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Abstract— Recognition of known malicious patterns through
signature-based systems is unsuccessful against malware for
which no known signature exists to identify them. These include
not only zero-day but also known malicious software able
to self-replicate rewriting its own code leaving unaffected its
execution, namely metamorphic malware. YARA is a popu-
lar malware analysis tool that uses the so-called YARA-rules,
which are built to match malicious contents within files or
network packets analyzed by an Anti-Virus engine. Sometimes
such content is expressed in the form of a byte-signature, i.e.,
a sequence of operational machine-level code. However, these
can be bypassed since malware obfuscation techniques can
change these sequences, rewriting them in several equivalent
forms. This paper presents YAMME, a YARA-byte-signatures
Metamorphic Mutation Engine to strengthen rules against some
malware obfuscation techniques deployed in metamorphic muta-
tion engines. First, it rewrites YARA-bye-signatures in several
equivalent ways, as a metamorphic mutation engine would do.
Second, an optimization phase exploits the YARA-rules syntax
constructs to provide several rules formats, making them suitable
for different real-world application requirements. YAMME rules
have been evaluated on MWOR, G2, NGVCK, and MetaNG
datasets, resulting in a better detection rate than that achieved by
YARA-rules generated through AutoYara. Furthermore, an anal-
ysis of computational overhead required by different YAMME
rules formats validates the low impact introduced by the mutation
engine at the YARA-rules level.

Index Terms— YARA, metamorphism, malware obfuscation,
metamorphic malware detection, AutoYara, metamorphic muta-
tion engine.

I. INTRODUCTION

MALWARE represents the most significant cybersecurity
threat due to the exponential growth of cyberinfections

caused by their wide spread [1]. Some examples of popular
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malware are: Ransomware that encrypts victim data so that
they cannot be accessed until a ransom amount is paid [2];
Hardware-Trojan that can execute malicious actions in the
background [3]; Worm that can self-replicate to infect the
highest possible number of assets in a computer network
[4]. Therefore, developing defense measures capable of effi-
ciently analyzing malicious samples is critical [5]. Malware
analysis is usually divided into two main categories, i.e.,
static and dynamic analysis strategies [6]. During dynamic
analysis the behavior exhibiting by the malware is observed
[7]. However, this approach is not applicable in fast com-
munication computer networks due to the latency introduced
by the time required to perform the analysis itself. As a
consequence, static analysis tools such as Anti-Virus (AV)
are typically used since these can provide quick feedback.
An AV engine typically employs a scanner that analyzes a
file or the payload of a network packet. It uses a set of
rules capable of intercepting malware based on text strings
or binary patterns that it contains [8]. Yet Another Recur-
sive Acronym (YARA) [9] is a static analysis tool widely
used by several commercial AV and intrusion detection or
prevention systems [10]. This led the scientific community
to propose several innovative mechanisms to generate YARA-
rules [11], [12], [13], [14], [15] and optimize YARA-scanner
performance [16]. Moreover, according to [17], well-crafted
YARA-rules can intercept malware obfuscated using anti-static
analysis techniques [18]. A YARA-rule uses a simple C-based
syntax and consists of two main sections: strings, i.e., a list of
ASCII or hexadecimal (HEX) patterns or regular expressions,
searched by the AV scanner into the analyzed item; condition,
i.e., the relationship between the strings to be met to trigger
the rule.

Static analysis methods, such as YARA, are very accurate
in intercepting known malicious patterns, as shown in several
studies [19], [20]. On the other hand, the same are not very
effective to detect zero-day [21]. Furthermore, AV employs
signature-based methods having low tolerance to malware
variability. Therefore, a new malware signature must be
developed to detect malware variants [22]. This weakness is
exploited by malware writers, who develop mutation engines
able to evade known AV signatures. Among the different
techniques used by malware authors for generating variants,
a metamorphic mutation engine rewrites the malware assembly
(ASM) code using some obfuscation techniques, without
altering the sample malicious scope [23]. In this regard, let
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Fig. 1. YARA-rule failure on a metamorphic variant of WannaCry malware.

Figure 1 be considered. The rule Wannacry_Ransomware
in RANSOM_MS17-010_Wannacrypt.yar of the
YARA-rules repository [24] has been considered. In detail,
the Hexadecimal (HEX) strings that represent byte-patterns,
i.e., ASM code instructions, are taken into account. The
aforementioned YARA-rule is tested on a Wannacry sample
downloaded from Virushare [25]. Moreover, a metamorphic
variant of WannaCry has been generated to show the
differences in the results obtained by scanning both malware
with the same YARA-rule. Such results are denoted with 0

to indicate the set of binary patterns found. According to its
condition, the rule matches if |0| = 3. As a consequence, the
metamorphic variant of malware can bypass the YARA-rule
by applying a simple malware obfuscation technique, such as
ASM code instruction permutation [26] on the HEX string
identified by $op6. Therefore, a YARA-byte signature can be
vulnerable to such general obfuscation techniques, and it is
verified for both public rulesets [24] and those obtained by
automatic generation algorithms, such as AutoYara [13]. In
fact, according to [27], automatically generated YARA-rules
can require post-processing actions to make them suitable for
addressing a specific security problem.

This paper presents YAra-byte-signatures Metamorphic
Mutation Engine (YAMME), an algorithm employing gen-
eral metamorphic obfuscation techniques to strengthen
YARA-rules against evasion attempts. Therefore, the proposed
contribution comes as a defense-as-attack mechanism that per-
turbs known YARA-byte-signatures using the same techniques
that the generic metamorphic mutation engine would use as a
self-protect detection method. However, metamorphic engines
often combine several techniques to make AV detection diffi-
cult. The application of sequential obfuscation methods results
in several malware mutations. As a consequence, the resulting
perturbed YARA-byte-signature will be composed of the same
number of HEX strings. However, low computational over-
head is mandatory regardless of the post-processing technique
introduced to improve the effectiveness of the YARA-rules
[27]. Therefore, to compact the strings produced, YAMME
embeds three optimization algorithms, which differ in the
result produced in terms of optimized rule readability and
computational overhead required.

The main contributions provided by this paper are:
• it presents YAMME, an innovative metamorphic muta-

tion engine for enhancing YARA-byte-signatures against
malware obfuscation techniques;

TABLE I
SUMMARY OF MAIN NOTATIONS USED IN THIS PAPER

• it provides an analysis of:
– detection performance achieved by YAMME rules on

four different metamorphic malware families;
– computational performance achieved by YAMME

rules during a scanning process performed through
the YARA-scanner.

The remainder of this paper is organized as follows.
Section II provides a literature review on metamorphic
malware generation and detection techniques, and YARA; fur-
thermore, it defines the motivation of this paper. In Section III,
the theoretical framework used for the proposed contribu-
tion is presented. Section IV illustrates YAMME, describing
how perturbation and optimization phases work. Section V
provides the experimental settings, that is, the description
of methods and materials used to evaluate YAMME. Then,
the results and their discussion are reported in Section VI.
Section VII discusses the feasibility of the proposed technique.
Section VIII concludes the paper and draws possible future
works. Table I summarizes the main notations used in this
paper.
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II. RELATED WORK AND MOTIVATION

