
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022 2835

Playing With Blocks: Toward Re-Usable Deep
Learning Models for Side-Channel

Profiled Attacks
Servio Paguada , Lejla Batina , Senior Member, IEEE, Ileana Buhan, and Igor Armendariz

Abstract— This paper introduces a deep learning modular
network for side-channel analysis. Our approach features a
deep learning architecture with the capability to exchange parts
(modules) with other neural networks. We aim to introduce
reusable trained modules into side-channel analysis instead of
building architectures from scratch for each evaluation, reducing
the body of work. Our experiments demonstrate that our archi-
tecture feasibly assesses a side-channel evaluation, suggesting
that learning transferability is possible using the architecture
we propose in this paper.

Index Terms— Side-channel analysis, modular network, deep
learning, autoencoders, transfer learning.

I. INTRODUCTION

IN THE side-channel analysis (SCA) field of research, deep
learning models (DL models) are powerful tools to evalu-

ate the implementation of secure algorithms. Unfortunately,
despite the significant accomplishments achieved using deep
learning models, many challenges remain. One of those chal-
lenges is mitigating the difficulty in designing architectures
for each evaluation’s scenario.

When evaluating a secure implementation of an IoT device,
for example, it is challenging to develop a deep learning
classifier that feasibly assesses the resilience of the devices.
Electronic noise as countermeasure and desynchronization are
specific challenges during the evaluation. Indeed, a noisy
signal intrinsically suggests dealing with high-dimensional
signals. For instance, targeting a modern System-on-Chip
with high clock frequencies requires increasing the sampling
resolution. Consequently, the side-channel information needed
for the evaluation contains leakage traces with several irrele-
vant features (sample points). Then, noise filters and feature

Manuscript received 2 March 2022; revised 27 June 2022; accepted 25 July
2022. Date of publication 3 August 2022; date of current version 12 August
2022. This work was supported in part by the Ayudas Cervera para Centros
Tecnológicos grant of the Spanish Centre for the Development of Industrial
Technology (CDTI) through the Project EGIDA under Grant CER-20191012;
and in part by the Basque Country Government through the ELKARTEK
Program, Project REMEDY-Real Time Control And Embedded Security
under Grant KK-2021/00091. The associate editor coordinating the review
of this manuscript and approving it for publication was Prof. Nele Mentens.
(Corresponding author: Servio Paguada.)

Servio Paguada is with the Digital Security Group, Radboud University,
6525 EC Nijmegen, The Netherlands, and also with the IKERLAN Research
Center, Arrasate, 20500 Basque, Spain (e-mail: serviopaguada@gmail.com).

Lejla Batina and Ileana Buhan are with the Digital Security Group, Radboud
University, 6525 EC Nijmegen, The Netherlands.

Igor Armendariz is with the IKERLAN Research Center, Arrasate,
20500 Basque, Spain.

Digital Object Identifier 10.1109/TIFS.2022.3196273

engineering as pre-processing steps are being considered as
tools to deal with those challenges [1]–[6].

This paper proposes a new technique to overcome these
challenges and introduces a novel approach that uses a deep
learning classifier whose part of its architecture allows it
to be re-used in other models that use the same method.
By featuring exchangeable modules, we can re-use networks
for different SCA evaluations, reducing the body of work
of deriving models each time. The suggested architecture
comprises coupled modules. Those modules trains to deal
with a specific task of the SCA evaluation. For instance, the
classification task and the pre-processing task. We call this
approach DL-SCA modular network. In particular, the two
modules we suggest in this paper are an autoencoder and a
convolution-based classifier.

An autoencoder can effectively deal with the prob-
lem of high dimensionality and the problem of noise.
An autoencoder comprises two parts; the encoder and
decoder. The encoder has a last layer known as embedding,
where high-dimensional leakage traces are transformed into
lower-dimensional leakage traces. Because of it, autoencoders
are learning algorithms used in pre-processing steps i.e. feature
extraction [2], [7]–[9].

The classifier module serves two objectives; (i) the classifi-
cation required for the SCA evaluation and (ii) regularizing the
autoencoder. As we explain in further sections of this paper,
autoencoders might fail to compress the samples taken from
the device under test. Hence, penalizing it with a regularization
might correct it toward better performance.

Our experiment uses datasets with desynchronization and
countermeasures. After proving the effectiveness of the
DL-SCA modular network, we perform a second set of
experiments where we exchange the modules between modular
networks. Our results show that transferability is feasible and
applicable to side-channel analysis. The contributions of this
paper are as follows:

• We introduce an approach called DL-SCA modular
network and deep learning architecture featuring the
exchange of modules through models. We provide the
implementation details of the architecture and the hyper-
parameters to take into account in the design to avoid
pitfalls.

• We present a training strategy based on the sharing weight
technique and early stopping policy for seamless adoption
of our approach in current SCA evaluations.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4665-7457
https://orcid.org/0000-0003-0727-3573
https://orcid.org/0000-0002-5055-455X

2836 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

• We elaborate experiments that demonstrate the effec-
tiveness of re-using modules through modular networks,
using different “sharing” protocols based on non-trainable
layers.

The rest of the paper is organized as follows: Sect. II details
theoretical aspects of the topics used for this work. Related
works are discussed in Sect. III. Sect. IV provides information
about datasets used in the experiments. Sect. V discuss the
main contribution of this paper. Sect. VI and Sect. VII discuss
the experiments. While, Sect. VIII concludes the paper.

II. BACKGROUND

A. Profiled Attack

A side-channel attack requires a leakage model to attack the
sensitive information contained in a target device. A leakage
model refers to a function (that we denote as δ) that models
the leak of sensitive information. Using a leakage model,
an adversary can steal the secret key from a device that
implements a cryptographic algorithm. The equation (1) is a
leakage model used to attack a cryptographic implementation
of AES,1 this leakage model is called the identity leakage
model. The variable p is a plaintext and k is a secret key
candidate that takes values from a keyspace K = {0, . . . 255}
which correspond to 1 byte.

δ = S-box(p ⊕ k) (1)

The adversary measures the power consumption2 when the
device inputs the AES algorithm with p random values taken
from K drawing several leakage traces (a.k.a power traces).
We can define a leakage trace ti ∈ X , and its dimension being
denoted as dim(ti) = m. The X set comprises all the leakage
traces drawn from the device. With enough leakage traces,
the adversary can find a correlation between the power con-
sumption and the inputs p of the leakage model; consequently,
he can infer the secret key k∗ by searching through all the
secret key candidates and sorting them using their likelihood.

