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Abstract— As the applications of biometric recognition systems
are increasing rapidly, there is a growing need to secure the
sensitive data used within these systems. Considering privacy
challenges in such systems, different biometric template protec-
tion (BTP) schemes were proposed in the literature, and the
ISO/IEC 24745 standard defined a number of requirements for
protecting biometric templates. While there are several studies on
evaluating different requirements of the ISO/IEC 24745 standard,
there have been few studies on how to measure the linkability
of biometric templates. In this paper, we propose a new method
for measuring linkability of protected biometric templates. The
proposed method is based on maximal leakage, which is a
well-studied measure in information-theoretic literature. We show
that the resulting linkability measure has a number of important
theoretical properties and an operational interpretation in terms
of statistical hypothesis testing. We compare the proposed mea-
sure to two other linkability measures: one previously introduced
in the literature, and a similar measure based on differential
privacy. In our experiments, we use the proposed measure to
evaluate the linkability of biometric templates from different
biometric characteristics (face, voice, and finger vein), which are
protected with different BTP schemes. The source codes of our
proposed measure and all experiments are publicly available.

Index Terms— Biometrics, biometric template protection, link-
ability, maximal leakage, differential privacy, statistical hypoth-
esis testing, template.

I. INTRODUCTION

B IOMETRIC recognition systems generally establish the
identity of users based on their physiological (e.g., face,

finger vein, fingerprint, iris, etc.), behavioral (e.g., voice, gait,
signature, etc.), or chemical (e.g., DNA, etc.) attributes, which
are unique to individuals. As biometric authentication and
identification systems offer great convenience for users and
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also provide fast and accurate recognition, applications of
biometric recognition systems tend towards ubiquity, from
personal (e.g., smart phone unlocking with face1 or finger-
print2 recognition, etc.) to large-scale applications (e.g., face3,
fingerprint4, and iris5 recognition in national identity system,
or face recognition for passport control at borders and airports6

etc.). In such systems, biometric templates (a.k.a., features)
are often extracted from biometric data and are stored in the
system’s database during the enrolment stage. Later, during
the recognition stage, a new biometric template is extracted
and compared with the templates in the database. Since
biometric templates convey important information about the
user’s identity, data protection regulations, such as the Euro-
pean Union General Data Protection Regulation (GDPR) [1],
consider biometric templates as sensitive data and impose legal
obligations to protect biometric templates.

To protect biometric templates and address privacy issues in
biometric recognition systems, several schemes are proposed
in the literature [2], [3], [4]. For each biometric template
protection (BTP) scheme, the ISO/IEC 24745 standard [5]
defines four criteria. First, the protection scheme should not
significantly degrade the accuracy of the biometric recognition
system (i.e., performance preservation). Second, the protected
template should be irreversible, meaning it should be computa-
tionally infeasible to reconstruct the original template from the
protected template. (i.e., irreversibility). Third, if a protected
template is compromised, it should be possible to revoke that
protected template and generate a new protected template (i.e.,
revocability/renewability). Fourth, if two or more protected
templates are leaked, it should not be feasible to determine
whether they are from the same subject or different subjects
(i.e., unlinkability).

Notwithstanding standardized metrics to evaluate and
report the recognition performance of biometric systems
(e.g., ISO/IEC 19795-1 standard [6]), no standardized measure
has been included in the ISO/IEC 30136 standard [7] for
evaluating the irreversibility and unlinkability of protected
templates. In addition, while a lot of research has been devoted
to the irreversibility evaluation of protected templates [8], there

1https://apple.co/3mLGCYV
2https://bit.ly/3cTJ7Gp
3https://bbc.in/3QeIsO2
4https://bit.ly/3SkvAbi
5https://uidai.gov.in
6https://cnet.co/3sG8qSd
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TABLE I
SUMMARY OF GENERIC METHODS IN THE LITERATURE FOR EVALUATING

THE LINKABILITY OF PROTECTED BIOMETRIC TEMPLATES

have been few works proposing measures for evaluating the
linkability of protected templates.

According to the ISO/IEC 30136 standard [7], the more
precise definition of unlinkability is: “unlinkability is the
difficulty of distinguishing between Auxiliary Data (AD)s
and/or Pseudonymous Identifiers (PIs) of two Renewable Bio-
metric References (RBRs) generated from the same subject’s
characteristic and ADs and/or PIs of two RBRs generated from
different subjects’ characteristics” [emphasis added]. In the
context of BTP, we can extend the definition of mated and
non-mated pairs in the ISO/IEC 2382-37 standard [9] as:

• mated: two protected templates are mated if they cor-
respond to the same subject (they can be either from
the same sample or different samples) and with different
keys.

• non-mated: two protected templates are non-mated if they
correspond to different subjects with different keys.

Therefore, to gain the unlinkability criterion, the protected
templates should be such that an adversary would not be able
to distinguish mated and non-mated protected pairs.

Table I summarizes the previous works in the literature
which have used a generic method to evaluate the linkability
of protected biometric templates. Buhan et al. [10] considered
a biometric cryptosystem and compared the recognition accu-
racy of the system in terms of Equal Error Rates (EER) in two
scenarios: i) templates protected with a single key (i.e., regular
recognition accuracy analysis), ii) templates protected with
different keys (i.e., unlinkability analysis). While the increase
of EER implies some degree of unlinkability, the unlinkability
is not quantified in their work. Kelkboom et al. [11] considered
similar scenarios and compared the recognition performance of
the system in terms of the Receiving Operating Characteristic
(ROC). Then, if the recognition accuracy shown by the ROC
curve decreases, the system is considered to be unlinkable.
However, the unlinkability can neither be quantified in this
approach. Similarly, Nagar et al. [12] found the ROC curve
of matching templates with different keys to evaluate the
unlinkability of the system.

Piciucco et al. [13] used a similar approach to [10], [11],
and [12], but combined the results of regular analysis and
unlinkability analysis. They plotted the True Match Rate
(TMR) in the unlinkability analysis7 versus the system’s
False Non-Match Rate (FNMR) in the regular analysis. Their

7refered as Renewable Template Matching Rate (RTMR) in their work.

method does not evaluate the True Match Rate (TMR) in the
unlinkability analysis, and the degree of general unlinkability
is also not quantified in their method. Along the same lines,
Rua et al. [14] found the probability that the adversary can
determine the correct identity in a top-N list and plotted
this probability similar to Cumulative Match Curves (CMC).
Then, as an evaluation of the unlinkability of the system,
they compared this plot with the curve corresponding to
the probability of random guesses being correct (i.e., full
unlinkability). However, their method does not provide a single
number to quantify the general unlinkability of the system.

