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EEFED: Personalized Federated Learning of
Execution&Evaluation Dual Network

for CPS Intrusion Detection
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Abstract— In the modern interconnected world, intelligent
networks and computing technologies are increasingly being
incorporated in industrial systems. However, this adoption of
advanced technology has resulted in increased cyber threats
to cyber-physical systems. Existing intrusion detection systems
are continually challenged by constantly evolving cyber threats.
Machine learning algorithms have been applied for intrusion
detection. In these techniques, a classification model is trained
by learning cyber behavior patterns. However, these models
typically require considerable high-quality datasets. Limited
attack samples are available because of the unpredictability and
constant evolution of cyber threats. To address these problems,
we propose a novel federated Execution&Evaluation dual network
framework (EEFED), which allows multiple federal participants
to personalize their local detection models undermining the
original purpose of Federated Learning. Thus, a general global
detection model was developed for collaboratively improving
the performance of a single local model against cyberattacks.
The proposed personalized update algorithm and the optimizing
backtracking parameters replacement policy effectively reduced
the negative influence of federated learning in imbalanced and
non-i.i.d distribution of data. The proposed method improved
model stability. Furthermore, extensive experiments conducted
on a network dataset in various cyber scenarios revealed that
the proposed method outperformed single model and state-of-
the-art methods.

Index Terms— Federated learning, cyber-physical system
(CPS), intrusion detection, cyber security, personalized model.

I. INTRODUCTION

CYBER-PHYSICAL systems (CPSs), a type of computing
system integrated with physical devices, are widely used

in many key areas such as manufacturing, traffic control,
energy, and safety management. As one of the major enablers
for intelligence industry, the combination of cloud computing
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and CPSs has been the general trend with several practical
cases, e.g. cloud manufacturing service platform, support
small and medium enterprises (SMEs) with close business
cooperation and SMEs supporting industrial cluster collab-
oration [1], [2], [3], [4]. With the aid of cloud computing,
more optimization methods can be created to enhance the
reliability and robustness of system, collaboration to expand
limited information and efficiency of functions for CPSs.

The rapid integration of advanced network and computing
technology has considerably expanded the range of cyber
threats. A high-profile CPS security incident occurred in
May 2021, when systems of Colonial, the largest oil pipeline
operator in the United States, were implanted with ran-
somware, which resulted in shut down of key fuel network
supplying oil to the eastern states [5]. This event revealed
that the rapid improvement of network-operating technologies
poses new challenges in maintaining the high-level security of
CPS systems. NIST Guide to ICS Security [6] revealed the
importance of cyber security for the modern industry.

Many AI-based intrusion detection methods have been
proposed to ensure CPS security [7], [8], [9]. However,
although most of the proposed algorithms exhibit satisfac-
tory performance, they are based on the assumption that the
datasets reflect the actual scenario of cyberattacks. However,
in practice, datasets with limited samples of cyberattacks are
available to users. Because of security considerations and
privacy policies, CPS users tend to not share their private
samples of multiple attack. Furthermore, the unpredictability
and rapid evolution of unknown cyberattacks increases the
difficulty of acquiring samples and retraining the models [10].
In this case, CPS users who are lack of samples and who
are relatively sufficient samples intend to gain more efficiency
through security compliance without sharing their private data.
Federated learning (FL) is a secure method for industrial-
cooperation-based CPSs which only transmits model para-
meters by encrypting, as displayed in Fig. 1. FL [11] was
proposed by Google in 2016 to collaboratively improve model
performance while keeping their data private. For example,
Huong et al. combined FL with machine learning for anom-
aly detection in industrial control systems to prove that the
FL framework can achieve superior detection accuracy and
reduce transmission link bandwidth consumption [12].

Although the use of FL is a solution for the limited
availability of cyberattack samples, other problems remain
unresolved. In 2020, Li et al. [13] proposed an FL framework
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Fig. 1. Motivation and requirement of industrial cooperation through
federated learning.

to collaboratively construct the CPS intrusion detection model.
Chatterjee et al. [14] proposed a FL-based intrusion detection
system in which federated average (FEDAVG) and noise toler-
ant are used to address tag noise. Nguyen et al. [15] used FL to
collect aggregate behavior profiles to build anomaly detection
systems. The above works introduced FL into CPS intrusion
detection and improved the detection model structure by using
the existing FL algorithm. But all of works are based on the
assumption that distributed data is evenly distributed. Preuve-
neers et al. [16] proposed to audit and hold accountable FL
federated learning model updates using blockchain technology
to prevent sample damage to model training. The differences
in collected data between various participants due to conflicts
with various cyber scenarios are not considered. Most
damages to model training are causing by such differences
but not poison samples. Such differences lead to statistical
nonindependent and identically distributed data distribution in
which the distribution quantity and probability of each sample
category on the same distributed client differs considerably.
As a major FL problem, this problem considerably affects FL
performance. Moreover, limited personalization results in the
construction of an intensive common model, which results
in a dissatisfied accuracy performance confronted with local
cyber scenarios. Our work is to enable the model to learn
selectively to minimize negative impacts rather than ignoring
or providing a one-for-all solution to these problems.

To construct a personalized model and mitigate FL inherent
inadequacies, we first designed a novel FL framework, which
was combined with our personalized optimization update algo-
rithm based on the FEDAVG [17] algorithm. This technique
allows multiple participants to collaboratively construct the
intrusion detection global model in the execution network. Fur-
thermore, the asynchronous computation of the dual network
designed in the framework was combined with the proposed
optimal backtracking replacement algorithm to ensure the sus-
tainable stability of the model and reduce the consumption of
the system in the evaluation network. The main contributions
of this paper are follows:

1. To overcome the weakness of FL, we propose a dual
Execution&Evaluation network FL framework (EEFED),
which generates both global model and personalized local
model. The Execution network obtains the ideal of updating
models without moving data, which not only ensures data
privacy, but also better absorbs sample knowledge and greatly

improves the accuracy of participants who have limited data
or no samples. The personalized local model generated by
the Evaluation network can not only learn from the global
model to detect unknown attacks, but also better adapt to
local application scenarios and improve detection accuracy.
The asynchronous computation between dual networks reduces
computing time through making using of the idle time of the
participants.

2. We proposed an optimized personalized update algorithm
and optimal backtracking replacement algorithm in EEFED.
To satisfy the personalization requirement, the Environment
Similari ty parameter was introduced in the optimized per-
sonalized update algorithm to dynamically update the model.
The personalized update algorithm alleviates the accuracy
degradation of FL performance caused by data imbalance and
the non-i.i.d distribution problem. To ensure FL stability
and sustainability, an optimal backtracking replacement policy
was implemented to ensure the optimality of every model
parameter update process.

3. We used two CPS traffic datasets and a TCP/IP traffic
dataset to conduct experiments. We demonstrated that EEFED
was effective in both local and global scenarios and could be
adapted to additional participants and unknown attacks. More-
over, compared with three state-of-the-art studies, we proved
that EEFED exhibits superior adaptability and effectiveness
to a complex cyber scenario. In the experiments, EEFED
achieved an accuracy improvement of approximately 3% over
comparable methods. Furthermore, the stability and timecost
of the proposed method were higher and lower, respectively,
than those of conventional methods. A gain of at least 13.19%
local unknown attack accuracy was achieved over the single
local model.

