leave site
s and Qs can only be computed at s. R is common to all sites.

Proposition 3: At the end of federated Gram-Schmidt
decomposition, the clients do not have access to more knowl-
edge than their data matrices As , the orthonormal partial
matrices Qs , and the global matrices R.

Proof: We consider the case, where we have no knowl-
edge of the type of matrix (for instance, whether it is
sparse, or triangular) to be orthonormalized and analyze the
knowledge at the aggregator. Let As

= QsR. At the end of
the algorithm, the following knowledge is available at the
aggregator (We only show the global aggregates, assuming
that they are aggregated using secure addition):
• [n1, · · · , nd ], the norms of [u1, · · · , ud ]

• R the upper triangular matrix
q1 · a1 q1 · a2 · · · q1 · ad

0 q2 · a2 · · · q2 · ad
... 0

. . .
...

0 0 · · · qd · ad

 (12)

• the upper triangular matrix of residuals
u1 · a2 u1 · a3 · · · u1 · ad

0 u2 · a3 · · · u2 · ad
... 0

. . .
...

0 0 · · · ud · ad

 (13)

• In particular, we do not have access to the matrices Us ,
Qs or As .

Since qi =
ui
ni

, the total information available amounts to
the information encoded in the R matrix. We hence have only
access to one factor of the decomposition which does not allow
us to find a unique solution to A = QR. We specified our
privacy goal as keeping the input matrices As and the orthog-
onal matrices Qs private, therefore the presented algorithm is
private as per our definition. □

It should be noted that R does disclose information on the
data in form of the feature covariance matrix:

A⊤A = R⊤Q⊤QR = R⊤R (14)

V. FURTHER PRIVACY INVESTIGATIONS

In this section, we apply federated QR factorization as
a subroutine in federated PCA to reveal a privacy breach
that can occur, if secure aggregation is not used, or if
only 2 parties participate in the computation. The original
algorithm uses QR factorization as the aggregation step [7].
This centralized procedure can be replaced by federated QR
orthonormalization, presumably preventing the disclosure of
the local summary statistics. The algorithm is mainly of
academic interest, because more efficient schemes for PCA
are available for star-like architectures. However, we will show
that knowledge of the procedure allows an honest-but-curious
participant to exactly reconstruct the other participants’ input
data. Our attack exploits the fact, that the input matrices
are upper triangular and that we have full knowledge of the
algorithm.

A. Algorithm

The algorithm [7] relies on sending a local R to the
aggregator, where a secondary QR decomposition is performed
(Algorithm 7). We suggest centering the data globally prior
to the computation of the matrix (Line 1). This implies
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subtracting the mean from each column and dividing by
the standard deviation to obtain variables with a mean of
0 and a variance of 1. This also avoids having to account
for inter site differences in mean later on. The next step is
identical to the original: all the R matrices are computed
at the clients (Line 3). The original algorithm recursively
merges the R matrices at a processor to form the updated
R′ matrix until only one matrix remains. By computing the
QR decomposition of all clients’ R matrices at once using
federated Gram-Schmidt decomposition, sending R can be
avoided. The federated QR algorithm returns R at all the
clients, therefore the final SVD can be directly computed
at the client. The clients can also compute the partial left
eigenvectors as U s

= As V (Line 6).

Algorithm 7 Federated PCA Using QR Factoriza-
tion [7] Client-Side Computations Are Marked in Blue.

Input: Data matrices As
∈ Rns

×m , # eigenvectors k.
Output: Partial singular vectors Us,k

∈ Rns
×k at sites

s ∈ [S] and V k
∈ Rk×m

1 As
← federated-centering() ;

2 for s ∈ [S] do
// Compute local R at all clients

3 Qs, Rs
← orthonormalize(As);

4 [Qs
], R←

federated-gram-schmidt([R1, · · ·Rs
]);

5 U, 6, V⊤ = SVD(R);
6 Us

← AsV;

B. Privacy of Federated Gram-Schmidt on Upper
Triangular Matrices

In the original algorithm, the communication of R poses
a problem: Let A⊤A be the covariance matrix of the data.
Using the fact that Q is an orthonormal matrix, R can be
used to compute the local covariance matrices of the data
and hence leaks information (Equation (14)). Therefore, this
algorithm is no more private than sending the entire set of local
eigenvectors to the next party. The advantage of Algorithm 7
over its previous version is that it allows the computation of
the global R without communicating the local R in clear text.
The same can be achieved by using secure addition of the
covariance matrices or computing the global R based on the
data instead of R. Nonetheless, we investigate this algorithm,
because with close analysis it reveals a privacy breach if secure
aggregation is not used or only two participants join. We show,
that in this case the federated QR decomposition of upper
triangular matrices is no more private than sending the upper
triangular matrices themselves. The reason for this is the fact
that the initial vector norm of the QR step is not technically an
aggregate. We visualize the aggregation step in Algorithm 7
in Equation (15), as it is the motivation for our investigation.
To avoid ambiguity, we denote the resulting upper triangular

matrix S with elements si, j . For the remainder of this section,
we assume that secure aggregation is not used.

