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Abstract— Software Defined Network (SDN) has been widely
used in modern network architecture. The SD-WAN is considered
as a technology that has a potential to revolutionize the WAN
service usage by utilizing the SDN philosophy. Attacks within
SD-WAN can affect the network and block the entire services.
In this paper, we propose a machine learning based anomalous
traffic detection framework named OADSD over SD-WAN that
can achieve task independently and has the ability of adapting
to the environment. The OADSD adopts Distributed Dynamic
Feature Extraction (DDFE) to extract representative features
directly from the raw traffic, and proposes the On-demand
Evolving Isolation Forest (OEIF) to make the system adapt
to an environment. We provide a theoretical analysis of the
performance of the OADSD. We also conduct comprehensive
experiments to evaluate the performance of the OADSD with
real world public datasets as well as a small real testbed. Our
experiments under real world public datasets show that, the
OADSD can accurately detect various kinds of attacks with a
high performance. Compared with the state-of-the-art systems,
the OADSD can achieve up to 60% accuracy improvement.

Index Terms— Malicious traffic detection, traffic feature
extraction, online learning.

I. INTRODUCTION

SOFTWARE-DEFINED Wide Area Networking
(SD-WAN) is an emerging paradigm that introduces

the advantages of Software Defined Networking (SDN) into
enterprise networking [7], [46]. By dynamically changing
the forwarding rules according to the status of networks,
the Quality of Service (QoS) can be significantly improved.
Although the SD-WAN technology has already shown its
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excellent performance in many service providers’ global
WAN (e.g., Google [12], [17], [18], Microsoft [16], [26]),
the threat activities (e.g., DDoS attacks) can occur and
they can severely disrupt the user experience and reduce
revenues finally. Therefore, real-time network malicious
traffic detection is becoming an essential step, which can
allow network administrators monitor the healthy status of
the infrastructure.

Network malicious traffic detection technology is now
widely used in SD-WAN scenarios [16], [18], [47] to provide
network security. When anomaly events are detected, alerts are
generated and sent to the network administrators to prevent
further destruction from attackers.

Machine learning technologies are now becoming a new
powerful tool in the network anomaly detection field. Accord-
ing to model complexity, we can divide the machine learning
based anomaly detection methods into two categories, i.e.,
traditional machine learning methods, and the deep learning
methods [43]. Traditional machine learning technologies based
anomaly detection methods can be further divided into two
types, i.e., supervised learning and unsupervised learning,
where the supervised learning methods always train the detec-
tion models with labeled traffic and the unsupervised methods
will separate the unlabeled traffic into clusters. Deep learning
methods always train a complex neural network to improve the
accuracy. Although machine learning techniques have already
shown benefits in network anomaly detection, they still have
following limitations over the SD-WAN scenarios:

Firstly, classical supervised machine learning based
schemes (e.g., SVM [8], Decision Tree [39]) have a high
accuracy but they need a large number of labeled traffic from
experts for training. However, the internet traffic is now in an
exploding growth stage, and labeling traffic is always a time-
consuming, error-prone, and even impossible work for most
network administrators. In comparison, classical unsupervised
machine learning algorithms (e.g., Kmeans [20]) are easy to
deploy but have a low accuracy.

Secondly, most of existing mainstream schemes (e.g., [11],
[24], [48]) rely on expertly designed features to detect the
anomalies. To efficiently detect the malicious traffic in SD-
WAN, most methods need to extract specific features (e.g.,
flow size) from the raw traffic, which renders it less adaptable
to the changing environment. Indeed, these methods are only
effective for the unchanging environment but they might have
low detection accuracy for the unknown attacks in a varying
environment. Also, having too many features in a feature set
requires a high volume of memory and computation, and a
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long training time, which could affect the model accuracy at
the end. In reality, the emerging SD-WAN provides a built-
in inherent programmatic framework, where the edge routers
always have a strong programming ability [18], [22], [40],
[47]. This capability can be explored a scheme for dynamic
feature extraction adaptable to the environment.

Thirdly, a model is always trained to gain a good perfor-
mance over the training data. However, the network environ-
ment could change to a certain extent such that its operational
data could be significantly different from the characteristics of
the training data, leading to severe intrusion detection accuracy
degradation. Therefore, the machine learning models should be
smart enough to evolve with the network environment.

In addressing these challenges, we make the following
contributions in this paper:

Firstly, we perform a deep analysis of malicious traffic
detection algorithms and show the drawbacks of state-of-the-
art machine learning based methods (See § II).

Secondly, we design and implement the OADSD, a system
that aims for online malicious traffic detection for SD-WAN.
The OADSD contains two parts, i.e., Distributed Dynamic
Feature Extraction (DDFE), and On-demand Evolving Isola-
tion Forest (OEIF), where DDFE is deployed over each edge
device (e.g., VNF, router) and OEIF works at the controller
and edge device. Instead of relying on domain expert extracted
features, the edge devices in the DDFE take the raw network
traffic as the input and adopt an autoencoder-based method
to generate the optimal representation of the raw traffic. The
OEIF constructs an Online Isolation Forest model to detect
the malicious traffic in the on-demand update manner, where
the parameter update is triggered when the observed false
alarm rate is high. We analyze the theoretic performance of
the proposed OADSD and prove that the performance gap
between the proposed OADSD and the best static offline
method tends to zero as iterations goes to infinity (See § III).

Thirdly, we conduct extensive experiments with real-world
public datasets as well as a small testbed (see § IV). Our results
show that our proposed OADSD can detect different types of
attacks with AUC ranging between 0.85 and 0.99. Compared
with domain expert features, our DDFE can extract more
representative features, and could greatly help to improve the
intrusion detection performance. We show that the OADSD
can achieve a good performance when environment is not
consistent with the training environment.

The rest of the paper is organized as follows: Section II
shows the background and motivation. Section III introduces
the design details of the framework. Section IV evaluates
the performance of the framework. Section V introduces the
related work. The last section summarizes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we will introduce the background about
SD-WAN and show the limitations of state-of-the-art machine
learning based anomaly detection methods.

