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Occlusion-Aware Human Mesh Model-Based
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Abstract— Partial occlusion of the human body caused by
obstacles or a limited camera field of view often occurs in surveil-
lance videos, which affects the performance of gait recognition in
practice. Existing methods for gait recognition against occlusion
require a bounding box or the height of a full human body
as a prerequisite, which is unobserved in occlusion scenarios.
In this paper, we propose an occlusion-aware model-based gait
recognition method that works directly on gait videos under
occlusion without the above-mentioned prerequisite. Specifically,
given a gait sequence that only contains non-occluded body
parts in the images, we directly fit a skinned multi-person
linear (SMPL)-based human mesh model to the input images
without any pre-normalization or registration of the human body.
We further use the pose and shape features extracted from
the estimated SMPL model for recognition purposes, and use
the extracted camera parameters in the occlusion attenuation
module to reduce intra-subject variation in human model fitting
caused by occlusion pattern differences. Experiments on occlusion
samples simulated from the OU-MVLP dataset demonstrated
the effectiveness of the proposed method, which outperformed
state-of-the-art gait recognition methods by about 15% rank-1
identification rate and 2% equal error rate in the identification
and verification scenarios, respectively.

Index Terms— Partial occlusion, gait recognition, human mesh
model.

I. INTRODUCTION

GAIT recognition is a popular biometric that recognizes
people from their unique gait features, including the

body shape and walking posture characteristics. The gait has
distinct advantages over other biometrics (e.g., DNA, finger-
print, and face), such as long-distance capture without subject
cooperation and applicability to low-resolution images. There-
fore, gait recognition is considered to have great potential
in applications that use CCTV footage, such as surveillance,
forensics, and criminal investigation [1], [2], [3].

In practical applications, gait recognition is also subject
to several challenging factors, including walking speed [4],
[5], observation view [6], [7], the carried object [8], [9], and
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Fig. 1. Examples of occlusion in real life. (a) The lower part of the subject is
continuously occluded by the flower bed during walking. (b) Because of the
limited camera field of view, most parts of the subject can be observed when
she is close to the camera, and as she walks away, the occlusion gradually
increases.

occlusion [10], [11]. Among them, occlusion is a common
covariate in captured gait videos, in which part of the walking
person is temporarily or continuously occluded by obstacles,
or caused by a limited camera field of view (see Fig. 1 for
examples). The occlusion of the body leads to a lack of body
shape, pose, and motion information, which greatly affects the
performance of gait recognition.

Previous studies on gait recognition against occlusion
are mainly divided into two categories: reconstruction-
based approaches and reconstruction-free approaches.
Reconstruction-based approaches first reconstruct non-
occluded silhouette images [11], [12] or gait features (e.g.,
gait energy image (GEI) [13]) of the entire body [10] from
the given gait sequence under occlusion. Reconstruction-free
approaches directly extract gait features from occluded images
without regenerating full-body images [14], [15], or apply
matching only in the same visible (i.e., non-occluded) regions
of a matching pair [16], [17].

Most existing methods work on cropped images that are
size-normalized and registered based on a full human body;
that is, they use a full-body bounding box as a prerequisite for
cropping despite the full body being unobserved in occlusion
scenarios (see Fig. 2(a) and (b)).

Unlike the above-mentioned appearance-based approaches
to occlusion handling with a prerequisite, model-based
approaches (e.g., ModelGait [18]) have the potential to handle
occlusion without a prerequisite in a more natural manner.
This is because we can not only obtain the body shape
and pose parameters but also locate a full body position
(i.e., a bounding box for a full body) as a result of human
model fitting, even from a partially occluded image. In fact,
a human mesh model (e.g., skinned multi-person linear
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Fig. 2. Different bounding boxes used by existing works and our method.
(a) Bounding boxes shown in original RGB with simulated occlusion (blue:
existing works, red: our method). Existing works use a full-body bounding
box including occluded body parts for cropping by assuming a known human
height, whereas our method uses a bounding box containing only visible body
parts. (b) Cropped images used by existing works. Human scales and body
centers in the input sequence are normalized by full-body bounding boxes.
(c) Inputs of our method. Body scales and centers may vary in a sequence
due to cropping and resizing.

(SMPL) [19]) has been successfully estimated from a single
image with partial occlusion [20], [21], [22].

Therefore, we propose a model-based gait recognition
method that combines human mesh (i.e., SMPL model) esti-
mation and gait recognition to address the occlusion issue. The
contributions of this work are three-fold.

A. Model-Based Gait Recognition Method Against Occlusion
Without a Prerequisite

We propose the first end-to-end model-based method that
acts on occluded RGB gait videos. Unlike existing methods
for occlusion-handling appearance-based gait recognition, our
model-based method directly uses a bounding box of only
visible body parts without the above-mentioned prerequisite
(see Fig. 2(a) and (c)), simulating pedestrian detection results
in real occluded scenes. Additionally, existing approaches to
occlusion-handling human model fitting work on a single
input image, whereas we estimate a temporally consistent
and continuous sequence of human model parameters, which
are beneficial for subsequent recognition modules. We train
the entire framework in an end-to-end manner to achieve a
trade-off between model estimation and recognition accuracy.

B. Occlusion-Aware Framework to Reduce the Effect of
Occlusion on Model Fitting

Rather than simply retraining ModelGait [18] on occlusion
data, we also incorporate a gated recurrent unit (GRU) mod-
ule [23] for temporal information capture, and an occlusion
attenuation module to reduce intra-subject variation in the
model estimation. Specifically, because the difference between
occlusion patterns in the input sequence may lead to dif-
ferent human model estimations, even for the same subject,
we introduce an occlusion attenuation module to alleviate the
dependence of model estimation on occlusion by considering
the model parameters that imply the input occlusion patterns.
Thus, the obtained human models become more similar for
the same subject, which is beneficial to the matching task.

C. State-of-the-Art Performance on Occlusion Data
We evaluated the proposed method using OU-MVLP [24],

which is the world’s largest gait dataset with wide view
variations. We prepared various types of occlusion to simulate
occlusion scenarios that often occur in real life. Compared
with existing state-of-the-art gait recognition methods, the
proposed method achieved superior performance in both iden-
tification and verification scenarios.