Proposition 4: Let R∗ =
[
R1 R2

· · · Rs]⊤ be a vertical
stack of upper triangular matrices, of which we want to
compute the QR decomposition as R∗ = QS. Denote Qs

=

[us
1, us

2, · · · u
s
d ] the block wise orthogonal matrices at sites s.

It is possible to reconstruct all
[
R1 R2

· · · Rs] as well as all[
Q1 Q2

· · · Qs] when applying the federated QR algorithm
on R∗, given one knows that Rs are upper triangular.

R∗ =


R1

R2

...

Rs

 =





r1
11 r1

12 · · · r1
1d

0 r1
22 · · · r1

2d

... 0
. . .

...

0 0 · · · r1
dd




r2
11 r2

12 · · · r2
1d

0 r2
22 · · · r2

2d

... 0
. . .

...

0 0 · · · r2
dd


...

r s
11 r s

12 · · · r s
1d

0 r s
22 · · · r s

2d

... 0
. . .

...

0 0 · · · r s
dd





=


Q1

Q2

...

Qs

 S (15)

Proof: Let R∗ =
[
R1 R2

· · · Rs]⊤ be the matrix to
be decomposed into Q and S. Denote Rs and Qs the partial
matrices only available at site s ∈ [S]. Denote [us

1 · · · u
s
d ] the

partial orthogonal vectors at sites s. We show by induction
on i that Rs and Qs can be reconstructed at the aggregator
based on the intermediate summary statistics exchanged during
the execution of Algorithm 6. Let i = 1. In the first step of
the algorithm (Lines 2 to 4, Algorithm 6), when computing
n1 =

∑S
s=1 rs⊤

1 rs
1 the clients disclose (rs

1,1)
2 to the aggregator

which can compute

u1 = [

√
r1

1,1, 0, · · · , 0,

√
r2

1,1, · · · , 0,
√

rs
1,1, 0, · · · , 0]⊤.

(16)

Let now i = 2 and j = 1, the residuals ps
2,1 ←

us
1
⊤rs

2
n1

are computed and aggregated as p2,1 =
∑S

s=1 ps
2,1 (Line 10

and Line 12). n1 and u1 are known. We can compute rs
1,1 =

qs⊤
1 ss

1,1 because qs
1 is orthonormal and only contains a single

non-zero entry (Line 8, (s corresponds to r in the algorithm
description)). For the same reason, we can also compute r s

1,2 =
ps

2,1·n1
q1,1

(Line 10).

Finally, we compute n2 ←
∑S

s=1 ns
2, with ns

2 = us
2
⊤us

2
where us

2 ← rs
2 −

∑i−1
j=1 p21 · us

1. This can be simplified to

us
2 =

(
r s

12 − p21 · us
11

r s
22

)
, because only us

1,1 is non-zero. r s
1,2,
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p2,1 and us
1,1 are known, so r s

2,2 =
√

ns
2 − (r s

1,2 − p2,1 · us
1,i )

2

can be computed, which in turn means us
2 is known completely.

At this point, u1, u2, rs
1 and rs

2 are known to the aggregator.
For the inductive step, we assume to have computed Q and
[R1
· · ·Rs

]
⊤ up to column i − 1, we can compute column i .

We set j = i − 1.
The residuals ps

i j ← us
j
⊤rs

i /n j are computed, and aggre-
gated as pi j =

∑S
s=1 r s

i j . n j , r j and u j are known for
j ∈ [i − 1]. We can compute r s

i j for j ∈ [i − 1] via successive
variable substitution due to the fact that the Rs

i are upper
triangular.

r1,i =
pi,1 · n1

u1,1

r2,i =
pi,2 · n2 − u1,2 · r1,i

u2,2
...

r j−1,i =
pi, j · n j −

∑i
n=0 un−1 · pi,n−1

un−1,n−1

(17)

Finally, we compute ni ←
∑S

s=1 ns
i , with ns

i = us
i
⊤us

i
where us

i ← rs
i −

∑i−1
j=1 pi j · us

j which can be rewritten as

us
i =


r s

1,i −
∑i−1

j=1 pi, j · us
1, j

r s
2,i −

∑i−1
j=1 pi, j · us

2, j
...