The rest of this paper is organized as follows: In Section 2,
we elaborate and analyze the problems of FL to be solved.
In Section 3, we review studies related to FL and intru-
sion detection and summarize the existing problems with
FL applications in building collaborative intrusion detection.
In Section 4, we introduce the system model and threat
model considered in our method. In Section 5, we describe
the proposed method in detail. In Section 6, we discuss the
experiments conducted to validate the proposed method using
two different CPSs traffic and a TCP/IP traffic datasets. Finally,
we present the conclusion in Section 8.

II. CHALLENGES OF THE FL ENVIRONMENT

Before focusing on improving FL detection performance,
we first consider the unique characteristics that distinguish
FL from other distributed training settings such as parallel
training. In FL, the distribution of both training data and
computational resources is a fundamental and fixed property
of the learning environment of each participant. Participants
have absolute control over their devices and data which means
they can stop their devices from participating in computing
and communication at any time. The following challenges are
prevalent:

1) Unbalanced and non-i.i.d data: Because the training
data on the individual clients are collected by the clients
based on their local network traffic environment and usage
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Fig. 2. Preliminary experimental result of FL with no optimized solution in
various data category distributions. (a): Comparison of the accuracy result on
SWaT dataset of non-i.i.d distribution with c = 0 and i.i.d distribution with
c = 1 in 50 rounds of communication. (b): Accuracy on the SWaT dataset of
various overlapping ratios of category in 50 rounds of communication.

patterns, both the size and distribution of the local data
categories typically vary considerably for various participants.
Fig. 2 shows that the optimal global model target of the non-
i.i.d data is far different from the local model than i.i.d data.
In Fig. 2, c is defined as the overlapping ratio of category
of all participants local data. si is defined as participant i the
number of category of its local data. The overlapping ratio of
category can be described as:

c = si ∩ s j

N�
k=1

s j

(1)

where N is the total number of all participants, and i and j
are the subscripts of any participant. Here, we set the c to
10 different levels. When c = 0, it means that any of local
dataset is of different categories. When c = 1, it means that
all local datasets of participants are distributed by i.i.d.

The characteristic of the existence of FL considerably
affects performance. Thus, the general averaged model may
be far different from the global optima, especially when the
local data distribution differs considerably. Eventually, the
converged global model exhibits lower accuracy than that of
the i.i.d setting.

2) Indeterminate number of participants: FL environ-
ments may constitute of multiple participants with various
computing capacities. Generally, in the FL for CPS detection,
not all participants may participate in each communication
round. Participants can lose their connection, run out of
battery, or seize to contribute to the collaborative training for
other reasons. Furthermore, because the quality of the collabo-
ratively learned model is determined by the combined available
data of all participants, collaborative learning environments
exhibit a natural tendency to grow or temporary tendency to
decrease.

3) Personalized requirement for multiple participants:
The optimization goal of FL is global optimality for all partic-
ipants. In this mode, the desired results cannot be achieved in
scenarios applicable to local participants. Participants should
have the ability to detect the personalized traffic of a local
scene while gaining shared experience to obtain local unknown
traffic.

Based on the aforementioned characterization of the
FL environment, an efficient distributed training method for
FL should satisfy the following requirements:

1) Obtain fast model convergence and high performance in a
small number of training rounds by sharing experiences to gain
local unknown knowledge while not sharing private local data.
The model should be robust to non-i.i.d unbalanced traffic data
both in unbalanced data size and categories.

2) Establish a more stable global model for participants
lacking or even without data.

3) Develop and improve a personalized model and fine-tune
the personalized model to confront with cyber scenarios having
local particularity of different participants.

III. RELATED WORK

In this section, we briefly review relevant studies on FL
and address the non-i.i.d data distribution challenges and
personalized requirements in FL.

FL was first proposed by Google in 2016 to collaboratively
develop a machine learning model to solve the ùdata island ì
problem by using the data in the distributed environment while
preventing data leakage. Yang et al. [11] proposed three types
of security federation learning frameworks, among which
the horizontal federation framework is widely adopted when
the datasets share the same characteristics but distinct sam-
ple space. However, a basic horizontal federated framework
cannot guarantee individual requirements of the participants.
We designed and improved the network security scenario
based on the horizontal federation learning framework. The
proposed methods are an improved version of the horizon-
tal federation learning framework for various cyber security
scenarios.

Because training data on an individual are collected by
the participants at different times based on their local cyber
scenarios and patterns of utilization, the size and category dis-
tribution of the local datasets of participants tend to vary con-
siderably. Non-i.i.d data can markedly influence FL accuracy.
To overcome this statistical challenge, McMahan et al. [17]
proposed the FEDAVG algorithm in which each participant
executes multiple SGD iterations to calculate weight updates,
rather than updating immediately after each iteration. How-
ever, Sattler et al. [22] performed preliminary experiments
and proved that the FEDAVG algorithm has limited effect.
Yao et al. [23] adopted a feature fusion operator to reduce
communication rounds and achieved a higher accuracy than
that of the FEDAVG algorithm.

Furthermore, because of the discrepancy between the
datasets distributed among the participants, the benefits of
participating in FL are debatable for participants who have
sufficient data or only encounter a single cyber scenario.
Yu et al. [24] proposed that for different tasks, the global inten-
sive model is not as accurate as a single local model trained
by itself; thus, some participants may not benefit in any way
from FL. Hanzely et al. [25] queried the utility of the global
model in which the local daily security requirements differ
considerably. Thus, training a single global model suitable for
all participants becomes difficult.

To address statistical heterogeneity and non-i.i.d distribution
challenges of data and satisfy the personalized requirements
of local participants, the global model must be personalized.
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Fig. 3. System architecture.

Masour et al. [26] clustered similar participants to train a
separate model for each group. Jiang et al. [27] fine-tuned the
initial model to a personalized model based meta learning and
indicated that optimizing the performance of the global model
alone will deteriorate subsequent personalization. To achieve
individualization and solve the problem of heterogenous data
distribution, most current methods use prior knowledge to
train models in a group. Yang et al. [28] developed a FL
framework that aggregated and updated model parameters in
an asynchronous way. The problem of personalized resource
management of UAV is solved by reinforcement learning
and the excution time of FL is shortened effectively by
asynchronous aggregation. With the increase in federated
participants, the federated system has low scalability because
of the difficulty of obtaining prior knowledge. We used meta
learning to fine-tune the model internally to overcome scal-
ability problems. Based on reinforcement learning through
the evaluation network, feedback on the evaluation results of
learning provides the system the ability to continuously learn.
Based on prior studies [13], [23], [27], [28], our methods solve
the aforementioned problems through the optimization of the
framework and improve the deployed algorithm.

IV. SYSTEM MODEL AND THREAT MODEL

In this section, we introduce the system model and threat
model considered in this manuscript.