II. RELATED WORK

A. Gait Recognition Against Occlusion
1) Reconstruction-Free Approaches: Some typical

reconstruction-free approaches directly apply various machine
learning techniques to the occluded gait sequence to extract
gait features that are relatively insensitive to occlusion [14],
[15], [25], [26], such as a statistical analysis-based weighted
averaging method [15]. A few researchers have attempted
to apply matching to the same visible regions in a pair of
samples by dividing the body into several parts [16], [17],
[27], [28], [29]. In multi-gait recognition [30], body parts
affected by inter-subject occlusion are excluded using an
automatic tracking and segmentation method, and features
then directly extracted from the obtained single-gait images,
without special treatment for a relatively small occlusion.

However, these methods may not work well for a large
occlusion, particularly when the same visible regions of a
matching pair are very small (e.g., the upper body of a probe
is occluded, whereas the lower body of a gallery is occluded).

2) Reconstruction-Based Approaches: Reconstruction-
based approaches first reconstruct silhouettes or gait features
without occlusion before the feature learning and matching
process [10], [11], [12], [31]. For example, Muramatsu et al.
[10] reconstructed an entire frequency domain feature
(FDF) [6] directly from a partially occluded FDF using a
subspace-based method. An approach based on a conditional
generative adversarial network was proposed in [11], which
combines silhouette reconstruction and gait recognition in a
unified convolutional neural network (CNN) framework.

However, these methods require the prerequisite of a
full-body bounding box to ensure a size-normalized and body
center-registered silhouette sequence under occlusion, which
increases the difficulty of applying them to real-world scenes.

B. Robust Gait Recognition Against Various Covariates
In addition to occlusion, there are other challenging covari-

ates that may affect gait recognition performance, such as
walking speed [4], [5], [32], [33], clothing and carrying [8],
[9], [34], [35], [36], [37], [38], and view angles [6], [7], [39],
[40], [41], [42], [43]. A variety of approaches have been pro-
posed by designing gait representations combined with metric
learning or deep learning techniques. For example, a met-
ric learning technique called random subspace method [4]
and a gait representation called single-support GEI [5] were
designed for speed variations; body part-based templates [35]
and a generative adversarial network-based method [38] were
proposed for clothing and carrying factors; a CNN-based
method named GEINet [39] was proposed for view variations,
and later, various CNN structures with a pair of input GEIs
were investigated in [7] and [41].

Rather than focusing on a specific covariate, some recent
works address more general gait recognition scenarios [44],
[45], [46], [47], [48], [49], [50], [51], [52], [53]. With the
development of deep learning, most approaches work directly
on silhouettes or RGB images, which significantly improves
the performance compared to GEI. GaitSet [44] ignored the
order information in silhouette sequences and treated the
input as a set, achieving landmark recognition accuracy.
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GaitPart [47] further improved performance by considering
body division and micro-motions (i.e., short-range temporal
features) contained in each body part. In [49], global and
local features are combined in conjunction with 3D CNNs.
To eliminate the effects of color and texture in the input
RGBs, [45], [46] extracted pose features via disentangled
representation learning, and [53] synthesized silhouettes that
mask bodies with trainable edges.

Besides the aforementioned appearance-based methods,
model-based methods [18], [54], [55], [56], [57], [58], [59],
[60] have also shown impressive results recently. After obtain-
ing body skeletons from RGB images using pose estimation
works (e.g., OpenPose [61]), CNN models [54], [55] and
graph convolutional networks [57], [58], [59] were employed
to learn pose features for recognition. The first gait database
with pose sequences, OUMVLP-Pose, was proposed in [56],
promoting model-based gait recognition research. To exploit
both shape and pose features for recognition, Li et al. [18]
proposed an end-to-end model-based method by incorporating
the human mesh recovery (HMR) framework [62], which esti-
mates the SMPL human models [19] for the subsequent recog-
nition network. The multi-view training framework in [60]
further improved the human model estimation accuracy, and
a database with human meshes, OUMVLP-Mesh, was con-
structed accordingly.

Compared to appearance-based methods, model-based
methods have the potential to be more robust to occlusions
without the full-body bounding box prerequisite thanks to the
model fitting framework.

C. 3D Human Shape and Pose Estimation From an
Occluded Image

In several recent studies on 3D human shape and pose esti-
mation, the researchers focused on the estimation of full-body
keypoints or a full human body mesh (e.g., SMPL model [19])
from an image under occlusion, where the body was partially
occluded by an object [20], [22], [63] or the camera field
of view [21]. For example, Cheng et al. [63] proposed an
occlusion-aware framework for 3D pose estimation from a
video, which combines estimation of keypoint confidence
heatmaps with constraints on optical-flow consistency, sup-
pressing unreliable estimation of occluded keypoints. In [20],
the object-occluded human body was represented as a partial
UV map, and the SMPL model estimation task was there-
fore converted to a UV map inpainting problem. In [21],
Rockwell et al. handled partial images from a consumer
video, where only part of a person was visible, which made
human model estimation more difficult. Using a simple self-
training framework, combined with cropping operations and
a confident sample selection scheme, the HMR model [62]
was successfully adapted to unlabeled partial images (i.e.,
without the ground-truth SMPL parameters or joint positions)
to reconstruct the human mesh (hereafter, we refer to this
method as partial HMR).

Compared with pure keypoints, the SMPL human model
contains more information such as body shape, which is more
beneficial to the gait recognition task. Additionally, although
the partial HMR performed well for SMPL estimation on
a single occluded image, it is not necessarily suitable for

direct application to continuous video frames because temporal
information is ignored.

III. OCCLUSION-AWARE MODEL-BASED

GAIT RECOGNITION

A. Overview

An overview of the proposed method is shown in Fig. 3.
Given a gait video with occlusion, we crop the unoccluded
body parts using a square bounding box for each frame (see
Fig. 1), and then resize the cropped images to a unified
image size while maintaining the aspect ratio. We use a
sequence encoder to estimate the 3D human mesh (i.e., the
body shape and pose parameters), and global rotation and
camera parameters for each cropped input image. Thereafter,
we alleviate the intra-subject variation of the estimated SMPL
model parameters induced by various occlusion patterns using
an occlusion attenuation module. Finally, we feed the 3D
joint locations obtained from the pose parameters and shape
parameters averaged over frames into a recognition module.

B. SMPL Model

We briefly introduce the SMPL model [19] used in our
work. We parameterize the SMPL model using the shape
β ∈ R

10 (e.g., by expressing the body height, weight, and body
proportions) and pose θ ∈ R

69 parameters (i.e., the relative
3D rotation of 23 joints in the axis-angle representation).
A triangulated mesh with 6,980 vertices can be output from
the SMPL using a differentiable function. We compute the
3D joint locations from the vertices using linear regression.
We can further obtain the 2D projection using the 3D global
rotation r ∈ R

3 with a weak-perspective camera model, which
is composed of parameters σ = [s, t] ∈ R

3, where s and
t ∈ R

2 are the scale and translation parameters, respectively.