A. Metamorphism

1) Metamorphic Malware Generation Methods: The ran-
domness in malware evolution is due to the tools employed by
the malware authors to implement several functions according
to the malicious scope of the malware family to which the
sample belongs. Generally, malware variants can be automat-
ically generated using polymorphism or metamorphism [28].
Polymorphic malware embeds a compiler capable of decompil-
ing or decrypting the sample to mute. Then, the viral patterns
searched by static analysis tools are encrypted using a new
random encryption before recompiling the malware variant.
However, the viral code is decrypted in memory, which favors
detection methods [29]. On the other hand, a metamorphic
malware is able to rewrite its ASM code in an equivalent
way by applying obfuscation methods, such as instruction
permutations, garbage code insertion, or equivalent instruction
replacement [30]. This is done using the so-called metamor-
phic mutation engine [29]. In [31], the Genetic Algorithm
(GA) is used to create a metamorphic malware variant, insert-
ing a set of instructions into opportune ASM listing blocks to
change the code representation, i.e., to bypass static analysis
based on byte-pattern matching. Evolutionary algorithms as
metamorphic mutation engines are also evaluated in [32] and
[33]. In the latter case, each individual created at the end of a
generation, is tested on a virtual environment to determine if
it represents a potential malware variant, and is scanned using
widespread AV engines. In [34], a novel framework called
AMVG generates malware variants using a modifier block
function that applies a GA or a machine learning model to
introduce random perturbations. The modification schema is
defined according to the input file that can be the malware
ASM code. In this case, the above cited transformations
are applied. The sample is then validated through behavior
analysis to determine that a new metamorphic malware variant
has been obtained. Furthermore, the Reinforcement Learning
(RL) paradigm has recently been explored for generating
malware variants [35]. In [36], ADVERSARIALuscator exploits
a Deep RL agent such as Proximal Policy Optimization (PPO)
to create feasible obfuscations at ASM code level. Analo-
gously, PPO is used in [37] and [38] to generate metamorphic
malware variants. In MERLIN [39], REINFORCE and Deep
Q-Network are used to train a mutation system capable of
evading AV engines and machine learning classifiers, consid-
ering metamorphic malware, obfuscation techniques. In [40],
a metamorphic worm engine is presented that implements
garbage code insertion and ASM instruction replacement
focusing on MOV and XOR substitutions. The effectiveness
of XOR-based instruction replacement technique has been
recently discussed in [41]. In [42], a phylogeny model built
on code permutations technique is presented to point out the
similarity between malware samples when permuted variants
of programs are compared.

2) Metamorphic Malware Detection Methods: Detecting
malware obfuscated using metamorphic mutation techniques
represents a fascinating research topic. In [43] , an algorithm
called MetaAware for identifying metamorphic malware is

presented. This system detects malware variants through
similarity comparison between disassembled samples. This
comparison is performed considering the function calls
and system libraries used by the two programs. In [44],
an approach called MEDUSA addresses metamorphic mal-
ware detection by creating a signature based on Application
Programming Interface (API) call sequences extracted from
behavioral analysis. In [45], the metamorphic malware detec-
tion problem has been tackled by computing the structural
entropy similarity between malware variants. This method
was developed in [46] and consists of two main phases.
First, the analyzed files are segmented using entropy and
wavelet analyses. The second stage computes a similarity
metric between the obtained objects. The results obtained
show that such a method can effectively detect metamorphic
malware. In [47], the metamorphic malware detection problem
is addressed using a graph matching algorithm, which is based
on APIs called during program execution. Starting from a
database of known malware API call graphs, a distance metric
is used to compute the similarity between unknown and known
API call graphs. This method achieves promising performance
in the detection of various types of metamorphic malware.
MOMENTUM [48] represents a metamorphic malware detec-
tion methodology based on the use of signatures defined
by Multiple Sequence Alignment (MSA) algorithms. The
detection and false positive rates obtained are very promising.
Reference [49] proposes a metamorphic detection method
based on entropy and the number of repeated ASM instruc-
tions. First, the examined sample is disassembled; second, the
instruction occurrence matrix stores the occurrence frequen-
cies of a generic instruction; and finally, such a matrix is sent
to a machine learning algorithm to classify the sample as mali-
cious or not. The results obtained show the effectiveness of this
detection method. A. G. Kakisim et al. [23] introduced two
methodologies to identify metamorphic malware, both based
on co-opcode graphs, i.e., graphical data structures created for
a singular malware family. Entropy-based distance measure
is used in [50] to determine the degree of metamorphism
in four different malware families. This distance is passed
to K-Nearest Neighbors to classify metamorphic malware.
The results obtained are encouraging. In [51], several works
that use a combination of Hidden-Markov-Models (HMMs)
with other algorithms are evaluated according to the features
considered. This collection reveals how in each case the
use of HMM results in encouraging metamorphic malware
classification accuracy values. R. Mirzazadeh et al. [52] com-
bine opcode graph similarity with linear discriminant analysis
to tackle metamorphism. In [53], a novel framework for
metamorphic malware analysis called MARD (presented in
[54]) is used. It exploits the Malware Analysis Intermediate
Language introduced in [55]. The method uses a combination
of control flow graph and sliding window of difference, and
control flow weight techniques to build a behavior signature
for detecting metamorphic malware in real-time. The Non-
negative Matrix Factorization technique has been used in [56]
to detect metamorphic malware, leading to better results than
previous similar-paradigm techniques. The same technique has
been combined with an HMM model in [57] to improve
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metamorphic malware detection performance. Wang et al. [58]
discuss how metamorphic malware evolves, describing the
concept drift introduced by metamorphic mutation engines.
A training phase on properly extracted and processed data is
required for some of the most effective methods, i.e., Artifical
Intelligence-based algorithms, which are able to minimize such
concept drift. On the contrary, a signature-based static analysis
tool such as YARA needs a proper ruleset covering as many
malware variants as possible.

B. YARA

YARA has been studied in several research contributions
due to its flexibility and widespread. In [59], a tool called
MASSE performs intrusion detection using YARA as a mal-
ware analysis tool. In [60], a clustering algorithm aimed at
intercepting malware variants is presented. Such an algorithm
runs downstream of initial filtering performed by scanning
with YARA-rules. Biclustering algorithms are extended in [13]
for the automatic generation of YARA-rule given a set of
samples sharing similar properties. In particular, a variant of
the SpectralCoClustering algorithm has been developed using
the Variational Gaussian Mixture Model algorithm, which
allows prior knowledge of the number of clusters. In [11],
a GA-based process is used to generate YARA-rules. The
fitness function is defined according to the detection rate of
the produced rule, and the goal is to maximize such a score
while generating candidate rules. The generated rules obtained
promising detection rate scores. In [14], an automatic YARA-
rule generation algorithm has been presented, which uses an
executable sample as input and identifies relevant malicious
patterns based on a pre-trained Naïve Bayes. The proposed
framework results in better detection performances than the
compared approaches. M. Belaoued et al. [61] proposed a
novel feature selection method working on the generic API call
sequence derived from dynamic analysis. In particular, given
two sequences, the LCS was used to extract common APIs
that are not necessarily contiguous. In addition, the generic
API was ranked according to its Term Frequency-Inverse
Document Frequency (TF-IDF) score. As a consequence, two
different types of YARA-rules are obtained: the first consid-
ers API sequences extracted by the LCS; the second takes
into account the API having the highest TF-IDF value. The
obtained YARA-rules resulted in promising detection accuracy
scores. In [15], YaraML models, i.e., Logistic Regression and
Random Forest (RF), are leveraged to rank dynamic features,
such as the API call sequence and the API parameters,
extracted from the sample behavioral analysis, and thus gen-
erate a set of YARA-rules. In the case of RF, the YARA-rule
is generated considering each single rule (associated to each
tree in the forest) and combining them at the condition level
through a permutation of multiple trees. The method results
in effective malware detection performance against malicious
Windows samples. In [62], YARA is combined with import
and fuzzy hashing methods to perform ransomware analysis.
Based on the performance obtained, fuzzy rulers are embedded
with the YARA-rule in [63], [64], and [65] to extend the
range of conditions admissible by the YARA-rule. In [27],

a fuzzy hashing method is proposed to improve the detection
rate of automatically generated YARA-rules. Among all the
experiments, the results obtained reveal performance improve-
ment in intercepting four ransomware categories due to the
YARA-rules enhancement using the proposed method. In [66],
a Bidirectional Encoder Representations from Transformers
(BERT) model is exploited to generate YARA-rules. In partic-
ular, given an input sample, the rule strings are extracted, and
then the most relevant strings are selected by the BERT model
to reduce the false positive rate. The BERT-based rules achieve
better detection performance than benchmark approaches.

