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Abstract— Currently, it is ever more common to access online
services for activities which formerly required physical atten-
dance. From banking operations to visa applications, a significant
number of processes have been digitised, especially since the
advent of the COVID-19 pandemic, requiring remote biometric
authentication of the user. On the downside, some subjects
intend to interfere with the normal operation of remote systems
for personal profit by using fake identity documents, such as
passports and ID cards. Deep learning solutions to detect such
frauds have been presented in the literature. However, due to
privacy concerns and the sensitive nature of personal identity
documents, developing a dataset with the necessary number of
examples for training deep neural networks is challenging. This
work explores three methods for synthetically generating ID card
images to increase the amount of data while training fraud-
detection networks. These methods include computer vision
algorithms and Generative Adversarial Networks. Our results
indicate that databases can be supplemented with synthetic
images without any loss in performance for the print/scan
Presentation Attack Instrument Species (PAIS) and a loss in
performance of 1% for the screen capture PAIS.

Index Terms— Biometrics, ID card, tampering, presentation
attack detection, synthetics images, GANs.

I. INTRODUCTION

THE GLOBAL pandemic of COVID-19 accelerated the
adoption of remote biometric authentication for online

services such as e-commerce, digital banking, fintech and
document signing. This allowed people to carry on with their
normal business activities from home without the risk of
spreading the virus. Some services include remotely opening
a bank account, something that required physical attendance
only a few years back. To access this service, a user only
has to validate his/her identity by capturing a selfie and
a picture of their ID document. Therefore, remote services
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made commercial activities more dynamic and accessible for
everybody while diminishing the chances of infection.

The downside of remote services is twofold. Firstly,
in regions like South America, the accelerated technological
leap was too quick for some countries, resulting in difficulties
for the national identification systems to catch up with the
advancements. For instance, identity documents issued by
many countries neither comply with ICAO 9303 standard1

nor have NFC chips with the personal information of the
individual embedded in their government-issued ID cards. This
makes it difficult to automatically verify an ID card’s genuine
nature. Secondly, certain individuals might attempt to defraud
the remote service by tampering with the ID card’s photo
ID or other fields to conceal their identities or impersonate
somebody else. In those cases, it is of utmost importance to
rely on a system that can check whether an ID card digital
image has been manipulated. Even today, many templates of
ID cards, passports, driver’s licenses, and others are available
to help an attacker produce a high-quality fake document.2

Methods that detect fraud in personal ID documents have
been presented in recent years [1], [2], [3], [4]. Those
systems rely on deep learning methods, such as Convolutional
Neural Networks (CNN), in order to achieve great detection
accuracy [5]. Deep learning systems in general require a
large number of examples to train successfully; however, the
sensitive nature of ID cards and passports makes it very
difficult to acquire the number of images needed. For that
reason, in this work, we propose to create synthetic exam-
ples of ID card images to enhance the dataset on which
fraud-detection networks are trained. We hypothesise that
with the additional synthetic samples, a CNN will produce
comparable results to having more real ID card samples to
train with. We explored state-of-the-art Generative Adversarial
Networks (GAN), as well as image processing techniques for
synthetic image generation.

In this work, we consider three kinds of Presentation Attack
Instruments (PAI) which are named “composite (modified
manually or automatically)”, “print” and “screen”.

In this way, the four species used in this work for classifi-
cation, illustrated in Figure 1, are bona fide, composite, print,
and screen:

• Bona Fide: Real Chilean ID cards were captured. We used
the same dataset as [3]. An example can be seen in
Figure 1a.

1https://www.icao.int/publications/Documents/9303_p4_cons_en.pdf
2https://gotempl.cc/product-category/id/
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Fig. 1. Examples of captured Chilean ID cards of the bona fide class, as well as the presentation attack classes: composite, print and screen.

Fig. 2. Process of device-noise texture isolation for artificial generation of print and screen attack species.

• Composite: Bona Fide ID cards were printed, and the
face and/or text fields of one ID card were manually cut
with scissors and glued on top of another printed ID card
(Figure 1b). Additionally, image processing methods were
used to mimic this process automatically.

• Print: Bona Fide ID cards were printed on both normal
and glossy paper. Then, smartphones were used to capture
the printed images in a variety of backgrounds and
illumination conditions (Figure 1c).

• Screen: Bona Fide ID cards were depicted on computer
monitors, as well as tablet and smartphone screens. Then,
a second smartphone was used to capture the screen
images (Figure 1d).

To properly increase the number of captured ID card image
samples in our datasets for fraud detection using synthetic
images, examples of the four classes must be generated: bona
fide, composite, print and screen. We explore GAN models to
create more samples of the bona fide class, which can draw
more examples of the same distribution of the input images [6],
as well as synthesising ID card images from templates with
image processing techniques. On the other hand, we propose
adding texture noise from the printing/scanning and screen
capture processes to create more examples of attack presenta-
tion ID card images. For this purpose, we used GANs, as well
as an image processing-based noise isolation and addition
technique. Later, we also used GANs and automatic splicing
techniques for the composite scenario that combined two ID
card images. Finally, To evaluate the impact of the synthetic
images, we trained several MobileNetV2 [7] networks (based
on [3]) using images of Chilean ID cards. It compared the
training performance with captured images only against train-
ing with a combination of captured and synthetic images. It is
essential to note that this work is one of the first to synthesise
ID card images directly.