C. Sequence Encoder

We estimate the SMPL parameters from each input frame
using a sequence encoder, which is composed of a feature
extractor, GRU module [23], and regressor. Unlike the partial
HMR [21] and ModelGait [18], our method includes a GRU
module to capture temporal information [64] when inferring
SMPL model parameters. Particularly, we use bidirectional
GRU (BiGRU) to learn latent features from both past and
future frames because it temporally constrains the body shape
and pose parameters better when occlusion changes within a
sequence.

Given a sequence Si (i = 1, . . . , N), where N is the
number of sequences used for training, and the sequence
is composed of Ti frames {I 1

i , . . . , I Ti
i }, we first extract a

2,048D feature from each frame using ResNet-50 [65]. Then
we feed the extracted feature into a BiGRU with a hidden
size of 1,024, which outputs the updated feature based on
both past and future frames. To better merge the output
feature learned from two directions, we use an additional fully
connected (FC) layer with 2,048 neurons after the BiGRU.
Finally, we regress the SMPL parameters using a 3D regressor
with iterative feedback [62]. Finally, the estimated parameters
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Fig. 3. Overview of the proposed method. (a) Given an RGB sequence, a sequence encoder first estimates an initial SMPL model, and then an occlusion
attenuation module mitigates the dependence of the estimated body parameters on the input occlusion. The attenuated body parameters are further fed into
the recognition module. E , R, P , and A denote the feature extractor, regressor, phase estimation network, and attenuation transformation, respectively. GR,
Sync., and Ap. represent global rotation, phase synchronization, and average pooling, respectively. (b) To supervise the occlusion dependency attenuation,
we further define a paired similarity loss Lpair

sim to make the attenuated body parameters more consistent between the same subject input pair.

�̂
j
i = [β̂ j

i , θ̂
j
i , r̂ j

i , σ̂
j
i ] ∈ R

85 for the j -th frame of the i -the
input sequence I j

i ( j = 1, . . . , Ti ) can be written as

�̂
j
i = R(G(E(I j

i ))), (1)

where E , G, and R represent the feature extractor, GRU
module, and regressor, respectively.

D. Occlusion Attenuation Module
We incorporate an occlusion attenuation module to mitigate

the intra-subject variation of the estimated SMPL model
parameters induced by differences between the input occlusion
patterns (e.g., upper-body and lower-body occlusion). Because
intra-subject pose variation should be computed in the same
phase (i.e., gait stance), we first estimate the phase sequence
of an input gait video and then synchronize the phases among
sequences.

1) Phase Estimation: We use a CNN network P to estimate
the phase label sequence from the input RGB images, which
is denoted by

P̂ i = P(Si ), (2)

where P̂ i = { p̂1
i , . . . , p̂Ti

i }, and p̂ j
i ∈ R

2 denotes the estimated
phase for the j -th frame of the input sequence Si , and is
expressed as a sine and cosine function-based cyclic 2D vector,
similar to that used in [66].

To obtain the estimated phase, we first feed each input
frame into four convolutional layers, where each layer has
a subsequent batch normalization layer [67] and ReLU acti-
vation function [68]. The size of each convolution kernel
is 4 × 4, the stride is two, and the number of channels is
increased from 16 to 128. Then we use an FC layer to extract
a 50D feature. Similar to the methodology in Sec. III-C,
we further apply a BiGRU and another FC layer to learn
temporal information from past and future frames. We feed
the obtained 100D feature into the final FC layer to regress
the 2D phase label, which is followed by a normalization layer
to maintain � p̂ j

i �2 = 1.
The estimated phase is supervised by its ground-truth phase

p j
i using an estimation loss, which is defined as

Lphase
esti = 1

N

N�
i=1

1

Ti

Ti�
j=1

� p̂ j
i − p j

i �2
2. (3)

To maintain the temporal continuity of the estimated phase
label sequence, we define a smoothness loss as

Lphase
smoo = 1

N

N�
i=1

⎛
⎝ 1

Ti − 1

Ti−1�
j=1

� p̂ j+1
i − p̂ j

i �2
2

+ 1

Ti − 2

Ti−1�
j=2

� p̂ j+1
i − 2 p̂ j

i + p̂ j−1
i �2

2

⎞
⎠ . (4)

Additionally, we penalize disordered phase labels between
adjacent frames (i.e., reverse evolution of gait stances), which
is formulated as

Lphase
penal = 1

N

N�
i=1

1

|Pi |
�

( j, j+1)∈Pi

� p̂ j+1
i − p̂ j

i �2
2, (5)

where Pi denotes the set of adjacent frame index pairs with
disordered phase labels for the i -th input sequence.

We compute the entire loss function for the phase estimation
network as follows:

Lph = w
phase
esti Lphase

esti + w
phase
smoo Lphase

smoo + w
phase
penal Lphase

penal , (6)

where w
phase
esti , w

phase
smoo , and w

phase
penal are the weight parameters for

the above three losses.
2) Phase Synchronization: Then we synchronize the initial

SMPL parameters output by the sequence encoder using linear
interpolation based on the estimated phase label sequence.
Specifically, we first define a canonical gait period with T
frames, where the phase evolves uniformly in these frames.
Then we compute the interpolation weights between a canon-
ical phase and its two neighboring estimated phases, and
finally interpolate the initial SMPL parameter sequence �̂i =
{�̂1

i , . . . , �̂
Ti

i } into the synchronized SMPL sequence �̂�
i =

{�̂�1
i , . . . , �̂

�T
i }, where each �̂� j

i ( j = 1, . . . , T ) corresponds
to a canonical phase label.

