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Abstract— The large number of devices characterizing Wireless
Sensor Networks (WSNs) provide the benefits of observing,
tracking, and recording everything; nonetheless, the cumulative
computing power of those devices is typically not utilized,
and the few implementations taking advantage of it neglect
privacy or are application-specific. This manuscript describes a
privacy-preserving protocol that enables WSN nodes to jointly
compute an arbitrary function without disclosing their own
private inputs. The computation takes place at data source nodes,
while computation instructions and intermediate results move
across the network secured by cryptography. The protocol relies
on the Onion Routing technique to provide uniformly distributed
network traffic and confine the knowledge a foreign actor can
gain from monitoring messages traveling the network. We show
that the communication protocol is privacy-preserving against
the external and internal attacker models, and we validate our
protocol implementation using the NS3 network simulator.

Index Terms— Wireless sensor network, privacy, onion routing,
distributed computing, data aggregation.

I. INTRODUCTION

IN THE last decade, the cost reduction of sensor production
and microelectronics has contributed to the development

of large scale Wireless Sensor Networks (WSNs). WSNs are
composed of dozens or hundreds of sensing nodes interlinked
via radio signaling and meant to be easily deployed, self-
configurable, and low cost. Moreover, nowadays, WSN nodes
are powerful enough to store a short history of sensed data
and process it. Therefore, the edge computing paradigm,
which consists in moving computations as close as possible
to data sources applies also to WSNs. Information fusion [1],
declarative query processing [2], and inference [3] were all
considered for in-network execution.
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However, in a typical WSN, data is moving through a
wireless multi-hop network without infrastructure, nodes com-
posing a WSN are generally low-cost and resource-constrained
devices; therefore, it is challenging to secure the network
and guarantee adequate privacy [4]. Moreover, in-network
processing tasks require that several WSN nodes contribute
with their sensed data and processing power to the joint
evaluation of a function; therefore, the privacy of nodes
contributing to the processing is also threatened by other
nodes participating. Research to date in the WSN field has
focused on providing confidentiality by transforming the data
using cryptography [5] or other obfuscation techniques [6]
and allowing several nodes to operate over the transformed
data without the possibility of extracting the private data from
other nodes involved in the joint computation. This approach
led to the development of several solutions [7]; nonetheless, in
solutions considered practical for WSNs, the technique used
to conceal data restricts the set of operations applicable to
the transformed data. There is some evidence that anonymous
communication could provide privacy for joint computation
tasks [8]; however, due to the high privacy requirements of
some applications and the data being typically self-descriptive,
this category of approaches has been neglected.

In this manuscript, instead of allowing a set of WSN
nodes to evaluate a function over obfuscated data, we exploit
anonymity to conceal nodes involved in the computation,
establishing a strong separation between context and data.
The WSN is a system of devices sensing features of the
surrounding environment. The data collected by sensor nodes
describe events or changes; the sensor node’s location reveals
where the phenomena occurred. Therefore, the WSN data
loses its descriptive utility without enough contextual infor-
mation. To achieve the separation between data and context,
we design a novel communication protocol inspired from
the Onion Routing [9] protocol that allows only specific
nodes to participate in the joint evaluation of a function
while concealing them among a set of nodes performing the
onion routing operation without accessing the computation.
Nodes participating in the joint computation receive a message
enclosing computation instructions and a partial result. Privacy
is secured as the technique conceals the context of the partial
result from participating sensor nodes. Although the data,
represented by the partial result, can be observed by other
nodes involved in the computation, the context – such as
information on the number, identity, and location of nodes
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contributing to the partial result – remains hidden. Therefore,
without access to key contextual information, the partial result
loses its significance for all nodes obtaining it, except for the
message origin, which defined the message path and, as such,
inherently possesses knowledge of the context.

Throughout the manuscript, we are looking into the specific
case of indoor air quality monitoring since it receives an
increasing interest as it contributes to reducing the environ-
mental impact of buildings, to improving building occupants’
well-being, and to enhancing future building design [10], [11].
WSN deployed for indoor air quality monitoring relies on
sensors collecting data about temperature, C O2, V OC , P M ,
relative humidity, etc.

Indeed, a large WSN relying on high quality transducers can
reach prohibitive costs. Air quality transducers are particularly
expensive, and low cost options are raising interest [12].
A common practice to reduce the overall WSN cost is the
dense deployment of nodes equipped with low-cost transduc-
ers. Reading quality is then improved by aggregating data from
multiple nodes. However, in typical WSN implementations, the
data is aggregated only at network endpoints resulting in high
communication overhead since each node needs to report its
sensed value and missing the opportunity to take advantage of
the nodes’ computing capabilities when conveying the whole
processing load on the end system.

There are several techniques for aggregating sensor read-
ings in-network as data moves towards the sink nodes [13].
These techniques also provide privacy preservation focusing
on data confidentiality and are designed to operate in periodic
reporting settings. Whereas if these techniques are applied in
the on-demand setting to retrieve data from the building’s
individual locations, the resulting network traffic could be
informative. In particular, wireless communications use the
radio frequency spectrum to broadcast signals over the air;
transmitted signals can be intercepted, then analyzed and
backtracked to illicitly acquire information. Several studies
focus on this complication considering location privacy pro-
tection [14] to conceal the location of sink nodes or detected
events in WSNs deployed in unattended environments.

However, the adoption of WSNs for indoor monitoring
is increasing [15], [16], [17], [18], raising the need for
further privacy measures against traffic analysis when aggre-
gating data in-network in on-demand settings. Traffic analysis
attacks [19] are of particular concern in building monitoring.
These attacks allow adversaries to remain unnoticeable, simply
listening to network traffic, and extracting features like mes-
sage size, frequency, processing time, etc. By associating these
features with facts or secrets, machine learning techniques
can infer important details about the monitored environment,
which could potentially lead to the compromise of building
security.

This context motivates the need to combine privacy preser-
vation and distributed data computing on WSN nodes to
employ node’s computing capabilities without revealing sensor
readings or sensitive contextual information.

In this paper, we describe the following contributions:
1) We present a communication protocol that allows WSN

nodes to jointly compute an arbitrary function over their

inputs while ensuring the privacy of inputs and operating
without revealing significant contextual information.

2) The communication protocol is based on a novel use of
the Onion Routing [9] technique.

3) We provide privacy preservation analysis showing that
the communication protocol is secure against the exter-
nal and internal attacker models.

4) We provide results of the privacy-preserving protocol
simulated using the NS3 simulator [20].

The rest of this paper is organized as follows: Section II
gives a brief overview of the privacy preserving protocol.
Section III reviews related work and highlights the originality
of our solution. Section IV details the general-purpose data
and query privacy preserving protocol. Section V gives privacy
preservation analyses. Section VI presents results of the pri-
vacy preserving communication protocol simulated using the
network simulator NS3. Section VIII concludes the manuscript
and gives guidelines for future work.

II. SOLUTION OVERVIEW

This manuscript describes a communication protocol based
on the Onion Routing [9] technique for anonymous com-
munication over a computer network. We similarly employ
messages structured into encryption layers, such that a layer
can be decrypted only by the targeted node revealing an inner
encryption layer addressed to another node in the network.
Therefore, message decryption is carried out gradually by
leading the layered message across WSN nodes following the
precise order given at message construction. Encryption layers
are not enclosing only the inner layer, but also additional secret
information revealed only to the node decrypting that layer.
Path details and encryption keys are in this way conveyed
to in-path nodes. Path details are delivered in encryption
layers to not disclose the whole message path, such that a
node receiving the message can identify only the previous
sender and the next receiver of the message. Encryption key
pairs, however, are delivered only to a subset of nodes in the
message path. Moreover, and differently from the traditional
onion routing [9], encryption keys are not used to establish
an anonymous channel. Instead, encryption keys give access
to the payload accompanying the layered object. Please note
that pairs of symmetric encryption keys include distinct keys;
however, pairs are chained through layers of the layered object,
as can be seen from Fig. 1. Therefore, nodes in the message
path serve as the anonymity set1 for nodes accessing the
payload since each node in the message path could potentially
receive symmetric encryption keys from the decryption of the
layered object. Consequently, the identity of nodes access-
ing the payload remains concealed to nodes receiving the
message.