In contrast to [10], [11], [12], [13], and [14] which have
evaluated unlinkability based on accuracy metrics, [15], [16],
[17] considered score distributions in their unlinkability eval-
uations. In [15], Ferrara et al. calculated three distributions
of scores, including scores of templates with different keys
from: 1) the same sample, 2) different samples of the same
subject, and 3) samples of different subjects. Then, according
to visual comparisons of these distributions, they evaluate the
unlinkability of templates. Wang and Hu [16] used the latter
two score distributions only and evaluated unlinkability by
visual comparison of these distributions. Gomez-Barrero et al.
[17] proposed two quantitative measures (local and global)
based on score distributions. Similar to [16], they considered
two distributions of scores for mated and non-mated pairs.
Then, as their local measure for each score, they consider
the difference in conditional probabilities of the hypothesis of
being mated and the hypothesis of being non-mated. To calcu-
late their local measure, they use the likelihood ratio of mated
and non-mated hypotheses and the ratio of prior probabilities.
For their global measure, they considered the conditional
expectation of their local measure over score values. The
global measure (Dsys

↔ ) proposed in [17] was the first quan-
titative evaluation that measures the degree of unlinkability of
the biometric systems. It is also properly defined and bounded
in the [0, 1] interval. However, it has several drawbacks that
we discuss in Section III-B.

In addition to prior work on linkability, there is ample
work on general privacy measures in information theory and
computer science communities [18], [19]. The most promi-
nent notions of privacy are ϵ-differential privacy and (ϵ, δ)-
differential privacy which were developed for the database
release problem [20], [21], [22]. The main idea behind this
approach is to control the influence of a single database
entry on the output of differentially private queries. BTP
schemes have been studied from the differential privacy
perspective in [23] where a differentially private distributed
face-recognition system is proposed. A hypothesis testing
perspective on differential privacy has been introduced in [24]
and extended in [25]. In particular, [25] show that (ϵ, δ)-
differential privacy guarantees could be interpreted as bounds
on the ROC curves of appropriately defined hypothesis tests.

Another recent measure of interest is maximal leakage
which seeks to control the adversary’s ability to refine his
or her estimate of any function of data [26], [27]. Maximal
leakage has been recently discussed in the context of hypothe-
sis testing: Privacy-utility trade-offs using maximal leakage as
a privacy metric and the type II (false alarm) error exponent
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as the utility metric have been studied in [28]; In [29] the so-
called “noiseless privacy” is related to hypothesis testing and
to maximal leakage; And, maximal leakage is used to bound
generalization errors of learning algorithms in [30].

In this paper, we propose a new measure for evaluating
the linkability of protected biometric templates. Our pro-
posed measure combines the work on maximal leakage from
information-theoretic literature [26], [27] with the perspective
on global linkability introduced in [17]. Since our proposed
measure is based on a well-studied information measure,
it inherits many of the theoretic properties of this measure.
In addition, we show that the proposed linkability measure
has an appealing operational interpretation in terms of hypoth-
esis testing that the adversary could perform on a pair of
protected templates. This hypothesis testing interpretation of
our proposed measure makes it consistent with the definition
of linkability in the ISO/IEC 30136 standard [7]. We further
compare our proposed measure to a similar measure based
on differential privacy [22] and show that the differential
privacy-based measure is too strict for the linkability applica-
tion. Finally, the experimental implementation of our proposed
measure shows that it gives intuitively correct linkability
scores across different BTP schemes, biometric characteristics,
and scoring functions.

The remainder of the paper is organized as follows.
In Section II we define our proposed measure, as well
as discuss its operational interpretations and its properties.
In Section III we compare the proposed measure to two other
linkability measures: the global measure introduced in [17] and
a similar measure based on differential privacy. In Section IV,
we evaluate the unlinkability of different biometric recogni-
tion systems based on different biometric characteristics and
protected with different BTP schemes. Finally, the paper is
concluded in Section V.

II. PROPOSED MEASURE

In this section, we propose a new measure of linkability
for biometric templates. In Section II-A, we introduce our
notation and overview the maximal leakage information mea-
sure. In Section II-B, we define our measure of linkability as
a maximal leakage of information about the mated and non-
mated hypothesis, as well as review its properties. We end by
interpreting the new measure in terms of statistical hypothesis
testing in Section II-C.

A. Paper Notation and Maximal Leakage

Throughout the paper, we use capital letters to denote
random variables, calligraphic letters to denote support sets
of these random variables (and sets in general), and lower
case letters to denote realizations of these random variables.
For example, X is a random variable taking values on X while
x ∈ X is a possible realization of this random variable. We use
the notation X ↔ Y ↔ Z to denote that X , Y , and Z form
a Markov chain. We use pX to denote the probability mass
function (if X is discrete) or the probability density function
(if X is continuous) of X . If the associated random variable
is clear from context, we omit the subscript: for example,

p(y|s). We use sanserif font to indicate functions, for example
f : X → Y denotes a function from X to Y . Finally, all the
logarithms in this paper will be assumed to have base two.

Maximal leakage is an information leakage measure intro-
duced in [26] and [27]. Specifically, [26] defined this measure
as follows. Let X and Y be two jointly-distributed random
variables, where X represents some secret information which
may be of interest to an adversary, while Y represents the
actual observations of an adversary. The maximal leakage of
information from X to Y is defined as

L(X → Y ) = sup
U↔X↔Y↔Û

log
P

(
U = Û

)
maxu∈U pU (u)

(1)

where U , Û are random variables over some common finite
alphabet. The auxiliary random variable U in Eq.1 denotes
some, possibly random, mapping of secret information X ,
while Û denotes the best guess an adversary could make

about U . Thus, the ratio
P
(

U=Û
)

maxu∈U pU (u)
captures how much

an adversary’s ability to guess any hidden mapping of data
U improves by observing Y . The whole quantity in Eq. 1
measures multiplicative improvement of the adversary’s ability
to guess any possible function of the secret X .

Maximal leakage was independently introduced in [27]
where it was defined as

L(X → Y ) = sup
pX

log
P

(
X = X̂

)
maxx∈X pX (x)

(2)

where X ↔ Y ↔ X̂ . When X has full support, both
definitions in Eq. 1) and Eq. 2 are equivalent [26].

Although it is not immediately clear that Eq. 1) and Eq. 2
are computable, it is shown in [26, Theorem 1] that, for
discrete (X, Y ), maximal leakage could be evaluated via the
following simple formula

L(X → Y ) = log
∑
y∈Y

max
x∈X : pX (x)>0

pY |X (y|x). (3)

This result could be extended to more general settings [26,
Theorem 7]. For example, a setting that will be of interest to
us is when Y is continuous, X is discrete, and the probability
density functions pY |X (y|x) exist. In this case, the maximal
leakage reduces to

L(X → Y ) = log
∫
Y

max
x∈X

pY |X (y|x)dy. (4)

Finally, it is shown in [26] that

L(X → Y ) = I∞(X; Y ) (5)

where I∞(X; Y ) denotes the Sibson’s mutual information of
order infinity [31], [32]. In other words, L(X → Y ) could be
viewed as a generalization of Shannon’s mutual information
in the same way that Rényi entropy is a generalization of
Shannon’s entropy [33].