A. Background

1) SD-WAN: SD-WAN is an overlay virtual solution for
existing WAN that enables enterprises to securely connect

Fig. 1. The architecture of SD-WAN.

their branches using public internet resources. It incorpo-
rates the key principles of SDN into the wide area net-
work, which can provide enhanced quality of service over
unreliable links in a lower-cost way. Its primary focus is
to connect an organization’s different branches located in
various geographic locations through the internet. As shown
in Fig. 1, the SD-WAN can be used by companies to establish
interconnections between their headquarters and external sites.
The edge devices located at different locations are purchased
and managed in a unified manner. After the edge devices are
authenticated, a controller will establish an encrypted channel
with the edge devices to transmit control messages, and a
dedicated communication tunnel is established between the
edge devices to transmit data.

2) Network Anomaly Detection Framework: Traditionally,
a network anomaly detection framework usually contains
three parts, i.e., traffic pre-processing, feature extraction and
anomaly detection. The traffic pre-processing part will gather
traffic from the network middleboxes. Then it will clean up
the irrelevant network traffic (e.g., ICMP packets) which are
not applicable and can affect the performance of detection.
Sometimes the collected traffic might be imbalanced. Data
normalization or augmentation technologies [45] can be used
to improve the quality of data. The feature extraction part
will derive the feature vectors from the captured traffic data.
Traditionally, there are two types of features, i.e., packet-
level features and flow level features [43]. The packet-level
features (e.g., payload size, packet size, and payload ratio)
are often used to find application anomalies, but they are not
effective in providing a clear distinction in values between
malicious and legitimate traffic flows, which might affect
the detection accuracy. The flow-level features (e.g., mean
packet length) will focus on multiple packets sequence rather
than the contents of packets. Compared with the packet-level
features, the flow-level features are more accurate but they
often fail to detect the application anomalies. Finally, the
anomaly detection part will perform detection algorithms to
check whether the traffic contains suspicious behaviors.

B. Motivation

As a promising security method, machine learning based
malicious traffic detection algorithms have been proposed as
complements of the traditional fixed rule based methods [36].
Table I shows a the comparison between the machine learning
based anomaly detection methods and the rule based anomaly
detection methods. Although machine learning based methods
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TABLE I
COMPARISON OF THE EXISTING MALICIOUS TRAFFIC DETECTION METHODS

Fig. 2. F1-score of different feature set.

can better detect zero-day attacks and have a higher detection
accuracy, they still have the following two limitations:

Firstly, most of them fully rely on expertly designed specific
features, which is costly and non-adaptable. As shown in
Table I, machine learning based anomaly detection methods
could be further divided into subtypes, i.e., domain expert
feature based methods and automatic feature extraction based
methods [6], [10], [28], [37], where the domain expert features
based methods rely on pre-defined expert-designed features
and they vary across attacks. In reality, more features do
not necessarily imply better results. Indeed, too many fea-
tures require a high volume of memory and computation
and can extend the model training time which may affect
the model accuracy at the end. The F1-score of different
algorithms (e.g., Isolation Forest (IF) [49], One-class SVM
(OCSVM) [9], Varational Autoencoder (VAE) [13] and Naive
Bayes (NB) [21]) over CICIDS dataset [37] demonstrated in
Fig. 2 is also consistent with this observation, where the top
17 features selected by Person score perform about 20% better
than the all features provided by the CICIDS2017 dataset.

Secondly, most of them only perform well over training
dataset but fail to perform well over varying testing datasets.
Most machine learning algorithms always train their best
parameters over the training dataset. However, the character-
istics of the training dataset cannot always be the same as
the testing dataset. The performance indicators over UNSW
dataset [29] shown in Fig. 3 also prove this. For example, the
jitter feature between the training dataset and test dataset could
even be as large as 30%. The different characteristics of the
training dataset and testing dataset also make the algorithms
only perform well on the training dataset. We further take
the Isolation Forest [49] as an example to demonstrate the
performance gap between training and testing set provided by
UNSW dataset. As Fig. 4 shows, the performance gap between

Fig. 3. Training and testing dataset.

Fig. 4. Performance have large gaps.

the training dataset and the testing dataset can even be up to
10%, which demonstrates that using a static training model
built over the training dataset would be problematic over a
changing environment.

III. OADSD FRAMEWORK

In this section, we will present the OADSD, a system
that aims for Online Anomaly Detection over SD-WAN. The
architecture shown in Fig. 5 illustrates that OADSD con-
tains two parts, i.e., Distributed Dynamic Feature Extraction
(DDFE) and On-demand Evolving Isolation Forest (OEIF),
where DDFE is deployed over each edge device (e.g., VNF,
router) and OEIF works at the controller and edge device. The
DDFE proposes to extract features by using a machine learning
model deployed over the edge devices. The OEIF is able to
update the model according to the feedback from network
administrators to improve the detection accuracy when the
false alarm is too high. In the following section, we will
introduce the procedure as well as the analysis in details.
Table II shows the main notations used in this paper.

A. Distributed Dynamic Feature Extraction

For the traffic passing through the edge devices, we need
to extract the features for further detection. Different from
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Fig. 5. The overall architecture of the OADSD, which contains two parts: Distributed Dynamic Feature Extraction (DDFE) and On-demand Evolving
Isolation Forest (OEIF).

TABLE II
KEY NOTATIONS FOR OADSD

the traditional feature extraction methods which advocate to
use the expert-designed features, OADSD proposes a dynamic
feature extraction. As shown in Fig. 5, the SD-WAN edge
devices will perform an autoencoder based feature extraction
method for the captured raw traffic to derive the feature vectors
for every µ time interval. Overall, the feature extraction
procedure contains the following three main steps.

1) Step 1: Traffic Collection and Traffic Cleaning: Each
edge device has a continuously running monitor process (e.g.,
tcpdump) to capture the raw network traffic going through
the edge devices continuously. At the end of each µ time
(e.g., 10s), each edge device will run a packet filter process
to clean the irrelevant packets (e.g. ARP packet) based on the
configuration of the controller, where µ is fixed and configured
by the controller according to the ratio of edge resource
(e.g., disk volume) and line speed. After the traffic cleaning
step, packet number as well as the detection overheads are
significantly reduced. In reality, the attacks can happen over

Fig. 6. Autoencoder based feature extraction. The input is a flow vector v
and the encoder part will output the flow feature vector.

many µ time intervals. We will detect these flows each µ time
interval and regard them as the malicious ones even if only
one time slot contains anomaly.