In this paper, the WSN acts as a service. Authorized users
construct queries and issue them to WSN gateway nodes.
We refer to a query as the message composed of a head

1Based on the definition given by Pfitzmann and Köhntopp [21], the
anonymity set is the set of subjects that might cause an action. In our protocol,
the anonymity set is the set of nodes deciphering a layer of a layered object.
If layer decryption reveals encryption key pairs to a node, then the node
executes the computation; the action.
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Fig. 1. Representation of the query, made of the head and the body. Notice
that symmetric encryption keys are not enclosed in each layer of the query
head. The figure displays the query’s path forming a circuit.

consisting of the previously described layered object made
of public-key encryption layers and a body consisting of the
pair <task, binary string> as shown in Fig. 1. We refer to
a task as computation instructions specifying the operations
to be performed by sensor nodes. The binary string is of
fixed size and stores task execution results. Each query head is
constructed to lead the query over a path closing a circuit and
delivering symmetric encryption key pairs to specific nodes
in the query path allowing only them to access the query
body content, execute the task and store results to the binary
string. Other nodes in the query path not receiving symmetric
encryption keys from query head decryption cannot access the
query body content and only forward the query to the next-
hop node. The query path closes a circuit, conveying back the
results of the joint computation.

III. RELATED WORK

Many systems were developed to preserve users’ privacy
while communicating on large public networks like the Inter-
net. Several solutions originate from the work of Chaum [22]
on mixnet. Mixnet-based schemes rely on a set of mix
servers that receive encrypted messages, and after a sufficiently
large amount of time, messages are re-ordered and released
in batches to hide the correspondence between sender and
receiver. Onion Routing [9] is a solution to preserve users’
anonymity while avoiding latency introduced by mix servers.
The solution relies on source routing using multiple encryption
layers to route a message through a set of at least three routing
servers (onion routers) to create an anonymous connection.
Source routing [23] is a technique to route a message through
a set of nodes by encoding path information in the message.
In onion routing, path information is encrypted in each encryp-
tion layer of the message, and when the message is routed
through onion routers, at each hop, a layer of encryption is
removed from the message revealing the next hop. Therefore,
no one of the actors involved in the communication will
know the whole message path apart from the source of the
message. In TOR [24] the second-generation onion routing, the
message path is similarly protected by encryption layers, but
the anonymous connection is established incrementally using
key exchange schemes. Although the mentioned solutions

effectively provide anonymous communication between two
parties, they rely on the background traffic of large networks.
Furthermore, the mentioned solutions protect the logical loca-
tion of communicating parties (IP-address), while in WSNs,
the privacy of communicating nodes can also be disclosed
by observing the physical wireless communication. Despite
the computational requirements and potential eavesdropping
threats, the application of onion routing in WSNs has been
proposed several times in the literature [25], [26], [27]. The
paper [27] proposes an onion routing based mechanism for
MQTT protocol communications, leveraging dynamic broker
bridging to enable smart devices to subscribe and publish
messages anonymously. In [26], a trust-based secure directed
diffusion routing protocol for WSNs is proposed. The protocol
leverages the onion routing for secure and anonymous end-to-
end data transmission.

The literature review conducted by Li et al. [7] divides
the privacy problem in WSNs into data privacy and context
privacy. Data privacy is achieved if a communication protocol
does not leak the collected data to external and internal
adversaries. External adversaries eavesdrop on wireless com-
munications, while internal adversaries have knowledge of
some encryption keys used in the sensor network. In contrast,
context privacy relates to communication traffic characteristics,
as this can reveal insights over activities in the monitored
environment. The paper [28] highlights the importance of
concealing the sensor technology equipped on smart home
devices, and the authors describe a technique for the periodic
change of device identity that protects the network against
external adversaries. Location privacy protection was exten-
sively studied in event-driven WSNs using various routing
strategies [14] aiming to conceal the location of data source
nodes and sink nodes. The location of data source nodes can
reveal insights over events detected by the WSN. Whereas
keeping secret the location of sink nodes precludes the attacker
from physically destroying sink nodes, which are of central
importance for the correct functioning of the WSN. However,
applying location privacy protection schemes in our scenario
is not adequate since we aim to aggregate data from multiple
nodes that may be closely located, and routing strategies
designed to anonymize source and destination might disclose
the region of interest.

The straightforward privacy-preserving approach to retrieve
data from a region of interest in a WSN was highlighted by
Carbunar et al. [29], and consists in gathering data from all
sensor nodes in the network and then keep readings only from
the sensor nodes of interest. Although effective, this approach
is highly inefficient due to the multi-hop routing in WSNs
requiring data to be relayed several times to reach the sink
node. The efficiency of this approach was improved in [30]
using compressive sensing [31] and public-key homomorphic
encryption [32]. Compressive sensing is applied to transform
sensor readings in a vector of coefficients which is aggregated
with other node vectors along the routing paths to the sink
node; therefore, requiring a low communication overhead of
O(M N ), M the size of the vector of coefficients. Homomor-
phic encryption ensures privacy when aggregating vectors of
coefficients.
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The solution efficiently gathers data from multiple sensor
nodes. However, in WSNs, neighboring nodes often share
the same monitored area, and data sensed from neighbor
nodes is often correlated. Therefore, data gathering schemes
collecting raw data gather many duplicated data, do not utilize
sensor node computing capabilities to process data, and pose
a substantial communication load on the network even if the
data need involves a small subset of network nodes.

In-network data aggregation [33] could effectively reduce
the network’s communication overhead and employ sensor
node processing capabilities by aggregating multiple sensor
node readings along routing paths toward the sink node.
Therefore, the whole network works as a distributed pro-
cessing mechanism delivering the final aggregated value to
the sink node. Privacy preserving data aggregation solutions
ensure data privacy against external and internal attackers [34],
[35], [36]. However, proposed techniques do not consider the
triggering of a data aggregation process that affects only a
subset of nodes in the network without disclosing participating
nodes. In building monitoring, the retrieval of aggregated
data from the whole network of sensors can approximate the
air quality. However, obtaining data from individual building
locations is imperative to give a granular assessment.

The field of secure multi-party computation is concerned
with enabling a set of parties to jointly compute an arbitrary
function without disclosing their inputs [37]. A considerable
amount of literature has been published on this topic, and some
schemes have been implemented [38]. However, the secure
multi-party computation fundamental protocols are resource
demanding, and current implementations supporting arbitrary
computation are not yet adequate for WSNs.

According to Carbunar et al. [29] a privacy-preserving
query mechanism in WSNs must hide from attackers the
location and identity of queried sensor nodes but also the
relationship between individual queries while maintaining an
adequate trade-off between privacy and efficiency. Carbunar
et al. addressed query privacy needs with a WSN that acts as
a service accessible through dedicated servers. The proposed
solution hides query details from servers that provide access
to the WSN. The WSN is mapped into regions and queries
target aggregator nodes of individual regions. Query privacy is
assured using source routing and by hiding a query constructed
by the client with additional bogus queries targeting different
regions of the WSN.

De Cristofaro et al. [25] proposed a privacy-preserving
solution to retrieve WSN data without disclosing the identity
of data source nodes to the network owner or attackers. The
solution relies on source routing [23] using the onion routing
to hide the query path and symmetric encryption to provide
data privacy and data integrity. However, the proposed solution
allows only retrieving individual sensor node readings without
the possibility of in-network processing.

We state that our solution intrinsically follows the work on
query privacy started by Carbunar et al. and De Cristofaro
et al.. The originality of our proposed solution lies in the
unique use of the onion routing technique to conceal nodes
participating in the joint computation that takes place in-situ.
Therefore, without aggregator nodes. Since aggregator nodes

are gathering data from multiple sensor nodes, they are an
appealing target for attackers and a point of failure for the
network.