Because maximal leakage is a well-defined information
measure, it has a number of mathematical properties. We high-
light some of the most important properties here:
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• First, maximal leakage is non-negative, that is

L(X → Y ) ≥ 0. (6)

It is zero if and only if X and Y are statistically indepen-
dent.

• Secondly, it satisfies the data processing inequality which
states that

L(X → Z) ≤ L(X → Y ) (7)

where X ↔ Y ↔ Z form a Markov chain.
• Finally, for a discrete random variable X ,

L(X → Y ) ≤ log |X |. (8)

Proofs of these properties and additional properties of maximal
leakage could be found in [26].

B. Maximal Linkabilty of Biometric Templates

The proposed linkability metric uses maximal leakage to
measure the amount of information revealed by two templates
about the two possible hypotheses: the templates are mated,
and the templates are not mated. Specifically, given two
biometric systems, let T1 be the space of all possible protected
templates that could be produced by the first system and T2 be
the space of all possible protected templates that could be
produced by the second system. Given two templates (t1, t2) ∈

T1 × T2 we can define the following hypothesis:

hm = {templates t1 and t2 belong to mated instances}
hnm = {templates t1 and t2 belong to non-mated instances}.

Moreover, let (T1, T2) be random variables each taking values
on T1 × T2 and let H be a random variable taking values on
H = {hm, hnm}. In other words, H denotes the true hypotheses
about templates T1 and T2.

Definition 1 (Maximal Linkability): Maximal linkability of
two systems producing templates (T1, T2) is defined as

Msys
↔ = L(H → (T1, T2)) (9)

= log
∑

(t1,t2)∈T1×T2

max {p(t1, t2|hm), p(t1, t2|hnm)} .

(10)

We can make two observations about maximal linkability in
light of Eq. 10. First, since maximal linkability depends only
on the conditional distributions p(t1, t2|hm) and p(t1, t2|hnm),
it is independent of the distribution of the hypothesis H . This
is a desirable property for a linkability measure since it means
that Msys

↔ depends on the BTP scheme itself, and not on any
assumptions on the distributions of mated and non-mated pairs
of templates.

Secondly, from an information-theoretic perspective, it is
important to define Msys

↔ as we do in Definition 1. This
measure is the ‘true’ linkability score of the system. That
is, as we will see in Lemma 2, this score gives us the most
general guarantees with fewest assumptions on the behaviour
of the adversary. However, to compute Msys

↔ , it is necessary to
know p(t1, t2|hm) and p(t1, t2|hnm) for all possible values of
(t1, t2) ∈ T1 × T2. This means that if Msys

↔ is to be estimated

from data, we need to generate a number of samples on
the order of |T1||T2| and this is prohibitive in most practical
settings. To circumvent this issue, we follow [17] and propose
a linkability measure based on a similarity function. That is,
we assume that there is a similarity function

s : T1 × T2 → S (11)

which captures the relevant information about the similarity of
the two templates. This similarity function could then be used
to approximate the linkability score proposed in Definition 1.
To this end, we define another linkability measure with respect
to a fixed similarity function.

Definition 2 (Maximal s-Linkability): Let S = s(T1, T2) be
a similarity score for templates T1 and T2, and a similarity
function s. Maximal s-linkability of two systems producing
templates (T1, T2) is defined as

Ms
↔ = L(H → S). (12)

Then, for discrete S,

Ms
↔ = log

∑
s∈S

max {p(s|hm), p(s|hnm)} , (13)

and for continuous S,

Ms
↔ = log

∫
S

max {p(s|hm), p(s|hnm)} ds. (14)

Maximal s-linkability generalizes maximal linkability in
the following sense. It measures the amount of information
revealed by the similarity score S about the two possible
hypotheses: the templates are mated, and the templates are
not mated. If s is taken to be the identity function, maximal
s-linkability reduces to maximal linkability. Thus, just like
in [17], the linkability of the system should be evaluated for
several similarity functions and the worst-case score should be
considered.

Lemma 1: Let s be any similarity function on T1×T2. Then

0 ≤ Ms
↔ ≤ Msys

↔ ≤ 1. (15)

Proof: Eq. 15 follows from Eq. 6, 7, and 8. Specifically,
the first inequality follows from Definition 2 and from Eq. 6.
In other words, since Ms

↔ is an information measure, it cannot
be negative. The second inequality follows from the data
processing inequality (i.e., Eq. 7) since we have a Markov
chain H ↔ (T1, T2) ↔ S. Finally, the last inequality follows
from Definition 1 and Eq. 8 since H is a binary-valued random
variable.

Just like the linkability measure proposed in [17], our
measure is supported on [0, 1]. If Msys

↔ = 0 then the system
is completely unlinkable. That is, templates T1 and T2 reveal
nothing about the hypothesis hm and hnm . On other hand,
Ms

↔ = 1 means that the system is completely linkable and
the adversary could always determine the correct hypothesis
after observing T1 and T2.

C. Maximal Linkability and Hypothesis Testing

In this section, we interpret Msys
↔ and Ms

↔ in terms of
Neyman-Pearson hypothesis testing. Recall that in this frame-
work, the goal is to design a hypothesis test based on the
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available data while trading-off two types of errors: false
alarm error and missed detection error. In the present case,
the adversary’s goal is to distinguish between two hypothe-
ses {hm, hnm}, while keeping the two errors small. In the
biometrics literature, the false alarm error is also known as
false match rate (FMR), while the missed detection error
is also known as the false non-match rate (FNMR). The
maximal linkability metrics provide impossibility bounds on
the adversary’s ability to design well-performing hypothesis
tests. If an adversary has access to the protected templates
(T1, T2), the relevant bound is derived in terms of Msys

↔ . On the
other hand, if an adversary has access to similarity score
S = s(T1, T2) only, the relevant bound is derived in terms
of Ms

↔. These impossibility bounds are formalized in the
following lemmas.

Lemma 2: Suppose Ĥ is a decision rule for the hypoth-
esis H based on observing (T1, T2) and taking values on
{hm, hnm}. In other words, H ↔ (T1, T2) ↔ Ĥ . Let

FMR = P
[

Ĥ = hm |H = hnm

]
and FNMR = P

[
Ĥ = hnm |H = hm

]
be the False Match and False Non-match Rates for this
decision rule. Let Msys

↔ be the maximal linkability score of
the system. Then

(1 − FMR) + (1 − FNMR) ≤ 2Msys
↔ . (16)

The proof of Lemma 2 is given in the Appendix A. The Proof
of the following Lemma 3 is identical to the proof of Lemma 2
with the key difference being that the adversary’s hypothesis
testing is assumed to be done on the similarity score S and
not on the protected templates (T1, T2).