In this work, we explore using GAN and template-generated
images from the Bona fide distribution as data supplements for
authentic Bona fide images. If the experiments showed a pos-
itive impact with this approach, this would be a cost-effective
way of obtaining new data, while not asking new subjects for

sensitive data. Other research fields, such as Morphing Attack
Detection also use a similar approach [8].

The contributions of this work are as follows:
• ID card generation from templates: A traditional image

processing algorithm is developed, capable of generating
fake ID card images from a clear template that resembles
the original bona fide and presentation attack scenarios.

• Texture transfer-based presentation attack ID card image
generation: A traditional image processing algorithm
capable of generating ID card images faster than
GAN-based methods is proposed. This algorithm trans-
fers the noise textures from presentation attack species
images to bona fide images. These noise texture templates
will be available to other researchers (Figure 2).

• Synthetic ID card generation: GAN models capable of
generating synthetic ID cards that resemble the origi-
nal bona fide and presentation attack images are devel-
oped. Generated images will be made available to other
researchers.

• Benchmark evaluation: The influence of having synthetic
ID card images as part of the training dataset of a state-
of-the-art ID card image fraud detection network [3] is
evaluated.

• Analysis: A comprehensive analysis of the difficulties of
synthetic ID card generation and the proposed methods’
benefits are provided.

The rest of the article is organised as follows: Section II
summarises the related works on generative adversarial net-
works and image tampering. New methods for generating
synthetic images are described in Section III. The experimental
framework and results of this work are then presented in
Section VI. We conclude the article in Section VII.

II. RELATED WORK

The GAN algorithm was first introduced by
Ian Goodfellow et al. [9]. It approaches the problem
of unsupervised learning by simultaneously training two
deep networks, called Generator G and Discriminator D,
respectively. These networks compete and cooperate with
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each other. While the generator creates new instances of
the data, the discriminator evaluates them for authenticity.
In the course of training, both networks learn to perform
their tasks. To learn the generator distribution pg over data
x , the generator builds a mapping function from a prior
noise distribution pz(z) to data space as G(z; θg). The
discriminator D(x; θd), on the other hand, outputs a single
scalar representing the probability that x came from training
data rather than pg . During training, the parameters of G
to minimise log(1 − D(G(z))) and the parameters of D
to minimise log(D(x)) are simultaneously adjusted as if
they were following a two-player min-max game with value
function V (G, D), specified in Equation 1.

min
G

max
D

V (D, G) = E
x∼pdata(x)

[log(D(x))]

+ E
z∼pz(z)

[log(1 − D(G(z)))] (1)

Karras et al. developed StyleGAN2 [6], [10] as an extension
of the progressive, growing GANs. This approach enables
training face generator models capable of synthesising large
high-quality images via the incremental expansion of discrim-
inator and generator models from small to large images during
the training process. In addition to the gradual growth of the
models during training, StyleGAN2 changes the architecture
of the generator significantly. The StyleGAN2 generator no
longer takes a point from the latent space as input; instead, two
new sources of randomness are used to generate a synthetic
image: a standalone mapping network and noise layers. Style-
GAN2 introduces the mapping network f to transform z into
this intermediate latent space w using eight fully connected
layers. This intermediate latent space w can be viewed as the
new z, (z′). Through this network, a 512-D latent space z is
transformed into a 512-D intermediate latent space w applied
to face images.

CycleGAN [11] is a technique for training unsupervised
image translation models via the GAN architecture using
unpaired collections of images from two different domains.
Its utility has been demonstrated in a range of applications,
including translating seasons in photographs, object transfigu-
ration, style transfer, colorization, and generating photos from
paintings. The discriminator models classify 70 × 70 overlap-
ping patches of input images as belonging to the domain or
having been generated; the discriminator output is then taken
as the average prediction for each patch.

There are some works in the literature that have tackled
the problem of fake ID cards detection. For instance, Shi and
Jain [1], [2] proposed DocFace and DocFace+ to determine
the authenticity of a personal ID document by comparison of
a face image (selfie) with the photo ID in the ID document.
In DocFace+, a kiosk scans the ID document photos or reads
the photo from the embedded chip using an NFC reader.

Zheng et al. [5] present a survey and provide an overview
on typical image tampering methods, released image tam-
pering datasets, and recent tampering detection approaches.
It presents a distinct perspective to rethink various assumptions
about tampering clues, which can be discovered by different
detection approaches. This further encourages the research
community to develop general tampering localisation methods

in the future instead of adhering to single-type tampering
detection. Most of the analysis was realised using handcrafted
images in different domains. Deep learning methods have not
been explored in detail.

Albiero et al. [12] present a method for compare selfie
images to photo ID images from Chilean ID cards, across
adolescence, employing fine-tuning techniques using a private
dataset.

Stokkenes et al. [13], proposed an online banking authen-
tication system based on features extracted from faces using
bloom filters. This information is encoded and used as a key
for accessing banking services.

Perera and Patel [14] proposed an active authentication
system that attempts to continuously monitor user identity
after access has been initially granted. A similar approach has
recently been reported by Fathy et al. [15].