To the best of our knowledge, this is the first solution that
allows the in-network joint computation of arbitrary functions
in WSNs without aggregator nodes and keeps the participating
nodes and their inputs private.

IV. DEFINITION OF THE PRIVACY-PRESERVING PROTOCOL

A. The WSN Model

Throughout the manuscript, we consider a WSN as a
wireless multi-hop network consisting of two types of nodes.
The majority are nodes equipped with sensing technology; we
refer to these nodes as sensor nodes. The other type of node
is named sink node, which purpose is to act as a gateway to
external systems. The WSN relies on a routing protocol for
multi-hop wireless networks, and sensor nodes in the WSN
are configured at deployment with a static IP address and a
public-private key pair. Sink nodes maintain a registry holding
the following information of sensor nodes: IP address, public
key, sensed physical quantities, and location of the building in
which the sensor node is positioned (e.g., room237). The sink
node registry can be accessed by authorized users willing to
query the WSN. For simplicity, we refer to an authorized user
as the user.

B. The Privacy-Preserving Communication Protocol

The network operates following an on-demand model: the
user first access the sink node registry to obtain information
about the WSN nodes, then constructs one or multiple queries
as explained in Section IV-B.2; each query consists of a head
and a body.

• Head: an onion-like structure made of encryption layers,
the head is of fixed size L H bytes. Layer decryption
reveals the next-hop address (IP) or the next-hop address
and a pair of symmetric encryption keys.

• Body: consists of t the task and w a fixed-size binary
string used to transport the task execution results back
to the user that issued the query. The query body is
encrypted using symmetric encryption and is of fixed
size L B bytes.

Queries issued to the network follow the query path encoded
in the query head, query processing at sensor nodes is
explained in Section IV-B.3, and it branches based on the case
that query head decryption reveals symmetric encryption keys.
We refer to decoy nodes as the sensor nodes in the query
path that do not receive symmetric encryption keys and do
not participate in the joint computation and to target nodes
as sensor nodes in the query path that receive symmetric
encryption keys; thus, they can decipher the query body and
participate in the joint computation. All queries travel a path
forming a circuit that ends at the sink node that was the entry
point of the query.

1) Query Preparation: The client application syncs to a
sink node, downloading the registry of WSN nodes, then
the user describes a data need expressing the request Req
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consisting of the operation and its target. The operation is
described by giving the task t , and the operation target by
specifying τ , a set of one or multiple locations of the WSN.

Although the proposed solution allows conveying arbitrary
computation instructions to sensor network nodes, the set
of supported operations is bounded by the design of our
protocol. Each query traverse several sensor nodes, and at each
target node, the operation t is processed, acquiring input from
sensors equipped on the sensor node and from w the binary
string that carries results of t processed on the previous target
node. Therefore, the solution is supporting operations that
produce a partial result while feeding on the input of sensor
values and the previous partial result. Between the common
supporting data aggregation operations, we could list average,
sum, max but also variance and standard deviation since in [39]
was shown how to compute them as additive aggregation.2

Moreover, our solution allows to pose conditions on the data
to be retrieved, like the exceeding of a threshold value or
past sensed events. Conditions can be posed not only on the
physical quantity to retrieve but also on the state of other
sensor technology equipped onto sensor nodes.

Algorithm 1 Query Path Selection
Require: U , Q
Ensure: S, K , eF , eL

procedure RANDOM
return a float from an uniform distribution bounded by (0,1)

procedure PICKDECOY
Chose randomly s ∈ U \ (Q ∪ B), add s to B

return s
procedure PICKTARGET

Chose randomly s ∈ Q, remove s from Q, add s to B
return s

procedure GENERATESYMKEY
return a valid symmetric encryption key

Compute: i = 1
B, S, K = ∅ while i ≤ n
eF =GENERATESYMKEY( ) if S[i] != null
k = null, eL = eF k = (eL ,GENERATESYMKEY( ))
i, t = 1 eL = k[2]
l = min(∥Q∥ , φ) else
while i ≤ l S[i] = PICKDECOY( )

t = ⌈RANDOM( ) ∗ (n − 1)⌉ k = null
if S[t] == null end if

S[t] = PICKTARGET( ) K [i] = k
i + + i + +

end if end while
end while

A request Req specified by the user is processed as follows:
t and τ are used to generate Q ⊂ U , the set of sensor nodes
that are targets of the request. U is the set of all sensor nodes in
the network. The set Q is generated by selecting sensor nodes
from the set U that meet the location detailed in τ and sensed
physical quantities required in t . The set P is then generated
with the algorithm 1 repeated until Q = ∅. Algorithm 1 will
eventually empty the set Q, since every call of the function
pickTarget() removes a target from Q and inserts it in the
query path. Each run of the algorithm will generate a query
definition detailed by the tuple (S, K , eF , eL , id).

• S = ⟨s1, . . . , sn⟩ a list consisting of sensor nodes belong-
ing to the set U . The list S defines the query path.

2In additive aggregation, a sensor node sums its sensed value with a
received partial result, and forwards the sum to the next sensor node.

• K = ⟨k1, . . . , kn⟩ a list of elements ki , where ki =

(ea, eb) if si is a target node, otherwise si is a decoy
node and ki = null. (ki and si the i-th elements of their
respective list K and S, and (ea, eb) a pair of not equal
symmetric encryption keys.) Moreover, encryption keys
in the set K are arranged as follows: if si is a target node
and s j is the next target node in the query path, then
ki = (ea, eb) and k j = (eb, ec).

• eF the first symmetric key. If si is the first target node in
the query path S, then ki = (eF , ex ).

• eL the last symmetric key. If si is the last target node in
the query path S, then ki = (ey, eL).

• id a string of bits serving as the query identifier.

By our solution design, the query path length is a fixed
network parameter; therefore, each query definition generated
using algorithm 1 will include n nodes in its path. Algorithm 1
iteratively generates a query definition using two while
loops. The first loop will inserts φ target nodes at random
positions in the query path. Uncertainty is introduced to
prevent queries from having a predictable disposition of target
and decoy nodes. Since the last node in the query path can
identify its function of being the node that will forward the
query back to the sink node, by algorithm 1 this node is always
a decoy node. The second loop will fill the query path with
randomly chosen decoy nodes.

Algorithm 1 also outputs eF and eL . eF is the first sym-
metric encryption key assigned to the first target node in the
query path, this key is used to apply the first encryption layer
on the query body. eL is the second symmetric encryption key
assigned to the last target node in the query path, this key is
used by the client to decrypt the query body, and retrieve the
query result.

The key eL is coupled to the query identifier id and the pair
is mapped into π the set of recovery rules. Since a request
will inquire data from a large set of nodes, and each query
can include at most φ target nodes in its path, the typical
request will be accomplished by issuing multiple queries. The
set of recovery rules π holds identifiers of queries issued to
accomplish one request, and is used to recover the final request
result.

To summarize, the request Req is translated into P – a non
empty set of tuples of cardinality ∥P∥ =

⌈
∥Q∥

φ

⌉
, a task t , and

π a set of recovery rules. For each tuple (S, K , eF , eL , id) ∈

P a query is constructed as explained in Section IV-B.2.
2) Query Construction: In this section, we describe how the

client application converts a query definition detailed by the
tuple (S, K , eF , eL , id), and a task t into a query consisting
of the head and the body. The ε(·) denotes the encryption
operation using public-key cryptography, and the E(·) denotes
the encryption operation using symmetric cryptography.

a) Head construction: The query head construction starts
from O Rn+1, the innermost encryption layer, which securely
delivers the query identifier back to the query issuer node.
We refer to the query issuer as the sink node that dispatches the
query to the network. The innermost onion layer is formed via
encryption of the query identifier id and the padding p using
the issuer’s public key Ysink . The padding p is introduced to



4888 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

maintain the head of fixed size if the query includes fewer than
⌊n/2⌋ target nodes. The following equation describes how to
compute the innermost onion layer.