2) Step 2: Flow Vector Generation: Next, the OADSD will
aggregate the packets with the same identifier (i.e., source
IP address, destination IP address, source port, destination
port and transport layer protocol) to form a flow. In reality,
each flow has a diverse packet number, and this makes our
feature extraction challenging. For simplicity, OADSD will
first convert the flows with different length into the same
length. OADSD will fills the short flows with zero elements
to a fixed length size (e.g., L). For each packet, we adopt M
features (e.g., packet size, payload size, packet head, payload)
to present it. Therefore, the flow vector at the i-th time slot
vt can be denoted as {v11, v12, v13, v14, · · · , vi j , · · · , vL M },
where vi j is the i-th feature of packet i . When generating
flow vectors, we first distinguish between short flows and long
flows by checking the identifiers, i.e., if a flow’s identifier does
not appear in the previous time slot, we will identify it as a
short flow, otherwise, it is a long flow. For the short flows,
we only sample packets within the current time slot. For these
long flows, we first perform a sample operation within the
current time slot, and then perform another sample operation
for the packets sampled in previous time slots together with the
the newly sampled packets to form the flow vector. Therefore,
long flow vector will contain information of all time slots.

3) Step 3: Autoencoder Based Flow Feature Extraction:
As discussed in the previous section, the expert based feature
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Fig. 7. The splitting procedure of an isolation tree.

extraction methods can incorporate human errors. To overcome
this, we design an autoencoder based feature selection method
to discover the non-intuitive features. Autoencoder is a special
artificial neural network which tries to reconstruct its inputs.
Autoencoder often consists of an encoder and a decoder. The
encoder first compresses the input data into lower dimension,
then the decoder tries to reconstruct the input by the output of
the encoder. As shown in Fig. 6, each element in v will pass
an encoder part which is constructed by several convolution
layers with many neurons. The fabric of the decoder net is
similar to the encoder net and it will output a vector ṽ. The
output of the encoder part can be regarded as the flow feature
vector (i.e., h). We also add skip connections to the original
structure to accelerate the training speed, whose connecting
strategy follows the pre-activation version of the deep residual
network [15]. We train the model in an unsupervised manner
and do not need any labels. We aim to minimize the Mean
Square Error (MSE) between v and ṽ:

min
L∑

i=1

M∑
j=1

(vi j − ṽi j )
2 (1)

B. On-Demand Evolving Isolation Forest

After flow feature extraction, we now construct an On-
demand Evolving Isolation Forest (OEIF) to distinguish mali-
cious traffic. The OEIF contains two parts, i.e., Isolation Forest
Construction and On-demand Update, where an Isolation For-
est (IF) is trained beforehand and the On-demand Parameter
Update works at the operational phase.

1) Isolation Forest Construction: We begin with the defini-
tion of Isolation Tree.

Definition 1: Isolation Tree. Let B denote a node of an
isolation tree. B is either an external-node with no child,
or an internal-node with one test and exactly two child nodes
(Bl , Br ). A test consists of an feature Bq and a split value Bc.

The flow feature samples used for training can be presented
as H = {h1, h2, . . . , , hi , . . .}, where hi = {hi1, hi2, . . . , hi Q}

is the i-th flow feature set containing Q features. We need
5 steps to obtain a random isolation tree. Fig. 7 shows an
example.

a) Step 1: Sampling: We need to randomly select some
samples from H to train the model. The selected samples are
presented as Y . All the elements in Y construct the root node.

Fig. 7(a) shows a simple example, where we use a 6 sample in
H to train a tree. After randomly sampling, we derive a sub-
sample Y which contains 4 samples for the following steps.

b) Step 2: Feature selection: Next, we randomly select a
dimension from the flow features to split the selected samples
and build the isolation tree. Take Fig. 7(b) as the example,
we choose the first dimension (i.e., h11, h21, h31, h41, h51) for
sample splitting.

c) Step 3: Threshold decision: For each tree node includ-
ing the root node that contains more than one flow feature
vector, we need to choose a threshold for sample splitting.
We randomly choose a value between the minimum and
maximum value of the corresponding feature chosen in Step 2
as the threshold. For example, in Fig. 7(c), the minimum and
maximum value of the first feature among the 4 samples in
Y are 2.3 and 4.5, and we choose 3.5 as the threshold. Since
different device has different input data, the selected thresholds
will also be different.

d) Step 4: Sample splitting: We need to separate each
tree nodes (i.e., external nodes) which contains more than one
feature vector into two child nodes. The left node (i.e., Bl )
contains the samples whose split value is equal or smaller
than the threshold decided in Step 3, and the right node
(i.e., Br ) contains the remaining ones. Then we set the selected
feature’s index to Bq and set the split value to Bc. For example,
as Fig. 7(d) shows, the left node (Bl ) contains flow feature
vector h2 and h5, while the right node (Br ) contains h3 and
h6. The feature of the node is the label of the first feature
dimension and the split value is 3.5 in our example.

e) Step 5: Recursively building: Finally, we will perform
Step 2 to Step 4, until all tree nodes contain one flow feature
vector and are unable to be split any more. Then we will return
the root node of the isolation tree.

Repeating the above steps, we can obtain an IF (Isolated
Forest). Let F denote the root node set and N denote the
Internal-node set. Considering an arrival flow feature vector A,
ZA denotes a visited-internal-node vector, where ZA

B ∈ {0, 1}

denotes whether an internal node B is visited (ZA
B = 1) or

not (ZA
B = 0). In the detection stage, the IF is used to map

the input feature vector A into ZA. Algorithm 1 describes
how the map procedure works. The algorithm will loop each
internal-node. The loop will continue until the leaf node is
reached. If the split value of the internal-node is larger than
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Algorithm 1 Visited Internal-Node
Input: Arrival flow feature vector A, root node set F .
Output: Internal-node path vector ZA

1: Z B = 0, ∀B ∈ N ;
2: for B ∈ F do
3: while B is an internal-node do
4: ZA

B = 1;