3) Occlusion Dependency Attenuation: Next, we attempt
to reduce the intra-subject variation of the estimated SMPL
model caused by the occlusion pattern variations by trans-
forming the phase-synchronized SMPL body parameters. The
SMPL parameter vector for the j -th ( j = 1, . . . , T ) canonical

phase is denoted by �̂� j
i = [β̂ � j

i , θ̂ � j
i , r̂ � j

i , σ̂
� j
i ] ∈ R

85, where
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β̂ � j
i , θ̂ � j

i , r̂ � j
i , and σ̂ � j

i are the interpolated shape, pose, global
rotation, and camera parameters, respectively. In the SMPL
model fitting process, the camera parameters used for 2D
projection, that is, the scale and translation parameters, reflect
the occluded body region. For example, the larger the occluded
region, the larger the scale value; different occlusion posi-
tions (i.e., top and bottom occlusion) also result in different
translation parameters. Therefore, we introduce the camera
parameters as a cue for the occlusion patterns, and transform

the shape and pose parameters �̂� j
i = [β̂ � j

i , θ̂
� j
i ] ∈ R

79 to more
occlusion-independent parameters as follows:

�̃
j
i = �̂� j

i + A([�̂� j
i , σ̂

� j
i ]), (7)

where A denotes the attenuation transformation, �̃
j
i =

[β̃ j
i , θ̃

j
i ] ∈ R

79, and β̃
j
i ∈ R

10 and θ̃
j
i ∈ R

69 are the shape and
pose parameters after transformation, respectively.

We implement the transformation via an FC layer, which
learns the updates for the body parameters. To ensure the trans-
formation successfully mitigates the intra-subject variation
(i.e., occlusion dependence) of the SMPL model, we define
a paired similarity loss as

Lpair
sim = 1

M

M�
m=1

1

T |Sm |(|Sm |−1)

�
Si∈Sm

�
Sk∈Sm

k �=i

T�
j=1

��̃ j
i − �̃

j
k�2

2,

(8)

where Sm(m = 1, . . . , M) denotes the sequence set of the
m-th subject, and M is the number of training subjects.
We finally obtain a sequence of model parameters in the

canonical phases: {�̃1
i , . . . �̃

T
i }, where �̃

j
i = [β̃ j

i , θ̃
j
i , r̂ � j

i ,

σ̂ � j
i ] ∈ R

85.

E. SMPL Supervision

1) Sequential Constraint: Because the shape parameters
should be temporally consistent within a sequence, we first
apply average pooling to the shape parameters to obtain the

unified shape of the i -th sequence: ¯̃
β i = 1

T

�T
j=1 β̃

j
i ∈

R
10; hence, we replace the estimated parameters with �̃

j
i =

[ ¯̃β i , θ̃
j
i , r̂ � j

i , σ̂
� j
i ]. To maintain the sequential property of the

obtained model parameters, we further define a sequence loss
Lseq similar to that in [18], which ensures the consistency
of the shape parameters between same-subject sequences,
in addition to the temporal continuity of the pose, global
rotation, and camera parameters.

2) Supervision With Ground Truth: Ground-truth SMPL
parameters are not provided in publicly available gait datasets.
By contrast, considering that occluded gait images are gen-
erated by cropping the corresponding full-body images (i.e.,
images without occlusion) in the training stage, we may use
the SMPL model parameters obtained by applying state-of-
the-art model-based gait recognition [18] to full-body images
as a pseudo ground-truth for supervision. We can also compute
the pseudo ground-truth camera parameters for the occluded
image by converting the parameters for the full-body image

because the spatial location of the cropped area (i.e., input
image) in the full-body image is known during the training
phase.

Similar to the methodology in Sec. III-D, we first interpolate
the ground-truth pose, global rotation, and camera parameters
to the canonical phases, and compute the SMPL estimation
loss as follows:

LSMPL
esti = 1

N

N�
i=1

1

T

T�
j=1

��̃ j
i − �

j
i �2

2, (9)

where �
j
i is the pseudo ground-truth SMPL parameters after

phase synchronization.
To constrain the 3D joint locations computed from the esti-

mated SMPL mesh vertices, we also define a joint estimation
loss L joint

esti similar to Eq. (9).
We combine LSMPL

esti and L joint
esti as follows:

Lesti = wSMPL
esti LSMPL

esti + w
joint
esti L joint

esti , (10)

where wSMPL
esti and w

joint
esti are the weight parameters.

F. Recognition Module

We then use the estimated shape and pose parameters for
recognition. We directly exploit the unified shape ¯̃

β i ∈ R
10

as the shape feature of the i -th input sequence: f i
shape = ¯̃

β i .
Considering the insights mentioned in [55] that CNN is more
suitable than long short-term memory (LSTM) for temporal
data learning in gait recognition, and the superior performance
of CNN compared to LSTM shown in [18], we also employ
CNN for pose feature extration in the proposed method.
Specifically, we input the 3D joint locations obtained from the
estimated SMPL mesh into the CNN used in [18] to extract
discriminative pose features f i

pose = cnn(X̃i ) ∈ R
52, where

X̃i = {x̃1
i , . . . , x̃T

i } is the sequence of joint locations.
We finally use the shape/pose features to compute the triplet

loss to optimize recognition performance, which is defined as

Lre = 1

Ntrip

Ntrip�
n=1

max(margin + dgen
n − d imp

n , 0)2, (11)

where Ntrip is the number of triplets in a mini-batch,
and dgen

n and d imp
n are the dissimilarities of the genuine pair

and imposter pair for the n-th triplet, respectively.

G. Unified Loss Function

To ensure a trade-off between model estimation and recog-
nition accuracy, we use a unified loss to optimize the entire
framework in an end-to-end manner, which is defined as

Luni =wph Lph + w
pair
sim Lpair

sim +wseqLseq + westiLesti + wre Lre,

(12)

where wph, w
pair
sim , wseq, westi, and wre are the weights for each

term.
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IV. EXPERIMENTS

A. Data Preparation

There is no publicly available gait dataset that focuses on
occlusion variations. Although occlusion is also considered in
the GREW dataset [69], RGB data is not provided. In addition,
it is unsuitable for systematic evaluation w.r.t. occlusion types,
patterns, ratios, and views (i.e., labels are not provided). There-
fore, similar to other gait recognition works that artificially
simulate occlusion samples (e.g., [10], [11], [16]), we used the
OU-MVLP dataset [24] to simulate several types of occlusion
patterns that may often appear in real life. OU-MVLP is
the world’s largest gait dataset with a wide view variation,
and contains 10,307 subjects, each captured from 14 views
(0◦–90◦ and 180◦–270◦ in 15◦ intervals). Informed consent
was obtained from each subject. We chose four typical views,
0◦, 30◦, 60◦, and 90◦, for both the training and test evaluation.
Following [24], we used 5,153 subjects for training and the
other disjoint 5,154 subjects for testing.