Overall, there are two categories of side-channel attacks
(non-profiled attacks and profiled attacks). We have described
the common parts found in them. In this paper, we focus on
profiled side-channel attacks. A profiled side-channel attack
uses classifiers to distinguish the outputs of a leakage model.
The attack splits into two phases; (i) to train a classifier C (pro-
filing phase) and (ii) to perform the attack (attack phase). The
first phase involves applying the corresponding leakage model
to a clone device (a.k.a. profile device). The adversary trains a
classifier using a set of profiling traces (X) collected from the
clone device. Once the classifier is ready, the adversary obtains
another set of traces, but this time from the target device. The
classifier process the attack traces to compute probabilities
during the attack phase. Then a key recovery process takes
place using an algorithm called guessing entropy, which we
will briefly explain.

It is well-known that coming up with a classifier for SCA
evaluation is not straightforward. Designing a classifier for

1Or any other cryptographic primitive with non-linear functions.
2Being the most traditional measurement used in SCA, others are Electro-

magnetic Emanation, heat, sound, and several more.

each assessment is tricky as each cryptographic implementa-
tion and device requires a specific trained model. This paper’s
motivation is to reduce the work of building a classifier for
each SCA evaluation. We propose a deep learning-based model
whose architecture allows the model to exchange classifiers
with other deep learning models to conduct SCA evaluation
over a different device. In the following, we address the
necessary aspects that support the theory of this approach.

B. Deep Learning-Based Profiled Attacks

A deep learning classifier outputs a vector of probabilities
fed into the guessing entropy (GE) metric to compute the rank
of the key (k∗). We denote a deep learning model Cθδ for pro-
filed attacks as a classifier C with a vector of hyperparameters
θ ∈ Rn . The classifiers aims to distinguish leakage traces
labeled using a leakage model δ. Having labeled leakage traces
means that our learning approach is supervised learning [10]
which represents one of the most feasible ways to leverage
the learning of a deep learning classifier. Despite several deep
learning architectures, convolutional neural networks (CNNs)
based models are the preferred architecture to use in profiled
attacks. The convolutional part plays an essential role when
leakage traces are desynchronized. The deep learning model
we propose uses a specific type of convolution, called dilated
convolution [11] for boosting the feature extraction capability
of the layer (see sub-section II-E).

C. Guessing Entropy (GE)

GE is the average rank of the correct key byte value k∗
in a key guessing vector g, over all the set K of key can-
didates k [12]. Formally denoted as GE = rankk∗(g), where
rankk(g) ∈ {0, . . . , |K| − 1}, and the key guessing vector is
defined as: g = sor t (E[logPr(ti ; Cθδ)]). Pr(ti ; Cθδ) is the input
vector of probabilities pi, j from a classifier (usually aimed
for key recovery task) given a leakage trace ti . After applying
the expectation E per multiples experiments of Pr, the sort
function orders the resultant vector g in decreasing order of
probabilities. The element g0 ∈ g corresponds to the most
likely key candidate, while g|K|−1 ∈ g is the less likely one.

D. Feature Extraction

A feature extraction process applies a transformation (linear
or non-linear) to a space of observations resulting in a new
space mapped by the transformation. Formally, given profiling
set X (N,m) where N is the number of leakage traces in
the set, and each trace comprises m features (or sample
points). Feature extraction applies a function � to the profiling
set X mapping a new profiling set Y whose elements have
fewer dimensions of the corresponding elements in X ; pre-
cisely, � is an application such as � : X �−→ Y , and X ∈
Rm, Y ∈ Rn such that n < m.

This transformation aims to derive new features (Y) from
leveraging the performance of a classifier, for instance. Theo-
retically, features in Y contain the “transformed” information
that best represents the ground truth of X . In the SCA case,
it is the leakage of sensitive information. Simply put, the

PAGUADA et al.: PLAYING WITH BLOCKS: TOWARD Re-USABLE DL MODELS FOR SIDE-CHANNEL PROFILED ATTACKS 2837

Fig. 1. Typically autoencoders are symmetrical models, meaning that both parts of the encoder and decoder resemble each other. During training, the encoder
trains to code the original signal to a Latent space, ideally this code from the features that better represent the characteristic of the original signal. From there,
the decoder re-constructs as much as possible the original signal.

intensity of the valuable information gets emphasized while
the irrelevant information (non-correlated information) has
little to no influence in the new space. However, developing
a transformation � that certainly highlights the side-channel
information is not straightforward. A transformation that goes
wrong discards a lot of helpful information, and it hap-
pens when � cannot keep the variance that distinguishes
a leakage trace from another. Consequently, Y is made of
several collapsed traces becoming useless for classification
purposes. In section V, we will discuss how our proposed
method implements regularization to avoid transformations
that collapse the Y space.

Function � can be inferred directly from X . For instance,
Principal Components Analysis (PCA) [13] or Linear Dis-
criminant Analysis (LDA) [14] are two algorithms to build
linear base � functions for feature extraction. However, PCA
and LDA are highly sensitive to desynchronization because
of their “per feature” process, meaning they find a relation
by correlating the same positioning feature through samples.
So that, when the samples have a spatial disruption, the
relation gets reduced, requiring more samples.

E. Autoencoders

An autoencoder is a learning algorithm useful to infer �.
Contrary to PCA and LDA, an autoencoder can infer a
non-linear transformation due to the non-linear activation
functions in its architecture. Moreover, when the autoencoder
architecture consists of convolution layers, it handles the
spatial disruption better than PCA and LDA.

An autoencoder consists of two parts; (i) an encoder ϕ
and (ii) a decoder ψ . The encoder outputs a new trace t�i with
dim(t�i) < dim(ti) (see expression (2)). At the other side of
the autoencoder, the decoder tries to reconstruct ti but it is
able to re-build an approximation t̃i only; consequently, one
can understand that an autoencoder learns by minimizing the
difference between ti and t̃i (as we will see in expression 5).

t�i = ϕ(ti), t̃i = ψ(t�i) (2)

From a functional perspective, the encoder maps X to
an embedding space denoted by Z (i.e. ϕ : X �→ Z), the
embedding Z is usually called latent space, code, latent code
or hidden code. Further, Z is the space result of the transfor-
mation applied by the encoder. According to the discussion in
the previous sub-section, Z is the resultant space of a feature
extraction process i.e. Y . Likewise, the decoder maps Z to X̃
(i.e. ψ : Z �→ X̃), where t̃ ∈ X̃ . The expressions (3a) and (3b)

formalize these two mappings;

Z = ϕ(X) = σ(Wenc X + b) (3a)

X̃ = ψ(Z) = σ(Wdec Z + b�) (3b)

Function σ denoted a non-linear activation function.
An encoder is parameterized by a weight matrix Wenc ∈ Rm×n

and a bias vector b ∈ Rn ; likewise, a decoder is parameterized
by a weight matrix Wdec ∈ Rn×m and a bias vector b� ∈ Rm

(see Fig. 1). Training an autoencoder implies finding a vector
of parameters θ = (Wenc,Wdec, b, b�) that minimize a loss
function L such as;

� = min
θ

L(t, t̃) = min
θ

L(t, ψ(ϕ(t))) (4)

As we said, autoencoder learns by minimizing the difference
between ti and t̃i ; so that, the Mean Square Error (MSE) is a
loss function commonly used;

LMSE = L(t, t̃) = 1

m

m�
i=1

(t[i] − t̃[i])2 (5)

1) Convolution Layer Architecture: Autoencoders are built
using either fully connected layers or convolutional layers.
The latter makes the autoencoder inherit the spatial invariant
robustness property, which is useful when leakage traces
are desynchronized; our autoencoder uses dilated convolution
layers.