5: T =

{
Bl ABq ≤ Bc

Br ABq > Bc
6: end while
7: end for
8: return ZA

A’s corresponding feature value, then we will loop its right
child, otherwise, we will loop its left child (Line 5). If the
B-th internal node has been visited, the B-th element in ZA

will be set to 1. Therefore,
∑

B∈N ZA
B can present the total

path length A traverses through the forest.
2) On-Demand Parameter Update: The on-demand param-

eter update scheme works at the operational phase. As an
environment changes, the static model weight might lead to
a high false alarm rate. If users find the gap between the
observed false alarm rate (e.g., 9) and the pre-defined false
alarm rate threshold (e.g.,8) is higher than the pre-defined
threshold 1, the parameter update process will be triggered:

9 − 8 ≥ 1 (2)

There are also other update signal in practice, e.g., zero-day
attack. When zero-day attacks happen, it would be observed
by the local site operators. Then the results are reported to the
controller and trigger the parameter update process. There-
fore, the zero-day vulnerabilities can also be detected by our
method. To update the parameters, we consider incorporating
feedback from IT administrators to tune the weight (i.e., w).
Let T present the indices set of the feedback that received
from operators. For each t ∈ T , wt denotes the value of weight
vector after receiving the feedback t . We now give the domain
S for all possible weights:

S =

{
wt |wt ∈ RN , ||wt || ≤ G

}
(3)

Let λ represents the pre-defined threshold. Let yt denote
the detection result for t . If wt · Zt > λ, we will regard it
as a malicious flow (yt = −1), otherwise, we regard it as a
benign one (yt = 1). And let ŷt denote the true label of t .
Mathematically, we should try to seek w that minimizes the
incorrectly classified examples over the total feedbacks, i.e.,

min
w∈S

∑
t∈T

θ(sign(wt · Zt
− λ) ̸= ŷt ) (4)

where θ(x) ∈ {0, 1} is the indicator function that takes the
value 1 if x is satisfied and 0 otherwise. The sign(x) ∈ {−1, 1}

is the sign function. ŷt is the true label of t , where ŷt =

−1 when t is a malicious flow, otherwise (ŷt = 1), it is a
benign one. However, (4) is hard to use in practice since it is
0/1 loss and needs to access the whole feedback set. In this

case, we would like to replace it with a convex loss function
whose parameter is wt after receiving the feedback of t :

ft (wt ) = max{0, −ŷt · (wt · Zt
− λ)}. (5)

To derive the best parameter when receiving the feedback
of t , we aim to use any vector which has a minimal loss on
all past rounds, i.e.,

wt+1 = arg min
w

t∑
i=1

{ fi (w) + Ri (w)}. (6)

where Ri (w) is a regularized function (i.e., the regularizer)
to stabilize the prediction. From (4), we can derive the best
parameters. However, it is often hard to solve for the online
application. In this case, we adopt the online mirror descent
algorithm [14] and change (5) to its gradient function, i.e.,

fi (wi ) ≃ ▽ fi (wi )wi , (7)

where ▽ fi (wi ) is the gradient of fi at wi , which can be
derived as:

▽ fi (wi ) =

{
−ŷi · Zi ŷi ̸= yi
0 ŷi = yi .

(8)

The regularization term Ri (w) is defined as follows,

Ri (w) =
1
2
δ(

1
ηi

−
1

ηi−1
)||w − wi ||

2, (9)

where δ is a constant and ηi is the learning rate. Take (7) and
(9) into (6), we can derive a convex optimization problem with
no constraints. According to KKT (Karush–Kuhn–Tucker)
condition, we take the derivative of (6) equaling to 0 and get
the optimal feature weight vector:

wt+1 = wt −
ηt

δ

t∑
i=1

▽ fi (wi ) (10)

In the area of online learning, the regret metric [14] can
measure the difference between the online algorithm and the
best parameters. A practical online algorithm should have a
sub-linear regret upper bound. This implies that on average
the algorithm is performing as the best static strategy we can
have in hindsight,. i.e.,

RegretT = max
w∗∈S

{ T∑
t=1

ft (wt ) −

T∑
t=1

ft (w
∗)

}
= o(T ), (11)

where ft (wt ) is the performance loss after receiving the
feedback of flow feature vector t . To analyze the performance
of on-demand parameter update scheme, we first give the
following lemma:

Lemma 1: Compared with the best static decision w∗, the
regret of the online learning algorithm is bounded by:

RegretT ≤ Rt (w
∗) +

T∑
t=1

[ ft (wt ) − ft (wt+1)], (12)

where R(·) is the regularization term in the loss equation, and
w∗ is the optimal parameters in hindsight.
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Proof: First, we consider the regret against the regularized
loss function, i.e.,

lt (wi ) = ft (wi ) + Rt (w
∗) (13)

The regularized loss can be computed as:

JT =

T∑
t=1

{

t∑
i=1

lt (wi ) −

t−1∑
i=1

lt (wi )} −

T∑
t=1

lt (w∗) (14)

Since, the objective of online learning is to find the wt+1
which has the minimum accumulated loss over previous t
steps. Therefore, wt+1 has the smallest accumulated loss over
previous t steps.

JT ≤

T∑
t=1

{

t∑
i=1

lt (wi ) −

t−1∑
i=1

lt (wi )} −

T∑
t=1

lt (wT +1)

=

T∑
t=1

{

t∑
i=1

lt (wi ) −

t∑
i=1

lt+1(wi )} (15)

According to the definition of regret shown in (11), then
taking (13) and (14) into (15), we could derive the following
equation:

RegretT ≤

T∑
t=1

Rt (w
∗) +

T∑
t=1

{

t∑
i=1

[ fi (wt ) + Ri (wt )]

−

t∑
i=1

[ fi (wt+1) + Ri (wt+1)]} −

T∑
t=1

Rt (wt )

(16)

According to (6), wt has the minimal accumulated loss of
previous t − 1 steps. And our regularization term R(·) is non-
negative. Therefore, we have:

t−1∑
t=1

[ fi (wt+1) + Ri (wt+1)] ≥

t−1∑
t=1

[ fi (wt ) + Ri (wt )] (17)

With (17), we have:

ft (wt ) − ft (wt+1) + Rt (wt ) − Rt (wt+1)

≥

t∑
i=1

[ fi (wt ) + Ri (wt )] −

t∑
i=1

[ fi (wt+1) − Ri (wt+1)] (18)

Combine(16) and (18) we have:

RegretT ≤ Rt (w
∗) +

T∑
t=1

[ ft (wt ) − ft (wt+1)] (19)

we can prove Lemma 1.
Theorem 1: Let G be the maximal value of the weight

vector w. N denotes the number of nodes in the forest. Let
ηt =

G
√

t
, we have:

Regret < (2δ +
1
δ
)N 2G

√
T (20)

Proof: For every u, v ∈ S. ||u − v|| ≤ ||u|| + ||v||.
According to 3, we have ||wt || ≤ N G, thus, ||w∗

− wt || ≤

Fig. 8. The overall design of OADSD system.