We mainly focused on occlusion in the vertical direction,
which makes it impossible to fully observe the height of the
human body. We considered two occlusion scenarios: fixed
occlusion ratio and changing occlusion ratio in a sequence
(i.e., the proportion of occluded body height changed). The
fixed occlusion ratio simulates a scenario such as a subject in
the side view being occluded by a relatively long obstacle (e.g.,
flower bed), or the front view being occluded by an object
moving with the subject (e.g., a large suitcase). The changing
occlusion ratio simulates a scenario such as a subject in the
front view being occluded because of the limited camera field
of view, or the side view being occluded by an obstacle at a
certain angle to the walking direction (e.g., a billboard).

For simplicity, we set a rectangular occlusion region on
the entire body, and used a square bounding box to crop
the remaining unoccluded part as the input image (similar
to Fig. 1), simulating the pedestrian detection results (e.g.,
YOLOv5 [70]) for occluded images in real scenes (i.e.,
cropped images for similar real and artificial occlusion effects
are similar). We prepared four occlusion patterns accordingly:
fixed occlusion ratio at the top (FT) and bottom (FB), and
changing occlusion ratio at the top (CT) and bottom (CB) (see
Fig. 4). For each occlusion pattern, we generated samples with
three occlusion ratios. Specifically, for FT and FB, 20%, 40%,
and 60% of the height was occluded in each frame; for CT,
the occlusion ratio in a gait period gradually changed from
60% to 20%, 40% to 0% (no occlusion in the last frame), and
20% to 0% in the first half period and no occlusion in the
second half period (denoted by 60%, 40%, and 20%, for sim-
plicity), whereas the occlusion ratio for CB was the opposite.1

In the training phase, we used all samples in different views,
occlusion patterns, and ratios to train a unified model.

1Because the camera position for OU-MVLP was set relatively high (5 m),
the occlusion ratio for CT and CB changed in opposite directions. For a
fair comparison, we assumed that the occlusion ratio changed consistently in
different views if the obstacles in different views had different angles from
the viewing direction (e.g., in the front view, the angle between the obstacle
and the viewing direction was perpendicular, and in the side view, the angle
was almost parallel).

Fig. 4. Examples of occlusion patterns. Frames in FT and CT were simulated
using a sequence from 90◦, and the occlusion ratio was 60% and a variation
from 60% to 20%, respectively. Frames in FB and CB were simulated using
a sequence from 0◦, and the occlusion ratio was set similar to the values used
in FT and CT, respectively.

B. Implementation Details
We resized the cropped unoccluded regions to 224 × 224,

and used 25 consecutive frames in a sequence as input,2

which covers approximately one gait cycle for most subjects
in OU-MVLP. We first trained the phase estimation network
to obtain stable phase estimation results, and then included
other parts to jointly train the entire framework in an end-
to-end manner. We initialized the feature extractor E and
regressor R using a pre-trained partial HMR [21]. We zero-
initialized the GRU module G and the attenuation layer
A to learn the updates of their respective input features.
We initialized the recognition module with default parameters.
We trained the network using the Adam optimizer [71], and set
the batch size to 8 × 8, which represents eight subjects with
eight samples per subject chosen as a mini-batch. We set the
learning rate to 10−4 for the first 60K iterations, and decreased
it by 0.1 for the last 70K iterations. We set the weight
parameters in the loss functions to 1, except for w

phase
smoo =

0.01 and w
phase
penal = 0.001 in Eq. (6), and w

pair
sim = 0.001 and

westi = 100 in Eq. (12). We set the margin in Eq. (11) to 0.2.
Following [18], we separately trained and tested the shape and
pose features for recognition.

We used the rank-1 identification rate and equal error rate
(EER) [72] to evaluate recognition performance in identifica-
tion and verification scenarios, respectively.

C. Visualization of SMPL Estimation

We chose samples with different occlusion patterns and
views simulated based on sequences from the same test subject
to visualize the SMPL models estimated by the proposed
method. For comparison, we also show the SMPL estimated by
the pre-trained ModelGait [18] in Fig. 5. Because ModelGait
was originally designed for full-body images, the SMPL mod-
els estimated from the occluded images contained large errors
(e.g., temporally discontinuous walking poses in Fig. 5(c)).
By contrast, the body shape and pose estimated by the pro-
posed method fit the input images well, which demonstrates
its effectiveness in fitting the SMPL model to occlusion data.
Although the estimation errors remained (e.g., stride in the
double-support phase was smaller than the ground-truth), the

2We repeated frames from the beginning when the sequence was less than
25 frames.
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Fig. 5. Examples of the SMPL models estimated by the proposed method and ModelGait [18]. Four input samples with different occlusion patterns and
different views were simulated based on sequences captured from the same test subject. The occlusion ratio in the four input samples was 40%. (a) Input
sequence (interval of four frames). (b) Ground-truth SMPL of the corresponding full-body images. (c) SMPL estimated by ModelGait [18]. The SMPL models
were projected using the camera parameters of the corresponding full-body images. (d) SMPL estimated by the proposed method. To keep the phases consistent
with the input images in the visualization, the final obtained SMPL parameters were inversely interpolated into the original phases. See the supplementary
material for more visualization examples.

TABLE I

RANK-1 IDENTIFICATION RATE [%] (DENOTED BY RANK-1) AND EER [%] FOR EACH COMPARISON METHOD IN THE CASE OF THE SAME OCCLUSION
PATTERN. WE REPORT THE MEAN RESULTS OF EACH OCCLUSION PATTERN BY TAKING THE AVERAGE OF ALL 16 COMBINATIONS OF THE

FOUR OCCLUSION RATIOS (I.E., 0%, 20%, 40%, AND 60%) IN THE PROBE AND GALLERY. NOTE THAT FOR EACH OCCLUSION RATIO

COMBINATION, WE AVERAGED THE RESULT OVER ALL 16 PROBE AND GALLERY VIEW PAIRS (I.E., VIEW PAIRS FROM 0◦ , 30◦,
60◦, AND 90◦). BOLD AND BOLD ITALIC INDICATE THE BEST AND SECOND-BEST RESULTS

shapes and poses between different occlusion patterns were
more similar than ModelGait. This illustrates that the proposed
method reduced the influence of occlusion on the model fitting
results, to some extent.