r s
j,i −

∑i−1
j=1 pi, j · us

j, j
r s

i,i

 (18)

where ri,i is the only unknown. r j i =√
ns

i −
∑i−1

j=1(r
s
j,i − pi, j · us

j,i )
2, which in turn means

us
j is complete, because ni , pi, j and us

j as well as r j,i are
known. □

When using general matrices, even with only two partici-
pants, and if SMPC is used, this attack is not possible, because
the first vector norm summarizes more than one element.
However, the previous application highlights that tracking the
parameters during federated iterations could reveal more infor-
mation on the input data than the participants intend, especially
when the methods are fully traceable and do not involve
randomized steps. In the case of sparse matrices, a partial
column as

i which contains no entries, can be detected at the
aggregator as the inner product in R would be 0. The problem,
with the methods presented here, is that the knowledge of
algorithmic procedure and the absence of random elements
in the algorithm allow us to backtrack more information than
intended, given an ‘attack angle’.

VI. SYSTEMS OF LINEAR EQUATIONS

To showcase a more realistic use of our algorithm, we con-
sider the application of federated orthonormalization for the
solution of systems of linear equations. A popular use of
QR decomposition is linear regression. For example, R’s
lm() function uses the QR algorithm by default [21]. Here,
we demonstrate how it is possible to solve a system of
linear equations of the form Ax = b with only one further
round of communication, based on the QR decomposition.

Fig. 2. Schematic solution of a system of linear equations based on federated
QR factorization of matrix A.

This technique can be used to replace the solver implemented
for instance in [8]. It does not require matrix inversion and
is therefore more suitable for large scale matrices. Let A
and b be partitioned into As and bs respectively, and x the
solution common to all sites. After the QR decomposition of
the matrix A, Qs is known at the sites, and R is known at
all sites and the aggregator. In order to compute x, the clients
have to send their vector inner product of ys

= Q⊤bs to the
aggregator which securely computes the global vector y =∑S

s ys . The aggregator can directly compute x by successive
variable substitution and share the result with the clients (see
Section II-F). With one additional step, one can also compute
p-values and r2 statistics. The clients compute the sum of
the squared residuals as rsss =

∑
(Asx− b)2 and the sum of

the squared fitted values msss =
∑

Asb and send them to the
aggregator, which computes the global sums rss =

∑S
s rsss ,

and mss =
∑S

s msss . For the p-value, the variance is computes
as σ = rss

n−m−1 (R⊤R)−1, and standard error as SE =
√

σ .
Here, we exploit the fact that the covariance matrix can be
expressed using R (Equation (14)). The T-statistic used to
determine the p-value can be computed as T = x

SE . For
more details see [8] where a more detailed description of the
p-value calculation is provided. r2 can be computed as follows:
r2
=

mss
mss+rss .

VII. EXPERIMENTS

A. Data Reconstruction

In order to show that Householder reflection and Givens
rotation indeed lead to confidentiality losses when the inter-
mediate parameters become known, we implemented the
federated prototypes and logged the parameters that are known
to all participants. We generate random Gaussian matrices of
dimension 5000 × 10 and execute the federated prototypes.
We then reconstruct the input data based on these aggregate
statistics.

For the reconstruction of the input matrix based on the
parameters disclosed during a Householder transformation,
we log the reflection matrix uu⊤, β, sgn(A1,1), m, and
n and the first element of u. (We assume without loss of
generality that the first client is the attacker). We then apply
the reconstruction described in Proposition 1. We reconstruct
the data with an error of 2.21−15 averaged over 10 itera-
tions. The error is calculated element-wise difference of the
input and reconstructed matrices. In order to reconstruct the
data based on the Given’s parameters, we apply the proce-
dure described in Proposition 2. The average reconstruction
error over 10 repeated experiments is 1.3−14. Therefore, we



HARTEBRODT AND RÖTTGER: PRIVACY OF FEDERATED QR DECOMPOSITION 5131

TABLE II
RESULTS OF THE EXPERIMENTS

conclude that our theoretical attacks are indeed possible in
realistic implementation.