2N G. Note that ▽ f (wt ) = ▽ f (wt )·wt and ||Zt
|| < N , so we

have || ▽ f (wt )|| < N

Regret ≤
1
2

T∑
t=1

δ(
1
ηt

−
1

ηt−1
)||w∗

−wt ||
2

+
1
2δ

T∑
t=1

ηt ||▽ f (wt )||
2

≤
1
2

T∑
t=1

δ(
1
ηt

−
1

ηt−1
)||w∗

− wt ||
2
+

N 2

δ

T∑
t=1

ηt

< 2N 2Gδ
√

T +
N 2

δ
G

√
T

= (2δ +
1
δ
)N 2G

√
T (21)

This implies that with the feedback number growing the
difference between the best static strategy and the model
goes to zero. In a real-life application, alarms generated by
the IDS will often require the inspection from the operator
in any system. So, using the feedback from such alarms do
not increase any extra inspection cost. Setting up a feedback
triggering threshold will further reduce the involvement of the
operator.

C. System Design

Fig. 8 shows the overall architecture of the system, which
contains one controller and multiple edge devices. The con-
troller is responsible for configuration management and updat-
ing models. The edge device is responsible for malicious
traffic detection. The OADSD works as follows: The edge
devices capture and filter the inbound traffic from the internet.
Then they will extract features and perform malicious traffic
detection. The edge devices timely report the detection results
to the controller. If the detection results trigger the update
policies (e.g., low accuracy), the operators will try to mend
the model.

Controller is the coordinator of the whole system which
contains three main components: (1) Configuration Server.
This module maintains the configurations of the OADSD (e.g.,
µ). After an edge device connect to the network, it will pull
the configurations to edge devices; (2) Controller Portal. If the
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administrator decides to update the model, then the detection
parameters will update and redistribute to the corresponding
edge devices. In reality, the feedback from the administrator
may not always be accurate. OADSD also provides a rollback
mechanism which could rollback to last checkpoint. When
the administrator gives incorrect feedback and lead to worse
performance, the edge device could quickly rollback to its
last checkpoint; (3) Communication Channel. This module is
responsible for communicating with the edge devices, where
we use long-lived TCP connections to avoid connection estab-
lished costs.

Edge device is responsible for monitoring and detecting
the inbound traffic. We first extract a set of features from each
packet (e.g., packet size, payload size, packet head, payload)
and form a flow vector to represents the flow. Then the
sequence will be fed into an auto-encoder. The auto-encoder
is 1d-CNN network with an average pooling in front of it.
The average pooling will transform the input matrix into a
unified lower dimension input. This allows the auto-encoder
to handle network traffic with varied lengths. Then we send
the traffic into the auto-encoder to get the traffic features.
In details, it consists of four modules: (1) Agent. It runs a
sniffer (e.g., tcpdump) to collect and filter the inbound traffic
every µ time interval; (2) DDFE. This module is responsible
for extracting the traffic feature from the collected packets;
(3) Detector Manager. The detector manager is responsible
for detecting malicious traffic based on the feature vectors
extracted by DDFE. The detector will send a message to
controller after detection. The messages sent by the edge
device include the identifier (serial number and MAC address
of the device). , the controller can differentiate messages
from different edge devices. (4) Communication Channel. This
module is responsible for communicate with the controller.

We introduced a feedback mechanism to improve the detec-
tion accuracy of malicious traffic using machine learning
model in SD-WAN environment. By collecting the detection
results of the edge devices in the controller, introducing expert
feedback and training the machine learning model at the
controller in an online fashion. Then sending the parameters
to the edge devices for detection, the detection accuracy of
machine learning model can be secured. This mechanism
makes full use of SD-WAN centralized control and reduces
the pressure on the training model of edge equipment.

We use a whitelist and certificate to guarantee the secu-
rity of the system where the whitelist records each trusted
device information (e.g., the serial number, MAC address, and
authentication status). Edge devices and the controller have
certificates to prove their identity. The whitelist and certificate
are managed by the network operator and are preinstalled
both in the controller and edge devices. When an edge
device establishes control connections to SD-WAN controllers,
it exchanges its device SSL certificate with the controller
during the SSL handshake process for authentication. Then
controller will check whether the edge device is whitelisted.
If the above steps are passed, the authentication between
controller and edge device is completed, and a two-way SSL
connection will be established for secure communication.
This will prevent malicious devices from joining SD-WAN

domain and all devices are known, trusted, and authorized.
Sometimes some edge devices might be compromised and
become malicious, then, the network operator will remove the
edge device from the whitelist in the controller. Whenever
the controller receives a message from an edge device, it will
check whether the edge device is whitelisted and authenticated.
If it is not authenticated, the controller will terminate the SSL
connection with the edge device. In this way, the controller
is secured from malicious edge devices in multiple domains.
Also, the controller might be compromised and the network
operator will remove the controller from the whitelist in each
edge device and set a backup controller. When the edge device
receives each request from a controller, it will also check
whether the controller is whitelisted and authenticated, and if
not, the edge device will terminate the DTLS/TLS connection
with the controller and switch to a backup controller.

IV. EVALUATION

In this section, we will evaluate the performance of the
OADSD by using real-world attacks (e.g., DDoS, DoS) with
three public real-world datasets as well as a small testbed. Our
main results are as follows:

• Compared with existing methods, OADSD could achieve
the best performance on most of the datasets and could
achieve a high detection accuracy on all attack types.

• The proposed OADSD could adapt to the environment
with only a few iterations of updates. We test OADSD
on a two-dimensional synthesize dataset. The result shows
OADSD could adapt to environment changes. But the
baseline IF could not adapt to the environment change,
with a significant performance drop being observed.