Arlazarov et al. [16] presented a tiny ID cards dataset
containing 500 video clips of 50 different identity document
types. This dataset was one of the first made publicly
available for identity document analysis and recognition
in video stream. Additionally, the paper presents three
experimental baselines obtained using the dataset: face
detection accuracy, separate text fields OCR precision for four
major identity document field types, and identity document
data extraction from video clips.

On a different approach, Gonzalez et al. [3] proposed
a hybrid two-stage classification system that checks if the
entire Chilean ID card was tampered or modified. In that
work, the authors analysed the primary sources of fraud as
image composition and image source tampering. This paper is
relevant because it presents results on genuine transactions of
a remote verification system with 24,778 images distributed
on bona fide, composite, printed and display ID card images.

Zhu et al. [17] propose a method that indicates whether the
photo ID or fields in the ID card image have been altered or
replaced by digital or handcrafted means. On the other hand,
if the source of the ID card comes from a printing/scanning
process or the image was captured from a digital screen,
it means that it does not come from the original plastic
document, and alterations could have been made beforehand.

Mudgalgundurao et al. [4] proposed a method to detect
fake German ID cards and residence permits using pixel-wise
supervision based on DenseNet. This technique enables the
method to leverage minute cues on various artefacts, such as
moiré patterns and artefacts left by the printers. The authors
present the baseline benchmark using different handcrafted
and deep learning models on a newly constructed in-house
database obtained from an operational system consisting of
886 users with 433 bona fide, 67 print and 366 display
attacks.

Regarding the training and testing data, due to the privacy
concerns of the ID cards, the databases for research and
commercial purposes are difficult to obtain. So far, there is a
limited number of databases available: the Chilean Sequestered
ID card database used in [3], Public-IvS where the ID card
images are cropped from the existing images from CASIA-
IvS [17], and the German ID card and resident permit
images [4]. Furthermore, the MIDV-500 dataset [16], which
contains video clips of 50 different identity document types,
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including 17 types of ID cards, 14 types of passports, 13 types
of driving licenses, are also available.

III. METHODS

This section describes the implementation of two
MobileNetV2 networks used as an ID card fraud-detection
system and the generation of synthetic images using three
different methods: templates, texture transfer and GAN
models for ID cards. The entire ID card with the background
removed [18] is the input to the MobileNetV2 networks.
In this scheme, the networks have to learn how to identify
forgery traits from any part of the ID card [3].

The goal of the synthetic images is to be as close as
possible to the captured images of the Chilean ID card
database; however, these techniques can be easily extended
to other countries. The Chilean ID card dataset used in this
work is explained in Section V, including the train, test
and validation partitions of all the methods. Each image on
the dataset was segmented using the network proposed by
Lara et al. [18] in order to remove the background pixels and
force the fraud-detection network to learn features only from
the pixels inside of the ID card. Figure 1 show examples of
the segmented ID card images.

A. Fraud-Detection Network

To detect tampering in ID cards and evaluate the impact
of synthetic images, we implemented two MobileNetV2 [7]
approaches based on [3]. The first network detected compo-
sition tampering and was trained to perform a binary classi-
fication task between bona fide and composite images. The
network input size is 224 × 224 pixels, and the number of
filters in the network was increased using an alpha parameter
of 1.4. For the second network, the system must identify
the source of the image among bona fide presentations and
print/screen attack presentations. In this case, the network
input is 448 × 448 pixels, and the alpha parameter was also
raised to 1.4. The greater the resolution better represents
the fine-grain device noise, which would be lost in a lower
resolution.

We trained the two types of MobileNetV2 networks from
ImageNet weights [19] on an Amazon AWS instance with
32 cores of CPU, 128GB of RAM and a GPU of 15GB.
We used the following training hyperparameters for all the
experiments: bs=40, epochs=300, and lr = 1e − 4 for the first
network and lr = 1e − 5 for the second. Several of these
networks were trained for the experiments in this work. The
datasets and partitions for each experiment are explained in
detail in Section VI.

B. Image Generation From Templates

This paper also analysed deterministic image-processing
techniques that can automatically generate ID cards from
templates. To create the templates, we started by selecting
one high-quality bona fide example of a Chilean ID card.
Then we straightened out the image and emptied all the fields,
signatures and photos using Photoshop’s cloning tool. The
result is a clean background template ready to be automatically
filled, as shown in Figure 3. After that, a series of algorithms

Fig. 3. Example of the Chilean ID card template.

were developed to select random faces and signatures, as well
as random names, dates and alphanumeric characters, to fill
the templates with random information. The face images are
selected from the bona fide probe FERET dataset,3 while the
signatures originated from the Kaggle dataset of handwrit-
ten signatures.4 During the information generation process,
we took special care to match the gender of the photo with that
of the first name and the gender field on the ID card. We also
generated plausible dates and numbers for each field. We draw
from a dictionary containing Latin American countries’ most
familiar names to create random names and surnames.