D. Comparison With General Gait Recognition Methods
Unlike video-based person Re-ID, we do not use the

color and texture information as appearance-based gait fea-
tures; hence, video-based person Re-ID methods are beyond
the scope of comparison, just as other gait recognition
works using RGB inputs have done (e.g., GaitNet [45],
[46], ModelGait [18]). However, no existing gait recogni-
tion method has addressed occlusion without a prerequisite.
Therefore, we compared our method with two state-of-the-art
appearance-based gait recognition methods, GaitSet [44] and
GaitGL [49], and a state-of-the-art model-based method, Mod-
elGait [18]. We retrained GaitSet, GaitGL, and ModelGait
using the same training data as our method for comparison.
We also provided the testing results directly using the pre-
trained ModelGait. Because we trained the proposed method
separately using the shape and pose features, we also applied
score-level fusion similar to that used in [18]. As a reference,
we showed a type of upper bound accuracy, that is, the recog-
nition results on the full-body images provided by ModelGait
in [18].

1) Same Occlusion Pattern: The results in the same occlu-
sion pattern case (i.e., the occlusion patterns in the probe
and gallery were the same) are shown in Table I. Although

ModelGait [18] achieved prominent recognition performance
on full-body images, it did not perform well on occluded
images, which is consistent with the qualitative comparison in
Sec. IV-C. The proposed method also achieved significantly
better performance than GaitSet [44] and GaitGL [49], which
demonstrates the superiority of the proposed occlusion-aware
framework in handling occlusion without a prerequisite. The
shape features performed better than the pose features, except
for the FB pattern, and their fusion achieved the best results for
both identification and verification scenarios, outperforming
the benchmarks by about 15% for the rank-1 rate and 2% for
the EER, on average.

Among the four occlusion patterns, the performance of
patterns with a changing occlusion ratio (i.e., CT and CB)
was relatively higher than that of the fixed occlusion ratio (i.e.,
FT and FB). This is understandable because the sequence in
CT and CB patterns contained frames with smaller occlusion
ratios than the corresponding frames in the FT and FB patterns.
Most methods performed worse on the bottom occlusion
than the top occlusion, particularly for the FB pattern. This
demonstrates that both the shape and pose features of the lower
body were more important for gait recognition.

Table II shows the results for the CT occlusion pattern using
the proposed method with the fusion scheme. Essentially, the
results under the same view (i.e., 0◦ view difference) were
much better than those under different views. As the occlusion
ratio difference increased, accuracy gradually decreased, par-
ticularly for the largest occlusion ratio difference (i.e., 60%),
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TABLE II

MEAN RANK-1 RATE (BEFORE SLASH) AND EER (AFTER SLASH) [%] OF
THE PROPOSED METHOD (FUSION) FOR THE CT OCCLUSION PATTERN.

THE RESULTS ARE COMPUTED FOR EACH OCCLUSION RATIO

DIFFERENCE AND EACH VIEW DIFFERENCE BETWEEN THE

PROBE AND GALLERY. R AND V DENOTE THE OCCLUSION
RATIO DIFFERENCE AND THE VIEW

DIFFERENCE, RESPECTIVELY

TABLE III

RANK-1 RATE (BEFORE SLASH) AND EER (AFTER SLASH) [%] OF

THE COMPARISON METHODS IN THE CROSS-OCCLUSION PATTERN

CASE. WE CONSIDERED THREE SPECIFIC PROBE AND GALLERY
OCCLUSION RATIO PAIRS FOR EVALUATION. WE OBTAINED

THE MEAN RESULT OF EACH OCCLUSION RATIO PAIR

BY AVERAGING ALL 16 COMBINATIONS OF THE
FOUR OCCLUSION PATTERNS AND ALL 16 VIEW

COMBINATIONS. PROBE AND GALLERY ARE

DENOTED BY P AND G, RESPECTIVELY

TABLE IV

MEAN RANK-1 RATE (BEFORE SLASH) AND EER (AFTER SLASH) [%] OF
THE PROPOSED METHOD (FUSION) FOR EACH COMBINATION OF THE

FOUR OCCLUSION PATTERNS. THE PROBE AND GALLERY BOTH

HAD AN OCCLUSION RATIO OF 40%. EACH RESULT WAS THE
AVERAGE OF 16 PROBE AND GALLERY VIEW PAIRS

where the loss of a large amount of the individual body shape
and pose information caused by considerable occlusion highly
affected the SMPL model fitting and recognition performance.
Additionally, the view difference also had a great impact on
performance. This is because we trained a unified model that
considered multiple occlusion patterns, occlusion ratios, and
views, which significantly increased the training difficulty.

2) Cross-Occlusion Pattern: We then compared the pro-
posed method (fusion), GaitSet, and GaitGL in the
cross-occlusion pattern case (i.e., the occlusion patterns in
the probe and gallery were different). As shown in Table III,
the proposed method clearly outperformed other methods for
all three occlusion ratio pairs. We report the results of the
proposed method for each combination of the four occlusion
patterns when the probe and gallery had the same occlusion
ratio (i.e., 40%) in Table IV. Specifically, the performance was
better when the occlusion patterns in the probe and gallery
were the same. For the different pattern case, the recognition
results between similar occlusion positions (e.g., FT vs. CT)
were relatively better. Additionally, the performance of the

Fig. 6. Illustration of different bounding box settings for experiments in
Sec. IV-E. Here, an occlusion degree of 50% defined in [11] was taken as
an example. (a) Full-body bounding box used in [11] for RDBT pattern.
(b) Visible-part bounding box with a single body fragment used by our method
for RDBT pattern. Person tracking was assumed to work well, which results in
visible upper and lower body parts still considered to be in the same bounding
box. The first/last frame contains only visible upper/lower body fragment.
(c) Visible-part bounding box with upper-body fragment used by our method
for RDBT pattern. (d) Visible-part bounding box with lower-body fragment
used by our method for RDBT pattern. For (c) and (d), we assumed the visible
upper and lower body parts were tracked with two different bounding boxes,
and used each fragment separately for recognition. (e) Full-body bounding
box used in [11] for RDLR pattern. (f) Visible-part bounding box with a
single body fragment used by our method for RDLR pattern. Visible left and
right parts were assumed to be successfully tracked as belonging to the same
person, with a temporally complete sequence. All-white images indicate the
body fragment was fully occluded.

occlusion pattern pair with a changing occlusion ratio (i.e.,
CT vs. CB) was also higher than a fixed occlusion ratio.