A convolution layer consists of kernels that essentially
are matrices; then, to dilate a convolution layer consists of
inserting zeros into its kernels, meaning to separate the matri-
ces’ elements using zeros, expanding their receptive field.3

According to [11] a dilated kernel allows convolutions base
classifiers to combine spread features that contain the leakage
information, at the same time, avoiding irrelevant features that
might lay in between.

Let us consider the expression in (6) showing a regular
convolution where a leakage trace ti is multiplied by the
kernel q whose length is denoted by lq. If we displace the
leakage trace ti from right to left, a single feature t of ti is
multiplied lq times. If lq is large, then t might be excessively
used during the operation. According to [15], this excessive
use of t may decrease the convolution effectiveness. Notice
that if lq increases aiming to use further spread features, it also
increases the times t is used. By using dilated convolutions,

3Called it to those kernel elements which are not zero.

2838 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

one can avoid this downside.

(t � q)[t] =
∞�

n=−∞
t[t − n] · q[t]

= · · ·
+ (t[t − ni] · q[ni])+ (t[t − ni+1] · q[ni+1])� �� �

lq times

+ · · · (6)

The expression in (7) shows a dilated kernel with one zero
inserted between its elements. Notice that when the convolu-
tion is performed, the feature t alternates being multiplied or
not by a zero; consequently, it reduces the times the operation
uses the feature t .

(t � qd)[t] =
∞�

n=−∞
t[t − n] · qd [t]

= · · · +
(t[t − ni] · 0)+
(t[t − ni+1] · qd [ni+1])+
(t[t − ni+2] · 0)+
(t[t − ni+3] · qd [ni+3])

⎫⎪⎪⎬
⎪⎪⎭

l̂q times

+ · · · (7)

The hyperparameter dilatation rate (dr) controls the number
of zeros inserted. When a kernel is dilated, its receptive field
is modified by the relation.

l̂q = lq + (lq − 1)(dr − 1) (8)

The kernel’s receptive field consists of those elements that are
active, in other words, elements that are non-zero. In this way,
the receptive field increases by modifying either the length of
the kernel or the dilatation rate, letting the user regularize the
convolution operation.

III. RELATED WORK

While few works in SCA discuss an approach of architecture
transferability with reusable modules, several works have
discussed feature reduction for SCA. Cagli et al. in [16]–[18]
discussed application of traditional feature reduction methods
using PCA [13], LDA [14], and its kernel base variant Kernel
PCA and KDA. Picek et al. [19] published results using same
methods as [17]. However, authors in [19] used an approach
that combined feature extraction and feature selection; pre-
cisely, PCA and LDA combined with SOST and SOSD, they
called it hybrid feature selection methods.

Intrinsically, any work that uses the same feature reduction
techniques aims to downsample the signal by taking it to a new
space (latent space). However, these approaches consider only
linear base feature reduction disregarding the more powerful
non-linear version of it; it is likely, that this situation may be a
consequence of advertising CNNs as built-in feature extraction
deep learning models. Hence, very few works have addressed
non-linear methods for SCA evaluation. One of those few
works are, for instance, Paguada et al. [2], and Yang et al. [20];
similar to us, those works used autoencoders toward inferring
a non-linear function to pre-process leakage traces in a fashion
that overcome linear methods.

TABLE I

CARDINALITIES OF THE ASCAD DATASETS. SINCE THEIR GOAL IS
TO BE USED FOR BENCHMARKING PROFILED ATTACKS THE

LEAKAGE TRACES ARE GROUPED IN PROFILING_TRACES

AND THE ATTACK_TRACES SETS

While those two works are the most related to use, we state
that, to the best of our knowledge, no previous work on
side-channel analysis suggests a deep learning approach
with the capability to share modules through different neural
networks.

IV. ASCAD FIXED AND RANDOM DATASETS

ASCAD dataset4 was introduced in [21]. The leakage traces
were collected from an Atmega8515 8-bit microcontroller. The
cryptographic algorithm implemented is AES-128 protected
using masking countermeasure [22], [23].

The dataset has two versions, traces collected with fixed
key encryption k f and traces collected with random key
encryption kr (plaintext is always random), while the target
byte of the secret key in both cases is the third one. We named
these versions as ASCAD f and ASCADr respectively. Due
to these key characteristics, ASCADr is more challenging
and more realistic than ASCAD f when conducting an SCA
evaluation over them. TABLE I contains a summary of main
characteristics of these two datasets.

Leakage traces in each version are desynchronized accord-
ing to a threshold value that moves traces around the x-axis,
being frequently used threshold values of 0, 50, and 100.
Then, to make clear distinctions when exchanging the modules
between modular networks, we add to the name the threshold
value, for instance, ASCADr desync50.

V. DL-SCA MODULAR NETWORK ARCHITECTURE

This section explains the details of the architecture of the
DL-SCA modular network; further, we describe the strategy
to train it.

Since we are using autoencoders our suggested DL-SCA
modular network comprises three main modules; an encoder,
a decoder, and a classifier (see Fig. 2). We group the encoder
and decoder into a single module called a downsampler.
The downsampler has two goals; (i) to extract meaningful
features by reducing the noise in the leakage traces and
(ii) to downsample them. Now, the classifier is in charge of
evaluating those extracted features as a classification problem.
It is worth mentioning that once the DL-SCA modular network
is trained, we discard the decoder of the downsampler, and
we only use the encoder and classifier to perform the SCA
evaluation. Due to this, we elaborate a training strategy to
monitor only those two parts of the model; we will elaborate
this later in this section.

4This dataset is publicly available at https://github.com/ANSSI-FR/ASCAD

PAGUADA et al.: PLAYING WITH BLOCKS: TOWARD Re-USABLE DL MODELS FOR SIDE-CHANNEL PROFILED ATTACKS 2839

Fig. 2. DL-SCA modular network architecture illustration. The encoder, with its embedding layer and the classifier ensemble the final model used to perform
the attack.