Lemma 3: Suppose Ĥ is a decision rule for the hypothesis
H based on observing S = s(T1, T2) and taking values on
{hm, hnm}. In other words, H ↔ S ↔ Ĥ . Let

FMR = P
[

Ĥ = hm |H = hnm

]
and FNMR = P

[
Ĥ = hnm |H = hm

]
be the False Match and False Non-match Rates for this
decision rule. Let Ms

↔ be the maximal s-linkability score of
the system. Then

(1 − FMR) + (1 − FNMR) ≤ 2Ms
↔ . (17)

We see from Lemma 2 that a low value of Msys
↔ guarantees

that an adversary cannot perform any meaningful hypothesis
testing on observed templates T1 and T2 to decide if they are
mated or non-mated. Likewise, we see from Lemma 3 that a
low value of Ms

↔ guarantees that an adversary cannot perform
any meaningful hypothesis testing on an observed similarity
score S to decide if it comes from mated or non-mated
templates. These results give an operational interpretation to
Msys

↔ and Ms
↔ an addition to those already provided in [26],

see Figure 1.
Figure 2 further illustrates different examples of synthetic

scores with Gaussian distributions, and the corresponding ROC
curves. For almost overlapping distributions (e.g., Figure 2a)

Fig. 1. Bounds on adversary’s ability to perform hypothesis testing for
different maximal linkability scores. For example, for Msys

↔ = 0.1, a ROC
curve for any hypothesis test that could be performed by an adversary on
(T1, T2) will be between the dashed red (random guess) and the dotted green
(Msys

↔ = 0.1) curves.

our measure returns a low value (i.e, near zero), while for
distributions with less overlap (e.g., Figure 2d) our measure
returns a higher value. In addition, we see in all four cases
that our measure provides a good upper bound on the true
ROC curve of an optimal hypothesis test performed by the
adversary.

III. COMPARISON WITH OTHER MEASURES

In this section, we compare the proposed measure to
other approaches to measuring linkability. In Section III-A,
we discuss the implications of using differential privacy
as an information measure in the definition of linkability.
In Section III-B, we compare our proposed measure to the
one from [17], as the most relevant linkability measure in the
literature for protected biometric templates.

A. On Linkability via Differential Privacy

The main insight behind the proposed linkability measure
is to measure the amount of information leaked by a pair
protected biometric templates about whether these templates
are mated or not mated. Definitions 1 and 2 use maximal
leakage as a measure of such information leakage. This
raises the question of whether other measures of privacy loss
could be used instead of maximal leakage. In this section,
we consider the most prominent such measure: differential
privacy [22].

We will show that for ϵ-differential privacy the resulting
linkability measure does not differentiate between the four
distinct examples in Figure 2. That is, it assigns the value
of infinity to all four examples and classifies all four systems
as completely linkable. Another possible approach is to apply
a common relaxation of ϵ-differential privacy known as (ϵ, δ)-
differential privacy. We will show as well, from the example
of Figure 2, that this approach does not provide us with a
single linkability measurement. Instead, it provides us with a
curve trading off between the ϵ and the δ privacy parameters.

1) ϵ-Differential Privacy: Differential privacy is the most
prominent approach to privacy that was designed for a pri-
vate data release problem [22]. In this discussion, we view
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Fig. 2. Synthetic distributions of mated and non-mated scores (first row) and their corresponding ROC plots (second row): (a) mated: N (1.1, 0.5), non-mated:
N (1, 0.5), and Ms

↔ = 0.1077, (b) mated: N (1.5, 0.5), non-mated: N (1, 0.5), and Ms
↔ = 0.4626, (c) mated: N (2.0, 0.5), non-mated: N (1, 0.5), and

Ms
↔ = 0.7450, (d) mated: N (2.5, 0.5), non-mated: N (1, 0.5), and Ms

↔ = 0.8980. In the ROC plots, the green dotted curves indicate the maximal likability
bound for the adversary hypothesis test, the solid blue curves show the optimal possible hypothesis test by the adversary, and the dashed red curves depict
the random guess accuracy.

ϵ-differential privacy as an information measure between our
true hypothesis H and an observed template pair T1, T2, and
apply it in the manner similar to Definition 1. In other words,
we seek to measure how differentially private the mapping H
to (T1, T2) is. In this way, we can define a new measure of
linkability:

DP(H → (T1, T2)) = max
(t1,t2)∈T1×T2,

h,ĥ∈{hm ,hnm }

log
p(t1, t2|h)

p(t1, t2|ĥ)
. (18)

Likewise, for a given similarity function s with continuous
scores S, we can define a measure of linkability:

DP(H → S) = sup
s∈S,

h,ĥ∈{hm ,hnm }

log
f (s|h)

f (s|ĥ)
. (19)

where f (s|h) denotes the probability density function of S
given h ∈ {hm, hnm}.

As it turns out, these definitions do not distinguish between
any of the cases in Table II and instead classify all of them
as fully linkable. In other words, ϵ-differential privacy is too
pessimistic for the linkability application. For example, let the
score distribution of mated and non-mated templates be any
of the four normally distributed pairs in Table II. Then

DP(H → S) = ∞. (20)

This is because the four synthetic distributions in Table II
are all examples of a Gaussian additive mechanism applied
to a database {hm, hnm}. These do not satisfy ϵ-DP accord-
ing to [22, Theorem A.1].To be more precise, we can take
f : {hm, hnm} → {µm, µnm} where, for example, µm = 1.1 and
µnm = 1 as in Figure 2a. Setting δ = 0 in [22, Theorem A.1]
we see that ϵ = ∞.

TABLE II
LINKABILITY OF SYNTHETIC DISTRIBUTIONS OF SCORES FOR MATED

AND NON-MATED TEMPLATES IN FIGURE 2 USING THE MEASURE
IN [17] (I.E, Dsys

↔ AS IN EQ. 24) WITH DIFFERENT VALUES
OF ω AND OUR MEASURE (I.E, Msys

↔ AS IN EQ. 10)

2) (ϵ,δ)-Differential Privacy: (ϵ, δ)-Differential privacy is a
well-studied relaxation of differential privacy which introduces
a second parameter δ. We could also consider treating this as
an information measure between our true hypothesis H and
an observed template pair (T1, T2), and apply it in the manner
similar to Definition 1. Or, we could consider treating this as
an information measure between our true hypothesis H and
an observed similarity score S, and apply it in the manner
similar to Definition 2. However, in both of these cases we
would need to estimate two parameters: ϵ and δ. In general,
a BTP scheme will not satisfy (ϵ, δ)-differential privacy for
a single pair (ϵ, δ), but would instead satisfy it for an (ϵ, δ)

curve.
As an example, take the score distribution of mated and

non-mated templates be normally distributed N (1.1, 0.5) and
N (1, 0.5) as in Figure 2a. Let c ∈ [0,∞] be any non-negative
constant. Then, mapping from H to S induced by the BTP
scheme satisfies (ϵ, δ)-differential privacy with

ϵ >
0.1c
√

0.5
and δ > 1.25 e−0.5c2

. (21)
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This is again an examples of a Gaussian additive mechanism
applied to a database {hm, hnm} where we take f : {hm, hnm} →

{µm, µnm} with µm = 1.1 and µnm = 1 as in Figure 2a.
Applying [22, Theorem A.1] with 11 f = 0.1 and σ =

√
0.5

we obtain lower bounds on ϵ and δ in terms of c ∈ [0,∞].
As we see from the above discussion, differential privacy

does not appear to be an appropriate information measure for
the linkability application. In the case of ϵ-differential privacy,
it does not differentiate between the simple synthetic examples
in Table II and labels all of them completely linkable. On the
other hand, in the case of (ϵ, δ)-differential privacy, it is not
clear how to obtain a single linkability score.