Afterwards, we applied a few post-processing steps. We first
used a small random variation in the Hue, Saturation, and
Value (HSV) channels to slightly change the colour of the
ID cards. This method is intended to mimic changes in the
light source. Then, we applied a random perspective change
to resemble the differences in perspective found in bona fide
ID card images. This is to simulate the difficulty of holding
the camera perfectly parallel to the document when the user
takes pictures of their ID cards. This is replicated using a
random protective transformation. Finally, we confirm that the
background of the image is entirely black (R=0, G=0, B=0),
resembling the result from the segmentation network [18].

Since the face image dataset contains 2,069 images,
we decided to create synthetic ID cards in batches of this
number. In this way, every batch will have the same faces in
the same order but with different signatures, text fields, colours
and perspectives. In the remainder of this paper, we will refer
to this method as “Templates”, for short.

C. Image Generation From Transferable Textures

This proposed image-processing technique isolates an
image’s texture and transfers it to another. This process was
applied to generate the print and screen scenarios. In this
way, an automatic method could replace the labour-intensive
process of capturing bona fide images, printing or displaying
them on a screen, and re-capturing them to create replay
attacks.

The primary motivation behind this method is the following:
if we have a bona fide image, as well as the presentation
attack version of the same image aligned pixel by pixel,
in that case, the mathematical subtraction between the two
images will cancel out the image information leaving only
the differences caused by the PAI. However, the print/screen

3https://www.nist.gov/itl/products-and-services/color-feret-database
4https://www.kaggle.com/datasets/divyanshrai/handwritten-signatures
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Fig. 4. Example of the 50 colours palette used to create artificial textures.

version is unavailable; therefore, we must capture this artefact
from other images as a colour palette. After that, it is possible
to apply this new texture to the print and screen scenarios.
This technique will help us to isolate the noise texture left by
the printing/screen or displaying processes. Then, the isolated
texture can be added to any other image to tamper with
the desired attack noise scenario artificially. To simplify the
alignment process, we chose a palette of 50 solid colour
images, as shown in Figure 4. Each colour has a QR code
on the left side that identifies it.

To isolate the texture on each image of that dataset,
we first read the included QR code to identify the original
colour. Then, the colour rectangle is segmented, eliminating
the QR code and the background. This process is illustrated
in Figure 2. To obtain the segmentation mask (Figure 2b),
we first sampled a 200 × 150 pixel patch around the central
pixel of the image and computed the mean and standard
deviation in the HSV space. Then, all the pixels in the
image with colour values around the mean HSV colour of
the central patch plus-minus four standard deviations were
masked. A morphological closing operation is applied to the
mask to fill any gaps. Then, the borders of the mask are
obtained and the inscribed rectangle is computed, which is
used to crop the image. Therefore, at this point, we have an
image that only contains pixels with the main colour and
the texture of interest (Figure 2e). Finally, we isolate the
texture by subtracting the colour indicated by the QR code and
save the texture to create a dataset of 5,000 print and 5,000
screen-isolated textures. In Figure 2f, a constant RGB value
of (128, 128, 128) was added to the isolated texture for
visualisation purposes only.

In the end, a dataset of 10,000 isolated textures is obtained,
where any texture can be added to any bona fide image to
generate the tampering effect artificially. This process consists
of cropping the isolated texture with the image size of the
bona fide image, and then applying a pixel-whise mathematical
addition between the texture and the bona fide image, as illus-
trated in Figure 5. In this work, we applied the transferable tex-
ture technique to generate attack presentations from captured
ID card images and Templates. Since the textures come from
captured images, it is expected that fraud-detection networks
would learn to identify the noise patterns as the corresponding
attack scenario. We will refer to this method in the sections
below as “Textures”.

D. Image Generation From GANs

The following GAN networks were used in this work:
StyleGAN2-ADA [6], [10] and CycleGAN [11]. The later
translates images of domain A into domain B, so examples of
the two domains are needed during training. In other words,
one must guide the training so the network can translate base
images into the desired domain. For CycleGAN, datasets A

and B are unpaired. On the other hand, StyleGAN2 is capable
of generating new examples of the desired domain without
the need for base images [6]. To be more precise, StyleGAN2
takes a random vector in the latent space and transforms it into
an image of the desired domain, using the distributions learnt
during training. Therefore, these two networks are useful for
different purposes, expanded below.

StyleGAN2-ADA was used to generate more examples
of bona fide ID card images, as well as the three attack
presentation species considered in this work: composite,
print and screen. Therefore, the class-conditional version
of SyleGAN2-ADA was used to generate examples of the
four classes in a single training session. We trained this
network using the Chl2-A dataset described in Table III, on a
machine with a Ryzen 5 processor with 16GB of RAM and
an Nvidia Titan-X GPU of 12GB. The best hyperparameters
for training were: size=256 × 256, lr = 1e − 4, bs=20,
and kimgs=2,000. The main advantage of SyleGAN2-ADA
is that it is optimised to learn from a dataset with limited
examples [10]. However, synthesising ID card images from
scratch is a difficult task to learn since the network has to
create faces, signatures, alphanumeric characters, symbols,
device noise and perspective changes all at once.