E. Comparison With Other Occlusion-Handling Gait
Recognition Work

Since other works on gait recognition against occlusion
require prerequisites of full-body bounding boxes, we com-
pared with a CNN-based occlusion-handling method [11] by
following their settings as much as possible. Specifically, in the
case of vertical occlusion pattern, namely relative dynamic
occlusion gradually moves from the bottom to top (RDBT),
we used a visible-part bounding box while assuming that
person tracking worked perfectly under occlusion. In this case,
as shown in Fig. 6(b), the visible upper and lower body parts
were still considered to belong to the same person, which
resulted in only a single body fragment; hence, the differences
from the full-body bounding box setting in Fig. 6(a) are just
the first and last frames.

In the case of horizontal occlusion pattern, that is, relative
dynamic occlusion gradually moves from the left to right
(RDLR), we also considered a similar setting to the RDBT
pattern for our method, i.e., visible left and right parts were
considered to be the same person being successfully tracked,
resulting in a temporally complete sequence. Compared to
the full-body bounding box used in [11] (see Fig. 6(e)),
in our setting (see Fig. 6(f)), the human scale and body
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center computed based only on the visible parts changed in
a sequence. Moreover, the body may be fully occluded in
several middle frames of a sequence (e.g., 5 or 6 middle frames
may be completely occluded with a defined occlusion degree
of 50%3).

Additionally, we also considered a more challenging setting
of the visible-part bounding box for the RDBT pattern in
Fig. 6(c) and (d), i.e., the visible upper and lower body parts
were tracked into independent sequences, which splitted the
human region into two fragments, each of which was used
for recognition separately. In fact, this occlusion setting is
even more difficult than that in Sec. IV-D, because with the
original setting of 50% occlusion degree in [11], the actual
occlusion ratio in each upper/lower-body fragment changed
between 50% and 100%. Unlike the vertical occlusion pattern,
the setting of visible-part bounding box with only left or
right body fragments (i.e., assuming the visible left and right
parts were tracked into two independent sequences) would
result in each independent sequence containing less than half
a gait cycle of the original sequence (e.g., about 10 frames
per left/right fragment sequence under 50% occlusion degree).
Since the phase synchronization used in the currently proposed
method may fail if less than half a gait cycle is available,
we did not consider this setting for the horizontal occlusion
pattern.

Following the protocol in [11], 3,000 subjects from
OU-MVLP were used for training and another disjoint 3,000
subjects were used for testing, while both the training and
testing sets contained only samples from the side view. Three
occlusion degrees were considered, i.e., 30%, 40%, and 50%.
Since there were much fewer training samples compared to the
experiments in Sec. IV-D, we reduced the number of training
iterations to 20K.

The comparison results are shown in Table V. Under similar
bounding box settings for the RDBT pattern (i.e., only the first
and last frames are different), the proposed method achieved
significantly better performance than the previous work [11].
The proposed method also outperformed even under a more
challenging setting, where only the visible upper/lower frag-
ment was used each time. This illustrates the superiority of the
proposed model-based method in vertical occlusion handling
for gait recognition. Furthermore, using lower-body fragment
again obtained better results than upper-body fragment, which
is consistent with the findings in Sec. IV-D, demonstrating the
importance of the lower body for gait recognition.

In addition, the proposed method also clearly outper-
formed [11] for the horizontal occlusion pattern. Even if
several middle frames were fully occluded in this case, the pro-
posed method still worked thanks to the phase synchronization
process (i.e., interpolation of missing phases from other visible
frames), as well as the modules (i.e., GRU) and constraints for

3The input image size used in [11] is 128 × 88, and the size of occluded
region is 128 × 44 (i.e., 50% of the image width is occluded). Because our
input image size is 224 × 224, to make the comparison as fair as possible,
we kept the same occluded areas relative to the human body in our inputs.
Although the occlusion visually appeared to be less than 50% of the entire
image width, for most frames the occluded body part was greater than 50%
horizontally.

TABLE V

RANK-1 RATE, RANK-5 RATE, AND EER [%] OF EACH COMPARISON
METHOD AND SETTING. SINGLE, UPPER, AND LOWER FRAG.

REPRESENT A VISIBLE-PART BOX WITH A SINGLE-BODY,
UPPER-BODY, AND LOWER-BODY FRAGMENT, RESPECTIVELY.

THE DIGITS AFTER THE OCCLUSION PATTERNS ARE THE
OCCLUSION DEGREES AS DEFINED IN [11]

maintaining the temporal continuity and consistency of the
estimated models within a sequence. Therefore, the proposed
method can also handle horizontal occlusions if effective
tracking results are obtained in the pre-processing.

F. Ablation Study
We analyze the effects of individual components in

Table VI. More specifically, we consider the GRU module in
the sequence encoder, and the phase synchronizer and attenu-
ation module in the occlusion attenuation framework. Because
the attenuation transformation A cannot exist independently of
the phase synchronization process, we did not use it when turn-
ing off the phase synchronizer. Because phase synchronization
mainly affects the pose features, we used the pose features for
the ablation experiments. Furthermore, we explored the impact
of model initialization for SMPL regression, i.e., replacing the
initialization of the feature extractor E and regressor R from
pre-trained partial HMR [21] to standard HMR [62].

Based on the results, the entire proposed method performed
better than the ablative methods, which demonstrates that all
components contributed to the proposed method. For exam-
ple, if the occlusion attenuation module was excluded, the
average rank-1 identification rate decreased from 41.2% to
32.5%, which indicates the effectiveness of the module for
occlusion handling. On the other hand, although changing
the initialization for SMPL regression slightly degraded the
performance, the effects of initialization was smaller compared
to other proposed network components.

V. DISCUSSION

A. Validating Color Effects in Model Fitting
Different from video-based occluded person Re-ID meth-

ods (e.g., [73], [74], [75]) that directly encode color and
texture as discriminative appearance features, gait recogni-
tion excludes color and texture features that are subject to
clothes change [45]. Therefore, to validate the invariance to
color and texture changes of the human model fitting in
the proposed framework, we compared the estimated SMPL
models between the original input and the corresponding
color-retouched images. Specifically, we manually blurred the
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TABLE VI

MEAN RANK-1 RATE [%] OF THE PROPOSED METHOD WITH THE POSE FEATURES FOR ABLATION EXPERIMENTS IN THE SAME OCCLUSION
PATTERN CASE. THE RESULT FOR EACH PATTERN WAS AVERAGED OVER 16 COMBINATIONS OF THE FOUR OCCLUSION RATIOS AND 16 VIEW

COMBINATIONS. E , R , P , AND A DENOTE THE FEATURE EXTRACTOR, REGRESSOR, PHASE ESTIMATION NETWORK, AND ATTENUATION

TRANSFORMATION, RESPECTIVELY

Fig. 7. Examples of the SMPL models estimated from color-retouched
images. (a) The ground-truth SMPL of the original input images. (b) Original
input images. (c) SMPL estimated from (b). (d) Color-retouched images of
(b). (e) SMPL estimated from (d). (f) Another set of color-retouched images
of (b). (g) SMPL estimated from (f). The estimated SMPL models are similar
between (c), (e), and (g).

original clothes pattern, and painted the clothes with another
color using image editing software. We experimented with
several colors different from the background to enable the
modeling fitting framework to distinguish between human and
background regions. On the other hand, model estimation may
fail if the clothes are of the same color as the background,
which is a challenging case not only for model-based methods,
but also for appearance-based tasks (e.g., segmentation step
in it).