O Rn+1 = εYsink (id, p)

Next, the client will compute the layer O Rn . This layer is
closing the circuit, forwarding the query back to the query
issuer. The layer is committed to sn the last sensor node of
the list S. The layer O Rn is computed like the layer O Ri ,
with the sole exception of including the sink node ip address
i psink as the next-hop address. Therefore, we omit explaining
layer O Rn construction, and we give layer O Ri construction
in the following lines.

The layer O Ri addressed to the sensor node si ∈ S (i as
index of the i-th element in lists S, K and index of the i-th
encryption layer of the query head) is computed in two distinct
ways. A: following equation 1 if ki = null, therefore node si
is a decoy node. Layer O Ri is computed via encryption of the
next hop ip address i psi+1 , and previous onion layer O Ri+1
using the public key Ysi belonging to the sensor node si . B:
equation 2 is applied if ki = (ea, eb), therefore node si is a
target node. Layer O Ri is computed via encryption of the next
hop ip address i psi+1 , the two symmetric encryption keys ea
and eb, and the previous onion layer O Ri+1 using the public
key Ysi belonging to the sensor node si .

O Ri = εYsi
(i psi+1 , O Ri+1) (1)

O Ri = εYsi
(i psi+1 , ea, eb, O Ri+1) (2)

The layer construction repeats until the formation of O R1,
the head’s first encryption layer, which is always of size L H
bytes.

b) Body construction: The query body B includes the
task t and a fixed size binary string. Since the query body
must be of fixed size L B bytes, and the size of task t can vary,
additional padding p of L t − si ze(t) bytes must be included
into the query body. (L t the maximum allowed task size in
bytes, and si ze() the function that returns the number of bytes
of the given argument) Then the query body is constructed by
encrypting the binary string w, the task t , and padding p using
the symmetric encryption key eF . Query body construction can
be summarized using the following equation:

B = EeF (w, t, p)

Now the query is complete: O R1 the query head and B
the query body. The query coupled with the address of the
first node in the query path s1 ∈ S and the query identifier
is forwarded to the sink node. The sink node memorizes the
query identifier and issues the query to s1.

3) Query Processing: A sensor node si ∈ S (i-th node in
the list S) receiving the query performs the following steps:
query decryption, task execution, and query forwarding.

a) Query decryption: The sensor node si decrypts the
query head O Ri using its private key Xsi . Query head decryp-
tion reveals the next hop IP address i psi+1 , the next onion layer
O Ri+1, and if si is a target node, head decryption also reveals
the pair of symmetric encryption keys (ea, eb).

b) Task execution: If the sensor node si received sym-
metric encryption keys from query head decryption, then si is
a target node and will perform the following steps. Otherwise,
if si is a decoy node, it will skip the following steps to perform
the step query forwarding.

The sensor node si decrypts B (the query body) using the
first symmetric key ea revealing: the data-carrying string w,
the task t , and the padding p. The task t gets executed sourcing
input from w and sensors. A task is executed at most for
1t milliseconds otherwise, task execution is interrupted. Task
execution returns w′, a binary string holding task execution
results. Then si constructs B ′ the query body consisting of
the data carrying string w′, the task t , and the padding p
all encrypted using the second symmetric encryption key eb.
Therefore, B ′ is constructed as follows: B ′

= Eeb (w
′, t, p).

Since the content of B ′ differs from B only in the binary string,
but the binary string w′ is of the same size of Lw bytes as w,
then query body size is maintained uniform.

c) Query forwarding: Query head is reassembled by
applying the technique for onion size uniformity introduced
in [9]. The query head size is maintained fixed at L H bytes
by adding λ a padding of si ze(O Ri ) − si ze(O Ri+1) random
bytes at the end of the onion layer O Ri+1. Therefore, the query
head is now consisting of O Ri+1 + λ. After 1q milliseconds
(1t < 1q ) from receiving the query, the sensor node will
randomly choose f a float, and will wait for other f · 1q
milliseconds before forwarding the query to the next hop.
Adequate bounding values should be selected for the randomly
chosen r , e.g. 0 ≤ f ≤ 4. After waiting the required time, the
query made of the head O Ri+1 + λ and the body B ′ (or B if
node si is a decoy node) is forwarded to the next hop si+1 at
the IP address i psi+1 .

4) Result Retrieval: Each query sent to a sink node to
accomplish the request Req will follow a path forming a circuit
that ends at the sink node that issued the query. The sink node
decrypts the query head consisting of the onion layer O Rn+1
revealing id the query identifier. The query identifier and the
query body B are then forwarded to the client that sent the
query to the sink node. The client uses the query identifier to
find the corresponding symmetric encryption key eL from the
recovery rules π , and the data-carrying string w is obtained
from the query body decryption.

When the client gathers the feedback of all queries issued
to accomplish Req , it starts the recovery process of the request
result. Query results are merged following recovery rules π to
obtain the end result of the request Req .

C. Arbitrary Computation

In this section, we discuss the capability of our proposed
approach to perform multiple computations to accomplish an
arbitrary computational job. Section IV-B described how the
client application is used to construct multiple queries for
retrieving an aggregated value from the WSN. In this process,
all the queries issued for obtaining the desired aggregate
enclose all the same task. However, the approach can be
extended to enable the client application to construct several
queries enclosing different tasks and using the binary string
to maintain a context for the task. By properly arranging
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Fig. 2. Representation of a computational job divided into individual
sub-tasks. Each sub-task independently executes a specific query within the
WSN. The barrier synchronization manages task dependencies.

and merging the results from these queries, the client can
accomplish the computational job.

To perform this, the client should first split a computational
job into sub-tasks and identify those that can be executed
independently and those dependent on the result of other
tasks. Moreover, while splitting the computational job into
sub-tasks, the client must consider the technique peculiarity
of the sequential movement of the query from one node to
another, which means that only the content of the query binary
string and the local data of the node currently processing the
query is available at each query processing step.

To manage the execution of these sub-tasks and their
dependencies, the client can implement barrier synchroniza-
tion. Barrier synchronization allows the client to wait for the
completion of a set of queries before proceeding with the next
set of queries. This ensures that any dependencies among the
sub-tasks are properly managed and that the required results
from previous queries are available before the subsequent
queries are issued. The barrier synchronization of queries is
shown in Fig. 2.

By using barrier synchronization at the client level, our
approach can support the execution of complex computational
jobs that involve multiple, interdependent sub-tasks. This
extends the versatility of our technique, enabling the execution
of more sophisticated computations across the WSN while still
benefiting from privacy preservation.

D. Query Size Optimization and Query Authenticity

The technique described in this manuscript is based on
queries consisting of several public-key encryption layers, and
layers include encryption key material and path details. These
queries are routed through a wireless multi-hop network and
relayed several times. Therefore, it is important to minimize
the query size to save network resources and improve the
system’s response time. Moreover, since queries are forwarded
among sensor nodes, it is important to grant query authenticity
allowing only authorized users to pose queries to sensor nodes
and inhibit the injection of malicious queries. We define that
a query is authentic if it was signed with an authorized
private key. In the following, we describe how to optimize the
query size and provide query authenticity using Elliptic Curve
Cryptography (ECC) [40]. Several research [41], [42] suggest

the adequacy of ECC cryptosystems for resource constrained
devices, mainly due to the smaller key size compared to RSA.

To generate a digital signature we use the Edwards-curve
Digital Signature Algorithm (EdDSA) [43]. The EdDSA sig-
nature of the message m consists of two values: R and s. The
signature is computed using the signer’s secret and public key,
respectively an integer a and the point on curve A = a · G.
G is the base point on an elliptic curve defined over the
finite field Fp of p elements with p prime. In EdDSA, R is
obtained as R = r · G, r a deterministic pseudorandom
value, obtained from the hash of the last 32 bytes of a and
the message to be signed. The value s is obtained from
s = r + H ASH(R||A||message) · a. (We use || to denote
concatenation.) The signature verifier generates two values
v1 = s · G, and v2 = R + A · H ASH(R||A||message).
If v1 == v2, the signature checks.