C. Motivation

From the state-of-the-art review, it emerged that recent
researches propose strengthening methods for detecting meta-
morphic malware, which are mainly related to algorithms
generalization ability of different Artificial Intelligence-based
algorithms. The introduction of a signature generalization
mechanism that is not dependent on the learning phase (which
could be vulnerable to adversarial attacks capable of altering
rules effectiveness, as shown in [67], [68], and [69]) may
prove to be a viable alternative. In addition, such a system
may prove helpful for enhancing rules manually generated by
security analysts, which is still widely used in practice [70].
Furthermore, according to the review of the literature on
metamorphic malware detection and YARA usage, and to
the best of our knowledge, no work considers enhancing
the YARA-rules against metamorphic malware by mutating
them using malware obfuscation techniques. This motivates
the proposal of this research, that is, the presentation of a
defense-as-attack method that provides a mutation engine for
YARA-rules replicating common low-level code transforma-
tion techniques. In particular, mutations resulting in known
OPCODE mutations are considered.

III. BACKGROUND

A. ASM OPCODE

An operation code (OPCODE) identifies an ASM instruc-
tion according to the specific CPU architecture.

These are typically encoded using HEX strings, such
as: CWD → 0 × 99; INTO → 0xCE: LEA → 0xBD;
LOCK → 0xF0; NOP → 0 × 90; POPF → 0 × 9D;
PUSHF → 0× 9C; etc.

As described above, a metamorphic mutation engine gen-
erates an equivalent malware form by rewriting its ASM
code through some methods that leave unaffected the program
execution. However, these transformations result in OPCODE
mutations, which result in ineffective YARA-byte signatures.
In this paper, some metamorphic mutation techniques dis-
cussed in [26], [30], and [49] are considered. Note that
these represent some general techniques widely deployed by
metamorphic mutation engines [29].

B. Metamorphic Malware: Overview of Obfuscation Methods

In this section, a discussion of some malware obfuscation
techniques used by malware authors for generating variants
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is provided. To better outline YAMME applicability, such
techniques are categorized according to whether they result
in a priori known OPCODE mutation.

1) Not Known OPCODE Mutations:
• Inlining process: this technique consists of replacing a

function call with the corresponding function body. As a
consequence, given an HEX string that has a semantic
item corresponding to a function call, it is not possible
to know a priori the new OPCODE sequence associated
to the instructions within the function body.

• Outlining process: this obfuscation technique is the dual
of the above one. Therefore, a call instruction replaces
function body sequence.

2) Known OPCODE Mutations:
• Instruction Permutation (IP): this obfuscation technique

swaps the instructions in the listing without altering the
correct execution flow. This is achieved by satisfying
dependency relationships between the operand registers
according to the following statement [26].
Definition 3.1 (Dependency relationship): Given a list-
ing such as the following: op1 R1, R2; op2
R3, R4.
It can be stated that two instructions are permutable if the
following conditions are met: (i) R1 ̸= R2; (ii) R1 ̸= R4;
(iii) R2 ̸= R3.

• Instruction Replacement (IR): this obfuscation technique
substitutes instructions with equivalent ones [49], [71].

• Register exchange (RE): this technique consists of repli-
cating an ASM flow by changing the registers used [49].
In fact, an instruction typically contains one or more
identifiers for the operands on which the operation is
performed.

• Garbage Code Insertion (GCI): this obfuscation tech-
nique adds no-effect operations between the instructions
in a listing. This does not alter the correct program
execution but results in the OPCODE sequence mutation.

Several examples of the effects of such techniques on
OPCODE sequences are reported in Table II. YAMME can
be adapted to each transformation resulting in a priori known
OPCODE mutation. To make detection more challenging,
metamorphic engines frequently mix two or more of these
methods [49]. Several malware mutations can be obtained by
applying these techniques sequentially, along with other obfus-
cation techniques leading to opcode sequence metamorphoses.
As a consequence, the resulting YARA-byte signature will
consist of the same number of HEX strings. To reduce this
number, the usage of regular expressions has been considered
since these are admissible by the YARA syntax.

C. Regular Expressions and Finite State Machines

The following are some basic definitions of formal language
theory derived from [72], which will be used to optimize
YARA-rules.

Definition 3.2 (Alphabet): An alphabet 6 is a nonempty
finite set of symbols (characters).

Since YARA-byte-signatures are taken into account, 6 con-
sists of the set of HEX digits, i.e. 6 = {0, 1, 2, 3, 4, 5, 6, 7, 8,

9, A, B, C, D, E, F}.

Definition 3.3 (String or word): Given an alphabet 6,
a string or word is defined as a finite sequence of 6 characters.

Each OPCODE assigned to an ASM instruction, and an
OPCODE sequence represents a word in 6.

Observation 3.1: The set of all strings defined on the alpha-
bet 6, including the empty string, i.e., the string of length zero,
is denoted 6∗.

Definition 3.4 (Language): A language is a subset of 6∗.
Specifically, a language L over 6 is a set of words in 6∗

Each possible isolated string obtained through several con-
catenation operations between strings results in a language L .

Definition 3.5 (Regular Expression): Regular expressions
are a method of representing languages. Each regular
expression e corresponds to the language that it represents.

Given the above alphabet 6, the following example of
regular expression e = {AAD|AB D|AC D} = {A(A|B|C)D}
can occur. In particular, it represents any of AAD, ABD, and
ACD.

Definition 3.6 (Regular language): The language deter-
mined by a regular expression e is called Regular language
L(e). Therefore, it is a subclass of all possible languages
that can be defined given 6. In particular, given a regular
expression e, and a word w, the regular language is given by
L(e) = {w ∈ 6∗|w matches e}.

Chomsky grammars of type 3 (regular grammars) generate
regular languages. A Chomsky (formal) grammar represents a
set of production rules, i.e., strings replacement from left-hand
side to right-hand side, where each side is given by a sequence
of: terminal(non-terminal) symbols for which replacement
is(not) allowed; a start symbol. Type-3 grammars have the
following main properties: (i) a single non-terminal on the
left-hand side; (ii) a single terminal or, a single terminal
followed by a single non terminal, on the right-hand side;
(iii) production rules in the form A→ B or A→ B D, where
A and B are non-terminal symbols and D is a terminal one.
According to their structure, regular languages can be modeled
using the Finite State Machines (FSMs).

IV. PROPOSED CONTRIBUTION: YAMME

The proposed solution consists of two phases. The first is
called the perturbation phase since the mutation engine acts on
the input YARA-byte-signature to introduce the corresponding
variants.

The second phase provides the choice of several optimiza-
tion algorithms aimed at compacting the strings obtained in
the previous phase.

Note that the optimization algorithms are implemented
exploiting YARA syntax constructs for the handling of HEX
strings.

A. YAMME - Perturbation Phase

YAMME perturbs the input byte-signature, according to the
malware obfuscation techniques introduced in Section III-B.
This section describes these IP and IR scenarios, but the same
process can be extended to other mutation techniques resulting
in a priori known OPCODE variation.
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TABLE II
EXAMPLE OF OPCODE MUTATIONS DUE TO MALWARE OBFUSCATION METHODS IN SECTION III-B.2

1) Instruction Permutation: To analyze all the steps per-
formed by the mutation engine, the following YARA-rule
ϒI N I T generated using AutoYara [13] on the same Wannacry
sample used in Figure 1, is taken into account.

rule Wannacry {
strings:
$x0 = { 42 2A 12 04 BD 9D }

condition:
$x0 }

Step 4.1 (Read Byte Pattern): First, YAMME reads
the input YARA-rule and extracts the appropriate
byte-pattern list B. From the above ϒI N I T , B =

{{42 2A 12 04 BD 9D}}.
Step 4.2 (Disassembly): Thus, binary patterns b ∈ B are

disassembled. From the above step, b = {42 2A 12 04
BD 9D} and it is disassembled as follows: 42 →
inc edx; 2A 12 → sub dl byte ptr [edx]; 04
BD → add al 0xbd; 9D → popfd.

Step 4.3 (Integer Encoding): The algorithm encodes
the instructions using integer numbers as follows: inc
edx → 0; sub dl byte ptr [edx] → 1; add al
0xbd → 2; popfd → 3.
As a result, the vector V = [0, 1, 2, 3] is obtained. All possible
permutations that can be generated from V are equal to |V|!.
However, to avoid a loss of flow integrity, a series of nc
constraints between instructions must be defined according to
the Definition 3.1. As a consequence, |V|! will be filtered by an
nc function, resulting in the admissible permutations pADM .