To achieve compatibility with as many classifiers as pos-
sible, we should use a downsampler to fix the classifier
input. Precisely, we downsample the leakage traces to a fixed
length. Then, when we re-use the classifier with another
downsampler, this latter fixes its output to match the classifier’s
input. By doing this, we fulfill the first step of re-usability.
We demonstrate this in the experimental section of this paper.

Training a DL-SCA modular network architecture requires
a loss function for the decoder and another for the classifier.
The decoder’s loss function (LM S E) was discussed in the
sub-section II-E. We introduce the classifier loss function.

A. Classifier Loss Function

A classifier outputs a vector of probabilities used as input
for the guessing entropy. To output this vector of probabilities,
it must be trained using a cross-entropy (C E) loss function.
In supervised profiled side-channel attacks, the leakage traces
are labeled by the output of a leakage model (see expres-
sion (1)). Further, the classifier learns by minimizing its error
in predicting the label of each trace. To explain this better, let
us consider the expression (9). The space K̂ corresponds to a
batch of key candidates or labels, each one of the labels in K̂
corresponds to a trace. For instance, let us take δi ∈ K̂ as one
of those labels, we say that δi is the ground truth while σ(δi)
is the output score a neural network computed.5

LC E = −
K̂�
i

δi · log(σ (δi)) (9)

During training, this loss function computes the error in the
prediction made by the classifier. Consequently, the weights of
the classifier are updated toward achieving a prediction with
the highest accuracy possible.

Clearly, we use a classifier with the same purpose as in
a common profiled side-channel evaluation. However, the
additional purpose in using a classifier in our approach is
to add a regularization term to the downsampler. Precisely,
the supervised classifier adds an extra penalization to the
downsampler with regard to the feature space Y leading the
whole network toward better performance. The arrangement
depicted in Fig. 2 shows how both the classifier and decoder

5Often σ is the softmax activation function for multi-class classification.

attach to the encoder. When training the modular network,
the classifier feed-forwards the downsampled traces from the
embedding and back-forwards its loss which penalizes the
encoder. Meanwhile, the decoder trains its reconstruction
capability that additionally penalizes the encoder. These two
losses resemble a double voting system that the encoder uses
to leverage learning.

Now, notice that because the activation functions are non-
linear, the classifier acts as a non-linear regularizer for the
embedding space. The decoder takes the regularization effect
as small perturbations in that space. Those perturbations
challenge the decoder in reconstructing the original traces as
it understands that those are small errors in its reconstruc-
tion. Contrary to the approach in [2], training jointly the
autoencoder and the classifier produces an embedding likely
to learn relevant features. Due to the regularization factor, less
correlated features are emphasized over highly correlated noisy
features.

B. Analogy With Linear Regularized Autoencoder

Autoencoders aim to be imperfect models. Hence, when
training an autoencoder, we must avoid an architecture that
ends with a model called “identity function”. When this
phenomenon happens, the autoencoder will copy the data
from the input to the output. One way to avoid this is
to use an under-complete architecture, which refers to the
embedding we discussed earlier. Another workaround is to
build deep autoencoders; the deeper an autoencoder is, the
stronger it becomes to avoid ending as an identity function.
However, building a deep autoencoder carelessly might reduce
the network performance as the model becomes too complex
for the input data. Hence, we cannot rely on it repeatedly.

Applying a regularizer to the latent space is another alter-
native. Regularized autoencoder proved to overcome regular
autoencoders when leveraging meaningful features in the
embedding. A linear regularizer applies to the latent space an
extra penalization. The embedding neurons fire the additional
penalization to the decoder added to its loss function as small
epsilons of error. The decoder advocates the disruption by
training its neurons to reconstruct the original data, ignoring
that it is being fooled by the regularizer, so its learning is
actually “imperfect” [10].

2840 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

A drawback of using a linear regularizer is precisely
its nature. A linear regularizer applies the penalization lin-
early to all the embedding neurons. No criterion controls
the magnitude each embedding neuron should receive based
on its contribution to the decoder loss function. Eventually,
the decoder starts copying the input, becoming an identity
function.

In a DL-SCA modular network, the classifier acts as
a regularizer. Nonetheless, the regularization is based on
non-linearity since the classifier is a non-linear function. The
non-linear activation functions used in the classifier receive
their input from the embedding neurons. Once the classifier
does the back-propagation, it applies an epsilon value accord-
ing to the embedding neurons’ contribution to the classifica-
tion. Once again, the decoder interprets those as small errors
but now facing a more advanced regularization.

Both linear and non-linear regularizations require a value
to control the intensity of the penalization. For our non-linear
regularizer, this value is a parameter γ ∈ [0, 1] ⊂ R multiplied
by the loss function’s result. A zero gamma value will cancel
the classifier’s influence on the embedded space. In contrast,
a large value (bigger than 1) will magnify the influence of
the classifier. It will disable the reconstruction as this latter
could not deal with the classifier’s penalization added to the
embedding.

C. DL-SCA Modular Network Loss Function

Now that we know the two losses required by our architec-
ture as well as the hyperparameter to control their intensity,
we have the expression (10) that defines the loss function for
a DL-SCA modular network architecture.

LDL-SCA modular network = γ · LC E + ω · LMSE (10)

Notice that there is an ω parameter for LMSE that works
exactly as γ . We fix ω = 1, because our goal is to control the
regularization and not the reconstruction.

D. Training Strategy for a DL-SCA Modular Network

Recently, authors from [24] published an early stopping
framework to monitor the state of a deep learning model
during its training preventing it from getting overfit/underfit.
Overfitting/underfitting is a phenomenon that might happen
during training. It represents the state when a deep learning
network cannot generalize beyond its training set.

The framework computes the guessing entropy at the end
of each epoch, basing the stopping criterion on the whole
guessing entropy vector. The framework considers when
the guessing entropy converges and how many traces keep
the guessing entropy in the state of convergence (more details
can be found in the original paper [24]). We use this early
stopping to elaborate a training strategy for our DL-SCA
modular network.

1) Training Strategy: We know that an early stopping
framework stops the training of a deep learning model when it
meets conditions established using a metric, e.g., the model’s
accuracy. Typically, these frameworks evaluate the entire
model. In contrast, we need the framework to consider just the

Fig. 3. The truncated model shares weights with the DL-SCA modular
network; while the latter is training, the former updates his weights. The
early stopping framework uses the truncated model to compute the guessing
entropy at the end of each epoch, and it stops the training when it meets the
conditions.

encoder and the classifier as they are the parts used in the SCA
evaluation. The framework from [24] is a “typical” framework,
so it monitors the whole deep learning model which is not
helpful for our architecture.