Conversely, CycleGAN was trained to create more examples
of the print and screen classes from the bona fide class, using
domain adaptation. In this way, the network is meant to learn
and mimic the fine-grain textures left by paper, inks and printer
devices, as well as pixels and aliasing left by screen displays.
Therefore, the difficulty of this is smaller than the previous
one since faces, signatures, and characters come from the base
images, and the network has to focus only on generating device
noise textures. We also trained this network on the Chl2-A
dataset (Table III), using a Ryzen 5 computer with 16 GB
of RAM and an Nvidia Titan-X GPU of 12GB. The best
hyperparameters for training were: size=224×224, lr = 1e−4,
bs=8, and epochs=40.

IV. METRICS

This section describes all the metrics that are used to
compare the performance of the proposed methods, both for
the image generation and Presentation Attack Detection (PAD)
task.

A. Frechet Inception Distance
One of the difficulties with GAN algorithms, and in partic-

ular when applied to ID card images or biometrics in general,
is how to meaningfully assess the quality of the resulting
(synthesised) images. Only recently, a suite of qualitative and
quantitative metrics have been developed to assess the perfor-
mance of a GAN model based on the quality and diversity of
the generated synthetic images [20], [21], [22]. Such proposed
of such metrics are: The Inception Score (IS) [20], Frechet
Inception Distance (FID) [21] and Perceptual Path Length
(PPL) [10]. These metrics allow us to compare results from
different GAN models. The FID score was used in this work
to measure the objective quality of the ID card’s synthetic
images.

Frechet Inception Distance (FID) compares the similarity
between two groups of images A and B. First, to compute
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Fig. 5. Process of device-noise texture addition. A random isolated texture is selected from the set of 5,000 available textures per PAI. The texture is cropped
with the shape of the input image at a random location. The output textured ID card is the pixel-wise addition between the input ID card and the cropped
texture. In this figure, an ID card generated by the Templates method is used (no real data), thus it is not blacked out.

the FID, all images from set A and set B have to be pro-
cessed by an Inception v3 network [23], pre-trained on Ima-
geNet [19]. Then the 2,048 feature vector of the Inception-v3
pool3 layer is stored for each image. Finally, the distributions
of A and B in the feature space are compared using Equation 2,
where µA and µB are the mean values of the distributions A
and B, respectively, and 6A and 6B are the covariances of
the two distributions.

F I D = ∥µA − µB∥
2
+ T r

(
6A + 6B − 2(6A · 6B)1/2

)
(2)

B. Detection Performance Evaluation

The detection performance of biometric PAD algorithms is
standardised by ISO/IEC 30107-3.5 The most relevant metrics
for this study are: Attack Presentation Classification Error Rate
(APCER), Bonafide Presentation Classification Error Rate
(BPCER) and BPCERAP. Those metrics determine the error
rates when classifying an instance between bona fide and the
different Presentation Attack Instrument Species (PAIS).

The APCER metric measures the percentage of attack
presentations incorrectly classified as bona fide, for each
different PAI. To evaluate an entire system, the worst-case
scenario is considered. The computation method is detailed
in Equation 3, where the value of NP AI S corresponds to the
number of attack presentation images, RE Si is 1 if the i th
image is classified as an attack, or 0 if it was classified as a
bona fide presentation.

APC E RP AI S = 1 −
1

NP AI S

NP AI S∑
i=1

RE Si (3)

On the other hand, the BPCER metric measures the propor-
tion of bona fide presentations wrongly classified as attacks.
BPCER can be computed using Equation 4, where NB F is the
amount of bona fide presentation images, and RE Si takes the
same values described in the APCER metric. The two metrics
together determine the performance of the system, and they
are subject to a specific operation point.

B PC E R =

∑NB F
i=1 RE Si

NB F
(4)

Finally, to analyse the system performance on a specific
operating point, BPCERAP and the Equal Error Rate (EER)

5https://www.iso.org/standard/67381.html

are used. The later is the operating point where APCER and
BPCER are equal. This operating point corresponds to the
intersection with the diagonal line in a Detection Error Trade-
off (DET) curve, which is also reported for all the experiments.
On the other hand, the BPCERAP is the BPCER value when
the APCER is 100/AP . In this work, we evaluate BPCER10,
BPCER20 and BPCER100, which correspond to APCER values
of 10%, 5% and 1% respectively.

V. DATABASES

This section describes all the datasets used in this work.
The TOC Biometrics company provided the images utilised
in [3] for research purposes only. A dataset of 9,286 bona
fide Chilean ID cards was used. This database was used as
a baseline and the starting point to create composite, print
and screen images. As mentioned in Section III a dataset of
10,000 transferable textures was also created. Additionally,
we synthesised a significant number of ID card images for the
purposes of data augmentation. These datasets are detailed in
this section.

A. Database Organisation

For this work, a significant amount of bona fide images of
Chilean ID cards were captured, which complies with ICAO
standards. Then, we manually created presentation attack
versions of those images for the composite, print and screen
species. For the screen species, images of the bona fide ID
cards were displayed on monitors, tablets and smartphones,
and then images were re-captured using other Android and
iPhone smartphones. The resulting images thus have the
texture noise of the pixels and aliasing from the displayed
devices. Additionally, for the print species, PDF documents
containing eight bona fide ID cards images per page were
printed in plain and glossy paper. Then, the individual ID cards
were cut off with scissors and placed over various surfaces.
Afterwards, each ID card was photographed using the same
Android and iPhone smartphones used in the screen PAI. The
resulting images contain artefacts from the type of paper, inks
and the printing/scanning process. Finally, for the composite
scenario, the face and fields of the print ID cards were cut
and pasted over other print ID cards in order to create fake
ID cards. This process was made manually with scissors, and
automatically with digital splicing techniques.