A. System Model

As shown in Fig. 3, our system model consists of three enti-
ties: Trust Authority, cloud server and industrial participants.
• Trust Authority (TA): TA assigns public and private

keys to each participant as the basis for FL encryption.
TA would not participate in the entire implementation
process of FL until disputes arise. TA is an authoritative
third-party certification enterprise.

• Cloud server: Cloud server aggregates the model gradi-
ents uploaded by participants in current FL system and
sends the global model of the aggregation results to each
participant. During the entire implementation process
of FL, the cloud server only access to the encryption
gradients and aggregation results. The cloud server is a
mature FL service platform.

• Industrial participant: Industrial participants are responsi-
ble for building detection models based on their local data
and uploading the encryption model gradients to update
FL model.

B. Threat Model

In our consideration of FL, TA would not participate any
operations with local data or models. Further, stealing data or
key exposures is of no benefit to TA and may even have a
significant impact on the reputation of enterprise. Therefore,
we assume that TA are completely honest and trusted. Both
cloud server and industrial participants are semi-honest and
not colluding entities. They are honest in their compliance
with agreements but also curious about the private data of
other industrial participants. However, the cloud server only
processes the processed model parameters. And it is difficult
for cloud server to infer the specific individuals from lots of
participants which needs specific identification and differenti-
ation. More attacks are directed at local models. For example,
[33] demonstrate attack from insider participants which use
generative adversarial nets (GAN) to mimic prototypical sam-
ples of the other participants’ training set. Therefore, we focus
on attacks on local models and consider two threats in the
following. First is model corruption by uploading malicious
model gradients from internal participants. Second is the
possibility that external attackers could inject malicious model
gradients through communication links.

Our FL method calculates the similarity between the
updated model and the local model through personalized
update algorithm, and to some extent identifies whether non-
i.i.d difference or injected malicious model gradient exists.
If malicious participants damage the model, the update algo-
rithm will selectively update the model. Further, the proposed
Optimizing Backtracking Parameters Replacement Policy will
dynamically evaluate the model parameters of each update.
If the model parameters caused damage to the model training
of the FL system, the model parameter update is invalid. The
model parameters with better evaluation in the saved history
were selected for the next round of communication.

V. PROPOSED METHODS

In this section, we first introduce the proposed framework,
then elaborate on our proposed personalized update algorithm
and optimize backtracking parameters replacement policy.

In EEFED, multiple CPS participants are combined to
confront various cyber scenarios and gain experience to detect
local unknown attacks. To achieve this goal, we improved the
horizontal federated framework including both central global
and local personalized models.

The proposed FL framework consists of two main com-
ponents as cloud server and local FL participants. Cloud
server is defined as G, which maintains a secure channel,
and the trained global model as Mg . Suppose N local par-
ticipants are defined as L = {l1, . . . lN}, and they all want
to acquire unknown knowledge by sharing local datasets
Dk(k ∈ N) in a privacy-preserving manner to contribute a
global model Mg while obtaining local personalization models
Ml = {ml0 , . . . , mlN}. The other key notations used in this
section are summarized in Table I.

Two types of participants typically exist in a real-world FL
scenario. As the main contributor to the FL model, this type of
participants should ensure gaining experience without decline
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TABLE I

LIST OF KEY NOTATIONS

in model performance which is caused by data imbalance from
other participants. And we define this type of participants as
type I. The other type of participants which represents most
participants in the FL scenario, should ensure direct benefits
because of the lack of sample or computational power. And
we define this type of participants as type II. EEFED regulates
the local personalized models according to the requirements of
various participants. Unlike the ordinary FL framework, both
the central global and the local models for each participant are
maintained in EEFED. The performance of the personalized
local model is optimized to be superior to that of the first type
participant local models. The central global model optimizes
the goals of all participants and can be used directly by the
second type of participants.

A. Design of the Dynamic Execution&Evaluation Dual
Network Federated Framework

The proposed EEFED framework is categorized into two
parts, namely execution and evaluation networks. In the exe-
cution network, both local and global models exchange model
parameters. In the evaluation network, to reschedule the imbal-
ance of the participant data and optimize system consump-
tion, a dynamic changeable hyperparameter Environment
Similari ty calculator and model parameter replacement pol-
icy inspired by reinforcement learning are used. The dual
network FL Execution&Evaluation framework that is used
to collaboratively build personalized deep learning intrusion
detection models is displayed in the Fig. 4.

The execution and evaluation networks are synched. During
the operation of the execution network, the evaluation network
calculates the optimization indicator and evaluates model
parameter scores. The idle time of the distributed computing
participants is considered to optimize model performance
and system consumption. In the EEFED evaluation network,
the difference between each participant’s cyber scenarios are
dynamically evaluated using Environment Similari ty para-
meters. Local model rescheduling is performed with the least
parameter transmission. The complete workflow of the EEFED

Fig. 4. EEFED framework overview.

method can be described in four phases, which is given below
and in Algorithm 1.

Algorithm 1 EEFED Workflow
Input: Participants set L, data resources of all participants

Dk(k ∈ N), number of communication rounds R.
Output: The comprehensive global model Mg and N person-

alized local models mlk .
1: 1) Initialization: A secure channel is established between

the cloud server G and each lk(k ∈ N); G initializes model
settings η, L;

2: While t ≤ R do:
3: 2) Initialization for Dual Network:
4: For each lk(k ∈ N) in Execution Network do:
5: Initial model parameters wg

t , Wl
t ;

6: Update local model with local data Dk ;
7: For each lk(k ∈ N) in Evaluation Network do:
8: Extract model gradients Vt = {vl1

t , . . . , vlN
t };

9: Computes Environment Similarity Elk
t via (5)

10: and send Elk
t to Execution Network;

11: 3) Synchronous Communication Round:
12: For each lk(k ∈ N) do:
13: Upload the local model parameter Wl

t+1
�
;

14: For cloud server G do:
15: Aggregates the wg

t+1 with local weights Wl
t+1
�

16: via (6);
17: Optimizes the wg

t+1 via Algorithm 3;
18: Broadcast the final global model parameters wg

t+1;
19: For each lk(k ∈ N) do:
20: Personalized update the local model parameter
21: Wl

t+1 via (7).
22: 4) Local Optimation:
23: For each lk(k ∈ N) in Evaluation Network do:
24: Test the current local model and save results.
25: Optimizes the Wl

t+1 via Algorithm 3.
26: t ← t + 1;
27: return global model Mg and N personalized local models

mlk with parameters wg
R, Wl

R;

1) System Initialization: Secure channels are established
between cloud sever G and each participant lk in the FL exe-
cution and evaluation networks. Then, G and each L initialize
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Fig. 5. Interaction of the dual network for EEFED. Execution network: training of the local model( 2�)Aggregation of the global model( 3�) Personalized
update of the local model( 5�). Evaluation Network: similarity calculating between participants( 1�), replacement policy for the global model( 4�), replacement
policy for the local model( 6�).

parameters related to model training such as learning
rate η, loss function L, and the number of active training
participants K.

2) Initialization for the Dual Network: In the execution
network, G and each lk select the parameter set wg

t , Wl
t of the

last round t communication of the global model and the local
model. After the execution network is initialized, the selected
K participants train the local model with its own private data
resource Dk(k ∈ N).