To ensure authenticity, the user constructing the query
should include a signature for each target node in the query
path. For a target node with address I Ps , the message to
be signed consists of m = t ||I Ps . To prevent reply attacks
and ensure that the query binary representation changes with
each new query, the pseudorandom generation of the value r
should be derived by hashing a, m, and a session ID. The
Session ID should be appropriately generated to avoid the
widely known security failure that lead to the compromise
of the Sony PlayStation3.

The first trick to optimize the query size is that R can
be reused for multiple ECC operations, which was shown
to be secure in [44], and was also applied by De Cristo-
faro et al. in [25]. We emphasize that we use R for one
signature and multiple ECC Diffie Hellman [45] operations.
Specifically, we adopt the Diffie Hellman key encapsula-
tion mechanism of the Elliptic Curve Integrated Encryption
Scheme (ECIES) [46]. The ECIES allows deriving a secret ς

from a random integer r and a public key. The same secret can
be derived by the corresponding private key and the random
integer. Therefore, by sharing the random integer, two parties
derive the same secret. The random integer can be securely
shared via its multiplication with the base point R = r · G.
Therefore, the value R used in the EdDSA signature can be
reused in the ECIES to derive a shared secret. The derived
shared secret ς is used in the ECIES as a key for applying a
symmetric cipher over data. Moreover, since it is enough to
verify the message authenticity at target nodes, the value R
can be reused for the ECIES operation at decoy nodes.

The second optimization trick relates to the delivery of
symmetric encryption keys to target nodes. One symmet-
ric encryption key can be derived by hashing the shared
secret ς obtained from ECIES decryption. A similar approach
was applied in the original onion routing technique [47].
The second symmetric encryption key should be delivered
in query head layers since keys are chained, as shown in
Fig. 1. The delivered key should correspond to the value
obtained by hashing the shared secret ς obtained by the next
target node.

Therefore, the query head size can be summarised with
equation 3, n the query path length, and L− the size of the
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subscript argument.

L R + (
n
2

· (L I P , L R, Ls, Lsym)) + (
n
2

· (L I P )) (3)

V. PRIVACY-PRESERVATION ANALYSIS

This section examines the communication protocol to
identify vulnerabilities concerning privacy preservation. The
literature on WSNs generally categorizes privacy concerns
into two main classifications: external and internal privacy [7],
[19], [25], [35], [36]. This paper aligns with this approach and
utilizes the same terminology. External privacy is threatened
by actors outside of the network listening to the wireless
communication, while internal privacy is threatened by trusted
participating sensor nodes of the WSN.

Throughout the analysis, we assume that the network imple-
ments layer 2 security, the guarantee of in-order data delivery
using TCP, sink nodes cannot be compromised, and users do
not collaborate with the attacker. For simplicity, we assume
that messages are not fragmented.

A. External Privacy

To examine external privacy, we visualize a foreign actor
that is monitoring the network traffic by eavesdropping on
wireless communications. We dub this actor the external
adversary. Eavesdropping is the intercepting and reading of
messages by unintended receivers. Since the majority of
wireless communications use the radio frequency spectrum to
broadcast signals over the air, transmitted signals can be easily
intercepted using adequate receiving equipment [48]. Event
though the network implements layer 2 security, we assume
that the external adversary is able to differentiate a trans-
mission transferring query information from ordinary network
management traffic by observing the transmission length.

Since layer 2 security protects transmissions using encryp-
tion and query size is maintained uniform throughout the
query path, the only disclosed detail of an intercepted query
is the effective transferring of the query from one node
to another. The node receiver of the transmission is then
processing the query (as explained in Section IV-B.3) or
re-transmitting it to another node (routing in multi-hop net-
works). However, processing the query introduces a delay,
missing if it is just re-transmitted. Therefore nodes processing
the query can be identified; nonetheless, the external adversary
cannot differentiate decoy nodes from target nodes since the
query sojourn time at both kinds of nodes depends upon a
randomly chosen float.

We now consider an external adversary whose monitoring
range covers the whole WSN; therefore, it can intercept the
whole wireless traffic generated by the WSN. Hence, the
adversary can track a query sourcing from the sink node and
moving through the network by monitoring its transmissions.
However, normally, the WSN traffic is not populated by only
one query, and the randomized nature of the query path
will make various queries mix at nodes on their route. Even
though the adversary violates security measures of the physical
layer, security at the data link layer is changing data by
encryption before each transmission. Furthermore, query size

is maintained uniform; therefore, it is hard for an external
adversary to track how the query transit through the network
since the adversary cannot distinguish between queries.

B. Internal Privacy

An attacker that owns a subset of WSN nodes is commonly
referred to as an internal adversary. Nodes owned by an
internal adversary are participating trusted nodes of the WSN
owning cryptographic keys to decrypt messages addressed
to them. Section IV-D shows how to render void query
injection attacks using digital signatures. Therefore, traffic
analysis is the only attack that could compromise privacy
concerning assumptions in Section V and the assumption of
secure cryptographic primitives.

The internal adversary can take advantage of owned nodes
to analyze traffic they receive and disclose information from
un-compromised nodes of the WSN. Although we assumed
that the network implements layer 2 security, only individual
links are secured by such a solution, and nodes intermediate
to routing paths can overhear messages passing through them.
In the following, we will analyze under which circumstances
an internal adversary is able to gain insights over other nodes
in the network and when the data privacy of a sensor node is
disclosed.

To simplify the analysis, we introduce the following nota-
tion expressing the operation of sensor nodes in relation to a
query: D are decoy nodes, T are target node, A are nodes
owned by the adversary intermediate to the routing path of
the query, AD are decoy nodes owned by the adversary, and
AT are target nodes owned by the adversary. In the following,
we explain the implications of a transiting query over sensor
nodes.

T and D are nodes that will process the query (as explained
in Section IV-B.3). On these nodes, the adversary is trying to
gain information. Nodes T are target nodes for the query, and
after processing at T nodes, the redirected query is entirely
changed by encryption. On the other hand, after query process-
ing at D nodes, the redirected query has query head changed
by encryption, but the query body remains unchanged.

A are nodes owned by the adversary that receive the query
due to routing needs in wireless multi-hop networks. There-
fore, A nodes receiving the query can observe the encrypted
query head and query body. Moreover, the IP header reveals
the address of the previous and next node processing the query.

AD nodes are owned by the adversary and are processing
the query. However, AD nodes cannot access the query body.
Therefore, AD nodes disclose only the IP address of the
previous and the next node processing the query.

AT nodes are owned by the adversary and are processing
the query as target nodes. Therefore, nodes AT can decipher
the query head layer addressed to them, revealing the next-hop
IP address and a pair of symmetric encryption keys. Thus, they
can decipher the query body and learn the task and the binary
string that carries the partial result. The internal adversary can
examine the task and disclose the function to be computed;
hence the adversary can identify the value carried in the binary
string. We say identify since the adversary can recognize that
the value is a sum, an extreme, etc. Although the internal
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Fig. 3. (a) Route of the query that leads through one T |D node confined
between two nodes owned by the adversary. (b) Route of the query that leads
through two or more T |D nodes confined between two nodes owned by the
adversary.

adversary can identify the value carried in the binary string,
by owning a single node in the query path, the internal
adversary cannot draw conclusions on the value or extract
sensor node readings of other target nodes in the query path
since it does not know which are target nodes and how many
target nodes contributed to the partial result.