We modified the suggested framework to receive a truncated
model which comprises just the modules of interest (encoder
and classifier). To apply this modification is effortless when
using the weight sharing technique [25]. In this technique, two
or more neural networks share references to some specific
layers. All those networks can update the weights of those
layers. In our case, the original networks update the weights,
while the truncated model monitors the state (of those weights)
of the encoder and classifier using the early stopping frame-
work. We set a truncated model (see Fig. 3) to reference those
modules and to be only evaluated (not trained) by the early
stopping framework. Then, the training process stops when
the encoder generates features that make the classifier achieve
the expected performance. In other words, a guessing entropy
performance that converges to zero. The modification works
since the framework uses the truncated model as the predictor,
and its output serves as the input to compute the guessing
entropy.

In the experimental results section of this paper, we show
the training strategy outcome using surface plots. Notice that
we did not stop the network training, so the surface plots
correspond to the entire training process. Our goal is to show
that an SCA-DL modular network does not rely on an early
stopping framework.

VI. EXPERIMENTAL RESULTS OF TRAINING MODULES

In this section, we discuss the results of using our proposed
approach over ASCAD datasets — ASCAD f all desync and
ASCADr all desync.

We organize the experimental results as two different use
cases where a DL-SCA modular network analyzes; (i) ASCAD
fixed key dataset and (ii) ASCAD random key dataset.
We accomplish two goals with these uses cases; (i) to show
the feasibility when an SCA evaluation uses our architecture to
attack a specific dataset, and (ii) to create a scenario where we

PAGUADA et al.: PLAYING WITH BLOCKS: TOWARD Re-USABLE DL MODELS FOR SIDE-CHANNEL PROFILED ATTACKS 2841

TABLE II

DL-SCA MODULAR NETWORK ARCHITECTURE TO USE IN EXPERIMENTS

WITH ASCAD f ALL DESYNCHRONIZATIONS LEVELS

demonstrate the feasibility of sharing modules. The strategy
is applicable to real evaluations; the derived modular network
evaluates a first dataset; consequently, a second modular net-
work could evaluate another dataset borrowing a module from
a previous modular network. In our case, our experiments use
two datasets that share the same source of data; precisely, both
datasets were composed with leakage traces from the same
microcontroller (Atmega8515 8-bit). We aim for performing
experiments when the source of data is uncommon between
both datasets as future works. Notice, we used the same model
for all levels of desynchronization, meaning that additional
effort in finding neural network architectures for specific noisy
scenarios is not required.

A. ASCAD f all desync Use Case

The TABLE II summarizes the hyperparameters of the
modular network architecture to evaluate ASCAD f alldesync.

1) Network’s Architecture: We set the architecture by fol-
lowing the discussion in Sect. II-E; the first convolutional
block uses dilated convolutions to avoid any useless features
that might reduce the model’s performance.6 We dilate the
convolutions at the first convolutional block because it is where
we deal with the original version of the trace. Further, we add
convolutional blocks to the encoder following the rules applied
for VGG [26] base deep learning architectures.7

The decoder mirrors the encoder, as our downsampler
uses symmetric autoencoders. For the decoder to up-sample,
namely to reconstruct the actual length of the trace, it uses
transpose convolutions. As known, matrix multiplication is
not commutative, and we cannot achieve the same output in
respective convolutional blocks. Consequently, we have to tune
the hyperparameters in the decoder’s convolution layers. For
instance, let us take the third encoder’s convolutional block
that uses a stride value of 5, its corresponding decoder’s
transpose convolutional block is the first one but it uses stride
value of 7. By doing this, we fix the output of the decoder to
meet the original trace dimension.

2) Latent Space Hyperparameters: With regard to latent
space units and γ value. We perform a grid search for the
best number of units in the latent space, using the values
100, 200, 300, 400, and 560. We know that the parameter γ
relates strictly to the number of latent units. Consequently,
to find the value of γ we create combinations using the latent
space values and values of γ as {1e−3, 1e−6, 1e−9}. The best
combinations was 300, and 1e−3 for latent space units and
the γ parameter, respectively. Regarding the classifier module,
we are only interested in its classification performance and not
too much in its ability to filter out unnecessary features of the
leakage traces, so we use a shallow architecture since it will
deal with already filtered features.

3) Training Strategy and Results: To train a modular net-
work, we use the early stopping framework from [24]. To show
that our suggested architecture does not rely on the framework,
we did not stop the training after the mentioned framework
finds the best learning state. Further, we will use this out-
come in the next section to discuss the result of the reusing
modules experiment. Fig. 4 depicts the training process when
our modular network evaluates ASCAD f datasets. As we
expected, the training outcome differs according to the level of
desynchronization; regardless, our modular network achieved
a zero convergent guessing entropy for all desynchronization
levels. A view of the attack performance is depicted in Fig. 5.

B. ASCADr all desync Use Case

1) Network’s Architecture: Regarding this dataset, our strat-
egy was to keep the same modular network as the previous use
case to reuse as much as possible an already worked model
and see how it performs. After experimenting, we noticed that
the downsampler module required an additional convolutional
block —identical to the third convolutional block of the

6Interested readers can look at [2] for a comparison between normal
convolution and dilated convolution applied to autoencoders.

7VGG base architectures increase their number of kernels in convolutional
layers by the power of 2.

2842 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 4. The training process of the modular network for ASCAD f datasets.
The surface represents the values of the guessing entropy during a chosen
number of epochs. Stopping condition success GE=0.

Fig. 5. Guessing entropy over ASCAD f all levels of desynchronization.

decoder— without pooling layer. Consequently, the decoder
should also have the corresponding transpose convolutional
block.

2) Latent Space Hyperparameters, Training Strategy, and
Results: We keep the same classifier as in the previous use
case because we have the same number of latent units. In our

Fig. 6. Guessing entropy over ASCADr all levels of desynchronization.

Fig. 7. The training process of the modular network for ASCADr datasets.
The surface represents the values of the guessing entropy during a chosen
number of epochs.

particular case, to keep the same latent units is convenient
because we aim for exchanging a trained classifier in the
following experiments to evaluate the modular re-usability.
Fig. 7 depicts the training process of guessing entropy by
epochs for ASCADr dataset. In this case, we observe that
the performance of our modular network slightly decreases,

PAGUADA et al.: PLAYING WITH BLOCKS: TOWARD Re-USABLE DL MODELS FOR SIDE-CHANNEL PROFILED ATTACKS 2843

Fig. 8. Best guessing entropy convergence comparison. Some references do
not report result from all the ASCAD desynchronizations.

which is expected since the dataset has a higher level of noise
than the previous. Even though, we achieve good guessing
entropy convergence as depicts Fig. 6. Finally, we compare
our experimental results with previously reported results over
the same datasets. Fig. 8 gathers this information.