B. Comparison With Gomez-Barrero et al. [17] Measure

Recall that the first quantitative measure of linkage was
introduced in [17]. The main idea of [17] is to base the mea-
sure on the distributions of mated and non-mated hypotheses
conditioned on a similarity score.

1) Overview of Gomez-Barrero et al. [17] Measure: As
mentioned in Section I, Gomez-Barrero et al. [17] proposed
two quantitative measures (local and global) based on score
distributions. They considered a similarity function s to find
the score s = s(t1, t2) ∈ S between two templates t1 and t2,
and found distributions of mated and non-mated pairs.
Next, they defined their local measure for each score s
in [17, Eq. 4] as:

D↔(s) = p(hm |s) − p(hnm |s). (22)

With some assumptions and simplification, they define their
local unlinkability measure in [17, Eq. 14] as:

D↔(s) =

 0 if L R(s).ω ≤ 1

2
L R(s).ω

1 + L R(s).ω
− 1 if L R(s).ω > 1

, (23)

where L R(s) = p(s|hm)/p(s|hnm) is the likelihood ratio
and ω = p(hm)/p(hnm) denotes the ratio between the prior
probabilities of the mated and non-mated samples. The value
of ω = 1, i.e, p(hm) = p(hnm), is proposed as the worst-
case scenario. Finally, the global measure Dsys

↔ is found by
calculating the conditional expectation of the local measure
D↔(s) over all comparison scores in [17, Eq. 19] as:

Dsys
↔ =

∫
p(s|Hm)D↔(s)ds. (24)

The global measure Dsys
↔ was the first quantitative evaluation

that measures the degree of unlinkability of the biometric
systems. In addition to the mathematical definition of Dsys

↔ ,
[17, Section V] proposes a general protocol for evaluating
linkability from data.

2) Comparison With Maximal Linkability: Both Dsys
↔

(as in Eq. 24) and Ms
↔ are based on the similarity score of

biometric templates. As discussed in Section II-B, the true
linkability of the system is given by Msys

↔ . However, as this is
computationally infeasible in most real-world biometric sys-
tems, we follow [17] and focus on computing Ms

↔ as proxies
for the true linkability. Just like in [17], it is thus important
to compute Ms

↔ for a number of different similarity scores.

Fig. 3. Distributions of scores for mated and non-mated templates:
(a) mated: N (1, 0.5), non-mated: N (1, 1.75), with linkability value of 0.6177
(i.e., somewhat linkable) by our measure (i.e, Msys

↔ as in Eq. 10) and 0.3902
(i.e., somewhat unlinkable) by the measure in [17] (i.e, Dsys

↔ as in Eq. 24).
(b) mated:N (1.7, 0.5), non-mated:N (1, 0.5), with linkability value of 0.5988
(i.e., somewhat linkable) by our measure (i.e, Msys

↔ as in Eq. 10) and 0.4289
(i.e., somewhat unlinkable) by the measure in [17] (i.e, Dsys

↔ as in Eq. 24).
Note that these two systems are ranked differently by our measure and the
one in [17].

In addition, maximal linkabilities Msys
↔ and Ms

↔ as well as
Dsys

↔ , are bounded in [0, 1], where 0 indicates full unlinkability
and 1 indicates fully linkability. However, maximal linkability
and Dsys

↔ do have a number of significant differences which
are highlighted next.

First, while the values of both measures are bounded in
[0, 1], the value of maximal linkability is always higher. This
result is formalized in the following lemma.

Lemma 4: Assume that Dsys
↔ is computed using similarity

function s and ω ≤ 1. Then

0 ≤ Dsys
↔ ≤ Ms

↔ ≤ Msys
↔ ≤ 1. (25)

The proof for Dsys
↔ ≤ Ms

↔ is given in Appendix A, while the
other inequalities follow from Lemma 1 and [17]. We highlight
that even though Ms

↔ is always higher than Dsys
↔ , it is possible

for the two measures to give different rankings to two biomet-
ric systems. As an example, consider distributions of scores
for mated and non-mated pairs as depicted in Figure 3. In this
example, the linkability of mated and non-mated templates is
0.6177 by our measure (i.e, Msys

↔ as in Eq. 10) and 0.3902 by
the measure in [17] (i.e, Dsys

↔ as in Eq. 24) for system (a). For
system (b), the linkability of mated and non-mated templates
is 0.5988 by our measure and 0.4289 by the measure in [17].

Secondly, according to Lemmas 2 and 3, maximal linkabil-
ity has a clear operational interpretation in terms of hypothesis
testing capabilities of an adversary. This makes it consistent
with the definition of unlinkability in the ISO/IEC 30136 stan-
dard [7] presented in Section I. The measure Dsys

↔ does
not appear to have such a hypothesis testing interpretation.
Considering again the example in Figure 3, we see that from
the hypothesis testing perspective of Lemmas 2 and 3 it is
correct to label system (a) as more linkable than system (b).
The rational for labeling system (b) as more linkable than
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system (a) (as is done by Dsys
↔ ) is less apparent. In addition,

unlike maximal linkability, Dsys
↔ has a built-in asymmetry

where it prioritizes the linkability of mated templates in its
definition. While according to the definition of unlinkability in
the ISO/IEC 30136 standard [7] given in Section I, a linkability
measure should take into account the difficulty of arriving at
both, mated and non-mated, hypotheses. From an information-
theoretic perspective, understanding that two templates are
non-mated could also leak information to the adversary and
should not be overlooked by a linkability measure. A closely
related issue is that, to prevent ( 23) from being negative, it is
rounded up to zero in certain cases. This rounding again leads
to a similar loss of information.

A third difference is that maximal linkability appears to
be numerically more stable. For example, to estimate Ms

↔

we simply need to estimate the area under the curve of
the maximum of mated and non-mated probability density
function as in Eq. 14. On the other hand, to calculate D↔(s)
in Eq. 23, it is necessary to estimate the likelihood ratio
L R(s) = p(s|hm)/p(s|hnm), which is numerically unstable
for low values of p(s|hnm). In addition, for estimating L R(s)
in practical evaluation in the case of p(s|hnm) = 0, the authors
considered L R(s) = 1 in their open-source implementation8

which is theoretically incorrect.
Finally, maximal linkability is independent of the prior

probabilities of mated and non-mated hypotheses. By contrast,
Dsys

↔ requires the ratio of prior probabilities of the mated and
non-mated samples (ω). We further discuss the effect of this
assumption in Section III-B.3.