We now consider a query that transits through multiple
nodes owned by the internal adversary. Hence the adversary
can track sender and receiver IP enclosed in the IP header to
partially reconstruct the query path and observe how the query
body changes to gain information over other nodes in the query
path. Note, we refer to the query path as the sequence of nodes
on which the query is processed; on the other hand, we refer
to the query route as the sequence of nodes that the query
transits, including nodes in the query path and nodes that are
forwarding the query due to routing needs in wireless multi-
hop networks. To conduct this investigation we examine two
cases where the query route leads through two nodes owned by
the adversary: 1) two or more T |D nodes confined between
two nodes owned by the adversary; ( _|_ used as exclusive
OR) 2) one T |D node confined between two nodes owned by
the adversary.

Fig. 3 shows an example of the two cases. We consider
these two cases since if the query route leads through more
than two nodes owned by the adversary, the instance can be
generalized to multiple of the aforementioned cases. Moreover,
in Section V-B.3, we consider concerns of query exit and entry
point.

1) Route of the Query That Leads Through Two or More
T |Dodes Confined Between Two Nodes Owned by the Adver-
sary: We first look at the instance that nodes owned by the
adversary are not both AT . Since the query is processing at

two or more consecutive un-compromised nodes, IP informa-
tion accompanying the query cannot be used to determine if
both nodes owned by the adversary received the same query.
Therefore, the adversary must rely solely on the query body
to disclose meaningful information. Indeed, if nodes in the
query path arranged between the two nodes owned by the
adversary are all D, the inner encryption layer of the query
body will remain unchanged. Therefore, the adversary can
identify that both owned nodes received the same query and
that all nodes processing the query between the owned nodes
are D nodes. However, the internal adversary is not able to
recognize the number of nodes in the query path between the
two owned nodes since query sojourn time depends upon a
randomly chosen float. On the other hand, if any node
arranged between the two nodes owned by the adversary is
a T node, then the query body is also changed by encryption,
and the internal adversary cannot determine if both owned
nodes are executing the same query.

We now consider that both nodes owned by the adversary
are AT nodes. Then the adversary can decipher the query body
at both owned nodes, and it should be possible to compare
tasks and binary strings to recognize if both nodes received the
same query. However, even though the adversary can recognize
the value change of the binary string, he cannot identify which
nodes processing the query are T nodes nor how many T
nodes contributed to the value change.

2) Route of the Query That Leads Through One T |Dode
Confined Between Two Nodes Owned by the Adversary: This
disposition of nodes can be identified by the internal adversary
as a transitive dependency of sender and receiver IP addresses
from the IP packet header (e.g. I Powned1 → I Pi , I Pi →

I Powned2). Therefore, we assume that given the transitive
relation of IP addresses, the adversary deduces that the two
owned nodes are processing the same query, even if the query
was changed by encryption and the randomly chosen query
sojourn time does not ensure that it is the same query. Another
query might be routed through I Pi → I Powned2 tricking
the internal adversary of detecting the relation I Powned1 →

I Pi , I Pi → I Powned2.
Regardless of the aforementioned possibility of mixing

queries, if the adversary identifies this particular disposition
of nodes, he can examine the query received at the two
owned nodes to gain insights over the node between them.
We distinguish the following three cases where the adversary
discloses different insights over the un-compromised node
between the two owned nodes:

1) Both nodes owned by the adversary are A|AD. The
adversary can compare the encrypted query body at both
owned nodes to disclose if the un-compromised node is
a T or D node for the received query.

2) One node owned by the adversary is AT . The adver-
sary can recognize if the un-compromised node is a
T or D node for the received query. Furthermore,
if the un-compromised node is a T node, the adversary
can observe the task to disclose the sensor technology
equipped on the node.

3) Both nodes owned by the adversary are AT . In this
case, the adversary can gain insights summarized in
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the previous points. Additionally, if the un-compromised
node is a T node, the adversary can compare the binary
string state at the two owned nodes to extract data added
by the un-compromised node.

3) Query Entry & Exit Point: We refer to the query entry
point as the first sensor node in the query path and the query
exit point as the last node in the query path since they both
communicate with the sink node making them recognizable as
such.

By our solution design, the first node in the query path can
be a T node. Thus if the first and the second node in the query
path are respectively T and AT , the adversary can disclose
data privacy of the first node in the query path, however only if
the adversary can identify that he owns the second node in the
query path. Since the position of nodes in the query path can
be identified only by tracking the query route from the source,
this vulnerability can be exploited only if the adversary owns
an A node in the query route from the sink node to the first
node in the query path. Moreover, it is possible to avoid this
vulnerability by setting an initial value to the data carrying
string.

The query exit point or the last node in the query path is
always a D node. We included this design choice since the
last node in the query path can identify its position in the
query from the next-hop IP address, which is the address of
the sink node. If AT is the last node in the query path able to
decipher the query body, the adversary could potentially infer
over the number of T nodes that contributed to the partial
result, since a query generally includes φ T nodes in the query
path. However, the adversary can identify that he owns the last
sensor node deciphering the query body only by tracking the
query path to the sink node.

C. Data Leak Probability

The examination in Section V-B shows that under certain
conditions, there is some probability that private sensor data
leaks to the internal adversary. We use the term leak since the
disclosure of private data depends on the randomized selection
of nodes in the query path. The data leak occurs when the
query path leads through three consecutive target nodes and the
two outer nodes are owned by the adversary, then the adversary
can compare the binary string state at the two owned nodes
to disclose the data added by the inner node.

To determine the probability of a data leak during normal
operation, we make the following assumptions: the selection of
nodes forming the query path occurs using a uniform random
generator, nodes in the query path do not repeat, and target
nodes are randomly selected. Therefore in a WSN of s sensor
nodes, the data leak probability depends on the query path
length n, the number of target nodes in the query path φ, and
on the number of sensor nodes owned by the adversary a.
We count all the instances where selecting three target nodes,
two of them are owned by the adversary; there are n − 2 such

Fig. 4. The data leak probability for different query path lengths. φ is set
to the default φ = n/2.

Fig. 5. The data leak probability at n = 20 and varying φ the number of
target nodes in the query.

occurrences where the adversary does not own the inner node.
The data leak probability is given in equation 5, as in (4),
shown at the bottom of the page.

We emphasize that equation 5 has also been validated via
simulation. We simulated the random query selection applying
the same assumptions as for equation 5, and we counted the
number of data leak occurrences. The simulation was repeated
several times, and obtained values matched our analytical
formula.

We plot the data leak probability distribution for different
query path lengths in Fig. 4, and a zoomed version in Fig. 5
shows the decrease of the data leak probability when reducing
the number of target nodes in the query path.

D. Active Attacks

The previous sections primarily focused on analyzing
privacy-related attacks. However, WSNs also face a variety
of additional threats that target data integrity and network
availability. These types of attacks are known as active
attacks, wherein adversaries actively interfere with the normal
functioning of the WSN by manipulating data or disrupting

Pleak =
a · (n − φ) · (s − a) · (n − φ − 1) · (a − 1) · (n − φ − 2)(s − 3)!

s! · n · (n − 1)
(4)
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network traffic. In this section, we will specifically discuss
active attacks that could exploit our proposed technique
to compromise the WSN while excluding attacks targeting
other network layers, as they are well documented in the
literature [4].

While the proposed technique offers certain security bene-
fits, it does not fully protect against data integrity threats aris-
ing from physical environment manipulation or compromised
nodes controlled by the internal adversary. Attackers may
compromise data validity by interfering with sensor nodes’
surroundings, such as artificially raising the temperature with
a lighter. They can also undermine data integrity by altering
query data using owned nodes. Specifically, target nodes pro-
cessing the query have access to the query body. Although they
cannot modify the task, as it is secured with query authenticity,
as explained in Section IV-D, they can alter the binary string
containing the aggregated data. Both scenarios can result in
inaccurate data aggregation and potentially incorrect decision-
making for the end user. However, such attacks on data
integrity cannot specifically target individual nodes, as the
proposed technique conceals the nodes processing the query.
Consequently, these attacks would be inconsistent and more
easily detectable.