In the evaluation network, each lk extracts model gradient
matrixes Vt = {v l1

t , . . . , v lN
t } from the initialized local models.

Each lk computes environment similarity parameters between
other participants as a balanced factor, which is proposed in
the next section, through SimCal(Vt ). Then participants send
the environment similarity parameter sets Elk

t to the execution
network.

3) Synchronous Communication Round: In the synchronous
communication phase, each lk uploads the updated local model
parameter Wl

t
�
. After G receives the parameters of round t

corresponding to local parameters, the environmental similar-
ity parameters are obtained from the evaluation network as
the balanced factor. The Globalupdate is proposed in the next
section to aggregate the local model parameters. Then, the gen-
eralized global model parameter wg

t is obtained. At this stage,
updated global model parameter wg

t is optimized through
interactions with the evaluation network and Algorithm 3,
which is proposed in the next section. Next, the replaced
final global model parameters are encrypted and broadcast to
participants, and the global model is saved. After L receives the
wg

t of round t, participants update the local model parameters
with Localupdate, which is proposed in the next section,
to personalized update local model.

4) Local Optimization: In the local optimization phase, each
lk tests the local model and details the accuracy results and
current state of the local model with the evaluation network.
Next, the current local model parameter wlk

t is optimized
through Algorithm 3. Thus, the replaced final local model
parameters are saved. The corresponding test results of the
local model of this round are fed back to the next round of
communication in the evaluation network.

The interaction process between the execution and
evaluation networks is displayed in Fig. 5. In initialization
phase, participants calculate Environment Similarity in Evalua-
tion Network after initializing models(Fig.5 1�) and the model
training process(Fig.5 2�) can be performed in Execution Net-
work simultaneously. In synchronous communication round
phase, the whole process can only be executed sequentially.
Cloud server aggregate the local models (Fig.5 3�) and opti-
mize the model by proposed replacement policy (Fig. 5 4�).
Then the model broadcast to participants to personalized
update their local models (Fig. 5 5�). In local optimization
phase, participants optimize their local models through pro-
posed replacement policy before next communication round
training start (Fig. 5 6�).

The dual network structure can use the waiting time of
local participants to calculate the balanced factor and the test
feedback of the model. The asynchronous computing setup of
the dual network ensures participant’s idle time is utilized and
improves model performance by using feedback mechanisms
and the balanced factor without affecting the execution flow
of the FL system.

Directly retraining the global model with the participant’s
local data may degrade model performance (such as slow
convergence speed, decreased accuracy, and overfitting on a
small number of data samples) [27]. To address this prob-
lem, the proposed framework incorporates personalized update
algorithms in combination with the execution and evaluation
network. We elaborate on the update algorithms used in our
framework in the next section.

B. Personalized Algorithm for FL-Update-Based FEDAVG

By sharing model parameters, FL enables participants to
contribute to a shared global model without sharing their pri-
vate data. Deep learning, with its excellent generalization and
model parameter inheritance abilities, is generally used for FL.
Suppose N participants L = {l1, . . . lN} and the corresponding
local dataset Dk(k ∈ N), nk is the number of samples available
on participant lk , n = �N

k=1 nk is the number of samples of
all participants in one round of communication, where K is
the active participant in the current round of communication.
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Therefore, the FL problem is transformed into an empirical
risk minimization [25] problem, as follows:

minw∈Rd f (w) =
N�

k=1

nk

n
Fk(w),

where Fk(w) = 1

nk

�
i∈Dk

fi (w) (2)

where the objective function f (w) of the global model can be
expressed as the aggregation of the objective function lk(w)
of the local model linearly. In this study, the objective func-
tion is defined as the cross-entropy loss in the classification
task. w, the model parameters that need to be iterative learned,
are defined as the weights and biases in the deep learning
network.

FEDAVG [17] is an improved version of the original FL
algorithm FEDSGD [29] and increases the number of local
training iteration. In the t − th round communication, each
participant performs a certain number of iterations of stochas-
tic gradient descent (SGD), calculates gk = �Fk(wt ), uploads
the gradient of the current local model, aggregates the gradient
submitted by all participants according to the size of data, and
updates the global model through the following equation:

wt ← wt−1 − η

K�
k=1

nk

n
gk (3)

FEDAVG has been proven to be accurate and robust in
image classification tasks [25], and it is critical for the FL
framework [24]. Adaptive moment estimate (ADAM) and
SGD algorithms are typically used as gradient optimizers
in FL. In the traffic classification task, we conducted a prelimi-
nary experiment to compare the ADAM with SGD algorithms.
The results revealed that the accuracy and loss of the ADAM
algorithm were higher and lower, respectively, than those of
the SGD algorithm. Therefore, in our federated framework, the
ADAM algorithm was used as an update optimization module,
as follows:

wt ← wt−1 − η
ŝ√

r̂ + δ

K�
k=1

nk

n
gk (4)

where ŝ is the corrected deviation of the first moment, r̂ is
the corrected deviation of the second moment, and δ is the
small constant used for numerical stability. For convenience,
we denote ŝ√

r̂+δ
as β in the manuscript.

Since the intrusion detection implemented in this manu-
script targeted at multi-classification tasks, the cross-entropy
function is selected in the subsequent experiments and defined
as follows:

L = − 1

N

�
i

M�
c=1

yiclog(pic) (5)

where M is the number of classification categories, yic is the
symbolic function and pic is the predicted probability of target
sample i belongs to class c.

According to Eq. 4, the FEDAVG algorithm is a fine-tuned
version of the FL model based local data. Averaging the

Fig. 6. Example of a concise process to calculate Environment Similarity
among three participants.

model parameters can easily produce a high-precision global
model, but it may damage the model’s ability of subse-
quent personalization [24]. Because participant datasets are
unevenly distributed in category and size, the local model
trained with indiscriminate updates may not respond to the
local cyber scenarios. In this case, we propose a hyperpa-
rameter called Environment Similarity, which is dynamically
calculated in each FL round. Here, Environment Similarity
is a balanced and personalization factor calculated in the
evaluation network and is added to optimize the update
algorithm.

We define the Environment Similarity parameter between
each participant as El

t = {El1
t , . . . ElN

t }, which is used to mea-
sure the difference between cyber scenarios. While Eli

t (i ∈ N)
is the set of Environment Similarity between participant li and
other participants, which is defined as Eli

t = {eli l1
t , . . . eli lN

t }.
Fig. 6 shows an example of a process to calculate Environment
Similarity. The gradient matrixes are extracted from each
round, and initial local models are flattened into vectors. Next,
the product of vectors is used to obtain the angles between
each matrix. The value of cosine similarity is obtained by
angles in [−1, 1], as follows:

e
li l j
t =

�
vli

t���vli
t

��� ,
v

l j
t���v
l j
t

���
�

(6)

where e
li l j
t is the cosine similarity of participant li to l j , vli

t

and v
l j
t are gradient matrixes, and li and l j are the indices of

each participant. In each communication round, participants
waiting for an update should calculate Environment Similarity
between the selected active training participants lk(k ∈ N).
Then the preliminary computing results of Environment
Similarity go through the Sigmoid function into range [0, 1],
as shown in Fig. 5. The proposed global and local update
function can be summarized as Eqs. 7 and 8, respectively,
and the local personalized update algorithm is described as
Algorithm 2.