B. Linear Regression

We implement the QR decomposition scheme and a proto-
type for linear regression in python to show that they provide
accurate results in practice. In this experimental study we use
three example data sets from sklearn and Kaggle: the Pima
Indians diabetes [22], WHO life expectancy [23] and fish
market [24] data sets. We split the data sets horizontally in
5 chunks. We compute the baseline reduced QR decomposition
using scipy.linalg.qr. As an error measure, we use
the Frobenius norm between the centralized and federated Q
and R matrices (||Qc − Q f ||F ,||Rc − R f ||F ). For the linear
regression, we use the lm function in R as a reference, as it
uses QR decomposition as its standard solver. As additional
error measures, we compute the sum of the absolute differ-
ences between the coefficients (

∑
s∈[S] xc − x f ), r2-values

(r2
c − r2

f ), and p-values (
∑

s∈[S](pc − p f )). The results of
these experiments are summarized in Table II. The matrices,
coefficients and r2 values are identical, and there only minor
variations in the p − value.

C. Microbenchmark

Lastly, we implemented the algorithm using a secure mul-
tiparty computation python library MPyC [25]. This library
implements the required SMPC primitives, including secure
addition of floating point numbers (using fixed point arith-
metic). Additionally, it allows convenient simulation of several
clients. We generated small random matrices of dimensions
256 × 8 and used the simulation mode with 3 clients.
We repeated the experiment 10 times and achieved an average
run time of 0.7 seconds in simulation. In practice, the user
should expect communication delay. As an error measure,
we report the absolute difference in Froebenius norm for
both the R and the Q matrices, between the federated and
the centralized run (using scipy). The average errors are
6.024 ∗ 10−10 for Q and 1.214 ∗ 10−9 for R. The recent
publication by [12] reports run times of 227 seconds for the
same operation. However, the run times should not really
be compared. In [12] the input and output remain fully
encrypted which is a fundamentally different scenario to the
one presented here, where it is assumed that the input and
output can remain unencrypted, in particular because they do
not need to be shared with any party. This is a typical instance

of a situation where prospective users need to trade-off privacy
and run time.

D. Implementation & Hardware

The experiments were run on a standard laptop with
8 CPUs and 16 GB RAM. The algorithms were implemented
in Python using numpy and scipy. The code can be
found in the corresponding repository at https://github.com/
AnneHartebrodt/federated-qr.

VIII. DISCUSSION AND FUTURE DIRECTIONS

In this manuscript, we evaluate the most popular algorithms
for QR decomposition with respect to their confidentiality
in a federated context. As explained in Section IV-A and
Section IV-B, Householder reflection and Givens rotation have
immediate drawbacks that make them unsuitable to hybrid
federated learning where the parameters are securely aggre-
gated, because it is possible to extract the original data from
the parameters. This makes the presented federated Gram-
Schmidt QR algorithm the only algorithm which does not
trivially expose the original data under the assumed federated
setting. We argue that the parameters revealed during the
federated Gram-Schmidt orthonormalization procedure contain
no more information than the upper triangular matrix R, and
therefore fulfill our privacy specification of federated QR
decomposition.

In this article, we assume a hybrid federated learning setup,
where the global parameters become known in clear text. This
means, the results may only partially translate to systems
which rely on encrypting the entire learning process under
homomorphic encryption or computing the whole algorithm
using more advanced secure multiparty computation schemes.
These techniques are still expensive in practice [26], [27], but
might be required to provide secure algorithms for House-
holder factorization and Givens rotation. If privacy is not a
concern, detailed investigations of potential gains in trans-
mission rounds would be required to find the most efficient
QR scheme, most likely Givens algorithm according to our
preliminary analysis.

The investigation of information leakage associated with the
parameters exchanged during the federated QR orthonormal-
ization spins a cautionary tale. We showed that it is possible
to reconstruct the input matrices, if they are upper triangular,
solely from the exchanged parameters, because the first aggre-
gate is technically not an aggregate and triggers a revealing
cascade. This means that with fewer than three parties, even
the clients could reconstruct the other participants’ matrices.
We showed that for upper triangular matrices privacy breaches
are possible. Therefore, further investigations on other special
types of matrices will be required.

IX. CONCLUSION

The main objective of this work was to identify the most
suitable algorithm for federated Gram-Schmidt orthogonal-
ization assuming federated learning with secure parameter
aggregation. To this end, we presented federated implemen-
tations of three popular QR algorithms and investigated them
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with respect to their privacy. Popular applications of QR fac-
torization, such as linear regression, can therefore be translated
to the federated domain. The privacy must be considered
carefully: The use of the outer vector product in Householder
factorization, introduces a trivial confidentiality breach. Like-
wise, a trivial privacy leak in Givens rotation makes this
algorithm unsuitable for secure additive multiparty computa-
tion. We come to the conclusion, that only Gram-Schmidt QR
decomposition is suitable, due to its reliance on inner vector
products. Special matrices, such as upper triangular matrices,
may still be more vulnerable to confidentiality breaches.
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