• Classical Semi-supervised and unsupervised detection
algorithms achieve a lower detection accuracy compared
to the supervised detection algorithms. Hence, we further
compare the detection accuracy with other supervised
detection algorithms [19], [21]. The results demonstrate
that OADSD could achieve compatible or better perfor-
mance than those supervised algorithms.

A. Setup

We use the PyTorch to implement the autoencoder described
in Section III and the variational autoencoder in the baseline
methods. We use C++ (version 5.4.0) to implement the iso-
lation forest model and also the online update algorithm. For
all our traffic trace, we use 80% of traffic (i.e. both normal
and anomaly) to train the machine learning algorithms and
the rest of the 20% traffic are used to test the performance.
OADSD has some parameters. L is set to 900 in default. The
maximal value of weight vector (i.e., G) is set to 1. The default
value of δ is 2. For a flow, when its weighted path length is
larger than 0.6 (i.e., λ), we will regard it as a malicious flow.
The default pre-defined false alarm rate threshold (e.g.,8) is
10% and default update trigger threshold 1 is 5% in our
evaluations. For an arriving traffic, if the parameter update
condition is satisfied, we will give the true label to our system
to mimic the feedback of network operators.
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Baselines. We compare the performance of OADSD with
the following methods:

• Packet-level Detection. We use the state-of-the-art
machine learning based detection method, Kitsune [28],
which extracts 23 features via flow state variables and
feeds the features to an autoencoder based classifier.
We use the open source Kitsune implementation [28],
and detect attacks with the same hardware resource as
the OADSD.

• SVM with Flow-level Statistics Classification (SFSC).
Flow-level statistics features have already been used
by many anomaly detection works [21], [27], [37].
We choose the flow-level statistics features described
in [29] and [37], including the maximum, minimum and
the mean of packet size. Then we perform normalization
for the flow-level statistics features. For the classification
algorithm, we choose SVM, because it has been widely
used and has a good detection performance [9], [19] in
network anomaly detection. The implementation of SVM
is shown in [5].

• Static Isolation Forest with highest correlation features
(SIFD). We perform correlation analysis over all the
features adopted by the previous works [21], [27], [28],
[37]. Then SIFD chooses the top 10 features and uses
the static isolation forest model to detect the anomalies.
Compared with OADSD, SIFD detection algorithm is
unable to adapt to environment. We use the open source
isolation forest implementation [33] in our following
evaluations.

Datasets. We test OADSD and above baseline methods with
the three following three public datasets:

• CICIDS 2017 Dataset [37]. The CICIDS 2017 dataset has
been developed by University of New Brunswick. The
dataset is generated in a simulated real world network
architecture. It contains DoS, Brute Force, Infiltration,
Heartbleed, DDoS, Botnet and Web attack. It is publicly
available at CIC homepage which comprises millions of
network records.

• ISCX 2012 Dataset [38]. The ISCX 2012 dataset has
been developed by the University of New Brunswick. The
entire ISCX dataset contains 20 features taking nominal,
integer or float. The dataset covers roughly seven days of
network activities (i.e. normal and attack). We separate
four different attack types, called as Brute Force SSH,
Infiltrating, HTTP DoS, and DDoS are conducted on
different days.

• UNSW-NB15 2015 Dataset [29]. The UNSW-NB15
2015 dataset has been developed by the University of
New South Wales. The entire UNSW-NB15 labeled
dataset contains over two million records. Each record
is described through 49 features taking nominal, inte-
ger or float values. UNSW-NB15 dataset contains seven
anomaly classes, namely, Analysis, Backdoor, DoS,
Exploits, Fuzzers, Generic and Reconnaissance.

• CERNET dataset. The China Education and Research
Network (CERNET) is the largest national education
and research computer network in China, connecting

thousands of colleges and campuses through CERNET
backbone. Each campus network deploys a core router
connected to the CERNET backbone network. CERNET
is similar to SD-WAN, e.g., they both use intelligent
schemes to establish new routes between campuses with
tunnels, they both collect network performance indicators
at the edge devices to monitor network performance,
and they both switch to backup paths through cen-
tralized control to respond to failures. The CERNET
dataset is generated from one core router, similar to
the inbound traffic collected from edge devices. There
are 875 attacks, including DoS, DDoS, and PortScan.
The trace is about 26GB and contains approximately
190,000,000 flow information with raw packets from
2014-12-10 to 2014-12-13, whose sampling ratio is 1:1.
We extract a set of features from each raw packet (e.g.,
packet size, payload size, packet head, payload) in a
flow and form a flow feature vector to perform online
malicious traffic detection.

Metrics. We use the following metrics to evaluate the
detection performance: (1) the Area Under ROC Curve (AUC),
the AUC score stands for the area under the ROC curve. The
ROC curve is created by plotting the true positive rate against
the false positive rate at different thresholds; (2) the average
precision score (AP), the average precision score stands for
the area under the precision recall curve (PR curve). The PR
curve is created by plotting the precision score against the
recall score at different thresholds;. (3) Precision, the precision
for a class is the number of true positive (TP) items divided
by the total number of elements labeled as the positive class.
Precision score could be calculated by: Precision =

T P
T P+F P ;

(4) Recall, the recall of a class is the number of true positive
items divided by the sum of true positives and false negatives,
which could be calculated by: Recall =

T P
T P+F N ; (5) F1-score

(F1), combines the precision and recall into together. The F1-
score could be calculated by: F1 = 2 ·

Precision·Recall
Precision+Recall .

B. Performance With Real World Traffic

1) Performance Comparison: In this part, we compare the
performance of OADSD with the most widely used malicious
traffic detection algorithms. Fig. 9 shows the performance
comparison between OADSD and SFSC, Kitsune, SIFD under
different data set. We can see that OADSD has consistently
high performance under all datasets. For detection accuracy,
OADSD performs up to 40% higher than the other methods.
Next, we select the samples that contain the specific attacks
to evaluate the performance, e.g., UNSW-Fuzzers denotes
that traffic only contains Fuzzer attack traffic and benign
traffic. Table III shows the results measured with AUC and
AP score. We find that OADSD can detect all 15 attacks
with AUC ranging from 0.932 to 0.99 and AP ranging from
0.75 to 0.98, which performs up to 2×, 10×, 50% better
than SFID, Kitsune, SFSC, respectively. For the comparison of
the detection algorithm accuracy, the OADSD could achieve
a much higher detection accuracy than SIFD, especially for
attacks which rely on payload information (e.g., WebAttacks
or Infiltration). We can see that unsupervised (e.g. SIFD) and
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Fig. 9. Overall performance comparison.