3) Different Values of ω: As mentioned in Section III-B.1,
the measure in [17] requires the ratio of prior probabilities of
the mated and non-mated samples (i.e., ω = p(Hm)/p(Hnm)).
If we vary the value of ω in this measure, we get counter
intuitive results. For small values of ω, clearly linkable systems
are characterized as unlinkable. On the other hand, for large
values of ω, clearly unlinkable systems are characterized
as linkable. Table II reports the linkability measurement of
synthesized distributions in Figure 2 using the measure in [17]
with different values of ω and our measure. As this table
shows, while our linkability measure is independent of prior
probabilities, the linkability measure Dsys

↔ is sensitive to the
value ω and thus depends on the prior distributions of mated
and non-mated template pairs. This may be an issue for two
reasons. First, estimating this prior probability could, in gen-
eral, be hard. While the authors in [17] considered ω = 1 as
the worst-case scenario, such an assumption is not necessarily
realistic in many practical cases. In particular, the adversary
might have some knowledge about the prior probabilities.
For instance, in many practical cases, it is reasonable to
assume that non-mated pairs have a higher probability than
mated pairs. Secondly, a linkability measure should depend
on the BTP scheme and not on the prior belief about the
distribution of the hypothesis. Arguably, it makes sense to
consider measures that do not depend on the prior probability
of H .

8Available at https://github.com/dasec/unlinkability-metric

TABLE III
SUMMARY OF BTP SCHEMES

IV. EXPERIMENTS

In this section, we describe the experimental results of
evaluating the linkability of protected biometric templates
using the proposed measure. First, we describe our experi-
mental setup in Section IV-A. Next, we analyze the numerical
results of linkability measurement for different BTP schemes,
different scoring functions, different characteristics, different
feature extractors, and also examples of linkable templates
in Section IV-B. Finally, we discuss our experiments in
Section IV-C.

A. Experimental Setup

In our experiments, we evaluate the linkability of different
BTP schemes on different characteristics (face, voice, and
finger vein). We also considered DNN-based (face and voice)
and hand-crafted (finger vein) feature extractors in our exper-
iments.

1) BTP Schemes: We measure the linkability of biometric
templates, which are protected using different BTP schemes,
including BioHashing [34], Multi-Layer Perceptron (MLP)
Hashing [35], Bloom Filters [36], two methods based on
Index-of-Maximum (IoM) Hashing [37] (i.e., Gaussian ran-
dom projection-based hashing, shortly GRP, and uniformly
random permutation-based hashing, shortly URP), and Homo-
morphic Encryption (HE) based on Brakerski/Fan-Vercauteren
(BFV) [38] algorithm. Table III summarizes the list of BTP
schemes and compares their outputs and corresponding scoring
functions.

2) Biometric Characteristics: In our experiments, we use
different biometric characteristics, including face, voice, and
finger vein. We build different biometric recognition sys-
tems based on the aforementioned characteristics as follows.
Table IV summarises different biometric recognition systems
used in our experiments.

a) Face recognition: For face recognition, we use
ArcFace-InsightFace [39], ElasticsFace [40], and FaceNet [41]
models as different feature extractors and generate mated and
non-mated templates from MOBIO [42] dataset. The MOBIO
dataset is a bimodal dataset including face and voice data taken
with mobile and laptop devices from 150 individuals, captured
in 12 sessions (6-11 samples in each session) for each subject.
To generate mated scores, we consider all possible combina-
tions of samples for different subjects. For non-mated compar-
isons, we use the first 10 samples for each subject, and then we
consider all possible pairs of samples from different subjects.

b) Voice (speaker) recognition: For voice (speaker)
recognition, we use ECAPA-TDNN model [43] as the feature
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TABLE IV
SUMMARY OF BIOMETRIC RECOGNITION SYSTEMS

extractor, and use voice data in MOBIO [42] dataset to
generate mated and non-mated templates. To generate mated
and non-mated scores, we use the same protocol as we use
for face recognition.

c) Finger vein recognition: For finger vein recognition,
we use Wide Line Detector (WLD) [44] as the feature extractor
on the UTFVP [45] finger vein dataset. The UTFVP dataset
includes 1440 finger vein images from 60 individuals captured
in two identical sessions. For each subject, the vascular pat-
terns of the middle, index, and ring fingers of both hands
were collected twice at each session. In our experiments,
we consider different fingers for each user as a different data
subject (i.e., 6 data subjects corresponding to each individual).
For mated comparisons, we generate 10 different protected
templates from each unprotected template using different keys.
Then, we consider all possible combinations of protected
templates for each subject. For non-mated comparisons, we
consider all possible pairs of samples from different subjects.

3) Implementation Details and Source-Code: In our exper-
iments, we use the Bob9 toolbox [46], [47] to both build the
biometric recognition systems and generate mated and non-
mated pairs. In addition, we use the open-source implemen-
tations (in Bob) of the BioHashing, MLP-Hash, IoM-GRP,
IoM-URP, Bloom Filters, and HE schemes [35], [48], [49],
[50], [51], [52]. For the implementation of HE, we use its
implementation in Bob [52] using the SEAL-Python10 wrapper
on Python 3.8 for the C++ SEAL library [53]. The source
code of all our experiments is publicly available to help
researchers reproduce our results as well as to allow them
to use our method to measure the linkability of their own
protected templates.11

B. Analyze

In this section, we describe our experiments on differ-
ent biometric recognition systems. We evaluate the linka-
bility of protected templates with different BTP schemes
(in Section IV-B.1), based on different scoring functi-
ons (in Section IV-B.2), across different characteristics (in
Section IV-B.3), and from different feature extractors
(in Section IV-B.4). In each experiment, we try to fix all
biometrics modules, except only one module.12 We also

9Available at https://www.idiap.ch/software/bob/
10Available at https://github.com/Huelse/SEAL-Python
11Source code: https://gitlab.idiap.ch/bob/bob.paper.tifs2023_linkability_ml
12We consider BioHash-protected templates in our experiments in

Sections IV-B.2-IV-B.5, since BioHashing is the simplest BTP scheme
in Table III. Similarly, we use face templates in our experiments in
Sections IV-B.1, IV-B.2, IV-B.4, and IV-B.5 since face is one of the most
popular biometric characteristics. However, we should note that similar
experiments with other BTP schemes and other biometric characteristics can
be implemented using our open-source paper package.

TABLE V
LINKABILITY OF DIFFERENT BTP SCHEMES FOR ARCFACE TEMPLATES

(VALUES IN THE PARENTHESES INDICATE THE RANK OF THE
CORRESPONDING BTP SCHEME COMPARED

TO OTHER SCHEMES)

evaluate the linkability of exemplary linkable templates
in Section IV-B.5, including linkable protected templates
(Section IV-B.5.a) and linkable unprotected templates
(Section IV-B.5.b).