VII. MODULE RE-USABILITY EXPERIMENTAL RESULTS

This section presents the results of module re-usability.
We show that another non-trained DL-SCA modular network
can reuse the modules of a DL-SCA modular network. We use
the DL-SCA-based module networks trained in the previous
section.

A. Analyzing Transferability

We aim to show how “transferable” is the knowledge of a
classifier module. We have six modular networks —meaning
six classifiers— trained with three different datasets —three on
ASCAD f and three on ASCADr . Further, due to the number
of latent units (300) we used, all classifiers are interchangeable
without performing additional downsampling operations to fix
their inputs. For our experiments, we took the classifier from
the DL-SCA modular network of ASCAD f desync50 to share
with all the downsampler from ASCADr . We considered it
sufficient for proving our claim about “module re-usability”.
We chose ASCAD f �−→ ASCADr direction because it
represents the complex direction —from fixed key to random
key.

We inspect the transferability of the ASCAD f desync50
classifier by conducting a similarity analysis using gradient
activation operations. In particular, we use heatmaps and gradi-
ent visualization to compare how the neurons’ of the classifier
are activated by the data outputted from the downsamplers.

TABLE III

SUMMARY OF THE SIMILARITY ANALYSIS BETWEEN ASCAD f desync50
CLASSIFIER AND ASCADr all desync CLASSIFIERS

Fig. 9. Comparison between heatmaps of the ASCAD f desync50 clas-
sifier and classifiers from all the ASCADr datasets. Notice how
ASCAD f desync50 heatmap resembles all other heatmaps. It indicates that
ASCAD f desync50 classifier’s convolutional layer fires its neurons according
the data received.

We perform this analysis by locking specific layers of
the classifier to identify how transferable those layers are.
Precisely, we choose convolutional block (Conv) layers and
fully connected block (FC) layers and lock them by turns to
evaluate them separately. A heatmap allows us to inspect the
convolutional layers of the classifier, while gradient visualiza-
tion helps us analyze how both Conv and FC perform with
the different datasets.

TABLE III summarizes the similarity analysis we are
going to perform using the classifier ASCAD f desync50,
the ASCADr datasets, and the gradient activation operations.
Fig. 9 depicts the first convolutional layer heatmaps from
ASCAD f desync50 classifier and ASCADr all desync clas-
sifiers (desync0, desync50, and desync100).

2844 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 10. Comparison between gradient activation per sample of the
ASCAD f desync50 classifier and classifiers from all the ASCADr alldesync.

For these particular experiments, all ASCADr classifiers
share similarities with the ASCAD f desync50 classifier in how
their convolutional layer neurons’ get stimulated. According
to our assumptions, it indicates that the weights of those
layers might be transferable. This claim is experimentally
demonstrated later in the final experiments.

Although the magnitude of the ASCAD f desync50 classi-
fier’s heatmap is higher than any other heatmap from ASCADr

classifiers, it does not represent a drawback to the transferabil-
ity. We could have gotten the same magnitudes if we had nor-
malized the weights applying constraints in the architecture.
The important aspect of the heatmap is to show from which
points of the leakage trace (in this case, a compressed leakage
trace) a distinguisher influences its classification. As shown
in Fig. 9, the points in the respective plots (i.e. ASCAD f

desync50 and ASCADr desync0, ASCAD f desync50 and
ASCADr desync50, and so on) have the highest magnitude
in the same corresponding points.

We use gradient visualization to inspect the classifiers’
fully connected block (FC). The output of that operation
indicates which input features are the most meaningful for
the classification. The gradient visualization uses the loss
function of a trained classifier to conduct backpropagation,
collecting the information about those neurons that emphasize
the performance. Further, when it reaches the input layer,
it points out which features are connected to those neurons,
indicating the meaningful features [27]–[29]. Fig. 10 depicts
the result of gradient visualization operation.

TABLE IV

COMBINATION OF SHARING PROTOCOLS USED

FOR THE ASCAD f desync50 CLASSIFIER

Notice that gradient visualization shows less intuition than
heatmap. As a workaround, we apply a Dynamic Time Warp-
ing (DTW) [30] to visualize the similarities between gradient
visualization signals.

According to this experiment, two phenomena happen;
(i) the meaningful features are displaced according to each
classifier, or/and (ii) the meaningful features are less intense
in magnitude. These phenomena could represent an issue. For
instance, let us take the ASCADr desync0 classifier, notice
the displacement because the ASCAD f desync50 interprets
that the meaningful features localize differently. Further, those
features have an even lower magnitude in contrast to those
supposedly being the lowest (see points from 0 to 30 in Fig. 10
top plot).

This analysis gives us the intuition that we will need to
retrain the classifier. Nevertheless, the reader might remember
that the classifier is just a part of a bigger model. The down-
sampler will leverage its learning according to the limitation
imposed by the classifier.

B. Playing With Blocks

Let us suppose we have trained a DL-SCA modular network
using a former dataset; then, we have the opportunity to
evaluate another dataset. We could use the classifier module of
the first network to evaluate it. In this hypothetical scenario,
the first dataset is played by ASCAD f and the second one
by the ASCADr dataset.

To experimentally evaluate if we need to re-train some or
all parts of the classifier, we perform experiments locking the
blocks of the classifier to restrict them from getting trained.
In the previous sub-section, we inspected the blocks of the
classifier (Conv and FC), and we observed some similarities
in its neurons’ weights. Now, we are going to evaluate the
performance of the whole modular network when its classifier
module has the following locks:

• Convolutional block
• Fully-connected block
• Both blocks
We will refer to these as “sharing protocols”. We find out

which could be the best sharing protocol for these particular
modular networks by locking the blocks. TABLE IV summa-
rizes the combination of locks and dataset where the shared
classifier will be used.

PAGUADA et al.: PLAYING WITH BLOCKS: TOWARD Re-USABLE DL MODELS FOR SIDE-CHANNEL PROFILED ATTACKS 2845

Fig. 11. The training results of the knowledge transferability experiments. Through the columns lies the levels of desynctronization [0, 50, 100]; while
through the rows, lies the different block lock cases —ConvLock, BothLock, and FCLock.

We previously said that the chosen classifier ASCAD f

desync50 will tackle a more complex dataset —the
ASCADr desync100. Now, by evaluating the ASCADr

desync0 dataset; then, we will cover the scenario where the
shared classifier comes from a more complex dataset. Still,
bear in mind that it is in terms of desynchronization because
it does not come from a complex dataset in terms of its secret
key’s nature —from random to fixed key, for example. So,
we rate the “experience” of the classifier as medium level of
experience.