Step 4.4 (Direct Acyclic Graph Builder): Given a generic
pair of instructions x, y ∈ V , a constraint [x, y] forces
instruction x to precede instruction y. Furthermore, constraints
are also generated if an operand refers to a memory address,
e.g., in the case of a function call. The resulting constraints list
can be modeled using a Directed Acyclic Graph (DAG), where
nodes represent instructions, while arcs model the constraints
to be imposed between the nodes. Given the vector V obtained
in Step 4.3, the resulting DAG consists of: (i) a set of nodes,
that is {0, 1}; (ii) the constraint [0, 1].

Step 4.5 (Compute pADM ): The algorithm builds the
admissible permutations matrix through the application of the
topological sorting algorithm in [73]. This matrix is called
the Constrained Permutations Matrix (CPM) ∈ NpADM×|V |.

Step 4.6 (Inverse Integer Encoding): The algorithm
assigns to each C P Mi j item, with i = 1, . . . , pADM and
j = 1, . . . , |V|, the corresponding instruction (in the opposite
way to what was done in Step 4.3).

Step 4.7 (Assembly): Then, the algorithm assembles the
instructions through the dual operation of the one performed
in Step 4.2, getting the list of the new HEX strings �, such
that B ⊆ �.

Step 4.8 (Write Signature): The algorithm outputs the per-
turbed form of ϒI N I T , using as strings the patterns in �. The
condition is any of them since all strings are equivalents. As
a result, the YARA-rule ϒP E RT is obtained:

rule Wannacry_Pert_IP{
strings:
$op00 = { 42 2A 12 04 BD 9D }
$op01 = { 42 2A 12 9D 04 BD }
$op02 = { 42 04 BD 2A 12 9D }
$op03 = { 42 04 BD 9D 2A 12 }
$op04 = { 42 9D 2A 12 04 BD }
$op05 = { 42 9D 04 BD 2A 12 }
$op06 = { 04 BD 42 2A 12 9D }
$op07 = { 04 BD 42 9D 2A 12 }
$op08 = { 04 BD 9D 42 2A 12 }
$op09 = { 9D 42 2A 12 04 BD }
$op10 = { 9D 42 04 BD 2A 12 }
$op11 = { 9D 04 BD 42 2A 12 }
condition:
any of them }

2) Instruction Replacement: Considering the IR technique,
given m applicable substitutions, the number of feasible muta-
tions is given by r = 2m

− 1. For example, consider m = 3,
that is, the trio of replacements < rA, rB , rC >, such that
each can be applied (1) or not (0); thus, given the initial byte-
signature s0, the remaining combinations are: < 0, 0, 1 >; <

0, 1, 0 >; < 0, 1, 1 >; < 1, 0, 0 >; < 1, 0, 1 >; < 1, 1, 0 >;
< 1, 1, 1 >. Each of them denotes a new byte-signature.

Example 4.1 (Instruction Replacement): Consider the fol-
lowing listing: pop eax → 58; inc eax → 40; and
eax, exc → 21 C8.

In this case, the first two instructions are considered
replaceable. Therefore, since m = 2, the feasible muta-
tions are: s0 = {584021C8}; s1 = {5883C00121C8};
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s2 = {8B042483C4044021C8}; s3 = {8B042483C40483C
00121C8}.
The recursive application of the algorithm ensures that all
possible substitutions are applied for each existing permuta-
tion. Then, it is possible to compute the overall number of
transformations of the starting YARA-rule:

t =

{
pADM · r, if m ≥ 1
pADM , otherwise

(1)

Note that t increases with the number of malware obfusca-
tion techniques contemplated by YAMME and applicable to
the specific HEX string to perturb.

The aforementioned phases are described considering IP
and IR to clearly describe how YAMME works. However,
the proposed contribution embeds the metamorphic muta-
tion techniques defined in Section III-B.2. In particular,
both RE and GCI are handled using YARA wildcards, such
as the placeholder character represented by the question
mark.

B. YAMME - Optimization Phase

As discussed above, to preserve the computational
resources, an optimization step is introduced. Without the
optimization step, in all cases, a single scan will result in
a single binary pattern match among all t generated. Further-
more, reducing the number of strings by compacting them
through the optimization step makes the YARA-rule compliant
for other AV engines, such as ClamAV [74].

In this section, several optimization algorithms are pre-
sented, with the goal of producing the smallest number of
strings, but capable of covering all the t mutations.

To simplify the discussion, the following optimization algo-
rithms are applied to ϒP E RT obtained from the IP mutation
introduced in Section IV-A.1.

1) Logical Disjunction Based Algorithm: As described
in Section IV-A.1, the instruction permutation algorithm is
implemented taking into account all possible permutations
of V , satisfying the corresponding DAG. Given the CPM,
it can be observed which distinct elements can occur at
the j−th position by crossing the same matrix by columns,
as highlighted in (2).

C P M =



0 1 2 3
0 1 3 2
0 2 1 3
0 2 3 1
0 3 2 1
0 3 1 2
2 0 1 3
2 0 3 1
2 3 0 1
3 0 1 2
3 2 0 1
3 0 2 1



(2)

C j is defined as the set of elements that can occur at the
j-th column. In this case, since |V| = 4, the following

sets are obtained: C1 = {0, 2, 3} = {42, 04B D, 9D}; C2 =

C3 = {0, 1, 2, 3} = {42, 2A12, 04B D, 9D}; C4 = {1, 2, 3} =
{2A12, 04B D, 9D}. At this stage, each obtained element is
placed in a logical disjunction relation. As a result, only one
string will be obtained for all strings in �. The optimized
YARA-rule ϒL DO PT follows:

rule LD_OPT{
strings:

$opt={(42|04BD|9D)(2A12|04BD|9D
|42)(04BD|9D|2A12|42)(9D|04BD
|2A12)}

condition:
$opt }

ϒL DO PT covers all the cases in ϒP E RT , gaining simplicity and
readability of the YARA-rule, but introduces many undesired
HEX strings, which defines the set:

UL DO PT = {us : us ∈ OL DO PT ∧ us /∈ �} (3)

where OL DO PT is the set of all HEX strings contemplated
by ϒL DO PT strings. To adequately quantify undesired strings,
the CPM dimensional structure must be considered. More pre-
cisely, let V , and let the quantity of distinct elements that can
occur starting from the second column; thus multiplying them
up to the |V|-th column. From this product, the admissible
perturbations must be subtracted, resulting in the following
equation:

|UL DO PT | =

|V |∏
j=2

|C j | − pADM (4)

2) LCS Based Algorithm: An alternative optimization
algorithm is based on the prior use of the Longest Common
Subsequence (LCS) strategy [75], which is one of the most
widely used algorithms to extract common contiguity charac-
teristics between two or more strings [76].
Each variant obtained is compared with all others using the
LCS algorithm. Among the possible substrings obtained, those
of greatest length deprived of the semantic element having
the shortest length are selected. If more than one exists,
the LCS that minimizes the number of strings obtained is
chosen.