1) Linkability Measurement of Different BTP Schemes: In
this experiment, we consider the features extracted from face
images using the ArcFace model, and apply different BTP
schemes, including BioHashing, MLP-Hashing, Bloom Filters,
IoM-GRP, IoM-URP, and HE. Table V reports the linkability
measurement of protected templates using the measure in [17]
and our proposed measure. As this table shows, protected
templates by these BTP schemes are almost unlinkable. This
table also compares the rank of each BTP scheme compared
to other schemes in terms of unlinkability by both measures
(ranks are reported in parentheses). As this table shows, both
methods rank these schemes the same in terms of the unlink-
ability of protected templates. However, the values of the
measure [17] do not have any interpretation, and it is not clear
how significant is the difference in unlinkability of these BTP
schemes based on their unlinkability values by measure [17].
Whereas the values of our measure can be interpreted by
Lemma 3 by providing an upper bound given the unlinkability
value which guarantees that the adversary cannot perform any
better hypothesis test than that upper bound. Therefore, each
of these BTP schemes leads to a different upper bound for
the accuracy of the adversary’s hypothesis testing (similar to
the upper bounds illustrated in the ROC plots of Figure 1
and Figure 2).

2) Linkability Measurement With Different Scoring
Functions: Recall that our proposed measure and the one
proposed in [17] are both based on score distributions of
mated and non-mated templates. Therefore, as also discussed
in Section II, different scoring functions can provide different
levels of linkability for protected templates. To evaluate the
effect of the scoring function, in this experiment, we generate
BioHash-protected templates from the features extracted by



OTROSHI SHAHREZA et al.: MEASURING LINKABILITY OF PROTECTED BIOMETRIC TEMPLATES 2271

TABLE VI
LINKABILITY OF BIOHASH-PROTECTED TEMPLATES

OF ACRFACE WITH DIFFERENT SCORING FUNCTIONS

TABLE VII
LINKABILITY OF BIOHASH-PROTECTED TEMPLATES
ACROSS DIFFERENT BIOMETRIC CHARACTERISTICS

TABLE VIII
LINKABILITY OF BIOHASH-PROTECTED TEMPLATES

FOR DIFFERENT FEATURE EXTRACTORS

the ArcFace model from face images. Then, we apply different
scoring functions,13 including Hamming distance, Euclidean
distance, Cosine distance, Kulsinski distance, Russell-
Rao distance, Sokal-Michener distance, and Correlation
distance. Table VI represents the linkability measurement of
BioHash-protected templates using the measure in [17] and
our proposed measure based on different scoring functions.
This table shows that the different scoring functions can
lead to different levels of linkability of templates. Therefore,
it is necessary to consider different scoring functions when
measuring the linkability of protected templates.

3) Linkability Measurement Across Different Biometric
Characteristics: To explore the application of our measure on
different biometric characteristics, in this experiment, we eval-
uate the linkability of BioHash-protected templates across
different biometric characteristics, including face (ArcFace),
voice (ECAPA-TDNN), and finger vein (WLD). Table VII
compares the linkability measurement of BioHash-protected
templates using the measure in [17] and our proposed mea-
sure across different biometric characteristics. This experiment
confirms that our measure can be applied to templates with
different biometric characteristics, and Table VII show that
BioHash-protected templates are almost unlinkable across
different biometric characteristics.

4) Linkability Measurement for Different Feature Extrac-
tors: To evaluate the effect of the feature extractor, in this
experiment, we evaluate the linkability of BioHash-protected
templates of face data extracted using different feature extrac-
tors, including ArcFace, ElasticFace, and FaceNet. Table VIII

13Implementations of all these scoring functions are available in the SciPy
package: https://scipy.org

Fig. 4. Histogram of mated and non-mated scores for linkable protected tem-
plates (FaceNet templates protected by BioHashing scheme using user-specific
keys). The linkability of the mated and non-mated scores in this example is
0.9765 and 0.9574 by our and [17] measure, respectively.

compares the linkability measurement of BioHash-protected
templates using the measure in [17] and our proposed measure
for different feature extractors. As this table shows, BioHash-
protected templates are almost unlinkable for these feature
extractors.

5) Linkability Measurement of Linkable Templates: In our
experiments in Sections IV-B.1-IV-B.4, we measured the link-
ability of protected biometric templates using different BTP
schemes across different biometric recognition systems. Our
experiments indicate that the protected templates with the
aforementioned BTP schemes are almost fully unlinkable.
In this section, we consider two examples of linkable protected
templates and linkable unprotected templates:

a) Linkable protected templates: As an example of
linkable protected templates, we consider FaceNet features
protected by the BioHashing scheme using user-specific keys.
Note that in our experiments in Sections IV-B.1-IV-B.4,
we considered sample-specific keys for generating protected
templates. While considering user-specific keys in this exper-
iment may be assumed as a hypothetical scenario, it can
reflect the situation where templates with the same key14

for each user are leaked. For instance, consider a biometric
recognition system where multiple protected templates are
stored for each user in the system’s database (i.e., multiple
reference templates). Then, an adversary gains access to all
(or a portion of) the templates stored in the system’s database,
and aims to distinguish mated and non-mated pairs. In such a
situation, since mated templates are generated using the same
key corresponding to the user (i.e., user-specific key), there
should be a high link between protected templates. Figure 4
depicts the histogram of scores for mated and non-mated
templates for FaceNet features protected by the BioHashing
scheme. The linkability of mated and non-mated templates in
this example is 0.9765 and 0.9574 by our proposed measure
and the measure in [17], respectively. Therefore, as also
expected from the histogram of scores, these templates are
almost fully linkable.

b) Linkability of unprotected templates: In this experi-
ment, we consider an unprotected system, and because no key
is applied to generate templates in such systems, we expect
to observe a high distinguishability between mated and
non-mated templates (as expected from the normal operation

14As in the typical operating of protected biometric systems.
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Fig. 5. Histogram of mated and non-mated scores for unprotected templates
(FaceNet). The linkability of the mated and non-mated scores in this example
is 0.9912 and 0.9669 by our and [17] measure, respectively.

of a biometric recognition system). As an example of such a
case, we consider FaceNet features in this experiment. Figure 5
illustrates the histogram of scores for (unprotected) mated and
non-mated templates. The linkability of templates for this case
is 0.9912 by our proposed measure and 0.9669 by the one
in [17]. Therefore, this experiment confirms that unprotected
templates are almost fully linkable.

C. Discussions

In our experiments in Sections IV-B.1-IV-B.4, we eval-
uated the linkability of protected biometric templates.
In Section IV-B.1, we observed that our proposed measure and
the one proposed in [17] return low values for linkability, and
therefore the protected templates with different BTP schemes
are almost unlikable based on both measures. Comparing the
values for different BTP schemes in Table V, both methods
rank the evaluated BTP schemes similarly. While the values
for different BTP schemes in each of these measures are close,
there is theoretically no interpretation possible for the values
of measure [17] and the significance of the difference between
the two values in this measure. In contrast, the values of our
measure can be interpreted according to Lemma 3, which
provides an upper bound for the adversary’s hypothesis testing
(similar to the upper bounds depicted in the ROC plots of
Figure 1 and Figure 2). For example, to compare the linkability
of BioHashing and Bloom Filters, we have different values
for the linkability measurement of these schemes in Table V,
and therefore we have different upper bounds according to
Lemma 3. Comparing the corresponding bounds, we can say
that if an adversary can gain access to BioHash-protected
templates instead of templates protected with Bloom Filters,
then the adversary can achieve up to 20.0162

− 20.0007
=

0.0108(≈ 1.1%) more accuracy when performing hypothesis
test (i.e., up to 1.1% more accuracy in distinguishing mated
and non-mated templates). However, such an exercise cannot
be done with [17] because there is no practical interpretation
for the linkability values in [17].