Furthermore, as we mentioned before, the background
of all captured images was removed using semantic
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TABLE I
CAPTURED IMAGES OF CHILEAN ID CARDS

TABLE II
TRANSFERABLE TEXTURE DATASET

segmentation. This background removal helps fraud-detection
networks to focus on the ID card’s contents instead of its
surroundings [3], [18].

Table I shows the final number of captured images for the
bona fide, composite, print and screen classes, as well as test,
train and validation partitions. For consistency, the test and
validation partitions in this table will be used to evaluate all
the fraud-detection networks in this work. We will refer to
these partitions as Chl-test and Chl-validation for short.

In addition to capturing ID card images, we captured a
dataset to help isolate the texture noise from the source
material, as in the attack species print and screen. The dataset
for texture study was captured over a palette of 50 solid
colours with an identifying QR code on the left side, as shown
in Figure 4. PDF pages containing 10 colours each were
printed in several printers, both in plain and glossy paper.
Then, several images of each individual colour were captured
using smartphones of different brands at three times of the day
(day, afternoon and night) at distances between 15 and 30cm
and with portrait and landscape orientations. We captured
2,500 images printed on plain paper and 2,500 images on
high-quality glossy paper. The later is meant to resemble the
light reflection of the plastic material of authentic ID cards.

Similarly, the 50 colours in the palette were displayed
on several monitors, tablets and smartphone screens. Images
of those projected colours were captured using the same
smartphones as above and with the same orientations and
times of the day. In total 5,000 images were captured for the
screen species. The device noise texture of the 10,000 captured
images was isolated with the method described in Section III-C
to obtain a dataset of 10,000 transferable textures. Both images
and textures will be made freely available.6 The diversity of
printers, screens and phones used to capture this dataset makes
transferable textures a general-purpose method applicable to
other fields. Figure 5 shows an example of texture application.

Table II displays the number of images and isolated textures
in this dataset. This dataset was used for image processing
algorithms. Therefore train, test and validation partitions were
not needed.

6https://github.com/jedota/Synthetic_ID-Card_Image

TABLE III
TRAIN SET OF CAPTURED AND SYNTHETIC IMAGES.

SGAN2 REPRESENTS STYLEGAN2

B. Training Set of Captured and Synthetic Images
Table III shows the quantity of images used for the training

of fraud-detection networks. This table includes captured and
synthetic images since a combination of both is used to
train the networks. Synthetic images were generated using all
the methods described in Section III. For a fair evaluation,
all trained fraud-detection networks use the same Chl-test
and Chl-validation images described in Table I. Examples of
captured and synthetic images generated with the proposed
methods are presented in Figure 6.

The training set of the Chilean ID cards was split into two
halves, Chl-A and Chl-B, in order to perform the proposed
experiments in Section VI. Also, a copy of bona fide Chl-B
was created and named as Chl-C, as the base images for the
CycleGAN and texture transfer methods.

For synthetic images, we generated around 3,000 images
per class. This represents the average number of images per
class in Chl-A.

The Template images were created from a dataset of 3,104
faces. The Templates method can create the bona fide and
composite classes by itself; however, for the print and screen
classes we translated the template images using the Textures
method.

The process for StyleGAN2 was simple, since it can produce
any desired number of images. Thus, exactly 3,000 images per
class were generated. CycleGAN and Textures translate bona
fide images into the attack instrument species print and screen.
The base images were the 2,806 bona fide images from Chl-
C; they were translated to create 2,806 print and 2,806 screen
images using CycleGAN and Textures separately.

Examples of all the types of generated images can be seen
in Figure 6. For captured and StyleGAN2 images, random
examples of each class are shown. This is also true for
composite images of the Templates method. However, for
CycleGAN, Templates, and Textures, the base image, shown
on the bona fide row, is translated to generate the print and
screen PAIs in the rows below. As mentioned above, neither
CycleGAN nor Textures can generate bona fide images, so the
bona fide images presented in those two columns are in fact,
bona fide images from Chl-C.

VI. EXPERIMENTS AND RESULTS

The experiments described in this section aim to com-
pare the similarity score between captured and synthetic
images, as well as evaluating the impact of using synthetic
images while training fraud-detection networks. In this work,
we assess two MobileNetV2 networks, one that detects com-
position tampering, and another that detects source alteration.

All evaluations are oriented to test the predictive value of
adding synthetic images to the training set under the following
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Fig. 6. Examples of captured and synthetic images generated with all the proposed methods. The rows and columns are colour coded. Tampered scenarios
are in red and untampered in green. Captured images are in blue, whereas synthetic images are in purple. All sensitive information has been blacked out.
Fields of StyleGAN2 and Templates are not covered since they contain random data of nonexistent subjects. N/A represent methods not used to generate the
particular images.

scenario: suppose there are N captured images in the train
set, which we would like to double. We are interested in
studying if a combination of N captured plus N synthetic
images would yield similar results to capturing 2× N images.
This is the reason why the train set of captured Chilean ID
cards is divided into two halves Chl-A and Chl-B, as described
in Table III. All experiments are explained in detail in this
section.