Example 4.2 (LCS between two Byte Strings): Let two
pairs of strings ($op00, $op01) and ($op02, $op03)

extracted from ϒI N I T . Applying the LCS algorithm
results in LC S($op00, $op01) = 422A1204B D and in
LC S($op02, $op03) = 4204B D2A12, denoting the absence
of 9D with respect to the starting strings in both cases.
The subtracted semantic element is associated with a place-
holder, and its possible placement within the chosen LCS,
is determined by comparing it with the initial HEX strings
in �. If possible, the remaining semantic elements will be
placed between placeholders in logical disjunction. Then,
a string is built for each possible semantic element place-
ment. A number of strings equal to the number of possible
placeholder placements will be obtained. Therefore, Exam-
ple 4.2 results in the two strings $temp_opt01 = 42(2A12|
04B D)9D(2A12|04B D) e $temp_opt02 = 42(2A12|04B D)
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(2A12|04B D)9D. Given ϒP E RT this strategy results in the
following ϒLC SO PT :

rule LCS_OPT{
strings:
$opt01 = {9D(42|04BD)(42|2A12|04BD)(04

BD|2A12)}
$opt02 = {(42|04BD)9D(42|2A12|04BD)(04

BD|2A12)}
$opt03 = {(42|04BD)(42|2A12|04BD)9D(04

BD|2A12)}
$opt04 = {(42|04BD)(42|2A12|04BD)(04BD

|2A12)9D}
condition:
any of them }

However, concatenating the disjunction of semantic ele-
ments introduces undesired strings, which can be quantified
as follows:

|ULC SO PT | = n p ·

n p−1∏
k=2

γk − pADM (5)

where n p represents the number of possible placements and γ

is the number of distinct semantic elements in the possible
alternatives, except for the first , and the set of undesired
strings is computed as follows:

ULC SO PT = {us : us ∈ OLC SO PT ∧ us /∈ �} (6)

In real-world applications, the optimized rules that embed
undesired matching can be used in the first step of a multi-step
scan. In such a scenario, the first step involves the execution of
the command yara -s ϒL DO PT (ϒLC SO PT ) sample.exe,
through which the string δ ∈ 0 for which matching occurred is
returned. During the second step, a search for δ within K M P ,
where K M P is the overall list of known malicious patterns
(such that � ⊂ K M P), is performed. If δ ̸∈ K M P , then δ is
an unwanted match.

Example 4.3 (Multi-step scanning): From an implementa-
tion perspective, the multi-step scan is realized by combining
ϒL DO PT or ϒLC SO PT with ϒP E RT ; the condition will relate
the optimized strings and all strings in �, as follows:

rule Multi_Step_Scanner{
strings:
$opt01 = {9D(42|04BD)(42|2A12|04BD)(04

BD|2A12)}
$opt02 = {(42|04BD)9D(42|2A12|04BD)(04

BD|2A12)}
$opt03 = {(42|04BD)(42|2A12|04BD)9D(04

BD|2A12)}
$opt04 = {(42|04BD)(42|2A12|04BD)(04BD

|2A12)9D}
condition:
1~of ($opt*) and Wannacry_Pert_IP }

3) FSM to Regular Expression Based Algorithm: All the
aforementioned optimization algorithms use regular expres-
sions, but the derived regular languages are supersets of �.
To avoid such a scenario and according to the definitions in

Section III-C, the desired regular language can be modeled
using an FSM. Therefore, given the FSM derived from the
CPM, this approach aims at obtaining the regular expression
e resulting in L(e) = �.

Example 4.4 (From HEX strings to FSM): Consider the
pair of strings H E X1 = 422A1204BD9D and H E X2 =

422A129D04BD representing $op00 and $op01 in rule
ϒP E RT . Since Yara-bytye signatures have been considered,
the alphabet 6 is the set of HEX digits. Then, from Step 4.2,
it is possible to derive the word of interest given symbols in
6, i.e. {42, 2A12, 04BD, 9D}.

Starting from an initial state sA, the possible state transi-
tionsare obtained by adequately concatenating the previous
words until H E X1 and H E X2 are completed. In addition,
to obtain the minimal FSM, the complete strings con-
verge to a single final state sF . For example, in H E X1
and H E X2 dcases, starting from sA, it is possible to
transit in the following states: sB = {42}; sC =

{422A12}; sD = {422A129D}; sE = {422A1204BD};
sF = {{422A1204BD9D}, {422A129D04BD}}. This can
be seen by the following FSM, from which e =
42(2A12(04BD9D|9D04BD)) is obtained.

Completing the construction of the FSM for all HEX strings
in �, the following rule ϒF SM_T O_R X O PT is obtained:

rule FSM_TO_REGEX_OPT{
strings:

$opt={ 42(2A12(04BD9D|9D04BD)|04
BD(2A129D|9D2A12)|9D(2A1204BD
|04BD2A12))|04BD(42(2A129D|9
D2A12)|9D422A12)|9D(42(2
A1204BD|04BD2A12)|04BD422A12)
}

condition:
$opt }

A rule optimized in such a way does not introduce unwanted
strings, since L(e) = �. However, it shows a not simple rule
readability and may require a higher computational effort than
the other approaches in cases where t is larger. Finally, the
optimization mechanisms introduced are still valid in any case
in two binary patterns that share at least a semantic element.

V. EXPERIMENTAL SETUP

This section provides the experimental plan, that is, the list
of methods and materials used to perform three different anal-
yses: (i) how the entropy and the number of transformations
introduced by a metamorphic mutation engine are related;
(ii) the detection performances achieved by YARA-rules
enhanced using YAMME; (iii) the computational performances
required by YAMME rules during a scanning process per-
formed through YARA-scanner.
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A. Metamorphic Mutation Engine Entropy Analysis

In this experiment, the entropy generated by a metamorphic
mutation engine (MMEEA), that is, Metame [77] used in [57].
It has been selected as an alternative open source tool with
respect to Address Space Layout Permutation (ASLP) [78],
which was used in [43] to perform a randomization analysis
of executable samples. Both tools randomly rewrite the ASM
code of an executable sample. This aims at increasing the
degree of randomness (or entropy) in the transformed low-level
sample code. ASLP performs IP and RE, while Metame can
additionally execute IR and GCI.

This experiment aims at analyzing the number of muta-
tions introduced by Metame when it is used to transform
the aforementioned Wannacry sample, denoted with W0. In
particular, four different tests are performed, which differ for
the entropy introduced by the mutation engine when a new
malware variant is created. Let z be the malware variant index:
• in MMEEA-1 η variants of W0 are progressively gen-

erated, i.e, Wz+1 ← run Metame on Wz , until
z = η − 1;

• in MMEEA-2 η variants of the same W0 are generated,
i.e., Wz+1 ← run Metame on W0, until z = η− 1;

• in MMEEA-3 η variants of the same W0 are generated,
randomly selecting the variant to transform, i.e., Wz+1 ←

run Metame on Wzr , where zr = rand(0, z) until
z = η − 1 and rand(0, z) randomly selects an index
within the range [0, z];

• in MMEEA-4 η variants of W0 are progressively gen-
erated as in MMEEA-2, to generate the lowest entropy
value as possible, i.e., Wz+1 ← run Metame -f on
Wz , until z = η− 1. Here, the flag -f forces the meta-
morphic engine to perform all feasible transformations,
reducing the metamorphism entropy.

B. YAMME Detection Performance Evaluation

This experiment aims to evaluate metamorphic malware
detection performances of rules when these are enhanced using
YAMME. Therefore, this section provides the list of materials
and methods used for such a purpose.

1) Dataset: In this paper, a dataset including both meta-
morphic malware and goodware executable samples was used
to evaluate the effectiveness of YAMME. Table III reports the
dataset sample distribution. In particular:
• Goodware samples have been downloaded from the

Portable Freeware provider [79];
• Metamorphic malware samples collected in [53] have

been considered. These are the same metamorphic mal-
ware typologies used in several researches, such as [43],
[44], [45], [47], [48], [49], [52], and [53], and are cate-
gorized according to the state-of-the-art mutation engines
used to generate the specific metamorphic malware fam-
ily; hence: (i) 700 Metamorphic Worm engine (MWOR)
[40] samples divided into 100 for seven different padding
ratio values, that is, the ratio of garbage-code inserted
to the worm-code; furthermore, several equivalent IRs
are applied for each malware variant; (ii) 50 Second
Generation virus generator (G2) [29] samples generated

TABLE III
DATASET SAMPLE DISTRIBUTION

by modifying source code according to the aforemen-
tioned metamorphic malware obfuscation techniques and
by introducing some en(de)cryption routines; (iii) 40 Next
Generation Virus Construction Kit (NGVCK) [29] sam-
ples generated using obfuscation techniques, such as GCI,
IP, and RE (Section III-B.2); (iv) 40 Morphing NGVCK
(MetaNG) [57] samples, obtained by morphing the above
NGVCK samples using Metame [77].

The number of goodwares was deliberately chosen higher
than that of metamorphic malware to increase the chance of
matching unwanted strings by ϒL DO PT and ϒLC SO PT . ϒP E RT ,
Multi-Step, and ϒF SM_T O_R X O PT result in the same metric
scores.