Due to space constraints, we did not perform an
inter-classifier sharing and a no-block lock sharing protocol;
furthermore, we claim that the sharings addressed in our
experiments represent the difficult one, being enough to prove
our contribution. However, we let those experiments and
further combinations of sharing protocol for future works.
Fig. 11 depicts the training process of all chosen sharing
protocols. It is worthy of mentioning that we did not change
the loss intensity parameter (γ), reducing the effort in tuning
the modular network.

For this experiments, we trained the modular networks using
the early stopping framework from [24]. Contrary we did in
the previous section, we do stop the training when the policy

finds out the best learning state. We can now know the number
of epochs required to achieve good performance.

Generally, all sharing protocols perform well if we contrast
the training process of Fig. 11 and Fig. 5. Nevertheless, the
sharing protocols that worked best are the fully-connected
block, both blocks, and the convolutional block lock.

Observe that for the fully-connected block lock, ASCADr

desync0 has a convergent guessing entropy after 9 epochs,
ASCADr desync50 at 65 epochs, and ASCADr

desync100 took the whole training process (100 epochs);
even thought, it achieves good performance. Both blocks
lock cases seem to require more epoch or the convergence is
roughly achieved, ASCADr desync0 and ASCADr desync50,
for instance. Finally, we notice that the convolutional block
lock converges after several more epochs than the previous
locks. In this case, ASCADr desync100 did not converge
within 1 000 leakage traces. We summarize in Fig. 12 the
best guessing entropy from all combination of locks.

C. Discussion

Using a shared classifier instead of a non-trained modular
network, we have reduced the training time and the effort
in tuning hyperparameters while evaluating the leakage of

2846 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 12. Best guessing entropy results from all sharing protocols.

a dataset with good results. Since we locked some blocks
and the whole classifier, we reduced the number of neurons to
train; consequently, the training time is reduced since the num-
ber of operations per neuron is less than a non-trained modular
network. As we do not have to tune the hyperparameter of a
classifier, then we do not spend time in it. Further, we are
confident that the classifier has a high probability of working
since it already has previous “experience”. We demonstrated
the latter by actually achieving good results.

Clearly, some initial effort has to be made, for instance,
to tune the latent space and losses intensity hyperparameters.
Coming up with an initial deep learning modular network
could be challenging, but it is an equivalent effort in finding
several small deep learning models for different datasets.
Finally, when saying that a classifier has previous experience,
we do not claim that it will work flawlessly. As we said, the
experience of a shared classifier represents a neurons’ weights
initializer. So instead of randomly initializing the weights
using any well-known function —he uniform, for instance.
We start from a state leveraged by a previous worked learning.
We have demonstrated, experimentally, that it has good results.

VIII. CONCLUSION

We introduced the DL-SCA modular network approach to
conducting SCA evaluation reusing modules from previously
trained modular networks. A DL-SCA modular network con-
sists of two main modules; a downsampler and a classifier.
We demonstrate that modules from a modular network can
be detached and attached to other modular networks and
conduct an efficient SCA evaluation. The strategy is to use
a classifier with good performance and reuse it to conduct
another evaluation in a different dataset.

Our experiments demonstrate that it is not mandatory to
re-train a classifier module to effectively evaluate the aimed
dataset, regardless of whether the source classifier has been
trained with a dataset with a lower noise level. We sys-
tematically lock the layers of the classifier to restrict them
from getting trained, replicating different sharing protocols to
evaluate the effectiveness of our approach.

As future work, we aim to work with more sharing protocols
and improve the performance of our modular network in
future works by using other types of deep learning architecture
for the downsampler. Furthermore, we look for applying
methodologies that might help tune the hyperparameters of
a modular network. We plan to perform experiments using
more datasets. Also, experiments using more combinations of
shared classifiers. For instance, a shared classifier trained in a
more complex dataset than the target dataset.

REFERENCES

[1] S. Picek, A. Heuser, A. Jovic, L. Batina, and A. Legay, “The secrets
of profiling for side-channel analysis: Feature selection matters,” IACR
Cryptol. ePrint Arch., vol. 2017, p. 1110, Jan. 2017.

[2] S. Paguada, L. Batina, and I. Armendariz, “Toward practical
autoencoder-based side-channel analysis evaluations,” Comput. Netw.,
vol. 196, Sep. 2021, Art. no. 108230.

[3] L. Wu and S. Picek, “Remove some noise: On pre-processing of side-
channel measurements with autoencoders,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, no. 4, pp. 389–415, Aug. 2020.

[4] M. Naila, L. Papachristodoulou, A. P. Fournaris, L. Batina, and
Y. Kong, “Machine-learning assisted side-channel attacks on RNS ECC
implementations using hybrid feature engineering,” in Proc. 13th Int.
Workshop Constructive Side-Channel Anal. Secure Design (COSADE),
in Lecture Notes in Computer Science, Leuven, Belgium, vol. 13211,
J. Balasch and C. O’Flynn, Eds. Springer, Apr. 2022, pp. 3–28, doi:
10.1007/978-3-030-99766-3_1.

[5] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing
the Secrets of Smart Cards, vol. 31. Cham, Switzerland: Springer, 2008.

[6] N. Mukhtar and Y. Kong, “On features suitable for power analysis—
Filtering the contributing features for symmetric key recovery,” in Proc.
6th Int. Symp. Digit. Forensic Secur. (ISDFS), Mar. 2018, pp. 1–6.

[7] N. Mukhtar, A. P. Fournaris, T. M. Khan, C. Dimopoulos, and Y. Kong,
“Improved hybrid approach for side-channel analysis using efficient con-
volutional neural network and dimensionality reduction,” IEEE Access,
vol. 8, pp. 184298–184311, 2020.

[8] M. O. Choudary and M. G. Kuhn, “Efficient, portable template attacks,”
IEEE Trans. Inf. Forensics Security, vol. 13, no. 2, pp. 490–501,
Feb. 2018.

[9] L. Lerman, R. Poussier, O. Markowitch, and F.-X. Standaert, “Template
attacks versus machine learning revisited and the curse of dimensionality
in side-channel analysis: Extended version,” J. Cryptograph. Eng., vol. 8,
no. 4, pp. 301–313, Apr. 2017.

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-
bridge, MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

[11] S. Paguada and I. Armendariz, “The forgotten hyperparameter: Introduc-
ing dilated convolution for boosting CNN-based side-channel attacks,”
in Proc. Int. Conf. Appl. Cryptogr. Netw. Secur. Cham, Switzerland:
Springer, 2020, pp. 217–236.