A. Experiment 1 - Generation Evaluation
This experiment assesses the similarity between captured

and synthetic images using the FID metric. For this evaluation,
we compare each class (bona fide, composite, print and screen)
of the test set of captured Chilean ID cards (Chl-test) against
the corresponding class of synthetic images generated by the
proposed methods (StyleGAN2, CycleGAN, Templates and
Textures). This evaluation determines how similar captured
and synthetic images are for each generation method. Addi-
tionally, we compute the FID score between Chl-test and Chl-
validation. This evaluation gives a baseline FID value for
captured images under the same conditions.

Table IV shows the results of the FID scores. The smallest
values in the table were obtained when comparing two sets of
captured images: Chl-test and Chl-validation. This comparison
has an average FID of 5.45. This represents the best possible
achievable performance for a generation method—the further
the FID from 5.45, the less resemblance between synthetic and
captured images.

StyleGAN2, CycleGAN, and Textures obtained similar FID
values around 20. Among them, CycleGAN got the best
score despite the success of StyleGAN2 for other image

TABLE IV
FID SCORES COMPUTED BETWEEN THE PROPOSED

GENERATION METHODS AND CHL-TEST

domains, such as human faces [6]. We attribute the excellent
performance of CycleGAN to the fact that it starts from a base
image with a face, a signature and alphanumeric characters
already on it. Therefore, this network must only replicate the
device noise. For the same reason, Textures got a good score
as well. On the other hand, StyleGAN2 has to generate a
face, a signature, letters and numbers from scratch, along with
perspective changes and device-generated noise.

The worst performance was obtained by the Templates
method. We hypothesise that the main reason for this is an
excessive range in the random projective transformation. From
Figure 6, it can be observed that the Templates method had
more extreme perspective changes concerning captured and
the other synthetic images. Additionally, the random colour
shift used could not represent the nature of the distribution of
captured ID cards. Further studies are needed to optimise the
random projective transformation and colour shift in order to
reduce FID.

When comparing the different classes in Table IV, the
screen attack was the hardest to replicate by all methods.
However, the print scenario produced the smallest FID scores
among the synthetic images. CycleGAN achieved an FID
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Fig. 7. Empty template of the Argentinian ID card and a fake sample image
generated with the Templates method.

of 13.07, while Textures obtained an FID of 13.75. Both values
are close to the FID range among captured images. This result
means that for the print attack with CycleGAN and Textures,
the distribution of synthetic images is very similar to that of
captured images.

Finally, to test the generalisation of the Templates method,
we generated 2,069 Argentinian ID cards and compared the
FID similarity against 2,683 real Bona fide Government-issued
Argentinian ID cards. Figure 7 shows the empty template,
as well as a synthetic ID card produced with that template.
The resulting FID was 44.83, which is in the same range of
the values observed in Table IV. This demonstrates that the
Templates method can be easily applied to other countries with
similar performance.

B. Experiment 2 - Composition Detection Network

A binary MobileNetV2 network detects whether an ID
card image presents signs of composition or not. We trained
and tested this network using only those methods capable
of generating composite images, which are StyleGAN2 and
Templates. In total, we trained four versions of this network
using the following combinations of datasets from Table III.

1) Captured: Chl-A + Chl-B (11,864 images)
2) StyleGAN2: Chl-A + StyleGAN2 (11,933 images)
3) Templates: Chl-A + Templates (12,141 images)
4) Combined: Chl-A + StyleGAN2 + Templates (18,141

images)
Each training was designed to have a similar number of

images in the train set, except for the last one, which evaluates
the effect of adding images from all the available domains. The
trained models were evaluated with the validation and test sets
of Table I using PAD metrics for each trained model.

C. Experiment 3 - Source Detection Network

The second multi-class MobileNetV2 network classifies
whether the ID card image came from a bona fide source or
was tampered with by printing/scanning or screen-capturing
PAIS. Therefore, the network classifies into three classes: bona
fide, print and screen. In this case, we tested all the methods
described in Section III, since they can all mimic source
tampering. We trained the network several times with the
following combinations of the train sets described in Table III,
trying to utilise a similar number of images.

1) Captured: Chl-A + Chl-B (17,048 images)
2) StyleGAN2: Chl-A + StyleGAN2 (17,525 images)
3) Templates: Chl-A + Templates (17,837 images)
4) CycleGAN: Chl-A + Chl-C + CycleGAN (16,943

images)

TABLE V
RESULTS FOR THE COMPOSITE-TAMPERING DETECTION

MODELS. SGAN2 REPRESENTS STYLEGAN2

TABLE VI
RESULTS FOR THE SOURCE-TAMPERING DETECTION MODELS

5) Textures: Chl-A + Chl-C + Textures (16,943 images)
6) Combined: Chl-A + Chl-C + StyleGAN2 + CycleGAN +

Templates + Textures (43,673 images)
All trained models use the validation and test sets of Table I

for consistency. Finally, the PAD scores are also computed for
the evaluation and comparison of each model.