2) Metrics: To evaluate YAMME detection performance,
some conventional metrics have been used. These are cal-
culated considering malware samples as the positive class,
and goodware samples as the negative one. Therefore, correct
detections of positive samples are denoted by True Positive
(TP). In contrast, a goodware detected as malicious represents
a False Positive (FP). Finally, a positive sample undetected
by the YARA-rule will be a False Negative (FN). Given such
values, the following metrics have been evaluated:
• Precision (PREC), that is, how many detected metamor-

phic malware actually are identified as done, defined as
P REC = T P

T P+F P ;
• Recall or True Positive Rate (TPR). i.e., how many

metamorphic malware have been detected as such with
respect to the total number of positive class samples.
This metric gives a clear indication of the YARA-rule
detection rate, as can be seen in [47] and [53], defined
as T P R = T P

T P+F N ;
• F1-Score, i.e., the harmonic mean between PREC and

TPR, hence F1− Score = 2 · P REC ·T P R
P REC+T P R ;

• False Negative Rate (FNR), that is, how many malicious
samples are undetected with respect to the total, therefore
F N R = F N

F N+T P = 1− T P R.
The metrics have been evaluated, varying the positive class
represented by one of the four metamorphic malware types,
respectively, and fixed the negative class given by goodware.

3) Algorithm Used to Generate the Input YARA-Rules
for YAMME: AutoYara [13] has been selected since it is
intended to generate YARA-rules for files that share some
intrinsic characteristics (e.g., same malware family, such as
metamorphic malware). This tool aims at finding specific
byte-patterns to build specific YARA-byte signatures (note that
in some cases the extracted byte-pattern refers to ASCII strings
encoded using the HEX notation). In particular, it focuses
on byte n-grams, where n ∈ {23, 24, . . . , 210

}. To achieve
such a purpose, AutoYara was trained using the EMBER
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Fig. 2. Detection performance experiment overview.

state-of-the-art dataset [80] consisting of 600000 malware
and goodware samples (300000 each). Thus, the algorithm
selects an n-gram if it is not very frequent in the overall
dataset, since building a specific rule is desired. Therefore,
bloom filters are used to store such peculiar n-grams for
each different value of n and for each class. Furthermore,
patterns having an entropy less than one, as well as patterns
having half-bytes equal to 00 or FF, are not part of the
bloom filters. At this point, the improved Spectral Coclustering
algorithm is used to define the relationships between the
byte-patterns (features) selected during the generation process.
The employment of such an algorithm is mandatory for two
main reasons: (i) the number of biclusters is not known
a priori but is determined automatically; (ii) to allow biclusters
overlapping. Finally, patterns within the same bicluster are
related by the “and” statement, while different biclusters are
related by the “or” statement. The byte-patterns are selected
according to their capability in intercepting the largest number
of input files and to minimize the FP rate (augmenting PREC).
Therefore, for a large number of input files, i.e., given as
input several metamorphic variants of the same variant, a high
detection rate is not guaranteed. Hence, despite being a fast
and lightweight tool, post-processing mechanisms that can
increase AutoYARA-rules effectiveness are required.

4) Main Differences Between AutoYara and YAMME: Auto-
Yara is a tool used to generate YARA-rules starting from a set
of malware samples; whereas, YAMME is a YARA-rules post-
processing mechanism, i.e., it can generate a new YARA-rule
only starting from another rule. Therefore, in this experiment,
YAMME acts as a post-processing tool for AutoYara rules.
Figure 2 provides an overview of the current experiment. To

evaluate detection performances achieved by YARA-rules pro-
cessed using YAMME, first, three different initial YARA-rules
(ϒI N I T ), for each metamorphic malware family (exclud-
ing MetaNG) in Table III are generated through AutoYara.
These are then processed using the techniques discussed in
Section IV. Then, the resulting rules are tested on samples in
Table III to compute the aforementioned metrics.

Note that no fine-tuning procedure has been performed
on AutoYara. Therefore, as can be seen, in Figure 2, each
AutoYara input sample is never-seen-before by the tool and,
analogously, YAMME has no possibility of knowing precisely
what transformations are actuated by the mutation engines.

TABLE IV
INTERCEPTED MALWARE-EVALUATED YARA-RULE PAIRS

C. YAMME Rules Computational Performance Analysis

In this experiment, the following YAMME rules perfor-
mances have been analyzed: the average CPU (CPU) and
RAM (R) consumption achieved during the scanning process;
the Disk Space required (D) to store them; and the scanning
process time (S). Each score has been measured with respect
to the different YARA-rules produced using different YAMME
optimization approaches and using multi-step scanning. Fur-
thermore, it has been considered how the increase in the
number of strings contemplated by the YAMME rule (|G|)
could impact the overall scanning performances. As a conse-
quence, to make such analysis more evident, the performances
achieved by ϒI N I T have also been analyzed.

As discussed above, |G| is affected by the optimization
algorithm considered. In particular: G = B, in case of ϒI N I T ;
G = OL DO PT , in case of rules optimized using IV-B.1
algorithm, i.e., ϒL DO PT ; G = OLC SO PT , in case of rules
optimized using IV-B.2 algorithm, i.e., ϒLC SO PT ; G = �,
in the case of rules: (i) no-optimized (ϒP E RT ); (ii) multi-step
scanning; (iii) optimized according to IV-B.3 algorithm, i.e.,
ϒF SM_T O_R X O PT .

The analysis refers to recursive scans performed on a batch
of 29366 items.

Table IV reports the list of rules (downloaded from the
Official Repository (OR) [24] or automatically generated (AG)
using AutoYara [13]) processed by YAMME, that intercept
the associated malware sample. For visualization purposes,
each rule is encoded using a numeric identifier. The average
percentages of CPU and RAM usage are recorded using
Python psutil and os libraries. Note that, the scanner used
is the original YARA scanner (≤ 3.4); hence, the achieved
performances must be referred to such a tool. Therefore,
to better analyze the results obtained, the following scanning
mechanism must be taken into account. Aho-Corasick is the
pattern matching algorithm employed by the YARA-scanner,
and additional heuristics are implemented to achieve lower
scan times [81]. Furthermore, YARA searches for potential
matches using so-called atoms. Typically, these are short
four-byte character sequences. The Aho-Corasick machine
merely uses these substrings. Upon finding a potential match,
the output function stores the atoms found in the file or
memory in the list of possible matches. After creating this
list, an algorithm determines whether the match holds for the
entire string. To avoid overloading the checking mechanism
with undesired patterns, a unique set of atoms must be chosen
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to provide the complete list of matches (without losing any
of them). In terms of scanning speed, this decision element
is crucial. Therefore, the selection of right atoms is critical to
improve scanning computational performance. For example,
given wcrypt(ransom|ware) string within a YARA-rule.
If a match exists for cryp, the scanner will check if it was
prexifed by an w and continues with a t. If this is true, it will
follow with the regex (ransom|ware). In this way, running
a slow regex engine is avoided. Furthermore, the scanning
speed is affected by the YARA-rule condition structure, i.e.,
the lower the number of loop iterations within the condition,
the faster the scanner.

Furthermore, the performance impact of increasing in the
number of rules has been tested. In particular, all the rules in
Table IV are grouped into a single rule object to ensure that
each of them is correctly used.

D. Hardware Settings and Implementation

To run the experiments, an Ubuntu 20.04 machine, Intel
Xeon(R) E5-1620 v4 CPU @3.50 GHz Octa-Core, 16 GB
RAM, is used.

Furthermore, YAMME has been implemented in Python
using: Yaramod [82] in Steps 4.1 and 4.8; Capstone [83] and
Keystone [84] in Steps 4.2 and 4.7, respectively.

VI. RESULTS AND DISCUSSION

A. Metamorphic Mutation Engine Entropy Analysis

Figure 3a shows that by progressively mutating the variants
obtained at the previous iteration, T trend settles within a
finite range given by [Tmin, Tmax ] = [203, 265], after an initial
spike. The progressive application results in high entropy,
as can be seen by the oscillatory T trend.