In Section IV-D, we showed how to ensure query authen-
ticity to prevent malicious query injection and replay attacks
targeting data confidentiality. However, the technique we
described only verifies query authenticity at the target nodes.
Consequently, an internal adversary who knows the public
keys associated with node addresses could forge a query that
is only onion routed without providing access to the query
body. The adversary’s primary goal in doing so is to generate
unnecessary traffic, leading to network congestion and disrupt-
ing the WSN’s availability. An internal adversary could also
execute an attack by dropping queries that are onion routed at
compromised nodes. This attack is particularly effective in our
proposed solution, as queries follow a fixed path and cannot
bypass nodes that will onion-route them. As a result, the query
would fail to reach its final destination, disrupting the data
retrieval process and undermining the network’s functionality.

While the described attacks can potentially impact the
network’s functioning, they share similarities with threats
targeting other network layers. As such, these attacks can be
mitigated by implementing intrusion detection systems [49].

E. Discussion of Privacy-Preservation Analyses

In Section V-A, we provide evidence that the solution
withstands eavesdropping attacks since queries follow all the
same circuit-like patterns while paths are randomized, trans-
mitted queries are indistinguishable by encryption and uniform
query size, and queries are mixing while transiting the WSN.
Furthermore, external actors observing the wireless commu-
nication cannot disclose the nodes’ target of the query since
query forwarding time is decoupled from query execution.

In Section V-B we showed that the proposed protocol
preserves query privacy by constraining information of the
query path. Nodes receiving the query that can decipher
the query body can learn about the task. However, without

knowledge of the identities of other nodes involved in the joint
computation, the adversary cannot infer information other than
those revealed by the task.

Further analysis has shown that an attacker owning a portion
of network nodes could possibly disclose insights about non-
compromised sensor nodes and even threaten data privacy in
the WSN. However, assuming secure cryptographic primitives,
the adversary can increase the odds of privacy disclosures only
by increasing the number of owned nodes in the network.
Taking control over a sensor node is generally hard since it
requires physical access to the node [50]. Moreover, due to
the randomized selection of nodes forming the query path,
the adversary cannot increase the data leak probability for a
specific node in the network. In Section V-C, we expressed the
data leak probability, and it was shown that it depends on the
query path length, the number of target nodes in the query, and
the number of nodes owned by the adversary. Therefore, the
data leak probability can be adjusted based on the application’s
security requirements. Additionally, by applying the technique
for query size optimization described in Section IV-D, adding
a decoy node to the query path increases the query size only by
the size of storing the node address; therefore, higher privacy
requirements will result in a small decrease in efficiency.

In Section IV-D we explained how to use digital signatures
to grant query authenticity. Here we want to emphasize that the
described technique does not invalidate the security analyses
in Section V. The signatures in the query head are all diverse
since each signature is generated by coupling the task and
a target node address. Therefore, digital signatures do not
uniquely identify the query. Moreover, users could share
signing keys if digital signatures are used only to verify query
authenticity.

The privacy preservation analyses in Section V concern
an attacker attacking the network. However, as discussed by
Carbunar et al. [29] and De Cristofaro et al. [25] there are
some circumstances where the WSN user wants to protect
its privacy against the network owner. The solution of De
Cristofaro et al. achieves a very high level of privacy; nonethe-
less, the technique allows only retrieving individual sensor
node readings without the possibility of in-network processing.
In the case of our technique, we incur the same issues as
discussed by Carbunar et al., requiring the user to generate
multiple bogus queries to obfuscate the one of interest. The
problem is extensively studied by Carbunar et al. in [29],
taking into account spatial and temporal privacy.

We emphasize that protecting the user’s privacy against
the network owner is out of scope for this manuscript since
here we focused on describing a technique for the joint
computation of arbitrary functions on WSN nodes; moreover,
in our solution, this problem could be addressed using code
obfuscation techniques [51] to obfuscate the task and the
carried data.

VI. SIMULATION RESULTS

This section presents results of the privacy preserving
communication protocol simulated using the NS3 [20], [52].
We examine the protocol scalability in a simulated WSN by
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TABLE I
SUMMARY OF SIMULATION PARAMETERS AND CORRESPONDING VALUES

observing how querying is affected by the following indepen-
dent variables: query path length (number of nodes on which
the query will be processed), network size (number of nodes
in the WSN), network topology, and query body size.

In order to quantify the response of independent variable
adjustments, we meter the Round-Trip-Time (RTT) of queries.
We define the RTT of a query, as the elapsed time between the
issuing of the query from the sink node and the return of the
issued query to the issuer node. Therefore, the RTT includes
the sojourn time of the query at sensor nodes in the query
path. However, Section IV-B.3 describes that the query sojourn
time depends upon the application-specific parameter 1q and
a randomly chosen float f . Therefore, we decided not
measure the query randomized sojourn time since it introduces
delays that are not dependent on the network. Moreover, by the
law of large numbers [53], if choosing the value of f from
a uniform random distribution bounded by the interval [0, F],
the average of the results obtained from a large number of
trials will converge to the expected value of f . Therefore,
the average cumulative sojourn time for a specific query path
length n at an adequate 1q and F can be estimated using the
following equation:

sojourn_time = n · 1q ·
F
2

(5)

A. Experimental Setup

The simulated WSN consists of one sink node and s sensor
nodes. We consider two network topologies: the grid topology
(GT) and the random disc topology (RDT). In the former,
sensor nodes are deployed according to a grid structure; each
sensor node is equidistant from the closest sensor nodes in
cardinal directions. We set the distance between sensor nodes
to a = 60 meters so that a sensor node is in the communication
range of at most eight sensor nodes. In the latter, sensor nodes
are randomly deployed on a disc-shaped plane of radius rp.
The radius rp is obtained from rp =

√
A/π , A being the

sum of circular area’s covered by s sensor nodes at radius
rs = 35 meters. Therefore, the average sensor node density
of the network is maintained fixed at diverse s. Since in RDT
sensor nodes are casually deployed on the target area, some
sensor nodes could form independent network segments not
connected to the network segment of which the sink node is a
member. Therefore some sensor nodes might never be queried.
In both network topologies, the sink node is deployed in the
center of the WSN. We chose values of parameters a = 60m
and rs = 35m, since networks of different topologies will
have a near equal average node density: GT: 1

602 = 0, 277 ∗

10−3nodes/m2, and RDT: 1
352π

= 0, 26∗10−3nodes/m2. Key
simulation parameters are given in Table I.

The simulation implements the IEEE 802.11n standard for
local wireless networks, operating in the 2.4 GHz band at
the data rate of 12Mbps. The maximum segment size is set
to the NS3 default 536 bytes. Each node in the WSN has
installed the IP stack, and messages are transmitted over the
TCP protocol.

However, the TCP was designed to function over low-error
wired networks where the packet loss is usually the outcome
of a network congestion [54]. Several studies are suggesting
that the use of TCP in wireless multi-hop networks results
in low throughput since packet loss due to transmission error
and route discovery is handled using congestion avoidance and
control [54], [55], [56]. Route discovery is performed by the
routing protocol when searching for a route from sender to
receiver. It is possible that discovering a route may take more
time than the TCP retransmission timeout (RTO) [55]. The
RTO is an internal timer of the TCP used to determine when a
segment needs to be retransmitted. If the RTO elapses before
receiving the acknowledgment of segment delivery, the seg-
ment is retransmitted, the RTO is increased using exponential
backoff, and the TCP is adjusted for congestion. The minimum
RTO value in the simulation is set to the default, 1 second.
To avoid complications due to route discovery, we decided to
use the Optimized Link State Routing Protocol (OLSR) [57],
a proactive routing protocol so that routes are immediately
available when needed. In proactive routing protocols, routes
between each pair of nodes are determined at the network
start-up and maintained with periodic updates.