Globalupdate(wg
t−1, Wli

t , Eli
t−1)

= wg
t ← wg

t−1 − ηβ

K�
k=1

nk
�

Elk
t

nK
gk (7)
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Localupdate(wli
t−1, wg

t , eli lk
t−1)

=

⎧⎪⎨
⎪⎩

wli
t ← wli

t−1 − ηβ �θ , if i ∈ K

wli
t ← wli

t−1 − ηβ
K�

k=1

nke
lk li
t

n
�

E
lk
t

�θ , if i /∈ K
(8)

where Wli
t is the linear sum of uploaded local model para-

meters, K is the number of selected active participants, and�
E

lk
t

K is the average similarity of participants extracted for
training and is used as the indicator of global model update.
The similarity of participants in this round of training is 1,
which is consistent with the use of the ADAM algorithm
directly. The other participants were updated based on their
cosine similarity to the extracted training participants.

Updating the global model alone to improve the average
goal of all participants does not provide optimum results.
To obtain superior performance, we should be specific with the
local model. In the proposed personalized update algorithm,
personal information was added without local data leakage
by extracting model gradient matrices from participants in the
evaluation network. Next, the Environment Similarity parame-
ter is dynamically calculated as the balanced and personalized
factor to optimize the models. Thus, each participant can
obtain an accurate personalized local model through a secure
method.

The FL interaction can be described as a process of lifelong
learning. The continuous joining of new participants causes
sample accumulation and facilitates the learning of unknown
local knowledge. However, indeterminate number of partici-
pants increase the fluctuation of the FL system. Furthermore,
the model cannot be converged for direct use. Although our
similarity algorithm alleviated this problem to a certain extent,
to increase system stability and improve sustainably, a model
parameter replacement policy is proposed for lifelong learning,
as detailed in the next section.

C. Optimizing Backtracking Parameters Replacement Policy

The model parameter update determines the overall direc-
tion of model iteration. If the parameter update of the model is
performed unconditionally, the FL performance with diverse
experience aggregation fluctuates considerably, which affects
the stability of the system. In FL, experience sharing can be
achieved through a certain number of communications, which
can be regarded as a series of continuous actions.

In the proposed model parameter replacement policy algo-
rithm, the model parameters updated in each round are
regarded as actions at ∈ A, the model performance as the
status st ∈ S, the score after performing the action as the
reward R(st , at ), the evaluation of the rewards within a period
of time as retribution Uat (st ), and the selection of action
for best retribution as policy P . The objective of this study
was to achieve system stability and development. The key
mechanism of the proposed policy is described in the following
subsections.

1) State of Action: As the decision-making part in FL, the
cloud server considers the convergence of the central model
and average performance of local models. The state of the

Algorithm 2 Local Personalized Update Algorithm

Input: η,L, B, ρ1, ρ2, δ, wg
t , wlk

t−1, Dk, Elk
t ;

Output: wlk
t

1: Initialization: Initialize the first and second moment vari-
ables by s = 0, r = 0; Split Dk into batches with size B;

Initialize the environment similarity by α =
K�

k=1

nk e
lk li
t

n
�

E
lk
t

;

2: repeat
3: For each batch of spli t data do
4: Computes the gradient by g← 1

B�θ wg
t L;

5: t ← t + 1;
6: Updates the biased first moment estimate by s ← ρ1s+

(1− ρ1)g;
7: Updates the biased second moment estimate by r ←

ρ2r + (1− ρ1)g 	 g;
8: Computes the bias-corrected first moment estimate by

ŝ ← s
1−ρ1

t ;
9: Computes the bias-corrected second moment estimate

by r̂ ← r
1−ρ2

t ;

10: Computes the update by �θ= −ηα ŝ√
r̂+δ

;

11: Updates the model parameters by wlk
t ← wlk

t + �θ ;
12: until T he loss f unction L converages.
13: return wlk

t ;

global part Sg
t is defined as the set of the current model and T

round history model’s performance. We choose loss results of
global model Lossg

t and average accuracy of all participants
local models Avg Accl

t to represent the t round of global model
which can be describe as follows:

sg
0 = Lossg

t , sg
1 = (Lossg

t−1, Avg Accl
t−1), . . .

sg
T = (Lossg

t−T , Avg Accl
t−T ), Sg

t = {sg
0 , sg

1 , . . . , sg
T } (9)

As the client in FL, the participants evaluate the direct per-
formance of local models. Considering the computing power
of the participants and waiting time limitation, we define the
state of the local part Sli

t (i ∈ N) as the set of the current model
and last round model’s accuracy performance Accli

t (i ∈ N) as
follows:

sli
0 = Accli

t , sli
1 = Accli

t−1,

Sli
t = {sli

0 , sli
1 } (10)

2) Score of Reward: Two types of value functions were
defined for the global and local models to evaluate the reward
of corresponding model parameters, which are defined as
Rg and Rl respectively. To simplify the calculation of the
evaluation metrics and easily distinguish the reward gained by
corresponding model parameters, we define the value function
for reward by using the scoring mode. The value function for
the global model is described in Eqs. 11 and 12. The reward
for global model Rg of current state sg

0 and corresponding
action ag

0 is calculated as follows:�
Rg(sg

0 , ag
0 ) = 1, if Lossg

t − Lossg
t−1 ≤ 0

Rg(sg
0 , ag

0 ) = −1, if Lossg
t − Lossg

t−1 > 0
(11)
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The reward for global model of history state sg
j ( j ∈ (0, T ])

and corresponding action ag
j ( j ∈ (0, T ]) is calculated as

follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rg(sg
j , ag

j ) = 1, if Lossg
t− j − Lossg

t− j−1 ≤ 0 and

Avg Accl
t− j − Avg Accl

t− j−1 ≥ 0

Rg(sg
j , ag

j ) = 0, if Lossg
t− j − Lossg

t− j−1 ≤ 0 or

Avg Accl
t− j − Avg Accl

t− j−1 ≥ 0

Rg(sg
j , ag

j ) = −1, if Lossg
t− j − Lossg

t− j−1 > 0 and

Avg Accl
t− j − Avg Accl

t− j−1 < 0

(12)

The value function for the local model is described in Eq. 13.
The reward for local model Rl of current state sli

0 (i ∈ N) and
corresponding action ali

0 (i ∈ N) is calculated as follows:�
Rl(s

li
0 , ali

0 ) = 1, if Accli
t − Accli

t−1 ≥ 0

Rl(s
li
0 , ali

0 ) = −1, if Accli
t − Accli

t−1 < 0
(13)

3) Evaluation of Retribution: The accumulation of the
reward is defined as the retribution after performing the action.
Here, γ ∈ (0, 1) is the discount factor, which decreases as
index τ increases. Through the discount factor, we regard
the history action, which requires less time to obtain better
performance and is more valuable than a future action. The
evaluation of accumulated global and local retributions is
described as Eq. 14. For state s j ( j ∈ [0, T ]), we have the
following equation:

Ua j (s0, . . . , s j ) =
j�

τ=0

γ τ R(s j−τ , a j−τ ) (14)

According to Equation (14), we assume that the retribution
of the state st of iteration round t is Uat and Uat+1 for iteration
round t+1. Uat = Uat+1 represents the minimum requirement
of policy convergence. As long as the process of iterate each
state in the same order to calculate the retribution, we can
get there must be new retribution γ t+1 R(st+1, at+1) = 0.
Therefore, the optimizing backtracking parameters replace-
ment policy only execute when the retribution convergence.
We set the round of history action for policy to optimize
is limited and the discount factor would give discounts on
past updates. If the Uat = Uat+1 , the latest parameter is
preferentially selected because of the principle of strategy
improvement.