The experiment in Section IV-B.2 showed that different
scoring functions can provide different levels of linkability
for protected templates. This is reasonable since each scor-
ing function compares two given templates differently, and
thus provides different information from the similarity of the
two templates. Hence, since our proposed measure and the
one in [17] are based on score distributions of mated and

non-mated templates, different scoring functions lead to dif-
ferent linkability values. Therefore, it is important to consider
different scoring functions when evaluating the linkability of
protected templates.

In our experiments in Section IV-B.3 and Section IV-B.4,
we measured the linkability of BioHash-protected biometric
templates across different biometric characteristics and for
different feature extractors, respectively. These experiments
show that the BioHash-protected biometric templates from
different biometric characteristics and from different feature
extractors are almost fully unlinkable. This experiment also
confirms the application of our measure across different bio-
metric characteristics and for different feature extractors.

In our experiments in Section IV-B.5, we measured the
linkability of two systems that we expect to be linkable.
In Section IV-B.5.a we considered an example of linkable
protected templates where we assumed that user-specific keys
are used to generate protected templates. Since keys to gen-
erate protected templates for each user are the same in this
scenario, we should have high linkability between templates,
which is also confirmed by our results. As another example
of linkable templates, we considered unprotected templates in
Section IV-B.5.b. Similarly, in this case, we expect that the
templates from the same user be similar and differ from tem-
plates of other users, which means a high level of linkability.
The result of our linkability measurement also confirms that
unprotected templates are almost fully linkable.

All in all, our experiments confirm that our proposed
method can be deployed to measure the linkability of protected
templates, and the results are intuitively correct. We evaluated
the linkability of protected templates using our measure for
different BTP schemes, scoring functions, biometric charac-
teristics, and feature extractors. Furthermore, we evaluated
two examples of linkable templates, where our measure also
showed a high level of linkability. As discussed in Section II
our measure has a solid theoretical background, and also the
values of our measure have a practical interpretation according
to Lemma 3, where our proposed measure can provide an
upper bound for the accuracy of the adversary’s hypothesis
testing given score distributions for mated and non-mated
templates.

V. CONCLUSION

In this paper, we proposed a new method for measuring the
linkability of protected biometric templates. We used maximal
leakage, which is a well-studied measure in information-
theoric literature. Our proposed measure is based on hypothe-
sis testing using the distributions of similarity scores of mated
and non-mated protected templates.

The proposed measure is consistent with the definition
of linkability in the ISO/IEC 30136 standard and quantifies
the linkability degree of protected templates. In particular,
we showed that our measure can provide an upper bound
on the accuracy of the adversary’s hypothesis test given
distributions of scores, and guarantees that an adversary cannot
achieve better performance than the provided upper bound.
The value of our measure is bounded in the [0, 1] interval,
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where a higher value indicates more linkability (i.e., 0 shows
fully unlinkable and 1 shows fully linkable). The proposed
method is also computationally stable and does not require
any assumptions on prior probabilities of mated or non-mated
hypotheses.

We also investigated the application of differential privacy
to measure the linkability of protected biometric templates
and showed that the differential privacy-based measure is too
strict for the linkability application. Last but not least, in our
experiments, we used the proposed measure to evaluate the
linkability of biometric templates from different biometric
characteristics (face, voice, and finger vein), different fea-
ture extractors, and protected with different BTP schemes.
The experimental implementation of our proposed measure
showed that it gives intuitively correct linkability scores across
different BTP schemes, biometric characteristics, and scoring
functions.

We conclude the discussion with some comments on an
important question: how to estimate, Msys

↔ , the true linkability
of the system. In this paper, we adopted the approach of using
Ms

↔ as proxies for Msys
↔ . As we see in Lemma 1, the value of

Ms
↔ is always lower than the value of Msys

↔ and it is therefore
important to take the highest available value of Ms

↔ across
different similarity scores. Other approaches to this problem
include stronger theoretical analysis of Eq. 7, as well as a more
extensive analysis of how well different similarity functions
estimate Msys

↔ . Understanding how to better estimate the true
linkability of a system is thus an important direction for future
work.

APPENDIX

A. Proofs for Sections II and III

Proof: [Lemma 2] From Eq. 2 and Eq. 9 we obtain

Msys
↔ = sup

pH

log
P

[
H = Ĥ

]
max {pH (hm), pH (hnm}

. (26)

Fixing a distribution pH (hm) = pH (hnm) = 0.5 on {hm, hnm},

Msys
↔ ≥ log

P
[

H = Ĥ
]

max {pH (hm), pH (hnm}
(27)

= log
(
P

[
H = Ĥ |H = hm

]
+ P

[
H = Ĥ |H = hnm

])
(28)

= log ((1 − FMR) + (1 − FNMR)) (29)

where Eq. 28 is obtained by applying the law of total proba-
bility

P
[

H = Ĥ
]

= P [H = hm] P
[

H = Ĥ |H = hm

]
+ P [H = hnm] P

[
H = Ĥ |H = hnm

]
.

(30)

Proof: [Lemma 4] The first inequality is shown in [17],
while the third and fourth are shown in Lemma 1. It remains
to show that Dsys

↔ ≤ Ms
↔. Let F = {s : p(hm |s) ≥ p(hnm |s}

be the set of all the scores for which the mated hypothesis is
at least as likely as the non-mated one. Then

D↔(s) = p(hm |s) − p(hnm |s) (31)

= p(s|hm)
p(hm)

p(s)
− p(s|hnm)

p(hnm)

p(s)
(32)

=
p(s|hm)ω − p(s|hnm)

p(s|hm)ω + p(s|hnm)
(33)

≤
p(s|hm) − p(s|hnm)

p(s|hm)
(34)

where the last line holds only for ω ≤ 1. Then

Dsys
↔ =

∫
p(s|hm)D↔(s)ds (35)

=

∫
F

p(s|hm)D↔(s)ds (36)

≤

∫
F

[
p(s|hm) − p(s|hnm)

]
ds (37)

≤

∫
F

p(s|hm)ds +

∫
F̄

p(s|hnm)ds − 1 (38)

= D̃ − 1 (39)

where we defined D̃ =
∫
F p(s|hm)ds +

∫
F̄ p(s|hnm)ds. Note

that

Ms
↔ = log(D̃) (40)

and thus,

Ms
↔ ≥ log(1 + Dsys

↔ ) ≥ Dsys
↔ , (41)

where recall that the logarithm has base two.
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