Figure 3b shows a T trend bounded in [Tmin, Tmax ] =

[325, 405]. Thus, by continuously mutating W0, there will be
a finite number of mutations introduced. The oscillatory T
trend is attributed to high metamorphic entropy.

According to its setup, the experiment MMEEA-3 repre-
sents an average case of the two above ones. This can be
seen in Figure 3c, where T trend is limited into the range
[Tmin, Tmax ] = [267, 369]. In fact, the [Tmin, Tmax ] range is
very close to the arithmetic mean of the above intervals.

Finally, in MMEEA-4 (Figure 3d), the loss of metamorphic
entropy is confirmed. Brute application of mutation engine
results in T increasing. However, it repeats the same substitu-
tions for each new variant generated, obtaining a steady trend.

The overall analysis shown in Figure 3 indicates that the
entropy is a function of T . In particular, the lower the entropy,
the higher T . However, high structural entropy is a common
feature of metamorphic malware [50], but this leads to a lower
number of T . This is advantageous for YAMME, since the
shorter the chain of transformations introduced, the greater the
chance that this will be part of the transformations covered by
the enhanced rule.

B. YAMME Detection Performance Evaluation

The goal of this section is to show how the variants
of YARA-rules can intercept the variants of metamorphic

TABLE V
DETECTION PERFORMANCES ACHIEVED BY YAMME USED TO

ENHANCE AUTOYARA-RULES ON MWOR

TABLE VI
DETECTION PERFORMANCES ACHIEVED BY YAMME USED TO

ENHANCE AUTOYARA-RULES ON G2

malware defined in Table III. For each experiment, the results
reported in Tables V-VIII describe the detection performances
achieved by the related AutoYARA-rules, when these are (or
not in case of ϒI N I T ) enhanced using YAMME.

Table V lists the detection performances obtained involving
MWOR as malware metamorphic family. The rule gener-
ated through AutoYara (ϒI N I T ) achieves a TPR = 45.4%
(FNR = 54.5%). Therefore, given all 700 samples as input,
AutoYara generates a rule capable of classifying ∼ 318 of
them as malicious. However, this rule does not intercept
any of the overall set of legitimate samples, as can be seen
from the precision score achieved (100%), which positively
influences the F1-Score (62.4%). The more evident YAMME
contribution is given by the obtained Recall value, which is
equal to 100%, making the FNR null. On the other hand,
each YAMME rule results in different FPs according to its
format: (i) as aforementioned discussed, the approach pro-
posed in Section IV-B.1 generates rules optimized in the sense
of unique string (ϒL DO PT ), however, according to Eq. (4)
no-malicious patterns are intercepted, reducing Precision and
F1-Score to 18.9% and 31.9%, respectively; (ii) a similar result
is achieved by ϒLC SO PT ; however, this rule results in a lower
number of FPs than ϒL DO PT since |ULC SO PT | ≤ |UL DO PT |,
obtaining Precision and F1-Score equal to 30.8% and 55.1%,
respectively; (iii) the best detection performances among
the compared rule formats have been achieved by ϒP E RT
(ϒF SM_T O_R X O PT , Multi-step) since no FPs are introduced
preserving AutoYARA-rule precision (100%) and gaining in
F1-Scorer (100%) due to a higher Recall than this achieved by
ϒI N I T . Table VI reports the detection performances obtained
by the evaluated YARA-rules on G2 metamorphic malware
family. As can be seen, the AutoYARA-rule (ϒI N I T ) can
intercept 30 out of 50 samples using in input to generate the
rule itself, resulting in TPR = 60%. Therefore, the remain-
ing samples are incorrectly classified as legitimate, obtaining
FNR = 40%. However, in this case, the number of FPs is
null (100% precision), and, consequently, an F1-Score = 75%
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Fig. 3. T trend per Wannacry variant generated with η = 500.

TABLE VII
DETECTION PERFORMANCES ACHIEVED BY YAMME USED TO ENHANCE

AUTOYARA-RULES ON NGVCK

is obtained. Conversely, the use of YAMME enables the
detection of all metamorphic malware in the analyzed family,
i.e., a TPR = 100% (null FNR). However, the trend of FPs
obtained as the rule format generated by YAMME changes
should be analyzed as follows: (i) according to Eq. (4), the
rule ϒL DO PT results in the highest number of FPs among all
the compared rules, leading to the lowest precision (37.3%)
and F1-Score (54.3%) values; this is due to the undesired
strings within UL DO PT ; (ii) as a consequence of Eq. (5) , the
rule ϒLC SO PT intercepts a lower number of goodwares than
ϒL DO PT (|ULC SO PT | ≤ |UL DO PT |); hence, greater precision
(62.5%) and F1-Score (75.7%) with respect to the above dis-
cussed case are achieved; (iii) the best detection performances
for G2 family are achieved by ϒP E RT (ϒF SM_T O_REG E X ,
or Multi-scan) since no FPs are introduced, therefore, the
precision value obtained by ϒI N I T is preserved and, due to
the improved Recall, an F1-Score = 100% is achieved.

Table VII shows the detection performances achieved by
scanning MWOR samples using the relative AutoYARA-
rule (ϒI N I T ) and their variants obtained through YAMME.
ϒI N I T is able to intercept 27 out of 40 NGVCK sam-
ples, achieving a Recall = 67.5% (FNR = 32.5%) and a
F1-Score = 80.5%, due to a Precision = 100% (none FPs).
In this case, the YAMME-preformed enhancing mechanism
on ϒI N I T leads to a TPR improvement of 25%; hence,
the YAMME rules can intercept 37 of 40 samples tested
for NGVCK. However, also in this case the other perfor-
mances of the YAMME rules are related to the rule format,
i.e., they are based on the applied optimization approach:
(i) ϒL DO PT results in the highest number of FPs (1972 out of
4463 samples) among all compared rules on NGVCK samples,
therefore, in the lowest Precision (1.8%) and F1-Score (3.6%)
scores; (ii) ϒLC SO PT improves Precision and F1-Score with
respect to those achieved by ϒLC SO PT , but even in this case,
these values are very low (5.5% and 10.9%, respectively);
(iii) ϒP E RT (ϒF SM_T O_REG E X , or Multi-scan) achieves the

TABLE VIII
DETECTION PERFORMANCES ACHIEVED BY YAMME USED TO ENHANCE

AUTOYARA-RULES ON METANG

best performances, since it can preserve the Precision score
obtained by ϒI N I T (none of goodware samples has been
classified as malicious), gaining in F1-Score, thanks to the
high Recall obtained.

The results in Table VIII are obtained using the same rules
evaluated in Table VII, since NGVCK samples transformed
using Metame, i.e. MetaNG, are tested. As can be seen, the
detection performance remains unchanged despite the subse-
quent application of metamorphic transformations on the same
samples from which ϒI N I T was generated. Then, randomly
mutating a sample may be ineffective as in this case, while
the mutation of patterns matched by the rule is needed to
bypass the rule itself (as done in Figure 1). However, YAMME
would make this second strategy ineffective as well, providing
a robust defense strategy to contrast these evasion attempts.

YAMME effectiveness should be attributed to the fact that
the tested mutation engines, among themselves heterogeneous,
use as obfuscation methods those currently contemplated by
the proposed mechanism (Section III-B.2). Such a result is
enforced by the classical architecture of metamorphic mutation
engines [29]. Finally, if ϒI N I T has a number of strings such
that per single sample there are many matches, then this
increases the chances of the success of YAMME.

C. YAMME Rules Computational Performance Analysis

In this section, the results of the experiments defined in
Table IV are discussed. In particular, Figure 4 shows the
computational performances achieved by the YARA-rules for
different rule formats and |G|. Furthermore, for each metric
analyzed, the maximum values of |G| and the involved metric
are made explicit to evaluate the impact of the |G| growth on
the scanning overhead. Figure 4a shows the average percentage
of CPU consumption achieved during the overall scanning
process by YARA-rules, which differ for their structure and
|G|. Among the different YARA-rules examined, ϒI N I T and
ϒP E RT formats required less CPU consumption in 8 out of
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Fig. 4. Yara-rules computational performance per different rule format and |G| achieved for a scanning process involved 29366 items.