4) Overall Policy: In the proposed Optimizing Back
T racking Parameters Replacement Policy, we select the
model parameter from replay memory and current update
according to the best accumulation of retribution. The general
process for both global and local models of Optimizing
BackTracking Parameters Replacement Policy can be
described as Algorithm 3.

The proposed optimizing backtracking replacement policy is
deployed in the evaluation network of the EEFED framework.
Through a continuous evaluation mechanism of the global and
local models in each round, the model parameters with the best

Algorithm 3 Optimizing BackTracking Parameters
Replacement Policy
Input: Model parameter set of previous T round of models
{wt − 1, . . . wt − T } and current model w�t ; Test result
feedback from evaluation network of previous T round of
models and the current model; Retribution of previous T
round of model set {Ua1, . . . UaT }.

Output: Optimized wt for t − th round
1: Obtain the state of the current action and previous T round

action by using (9) for the global model, and using (10)
for the local model;

2: Calculate the reward of the current and previous states by
using (11) and (12) for the global model, and using (13)
for the local model;

3: Calculate the retribution of current state by using (14);
4: Obtain the retribution of the previous state;
5: if Ua0 = Max(Ua0, . . . , UaT )
6: wt = w�t
7: else
8: x = index of (Max(Ua0, . . . , UaT ))
9: wt = wx

10: return wt

retribution are selected for replacement to promote the sustain-
able stability of the system. In the next section, we discuss the
experiments conducted on the proposed method.

VI. EXPERIMENT AND EVALUATION

We conducted experiments to evaluate EEFED performance.
We mainly discuss the following problems: the effectiveness
and robustness of EEFED with imbalanced data distribution,
the advantages of FL methods over conventional local methods
in detecting local unknown attacks, and the feasibility of
balancing consumption and gain.

We used two CPS datasets and a benchmark cyber dataset
for the experiments. First, we propose a non-i.i.d imbalanced
data distribution mode with no overlapping of attack categories
for cyber traffic scenarios. Based on this data distribution
mode, we compared the performance of the proposed EEFED
with some state-of-the-art studies including FEDAVG [17],
FEDFUSION [23], and the model proposed by Jiang [27].
Furthermore, we propose a novel scenario with an additional
participant to prove the robustness of proposed method. Next,
we compared the EEFED method with the conventional local
method to prove the ability of detecting unknown attacks.
Finally, we evaluated the proposed EEFED with more system
consumption metrics.

A. Experimental Settings

1) Environmental Setup: In this study, the deep learning
convolutional neural network (CNN) was used for global and
local models. The details of CNN model structures are shown
in Table II. The structure of the models was adjusted with var-
ious datasets, but the same structure was maintained between
comparison methods. The CNN model and FL framework
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TABLE II

DETAILS OF CNN MODEL STRUCTURES

were implemented with Pytorch. The experiments were con-
ducted on a Windows 10 platform with an NVDIA GeForce
RTX 3070TI GPU.

2) Datasets Description and Partitioning: We conducted
experiments on two CPS datasets and a cyber dataset. In the
first CPS dataset, SWaT (a water treatment testbed) [34] is
collected in a six-segment safe water treatment test bed, which
represents a scaled-down version of a real-world industrial
water treatment plant. SWaT contains one category of cyber
data exists under normal operations and 36 categories exist
under various cyberattacks. In the second CPS dataset, WADI
(a water supply testbed) [35] designed by the same designer
of SWaT but with different attack simulation methods, dif-
ferent treatment activity segments and different sensor data
collection methods. WADI contains one category of cyber
data exists under normal operations and 13 categories under
various cyberattacks. Therefore, conducting experiments on
two CPS datasets proved the robustness and effectiveness
of the proposed method in CPS scenarios. Because a real
industrial scenario not only confronts ICS attacks but also
conventional cyberattacks, the dataset including TCP/IP traffic
should be considered. In the TCP/IP cyber dataset NSL-KDD
[36] extracted from a real LAN, 22 attack types exist in the
dataset except the normal traffic, which can be categorized
into four broad categories, namely DoS, R2L, Probe, and U2R.
Notably, the experiments on three datasets are independent to
demonstrate the robustness of our method.

In our experiments, 60% of the dataset was for local
training, 20% for local scenario testing, and 20% for global
scenario testing. The local training and testing part of datasets
were further distributed to participants without sample over-
lapping. Each participant exhibits several attack categories that
differ from other participants to simulate the non-i.i.d distrib-
ution on data size and category. Notably, the global scenario
was tested on the same testing data, but the local scenario was
tested on testing data distributed to each participant.

3) Baseline and Comparison Methods: In this manuscript,
we compare the performance of the proposed EEFED with
some state-of-the-art studies incorporating FL. To obtain
superior performance in non-i.i.d data distribution scenar-
ios, a series of FL algorithms have been proposed. The
most advanced algorithm is FEDAVG [17], which has been
demonstrated as basic FL [15], [19], [20], [22]. Furthermore,
Yao et al. [23] proposed a feature fusion method as FEDFU-
SION aggregating the features from both the local and global
models to achieve a higher accuracy at a lesser communication
cost. To achieve faster convergence and obtain personalized

TABLE III

COMPARISON ACCURACY RESULTS OF EEFED
AND EEFED-P ON THREE DATASETS

model, Jiang et al. [27] proposed a meta learning method
as METAFL to personalize the global model for individual
participants. Further, Huang et al. [37] proposed a FL method
as FEDAMP employing attentive message passing to facilitate
similar participants to collaborate more. We improved the
basic FL framework, personalized the update algorithm, and
added a parameter replacement policy in the proposed EEFED.
Next, we compared the performance of the proposed EEFED
with aforementioned state-of-the-art studies and other recent
FL studies [38], [39], [40]. All the comparison methods and
our method are implemented with same deep learning model
structure.

B. Performance Evaluation

In multiple experiments, we used average accuracy as
the main metric for evaluating the effectiveness of methods
because we assumed that all categories of misclassification
cost the same. To this end, we plotted accuracy curves to
indicate whether overfitting exists.