TABLE III
THE DETECTION ACCURACY COMPARISON

Fig. 10. Performance comparison between OADSD and supervised methods.

semi-supervised (e.g. Kitsune) methods achieve a very low
AP score in most of the time. The reason for this is that
the unsupervised and semi-supervised methods, like IF or
VAE, could not utilize the label information, which makes
them hard to give an unbiased classification result and leads
to a higher false alarm rate. In comparison, OADSD could
detect both brute force attacks like DDoS, SSH or FTP Patator
and attacks highly correlated with payload information, like
SQL injection, exploits and worms. The reason for this is
that OADSD can efficiently capture the features of traffic
and is able to adapt to network change. We further compare
the performance of the supervised methods like SVM, Naive
Bayes [21]. The results are shown in Fig. 10. We can see
that OADSD could also performs better than those supervised

methods. On CICIDS dataset, our OADSD could out perform
the Bayes about 48% AP and about 10% AUC improvement
over SVM.

OADSD adopts DDFE to derive the flow features dynam-
ically without the knowledge of experts. We now evaluate
the effectiveness of DDFE. We choose the CICIDS 2017
Dataset [37] with 20000 benign and 2000 malicious features
and use T-SNE [41] to compress the features into two dimen-
sion. The visualization results show the center of the malicious
traffic is far from the benign traffic. We also present the
visualization results of SFSC and SIFD in Fig. 11(b) and
Fig. 11(c). This implies DDFE could generate more separable
features than other methods, which contributes much to the
detection results.
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Fig. 11. The T-SNE [41] visualization of different feature extraction method under CICIDS data set. The green dots represents malicious traffic, the yellow
dots represents normal traffic.

Fig. 12. Different L .

Fig. 13. Different δ.

Fig. 14. Different G.

2) Performance Under Different Settings: In this part,
we will test the performance of OADSD under different
parameters settings on CICIDS dataset. L controls the length
of flow used for feature extraction. Fig. 12 shows that with
the increasing L , the performance also increases, since the
feature extractor could use more flow data and derive better
features. However, a larger L also leads to a longer training
and processing time. Setting the L to 900 can ensure a good
performance in most cases. Fig. 13 shows that the AUC and
AP score under different δ which controls the regularization
degree. A large δ will make the weight vector stay around its
initial point. From the result, setting δ around 2 can produce
the best performance, larger δ will greatly affect the AP score.
G is defined as the maximum element of the weight vector.
Fig. 14 shows the AUC and AP score under different G. The
AUC and AP decrease with the increase of G. The reason for
this is that a large G will lead to a large learning rate, which
makes the weight vector fluctuate and converge slowly.

We add skip connections to the auto-encoder to accelerate
the training speed in the DDFE (see § III-A). We will show
its benefits in the following. We trained the IF on three dif-
ferent feature sets under CICIDS dataset: (1) feature extracted

Fig. 15. Skip connection.

TABLE IV
THE HYPER-PARAMETERS OF THE SYNTHESIZE DATASET

by autoencoder without skip connections (AE); (2) features
extracted by autoencoder with skip connections(AE+skip);
(3) expertly designed flow-level features provided by the
CICIDS2017 dataset. The results are shown in Fig 15. Features
extracted by the autoencoder with skip connections achieves
the best performance and other two methods by a large margin.
Also, compared to flow-level features, the features extracted by
autoencoder without skip connections achieves lower perfor-
mance, and has the largest deviation among these three feature
sets. The reason is that on the one hand, autoencoder is hard
to train and difficult to converge to global optimal weights; On
the other hand, the training objective of autoencoder makes the
model focus on the fine-grained information of the raw traffic,
the patterns of different attacks are more on the high-level.

3) Adaptation to Environment Change: The OADSD can
adapt to the environment change, as “concept drift”, which
could be defined as the joint distribution shift of input variable
x and y. This is a common challenge in the traffic anomaly
detection [6]. The offline training methods are not suitable for
adapting to the changing environment, because of the long
training time.

In this experiment, we test the performance of OADSD
under a two-dimensional synthetic test dataset to evaluate the
adaptability to environment change. We measure the AUC and
AP of OADSD and Isolation Forest (IF), which could be seen
as an offline version of our detection algorithm. The synthetic
dataset is consisted by two major parts, and both of them are
sampled from a two-dimensional normal distribution. Each of
these parts is controlled by two main parameters, are the center
of the mass and the variance of the distribution. The detailed
parameters are shown in Table IV.
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TABLE V
PERFORMANCE AFTER CONCEPT DRIFT HAPPENED

Fig. 16. Incorrect feedbacks.

The before and after dataset has a different distribution,
which means the parameters learnt from Before Drift dataset
cannot transfer smoothly to After Drift dataset. The experi-
ment result shows in Table V also proves this. Because the
distribution of the training and testing data is different, the
AUC of baseline drops from 0.78 to 0.73 (i.e. 10% drops on
AUC) and AP of baseline drops from 0.33 to 0.30 (i.e. 6%
drops on AP), when trained the baseline on Before Drift and
tested on After Drift.

After a few times of feedback, which only about 2% of
the total training data, the AUC and AP score increase back
to 0.82 and 0.38. Which is equivalent to the performance by
training OADSD on the After Drift dataset (i.e. 0.83, 0.38).
But in comparison, the IF could only achieve 0.73 AUC and
0.30 AP, which was 30% lower on AP and 21% lower on AUC
compares to OADSD.

The above result shows OADSD could well adapt to the
environment change. But the offline version (e.g. SIFD) could
not adapt to environment change like OADSD. The reason is
that OADSD could fully utilize the feedback of IT adminis-
trator and tunes its parameters based on the current context.