TABLE IX
|G| IMPACT ON CPU FOR DIFFERENT YARA-RULE FORMAT

10 cases (4 each). On the other hand, Multi-step scanning
achieves more frequently (in 40% of test cases) the highest
CPU consumption, resulting in poorer performance. The anal-
ysis in Table IX focuses on |G| impact on CPU per different
rule format. In particular, it shows YARA-rules achieving
maximum |G| and CPU values, respectively. Ah shown in
Table IX, only in one case, that is ϒF SM_T O_R X O PT , the high-
est |G| value corresponds to the highest average percentage of
CPU consumption. Furthermore, as shown by Figure 4a the
third ϒI N I T results in the highest CPU among all compared
approaches. This rule reaches such a value without YAMME
employment and for the lowest |G| value from those listed in
Table IX.

Figure 4b illustrates the average percentage of RAM usage
with respect to the overall scanning process, using different
format of YARA-rules and considering different |G| values.
Fixing the ID of the YARA-rule, in 8 out of 10 cases,
ϒF SM_T O_R X O PT requires a less average memory consump-
tion. In the remaining cases, the best results are obtained
by ϒP E RT and ϒLC SO PT , respectively. Therefore, increasing
|G| does not affect R in the case of a single YARA-rule.
In contrast, multi-step scanning results in the worst perfor-
mance, i.e., in the highest memory RAM consumption in all
tested cases. This is expected, since a multi-step process needs
more memory consumption, as the scan result depends on the
occurrence of at least two conditions. Therefore, the first one
remains in memory until the second occurs. Table X reports
the rules having the maximum |G| value and achieving the
maximum R, per rule format. As shown in Table X, only for

TABLE X
|G| IMPACT ON R FOR DIFFERENT YARA-RULE FORMAT

ϒP E RT and ϒL DO PT the highest |G| value corresponds to the
highest R. In all other cases, R is not affected by |G|, nether
by rule structure, i.e., a rule composed of simple HEX strings
or regular expressions. Furthermore, YARA-rule ID 3 results
in the maximum R value in 4 out of 6 different rule formats.
However, both the second and ninth YARA-rules have a higher
|G| than the third rule as shown in Figure 4b. Therefore, |G|
is not the unique parameter that affects RAM consumption
during the scanning process.

Figure 4c shows the disk space needed (in Byte) to store
different formats of YARA-rules, each having a different |G|
value. In this test, D is, of course, proportional to |G| if strings
different from regular expressions are used. Among the opti-
mization algorithms introduced, the ϒL DO PT rule format is the
most advantageous, although it leads to an exponential growth
of |G|. On the contrary, ϒP E RT and Multi-step scanning result
in the highest D. In general, to obtain a less D consumption,
approaches that reduce the number of characters within the
generic rule are preferred.

In Figure 4d, the scan time (in seconds) required by the
different YARA-rules compared is highlighted. In 40% of
the YARA-rules examined, ϒI N I T achieve the shortest scan
time. Thus, the rule enhancement performed by YAMME leads
to better timing performance in 6 out of 10 YARA-rules.
In particular, ϒLC SO PT and ϒF SM_T O_R X O PT result in the best
timing performances for the same number of times. This is an
interesting insight, which confirms how the YARA scanner is
able to discard every string not representing a potential match,
by selecting the appropriate atoms list to preserve scanning
speed. As a consequence, |G| growth and rule format do not
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TABLE XI
|G| IMPACT ON S FOR DIFFERENT YARA-RULE FORMAT

TABLE XII
MULTIPLE RULES SCANNING COMPUTATIONAL PERFORMANCES

affect S. To better show this result, Table XI is examined. For
each rule format, the pair of rules resulting in maximum |G|
and S values, respectively, has been selected. Given the data
from Table XI, it is observed that in each case the maximum
value of S is not obtained for the maximum value of |G|.
Furthermore, very different scan times can be obtained for
the same |G| value. Therefore, the explosion of the number
of HEX strings introduced by YAMME does not affect the
scanning process in terms of the time required. In this regard,
it can be seen that the scan time required by an example of
ϒI N I T with 6 strings turns out to be almost twice that required
by ϒL DO PT with 37424 strings. Moreover, Figure 4d shows
that the Multi-step under-performs in 90% of the test cases.
This can be attributed to the condition, which must be verified
between a couple of YARA-rules.

Finally, Table XII shows the computational performances
required when multiple rules are involved during the scanning
process. Since the group of rules in Table IV is used, D is
approximately the sum of the values in single-rule exper-
iments. Therefore, this analysis focuses on the remaining
metrics dependency by |G|. In particular, it was found that
when a scanning process uses multiple rules, there is no
performance degradation compared to the case of single rules.
In fact, for every test case, there is at least one case where
single rules in the same format result in worse performance.

VII. TECHNIQUE FEASIBILITY

Detection of obfuscated malware is a complex problem
for static analysis tools such as YARA since these can
evade such defense mechanisms by transforming the patterns
searched by AV engines. According to [18], the anti-static
analysis means used by malware authors can be categorized
as follows: (i) information hiding, i.e., a method used to
hide ASCII strings, variables, debugging information, import

table and other information; (ii) exploitation of the system
exception handling performed in Windows-OS-based machine
to interfere with the work of AV software and disassembler;
(iii) packaging obfuscations that aim at compressing/encrypt-
ing an executable sample by increasing its structural entropy;
(iv) traditional code obfuscation methods employed by meta-
morphic mutation engines to generate malware variants. In the
fourth case, a malware author can rewrite the ASM code of
a malicious sample without altering its malicious scope, i.e.,
creating a metamorphic variant that bypasses static analysis
tools, as shown in Figure 1. Metamorphic malware variants
are created using sophisticated and ad-hoc mutation engines
developed by malware writers. However, each mutation engine
implements common functions according to its architecture
[29]: (i) disassembles the source code into an assembly one;
(ii) implements code shrinking, i.e., eliminates the effect of
GCI at the previous iteration; (iii) swaps instructions using
the IP technique; (iv) replaces the instruction with equivalent
ones (IR); (v) performs RE and GCI; (vi) implements code
transportation and performs inlining and outlining processes;
(vii) finally, re-assemble the code into the source-code of the
new viral sample.

YAMME can exactly replicate the same actions performed
by a metamorphic mutation engine at the YARA-byte-
signatures level. Given a YARA-rule, YAMME rewrites its
byte-signatures applying the same techniques used to make
it unable to detect the generic malware variant. Therefore,
given the YARA-rules HEX strings that represent an ASM
OPCODE sequence (i.e., a very peculiar malicious action),
these are generalized by YAMME computing equivalent
OPCODE sequences, that is, the same of those will be obtained
applying a malware obfuscation transformation resulting in
a known OPCODE sequence mutation. Therefore, the pro-
posed mechanism overcomes these weaknesses exposed by
the YARA-rules syntax, which make such rules ineffective
in detecting metamorphic malware. However, YARA-rules are
widely used by commercial AV and IDPS tools, and very
popular open-source engines. Hence, this YARA-rule syntax
issue can affect a very extended set of real-world cybersecurity
tools.

VIII. CONCLUSION

This paper presented YAMME, a post-processing mech-
anism usable to strengthen YARA-rules against metamor-
phic malware capable of evading YARA-byte-signatures by
employing general obfuscation techniques. Based on the
results obtained, it was found that YAMME is effective in
improving YARA-rules detection rate against metamorphic
malware. Therefore, YAMME rules can intercept variants of
metamorphic malware taken from the real world. Further-
more, the performance of scanning processes using YAMME
rules is not affected by the growth in the number of vari-
ants covered by the rule, as shown by the computational
overhead test results. Possible future works will regard the
investigation on additional malware obfuscation methods as
well as the usage of Artificial Intelligence-based paradigms,
such as, Reinforcement Learning, to expand the perturbation
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YAMME capabilities. Furthermore, several studies on addi-
tional optimization methods to apply on YAMME-rules will
be conducted aimed at further reducing the computational
overhead, ensuring detection performances are maintained.
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