[12] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” in Advances in
Cryptology EUROCRYPT 2009, A. Joux, Ed. Berlin, Germany: Springer,
2009, pp. 443–461.

[13] G. H. Dunteman, Principal Components Analysis, no. 69. Newbury Park,
CA, USA: Sage, 1989.

[14] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[15] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for effi-
cient CNN architectures in profiling attacks,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, pp. 1–36, Nov. 2019.

http://dx.doi.org/10.1007/978-3-030-99766-3_1

PAGUADA et al.: PLAYING WITH BLOCKS: TOWARD Re-USABLE DL MODELS FOR SIDE-CHANNEL PROFILED ATTACKS 2847

[16] E. Cagli, C. Dumas, and E. Prouff, “Kernel discriminant analysis
for information extraction in the presence of masking,” in Proc. Int.
Conf. Smart Card Res. Adv. Appl. Cham, Switzerland: Springer, 2016,
pp. 1–22.

[17] E. Cagli, C. Dumas, and E. Prouff, “Enhancing dimensionality reduction
methods for side-channel attacks,” in Proc. Int. Conf. Smart Card Res.
Adv. Appl. Cham, Switzerland: Springer, 2015, pp. 15–33.

[18] E. Cagli, “Feature extraction for side-channel attacks,” Ph.D. disserta-
tion, Sorbonne Univ., Informatique, Télécommunications, Électronique
De Paris, Paris, France, 2018.

[19] S. Picek, A. Heuser, A. Jovic, and L. Batina, “A systematic evaluation
of profiling through focused feature selection,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 27, no. 2, pp. 2802–2815, Sep. 2019.

[20] G. Yang, H. Li, J. Ming, and Y. Zhou, “CDAE: Towards empowering
denoising in sidechannel analysis,” in Proc. Int. Conf. Inf. Commun.
Secur., 2020, pp. 269–286.

[21] E. Prouff, R. Strullu, R. Benadjila, E. Cagli, and C. Canovas, “Study
of deep learning techniques for side-channel analysis and introduction
to ASCAD database,” IACR Cryptol. ePrint Arch., vol. 2018, p. 53,
Jan. 2018.

[22] J. Daemen and V. Rijmen, The Design of Rijndael. Berlin, Germany:
Springer-Verlag, 2002.

[23] J. Blömer, J. Guajardo, and V. Krummel, “Provably secure masking of
AES,” in Selected Areas in Cryptography. Berlin, Germany: Springer,
2004, pp. 69–83.

[24] S. Paguada, L. Batina, I. Buhan, and I. Armendariz, “Being patient and
persistent: Optimizing an early stopping strategy for deep learning in
profiled attacks,” 2021, arXiv:2111.14416.

[25] D. Zhang, H. Wang, M. Figueiredo, and L. Balzano, “Learning to
share: Simultaneous parameter tying and sparsification in deep learn-
ing,” in Proc. Int. Conf. Learn. Represent., 2018. [Online]. Available:
https://openreview.net/forum?id=rypT3fb0b

[26] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[27] L. Masure, C. Dumas, and E. Prouff, “Gradient visualization for general
characterization in profiling attacks,” in Proc. Int. Workshop Construc-
tive Side-Channel Anal. Secure Design. Cham, Switzerland: Springer,
2019, pp. 145–167.

[28] A. Shrikumar, P. Greenside, A. Shcherbina, and A. Kundaje, “Not just
a black box: Learning important features through propagating activation
differences,” 2016, arXiv:1605.01713.

[29] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Towards better
understanding of gradient-based attribution methods for deep neural
networks,” 2017, arXiv:1711.06104.

[30] M. Müller, “Dynamic time warping,” in Information Retrieval for Music
and Motion. Springer, 2007, pp. 69–84, doi: 10.1007/978-3-540-74048-
3_4.

Servio Paguada received the B.Eng. degree in sys-
tem engineering and the B.Sc. degree in mathematics
with informatics applications from the Universidad
Nacional Autonoma de Honduras in 2011, the mas-
ter’s degree in information technology management
from Universidad Tecnologica Centroamericana in
2014, and the M.Sc. degree in embedded systems
from Mondragon University, Basque, Spain, in 2016.
He is currently pursuing the Ph.D. degree with
Radboud University, Nijmegen, The Netherlands.
He is also part of the Ph.D. Students Group,

IKERLAN Technology Research Centre, Arrasate-Mondragón, Gipuzkoa,
Spain. His current research interest includes optimizing profiled side-channel
analysis applied to embedded systems.

Lejla Batina (Senior Member, IEEE) received the
Ph.D. degree from KU Leuven, Belgium, in 2005.
She has studied a Professional Doctorate in engi-
neering at the Eindhoven University of Technology
in 2001. From 2001 to 2003, she worked as a
Cryptographer at SafeNet B.V. She is currently a
Professor in embedded systems security at Radboud
University, Nijmegen, The Netherlands. Her research
group consists of 12 researchers and eight Ph.D.
students have graduated under her supervision. She
is an Editorial Board Member of top journals in

Security, IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECU-
RITY, and ACM Transactions on Embedded Computing Systems.

Ileana Buhan received the Ph.D. from Twente Uni-
versity, The Netherlands, in 2008. She is currently
an Assistant Professor of cryptographic engineering
at the Digital Security Group, Radboud University.
She spent over ten years in the security evaluation
industry. Her research interest focuses on develop-
ing tools to help designers of cryptographic algo-
rithms develop secure implementations. She serves
on several program committees of conferences that
specialized on hardware security, such as TCHES,
COSADE, CARDIS, FDTC, DATE, and SPACE.

She was also appointed as the General Chair of CHES 2018 and the Program
Co-Chair for CARDIS 2022.

Igor Armendariz received the Ph.D. degree from
the University of the Basque Country in 1996.
He had a Scholarship Award by CEIT from 1991
to 1994, as a Researcher at the IKERLAN Techno-
logical Research Center, from 1995 to 1996. He was
a Professor in computer science at the University of
the Basque Country from 1996 to 2000. He began
working at the Communication Department, IKER-
LAN Research Center, from 2000 to 2015. He is cur-
rently a Researcher at the IKERLAN Technological
Research Center within the Cybersecurity in Embed-

ded Systems Team. He is also part of the Industrial Cybersecurity Department,
IKERLAN Research Center. He is a Cybersecurity Specialist Acc. to
IEC-62443-4-1 and IEC-62443-4-2 (TÜV Rheinland, Components) #230/19.
He is co-supervising a couple of Ph.D. students working with side-channel
attacks and countermeasures.

http://dx.doi.org/10.1007/978-3-540-74048-3_4
http://dx.doi.org/10.1007/978-3-540-74048-3_4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