In our assumption, the feedback from IT administrator is
always correct. However, this is not necessarily true, since
humans are notoriously prone to mistakes. And this may
deteriorate the performance of OEIF.

Therefore, we test the performance of OEIF under different
ratio of incorrect feedback under a two-dimensional synthetic
dataset. We measure the performance of OEIF by AUC score.
How the synthetic dataset is constructed has been described
in the previous section. We use the Before Drift dataset,
mentioned in the Table IV, in this experiment to evaluate the
performance.

In reality, the false feedback from operators could hurt the
detection accuracy. We test the performance of OADSD under
different ratio of incorrect feedback. Fig. 16 demonstrates the
performance of OADSD. We can see that OADSD maintains
steady when there are small number of incorrect feedbacks.
Also, smaller learning rate can eliminate the side effect of
incorrect feedbacks.

C. Testbed Evaluation
In this section, we will evaluate the performance of OADSD

with a small testbed. The OADSD contains three parts, i.e.,
Distributed Dynamic Feature Extraction (DDFE), On-demand

Fig. 17. Testbed topology.

Evolving Isolation Forest (OEIF) and On-demand Update,
where both the DDFE and the OEIF are deployed at the edge
devices, and the On-demand Update module is deployed at the
controller. We construct a small testbed with five dell servers,
each is equipped with Intel i5-10210U@1.6HZ CPU (8 cores)
and 8GB RAM. Three servers install software routers that
realize routing functions by the X86 architecture and user-
defined software. The servers connect each other with 1Gbps
bottleneck link. One server performs as the controller. The
controller will configure and communicate with the routers
through the TCP connections. Each second, the last server
will randomly choose one router and setup a TCP connection
with it. For each connection, we randomly generate an integer
p between 0 and 100 for each link. If p/100 is smaller than
a pre-config threshold D%, the TCP connection will contain
malicious traffic, otherwise, it is benign. We also setup a tester
to generate background traffic to each site to emulate the
internet traffic. Each connection will last x seconds, where
the default value of x is 10 in our evaluations. The default
pre-defined false alarm rate threshold (i.e., 8) is 10% and
default update trigger threshold 1 is 5% in our evaluations.
Each group of experiments will contain 1000 TCP connections
and we repeat each group 10 times.

Fig. 18 shows that the OADSD consistently keeps high
performance under different threshold and the performance
advantage is larger with D. The odds are up to 30% in
our evaluations, which matches the results of the simulations.
Fig. 19 demonstrates that OADSD can adjust its performance
according to the feedback from the IT administrators, while
other schemes have poor performance when the testing envi-
ronment is different from the training environment. Fig. 20
depicts the resource utilization. We can see that both the CPU
and memory utilization is below 10% even the arrival traffic
approaches the line rate (e.g., 1Gbps). The small utilization
indicates OADSD can work in an efficient manner. When the
gap between the observed false alarm rate (e.g., 9) and default
pre-defined false alarm rate threshold (i.e., 8) is larger than
a pre-defined threshold 1, we will perform parameter update
process to restore the parameters in our evaluations. We now
show the number of feedbacks needed with different 9 and 1.
Fig. 21 shows that OADSD only needs less than 60 feedbacks
when the gap is larger than 20%, which implies some cost for
the involvement of the IT operator

V. RELATED WORK

A. Feature Extraction

Feature extraction is the start point of utilizing machine
learning based methods in traffic anomaly detection.
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Fig. 18. Different D.

Fig. 19. Different x .

Fig. 20. Resource utilization.

Fig. 21. Feedback number.

Reference [37] propose a traffic feature extractor based on the
flow-level statistical features in network traffic. Reference [28]
utilize the per-packet features and use a feature clustering
method to evaluate the correlation between features. Refer-
ences [1], [3], and [35] used automatic feature compression
methods on the statistical traffic features, which could preserve
the most representative part of the feature set. Compared
with the statistical features, these methods could achieve a
better performance. Reference [32] leveraged the download
and upload size interval to get the website fingerprint from
network traffic. Reference [42] uses a CNN model to extract
features from raw traffic data for traffic classification.

B. Machine Learning Based NIDS

Machine learning based Network Intrusion Detection Sys-
tems (NIDS) can detect zero-day attacks and achieve a higher
detection accuracy, compared with traditional rule based meth-

ods. References [4] and [23] adopted statistical machine learn-
ing methods, i.e., Wavelet Analysis, PCA, to detect malware
traffic in an unsupervised manner. Although, these methods
have a small detection overhead. They often have a low
detection accuracy and is sensitive to outliers. References [21]
and [27] detected malicious traffic, i.e., DDoS, Black Holes,
by using flow-level statistical features and Naive Bayes Clas-
sifiers. However, these methods could not achieve real-time
detection. Reference [28] proposed Kitsune which aims to
reduce the detection overhead by using a lightweight deep
learning models, i.e., autoencoders.

C. Malicious Traffic Detection

Online Traffic Anomaly Detection methods are widely
investigated [2], [28], [30], [31], [44]. [30], [31] combine
the online and offline machine learning methods to make the
methods easier to train and can identify new traffic based
on the prediction result of online and offline algorithms.
Reference [2] proposed a fast activation function that helps
the deep neural network converge faster, which is then used to
detect DDoS attacks. Reference [28] provide an online schema
for training the traffic detection model, which achieves a low
training overhead. Reference [44] leverage deep dictionary
learning to achieve online anomaly detection for encrypted
traffic. However, unlike OADSD, these methods do not guar-
antee that the model will converge.

VI. CONCLUSION

In this paper, we developed the OADSD, an online mali-
cious traffic detection system, which contains traffic collec-
tions, traffic feature Extraction and time evolving anomaly
detection. Distributed Dynamic Feature Extraction (DDFE)
can extract features directly from the raw traffic and On-
demand Evolving Isolation Forest (OEIF) utilizes expert feed-
back to update parameters which makes the system have the
ability of adapting to the environment. We prove that the OEIF
has a sub-linear regret bound, which means the performance
gap between OEIF and the best hypothesis goes to zero as
update iterations go to infinity. Extensive experiments show
that the OADSD can achieve an AUC score greater than 0.9 in
most cases. The OADSD can still achieve good performance
in the environment which has a different distribution between
the training dataset with the help of the expert feedback.
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