As shown in Fig. 7, the body shape and pose estimated from
the color-retouched images are similar to the original images,
demonstrating the robustness of the human model fitting to
color and texture changes. Although estimation differences
(e.g., slight smaller stride for the color-retouched images) still
exist to some extent, this is because the color was retouched
by manual painting, which may also inevitably change the
background color around the body contour and further affect
the model estimation. By contrast, the estimation results are
almost identical between two different color-retouched images
(Figs. 7(e) and (g)). This illustrates that changes in color and
texture do not affect the model fitting framework, and thus, the
gait features extracted from the estimated human model do not
contain color and texture information, which is different from
the person Re-ID works.

B. Analysis of Learned Features
To analyze where the proposed method learns useful fea-

tures for model fitting, we used a visualization method,

Fig. 8. Grad-CAM visualizations on input images and the corresponding
raw input images. The top two examples are top occlusions, and the bottom
two are bottom occlusions.

Fig. 9. Two failure examples of the proposed method. Left: input samples
with the FB occlusion pattern; right: input samples with the FT occlusion
pattern. The occlusion ratio in the two input samples was 60%. (a) Frames
in the input sequence. (b) The ground-truth SMPL of the corresponding full-
body images. (c) SMPL estimated by the proposed method. Erroneous parts
are highlighted by red circles.

Gradient-weighted Class Activation Mapping (Grad-CAM)
[76], to show important regions in input images in Fig. 8.
Based on the heat maps, for top occlusion, our model focuses
more on stride and joints (e.g., knees, ankles, crotch, and
visible elbows) to predict possible upper body poses (e.g.,
arm swings and back bends), and may use the shape of legs
(e.g., fat or thin, leg length) to estimate the upper body shape
(e.g., fat or thin, height). Similarly, for bottom occlusion, the
shape and some joints of the upper body (e.g., shoulders,
elbows, torso shape, and visible thighs) may be more useful for
predicting the lower body shape and pose. In addition, faces
are also often in focus when bottom occlusion occurs. This is
to help estimate the full-body model including the head part,
which may be oriented differently than the torso (e.g., looking
to the other side while walking forward).

C. Limitations
Figure 9 shows some typical failure examples of the

proposed method, which were chosen from the challenging
occlusion cases, that is, fixed occlusion pattern with a large
occlusion ratio (i.e., 60%). Compared with the ground-truth,
the estimated SMPL models contained some errors. For exam-
ple, for the FB pattern, the estimated stride lengths in the
double-support phases were smaller than those shown in the
ground-truth; for the FT pattern, the estimated upper body
was relatively straight, while the ground-truth upper body was
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bent forward. This illustrates that it is still difficult to well
estimate a full human body model just from relatively small
non-occluded body parts, whereas subtle individual pose and
shape characteristics are important cues for gait recognition.
Considering that we used direct shape parameters and pose
features extracted by a simple CNN for recognition in the
proposed method, one possible way to improve the recognition
performance is to incorporate more effective feature extraction
that takes into account possible estimation errors in occluded
body regions (e.g., attention mechanism), aiming to improve
the occlusion invariance of the extracted shape and pose
features. Additionally, as mentioned in Sec. IV-D, the unified
model involving multiple occlusion patterns, occlusion ratios,
and views greatly increased the training difficulty. Considering
that the results between patterns with similar occlusion posi-
tions (i.e., top/bottom) were better than the results between
the top and bottom patterns, one possible solution is to train
a model for top and bottom occlusion separately, combined
with simple preprocessing of occlusion position detection.

In gait biomechanics studies [77], [78], it has been demon-
strated that there is a flexible neuronal coupling between
upper and lower limb muscles during human walking; how-
ever, it remains difficult to precisely define such neuronal
connections. Therefore, it becomes more difficult for human
model estimation from occluded gait video, which estimates
full-body models based only on captured upper-/lower-body
images rather than precise muscle activation data (e.g., elec-
tromyographic responses) used in biomechanics works. On the
other hand, this also implies a potential future direction for
incorporating gait biomechanics to improve performance.

Currently, 25 consecutive frames are taken as input to the
proposed network. If the input 25 frame-sequence is a few
frames (e.g., 5 or 6) less than a full gait cycle, the pro-
posed method still works thanks to the phase synchronization
process, where missing phases can be interpolated based on
existing frames in the input, as well as the GRU module
and the temporal continuity and consistency constraints in the
supervision. On the other hand, if the input is less than half a
gait cycle, phase interpolation may not work well due to large
temporal gap between starting and ending frames, which is
a limitation of the currently proposed method. In the future,
to mitigate this problem, we may consider incorporating the
idea of reconstructing a full gait cycle from limited frames,
which is often done in low frame-rate gait recognition [79],
[80] and single-image gait recognition [66].

VI. CONCLUSION

In this paper, we proposed an occlusion-aware model-
based gait recognition method to handle occlusion without a
prerequisite. Given an occluded gait sequence, we estimate the
SMPL models directly from the input images by incorporating
the occlusion attenuation module, and further use the models
to extract the shape and pose features for the recognition task.
Experiments on simulated occlusion illustrated the effective-
ness of the proposed method.

In the future, a more effective feature extraction module
is worth investigating to gain more robustness against occlu-
sion. Additionally, while we focused on artificially simulated

occlusion samples in this study, we will conduct experiments
with more realistic scenes after collecting sufficient data.
Considering real occlusion may come from various obstacles
of various shapes and colors, we can combine pedestrian
detection with object detection works as preprocessing, which
helps locate occluded regions within human bounding boxes
to mitigate the impact of the complex real-world scenes on
the proposed method including human model estimation (e.g.,
painting the detected occlusion region with a regular shape
and a color distinct from the body).
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