To simulate non-i.i.d imbalanced data distribution conve-
niently, the number of participants K is taken as five. Based
on the previous works on FL [13], [14], [15], [16], local
training rounds cause a certain influence on accuracy. We set
the number of local training rounds as 5, 10 and 20 for the
preliminary experiments. While adjusting the FL parameters,
if the number of local training rounds is higher, a better
performance can be achieved in fewer communication rounds.
However, when local training rounds is 20 is almost the
same as 10. Therefore, based on the consideration of model
consumption, we set local training rounds as 10 in the
following experiment. Thus, we have five local training sets
Dk(k ∈ [1, 5]) for local training, and five local testing sets,
defined as LDk(k ∈ [1, 5]), for testing local scenarios, and
one global testing set, defined as GD, for testing increasingly
complex cyber scenarios.

1) Effectiveness of Personalization: The experiments are
set up to test whether the existence of personalized local
models is effective to improve the performance. We conducted
preliminary experiments to compare the performance of pro-
posed method EEFED with EEFED removing personalized
local models. EEFED removing personalized local models is
abbreviated to EEFED-P. We tested the global model using
global testing set GD. The accuracy results are shown in
the Table III.

As we can see in the Table III, the performance of EEFED is
always higher than EEFED-P in 50 rounds of communication.
This shows the superiority of the existence of personalized
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Fig. 7. Local scenario test results. Average accuracy of five participants personalized model tested on three datasets of local test data L Dk (k ∈ [1, 5]).

Fig. 8. Global scenario test results of local model: (a), (b), and (c) display the average accuracy of five participants personalized models tested on three
datasets of global test data GD.

models and personalized algorithm. In subsequent experi-
ments, we will compare EEFED with other methods in dif-
ferent scenarios.

2) Local Scenario Test: The experiments are set up to
test whether local models personalized from EEFED can
confront with common local cyber scenarios. We tested each
participant’s local models using the test set of the participants
LDk(k ∈ [1, 5]). The accuracy curves of three datasets are
displayed in Figs. 7 (a), (b), and (c) respectively.

The accuracy curves denote the average local accuracy of
the personalized models of five participants. The proposed
EEFED achieves higher accuracy in most rounds of com-
munication and more stable performance than other methods.
The proposed EEFED exhibits robustness on various datasets,
especially in the test on the NSL-KDD dataset. As displayed
in Fig. 7 (b), the feature fusion method can be used to extract
more information on data with more features in the prelimi-
nary round. However, with excessive information fusion, the
ability of the personalized model is affected. As displayed
in Fig. 7 (c), though the FEDAMP method has achieved
stable, rapid and fair performance especially in NSL-KDD
dataset, the effectiveness of the attention mechanism approach
depends largely on model structure, which is not applicable
to all participants and all datasets. Thus, EEFED generally
outperformed other methods and was effective, robust, and
stable in common local scenarios in different datasets.

3) Global Scenario Test: After proving that EEFED is sta-
ble and robust without influencing the performance in the local
scenario, experiments were performed to test whether local
models personalized from EEFED can confront with complex
global scenarios. Furthermore, the performance of the global

TABLE IV

COMPARISON ACCURACY RESULTS OF GLOBAL

MODEL ON THREE DATASETS

cloud model for the direct use of participant with limited
samples or computation ability was investigated. We tested
each participant local and global cloud models using the global
scenario testing data GD. The accuracy curves of local models
on three datasets are displayed in Figs. 8 (a), (b), and (c).
The accuracy of the global cloud model on three datasets are
displayed in Table IV.

The results of the personalized local model reveal that
EEFED exhibits higher accuracy, stability, and robustness than
other comparison methods in the complex global scenario.
As displayed in Figs. 8 (a), (b), and (c), EEFED exhibited
a steady improvement state in approximately 10–15 rounds of
communication and achieved the fastest model convergence
compared with other comparison methods. Particularly distinct
from the test on the SWaT dataset in Fig. 8 (a), the average
local accuracy of EEFED was 90.19% in the 12th round of
communication and became stable which is higher than other
comparison methods. EEFED exhibited a superior average
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Fig. 9. Comparison results of individual local model accuracy between the addition special participant scenario with six participants and scenario with five
participants tested on the NSL-KDD dataset.

local accuracy at the end with limited communication rounds:
97.55% in the 50th round on WADI, which is 0.77% higher
than the baseline FEDAVG, 94.42% in the 70th round on
SWaT, which is 1.4% higher than the baseline FEDAVG,
and 93.32% in the 70th round on NSL-KDD, which is 1.5%
higher than the baseline FEDAVG. The average accuracy
curves of the personalized local model of EEFED exhibit
more stability with less drastic fluctuation. Especially in the
test on NSL-KDD displayed in Fig. 8 (c), the average local
accuracy curve of EEFED revealed higher performance than
other comparison methods.

In addition to the aforementioned experiments, we con-
ducted experiments to evaluate the performance of each
participant-built global FL model using distributed data
resources as well as the performance of an ideal central data
model built by a central entity using all the data resources.
The larger the performance close to the ideal model, the more
effective the method is. In order to display the comparison
results more efficiently, we added more latest studies with
only one global model setting. Table IV shows the accuracy
results of the global FL model for participants with limited
samples and low computation power for direct use. And the
accuracy results of ideal central data model are also included.
The EEFED global model proved effective and stable and thus
suitable for direct use by participants. The proposed model
achieved satisfactory performance compared with the ideal
central data model.

In summary, because of the proposed personalized update
algorithm in EEFED, the personalized local model exhibited
superior performance both in common local and complex
global scenarios. The improvement satisfied the personal-
ized requirements in a secure manner without deteriorat-
ing the ability of detecting common local attacks. Because
of the proposed Optimizing Backtracking Parameters
Replacement Policy, both the personalized local model and
cloud global model exhibited superior stability and sustain-
ability. The improvement directly benefits participants with
limited samples or low computing power.

4) Additional Special Participant Scenario Test: To test
whether EEFED can be used when indeterminate number of
participants exists in the global scenario, an additional partic-
ipant was added along with the existing five participants. For
convenient data partition, we experimented on this scenario on
the NSL-KDD dataset, which provides a test dataset with large
distinction and completely unknown attacks. We distributed
the test dataset to the additional participant to emphasize its
specialty. The additional participant 6 with relatively sufficient
data, can be regarded as type I of participants mentioned in
section 3. The existing five participants can all be regarded
as type II of participants in varying degrees. We compared
the performance of individual personalized models between
the former scenario with five participants and the additional
scenario. The results are displayed in Fig. 9 (a) and Fig. 9 (b).

As displayed in Fig. 9 (a) and Fig. 9 (b), an additional par-
ticipant considerably increased performance fluctuation. Some
participants, such as participants 1 and 5, achieved improved
performance, whereas some participants, such as participant 2,
exhibited performance degradation. Thus, a tendency to con-
tinue to improve the performance appears. Notably, EEFED
could still achieve satisfactory accuracy and stability compared
with other methods.