Queries are constructed from the sink node by randomly
selecting n nodes to include in the query path, n being the
query path length. Query construction occurs using the tech-
nique for query size optimization ensuring query authenticity
as explained in Section IV-D by using the elliptic curve
Curve25519 [58] with key length 256-bit and the symmetric
cipher Advanced Encryption Standard (AES) [59] at key
length 128-bit. Therefore, recalling Section IV-D, R, s, and
sym sizes are respectively 32 bytes, 32 bytes, and 16 bytes.
To further reduce the query size, we use network addresses
of 16-bits. The query body should be a multiple of the AES
block size, and its size is adapted based on the experiment
requirements.

Queries are issued from the sink node sequentially; after a
query returns back to the sink node, the following query is
issued. Nodes in the query path performing query processing
maintain the uniform query size by adding padding. If the
query does not reach the next-hop node in 100-seconds, the
query is aborted, and a new query of equal parameters is issued
from the sink node.

B. Experiment 1 – Remote Procedure Call
In this experiment, we consider the minimal size of the

query body since this will give a better overview of how the
network properties affect the RTT and since the query body
size mainly depends on the computation instructions conveyed
using the protocol.

The minimal query body size applies to the Remote Pro-
cedure Call (RPC) settings, where nodes of the WSN have
encoded a set of functions, and the task t carried in the query
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Fig. 6. The chart shows the average query RTT for the GT WSN at varying
of the query path length and network size. Data from the experiment 1 in
Section VI-B.

Fig. 7. The chart shows the average query RTT for the RDT WSN at varying
of the query path length and network size. Data from the experiment 1 in
Section VI-B.

body specifies which function to compute over sensor readings
and w the data carrying string. We set the task t and the binary
string w to 16 bytes.

A set of simulations was run for both GT and RDT at
s = {50, 100, 200, 300, 400}. Each run executing 30 queries
for each value of n = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}, the
query path length. The obtained data is presented in Fig. 6,
and Fig. 7. In the RDT simulations, the network segment,
including the sink node, was connected to approximately 90%
of all nodes. We observed some aborted queries in the RDT at
the network size of 300 and 400 nodes. However, the events
were all observed right after the simulation started; therefore,
probably due to the OLSR routing requiring more time to
converge. In the GT no aborted queries were detected.

C. Experiment 2 – Arbitrary Computation

In this experiment, we examine how the RTT is affected
by the size of the query body. The large size of the query
body is distinctive to an implementation of the communication
protocol that delivers the function to be computed on sensor
nodes within the query.

A set of simulations was run for the GT WSN at s = {50,

100, 200, 300, 400}. Each run executing 30 queries for the

Fig. 8. The chart shows the average query RTT for the GT WSN with query
path length set to n = 20, varying the query body size and network size. Data
from the experiment 2 in Section VI-C.

query body size bs = {128, 256, 512, 1024, 2048, 4096, 8192}

bytes, at the query path length n = 20. The obtained data is
presented in Fig. 8.

D. Discussion of Simulation Results

From Fig. 6, it is apparent that the query RTT is highly
affected by the network size and the query path length.
Furthermore, at larger network sizes the query path length
has a higher effect on the query RTT. The high query RTT at
large network sizes is due to the randomized selection of the
query path that cause queries to cross nodes that may be very
distant. Therefore, in a large network it should be practical to
constrain the random selection of nodes to a network region
that includes the nodes of interest but it is small enough to
not incur in high query RTT.

The difference in query RTT between the GT and RDT can
be observed in Fig. 6 and Fig. 7. In particular, it is possible
to notice that the average query RTT at RDT is higher than at
GT. Furthermore, the RDT data has a higher variance. Besides
high variance of collected data, we also report a non-normal
distribution of RTT measurements. A possible explanation
for the non-normal distribution of RTT observation could be
intrinsic to the TCP protocol and the RTO timer.

Experiment 2 considers the query RTT of queries with large
query body sizes. Interestingly, in Fig. 8 can be seen that
at selected parameters, the query body size does affect the
average RTT of queries; however the increase is noticeable
only for larger query body sizes (larger than 1024 bytes).

VII. LIMITATIONS

Although our proposed privacy-preserving protocol presents
several advantages for WSNs, it also exhibits certain limita-
tions that we discuss in this section.

A limitation related to our proposed technique that warrants
further discussion is the use of layered messages constructed
using public key encryption. Public key cryptography is
well known for being more computationally intensive than
symmetric key cryptography. However, public key encryption
provides benefits that symmetric key encryption cannot, such
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as non-repudiation and no need for pre-shared keys. As a
result, many studies apply public key encryption also in
WSN settings [25], [60], [61]. The survey [62] provides an
overview of public key cryptographic primitives adequate for
WSNs, testing them on WSN devices. The suitability of 32-bit
ARM-based microcontrollers for applications with significant
cryptographic requirements is emphasized in [63] and [64],
while [65] demonstrates the implementation of end-to-end
integrity protection using Elliptic Curve Digital Signature
Algorithm (ECDSA), further validating the efficacy of the
32-bit ARM architecture.

With regards to our protocol, it should be noted that even
though messages consist of several public key encryption
layers, the message creation process is performed outside the
WSN on client applications. Consequently, the high overhead
of applying multiple public key encryption layers does not load
the WSN nodes. Upon receiving a query, WSN nodes perform
either one or, at most, two public key operations. A single
operation occurs if the query is only onion-routed through
the node, while two operations take place when the node
accesses the query body content and checks its authenticity.
Therefore, our approach does not require many more public
key operations than other techniques proposed for WSNs.
Moreover, the computational load of decrypting query layers
is uniformly distributed throughout the WSN.

Another limitation associated with the use of onion routing
is the inability to change query routes after their creation.
The underlying routing protocol can adapt to node failures
by dynamically adjusting the routing path. For example, if a
query is created to be processed at nodes A and C and must
travel from A to C through a third node B, the route can
be dynamically adjusted if node B fails, routing the query
through an alternative path linking A and C. However, this
cannot resolve issues arising from the fixed nature of onion
routing. In cases where node C fails, the query will never reach
its destination because path information can only be obtained
by sequentially removing the encryption layers. Node C is the
only node capable of removing the encryption layer addressed
to it. If node C fails, no other node can remove that layer.
In such situations, the network should adapt by flagging the
failed sensor node or removing it from the registry held by
sink nodes, making it ineligible for queries.

As observed in Section VI, our approach introduces a
significant latency when processing a query, which impacts
the real-time performance of the network. Furthermore, longer
query path lengths result in longer query RTT. A potential
solution to mitigate this issue is to send multiple smaller
queries that can collectively obtain the same result, achieving
reduced overall latency through parallel execution rather than
sending a single query through a longer path. This approach
allows for improved query response times while maintaining
the desired privacy-preserving features.

It is important to note that the discussed limitations do not
undermine the overall effectiveness of our privacy-preserving
protocol in the context of WSNs. However, they provide
insight into the trade-offs and challenges that need to be
considered when implementing and deploying our proposed
solution.

VIII. CONCLUSION AND FURTHER WORK

This paper proposes a technique that enables WSN nodes
to jointly compute a function in a privacy-preserving manner.
We compare our proposal to the related work in the field,
showing that, to the best of our knowledge, this is the first
scheme that allows in-network joint computation of arbitrary
functions in WSNs without aggregator nodes and without
disclosing the nodes participating in the computation and their
private inputs. We show that the scheme mitigates traffic anal-
ysis attacks; thereby making it adequate for indoor monitoring.
As future work; we plan to implement and test our proposal
in several buildings to collect and in-situ analyze air quality
data. Additional future work includes investigating further
adaptation of the proposed technique to IoT environments, the
technique will be considered for training and evaluation of
machine learning models and the federated learning paradigm
could offer a valuable avenue for exploration. Moreover,
the application of code obfuscation techniques or homo-
morphic encryption to the tasks conveyed to sensor nodes,
would considerably enhance privacy preservation, warranting
further exploration into the potential trade-offs of such an
approach.
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