D. PAD Performance
In this work, we trained 10 networks in total, as described

in Section VI-B and Section VI-C. The DET curves for all
the networks are presented in Figure 8. Additionally, the
ISO/IEC 30107-3 error rates of the ten networks are presented
in Table V and Table VI.

Training with captured images produces far superior per-
formance for the composite model than mixing captured and
synthetic images. The EER obtained was 2.33%, while that
of all the synthetic models was approximately 6%, according
to Figure 8a and Table V. Using Templates was marginally
better than using StyleGAN2 or combining images from both
methods. However, they are not suitable replacements for
capturing more composite images.

For the source model, Table VI reports the scores for the
worst PAI, which for all the 6 trained networks was screen.
The DET curves for this PAI can be seen in Figure 8c. For this
PAI, using captured images produced better performance than
the synthetic models; however, the performance difference
is not as pronounced as in the composite model. In this
case, Captured image reached an EER of 1.82%, followed
by CycleGAN and Templates with 2.93%. Therefore, perfor-
mance drops only by 1% when the dataset is supplemented
with synthetic images instead of doubling the amount of
captured images. However, this is only true for CycleGAN and
Templates since the other methods had EER values between
3.77% and 6.5%.

Although ISO/IEC 30107-3 standard indicates that only
the worst-performing PAI has to be reported, we present in
Figure 8b the DET curves of the print PAIS for a richer
comparison. In this case, captured images have a very sim-
ilar performance to CycleGAN of approximately 1.5%. This
means that the labour-intensive process of printing, cutting
with scissors and photographing the tampered ID cards with
a smartphone can be replaced with images produced by
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Fig. 8. Detection Error Trade-off curves for all the trained fraud-detection networks. Each plot corresponds to a different PAIS. The EER is shown in
parenthesis for each scenario.

CycleGAN without any drop in performance. The EER of the
other methods is low as well. StyleGAN2 and Templates have
an EER of around 2.25%, while Textures and Combined were
around 3%. These results correlate with the findings of the FID
analysis in which the print PAIS obtained the best similarity
between captured and synthetic images.

Table V and Table VI also present the BPCERAP values
for three specific operating points. All those values follow the
same trends observed with the EER.

A closer look at Figure 6 can reveal the subtle differences
between all generation methods. StyleGAN2 could create
the background, faces, signatures and composition tampering
with no problems. However, it struggled with alphanumeric
characters. For instance, despite proceeding from different
random seeds, StyleGAN2 images of the four classes have the
same first name: “Canora”. They also share the same middle
name, surnames and RUN (National ID number); however,
they present slight alterations that make them illegible. Repro-
ducing legible alphanumeric characters is the most significant
flaw of synthetic ID cards generated through StyleGAN2.
On the other hand, Templates utilise handcrafted methods
that place readable data, faces and signatures. However, the
variability from image to image was handpicked and could
not represent the actual distribution of captured ID cards.

The Textures method produced excellent reproductions of
the print/scan textures and pixel noise and aliasing, as seen in
the four images in the lower right corner. CycleGAN generated
a subtle texture for the print PAI but a coarse square texture for
the screen PAI. Lastly, StyleGAN2 produced subtle textures
for both print and screen. Those are closer to bona fide images
than their respective attack species.

VII. CONCLUSION

This work presented four different methodologies capable of
generating synthetic ID cards, and evaluated the performance
of each as a possible supplement for captured images. For
this purpose, we trained two MobileNetV2 networks using
different combinations of captured and synthetic images. Our
results indicate that the composite PAIS was the hardest to

replicate. This attack scenario obtained the greatest EER and
BPCERAP compared to other PAIS. The screen PAIS pro-
duced better PAD scores than composite. For CycleGAN and
Templates, there is only 1% of performance reduction when
supplementing the dataset with synthetic images instead of
capturing more images. On the other hand, the print PAIS was
the easiest to replicate according to the FID and PAD scores.
In this case, CycleGAN achieved the same EER as using
captured images only. This means supplementing with print
images produced by CycleGAN would be a sound alternative
to capturing more print images. Further, obtaining real ID
cards from new people and manually simulating composite,
print and screen attacks is very time-consuming and costly.
Also, privacy regulations such as the GDPR assure individuals
the right to withdraw their consent to use or store their
private data, practically complicating using and distribution
of large datasets. Therefore, achieving similar performance
with synthetic data and fewer resources is valuable for future
applications and extension to other countries and improving
the fake-ID detection techniques.

The FID analysis demonstrated that for this application,
CycleGAN and Textures produced images more similar to
the captured ones than those produced by StyleGAN2. These
results indicate that reproducing ID card images from scratch
is very demanding and challenging, and it is more feasible to
use domain adaptation from bona fide images. The images
from Templates achieved the worst FID scores; however,
they were still valuable for training fraud detection networks,
achieving reasonable PAD scores.

Future work includes training CycleGAN using higher res-
olution images, improving the FID of Templates, and stan-
dardising the transferable textures for approved printers and
scanners usable in Europe and USA.

DISCLAIMER

This work and the methods proposed are only for research
purposes. Any implementation or commercial use modification
must be analysed separately for each case to the email:
juan.tapia-farias@h-da.de.
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