The addition of participants with large data difference in
the FL has been a topic of research. Such local data are
regarded to be low-quality data because of similarities with
other participant data. This phenomenon is against the original
intention of FL to share knowledge to secure local unknown
knowledge. In this study, the proposed personalized update
algorithm ensured each participant updated the local model but
not completely abandoned it. FL is considered as a lifelong
learning process. Therefore, a stable performance improve-
ment provides possibility and time for a model to digest
new knowledge. The proposed Optimizing Backtracking
Parameters Replacement Policy strives for maintaining
the stability of FL performance to a certain extent. The two
proposed methods deployed in the dual network framework
EEFED sync to form a virtuous circle. Next, we discuss
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Fig. 10. Comparison results of EEFED and a single model of participant model accuracy of local known and local unknown attacks and the distribution of
the datasets in each participant local dataset.

whether sharing knowledge through FL improves unknown
attack detection performance.

5) Evaluation on Local Unknown Attacks: In complex cyber
scenarios, the speed of collecting and labeling attack samples
does not satisfy the requirement, making it difficult to detect
local unknown attacks. We compared the performance of local
models personalized from EEFED to a single local model built
with distributed local data in term of detecting local unknown

attacks. We extracted the fusion matrixes of the classification
results of the global scenario test and single local model. The
evaluation results are displayed in Figs. 10 (a), (b), and (c); the
left part of each subfigure displays the accuracy of detecting
known and unknown attacks for local participant, and the right
part shows the details of the distribution of local participants’
data. For example, Participant 1 in SWAT dataset test contains
7 attacks samples from segment 2, 3 and 4 with labels 1-7.
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TABLE V

ACCURACY FOR THE EXPERIMENTS OF THE GLOBAL CLOUD MODEL IN THE GLOBAL SCENARIO

And participant 2 in SWAT dataset test contains another
7 attacks samples from segment 3, 4, 5 and 6 with
labels 9-15. Similarly, the attack samples of other participants
are in different categories and occur in different segments of
CPS industrial processes.

As displayed in Figs. 10 (a), (b), and (c), the unsatisfactory
performance of detecting local unknown attacks adversely
influences the performance of the single local model. The
local personalized models obtained by EEFED to detect local
unknown attacks outperformed the local single model. The
EEFED improvement in unknown attack accuracy depends on
the local data size, distribution, categories, and similarity with
most participant’s local data. For example, Participant 5 tested
on the NSL-KDD dataset exhibited the largest improvement
compared with the local single model, with an increase of
45.14% compared with other participants. It can be seen that
participants with the smallest quantity of local data and the
attack samples can greatly improve their detection ability of
unknown attacks through EEFED. In contrast, participant 2
has the least effect. Probably because participant 2 exhibited
the most similar quantity of local dataset attack categories
to the global scenario and participant 2 had all Neptune
samples under the DoS category, which is the main category
of DoS attacks. A previous study [10] revealed that DoS
attacks exhibited the highest success rate of transfer detection
against Probe and R2L attacks. Therefore, participants having
sufficiently high transferable attack classification experience
and sufficiently more quantity of data are most likely to
achieve an acceptable results of unknown attacks with a single
local model.

Fig. 10 reveals that EEFED slightly improves the accuracy
of known attacks in the global data test. Because of FL
breaks resulting in I solated Data I sland in complex cyber
scenarios, EEFED also provides more experience with the
varied types of local known attacks.

6) Evaluation of Performance and Consumption: In this
section, we used the previously obtained result of the global
scenario to evaluate the system performance of the four FL
methods. The balance between performance and consump-
tion was evaluated. The results are summarized in Table V.
EEFED increases the calculation and transmission process
of Environment Similari ty, which revealed higher time
consumption and storage space than that of baseline FEDAVG
[17]. FEDFUSION [23] as a feature fusion method requires
transferring the extracted features, training the fusion operator,
and increasing the waiting time of the frozen model. Jiang’s
METAFL [27] method based on meta learning required more

TABLE VI

COMPUTATIONAL ANALYSIS ON THREE DATASETS

OF EEFED IN PER COMMUNICATION ROUND

time to select the personalized mode but fine-tuned the global
model more precisely than FEDAVG did. FEDAMP [37]
method employs federated attentive message passing which
increases a bit the calculation and transmission process as well.

As presented in Table V, EEFED achieved higher accuracy
in the limited communication round than the other four meth-
ods. FEDFUSION achieved satisfactory performance on the
WADI dataset, the time consumption was higher than those
of other four methods. In EEFED, an evaluation network was
added to evaluate the reward of update parameters and provide
feedback to the execution network. FEDAMP achieved fast
and acceptable performance on local personalized models. But
its effect depends heavily on the participants’ model and its
global model perform less well in CPS detection scenarios.
Although EEFED increased the transmission and calculation
time of limited parameters, it reduced the communication
rounds under the condition of achieving a certain accuracy.
With a small increase in parameter transmission and elapsed
time of Execution&Evalutaion, EEFED achieved better
performance with fewer rounds of communication. Therefore,
for the total consumption of the system, EEFED exhibited the
best comprehensive performance.

7) Analysis of Computational Complexity of Proposed
Method: In this section, we evaluate the computational com-
plexity of our proposed method. We use the number of
computational operations and generated parameters to analyze
the complexity. As shown in Table VI, the computational oper-
ations and generated parameters of CNN model are determined
by the number of active training participants in each round and
model structure. The number of operations and parameters for
the execution network is determined by the model structure
and the number of participants updating the model. There-
fore, these two kinds of operations and parameters are the
same as the basic FL method. However, in order to improve
the performance of FL, we added the evaluation network.
The computational operation and parameters increased by
the evaluation network mainly depends on the calculation of
Environmental Similarity and the calculation and comparison
in the parameter backtracking replacement policy. As shown
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in Table VI, EEFED increased 1.48%,0.28% and 2.81% of
the computation operations compared to basis FL in the three
datasets respectively and increased 3.30%,0.99% and 3.80%
of the parameters in the three datasets respectively. It can be
shown that EEFED achieves more efficient results at the cost
of a small increase in the amount of computational operations.

VII. CONCLUSION

A novel FL framework, EEFED, was proposed for
developing secure intrusion detection models collaboratively.
To secure local private data, EEFED constructs the global
model for participants who have limited samples or low
computing ability. The proposed personalized update algo-
rithm was deployed in EEFED to personalize the local model
for each participant. Participants could detect local unknown
cyberattacks. Furthermore, the personalized local model from
EEFED exhibited superior performance when confronted with
a common local scenario. The proposed update algorithm
alleviated the non-i.i.d. statistical unbalanced data distribution
challenges inherent in FL. Furthermore, personalized models
can be adapted to individual participant scenarios. To achieve
the sustainable stability of the system, the proposed optimizing
backtracking parameters replacement policy cooperated with
the dual Execution&Evaluation network framework. The
proposed replacement policy could be used to adjust model
parameters asynchronously based on the evaluation results
obtained in the idle time of the participants. Thus, the model
performance improved steadily and sustainably. Furthermore,
our experiments proved that EEFED exhibited higher speed,
stability, and effectiveness than baseline FEDAVG. We deter-
mined that FL exhibited effective performance for local
unknown knowledge. With the advantages of solving I solated
Data I sland problem and obtaining mutual benefit, FL can
be applied in more key areas in the future. In a future study,
we aim to obtain privacy protection based on the attacks from
transmission of FL to cloud server and optimization of privacy
preserving methods.
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[18] J. Konečný, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
2016, arXiv:1610.02527.
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