
2628 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

ELM: A Low-Latency and Scalable
Memory Encryption Scheme

Akiko Inoue , Kazuhiko Minematsu , Maya Oda, Rei Ueno, Member, IEEE,
and Naofumi Homma, Senior Member, IEEE

Abstract— Memory encryption (ME) with authentication is
becoming a key security feature of modern processors, as evident
by the adoption of ME by Intel’s SGX. Recently ME is actively
studied from the viewpoint of system architecture. This paper
studies ME from the viewpoint of symmetric-key cryptographic
designs, with a primal focus on latency. A significant progress
in such a direction can be observed in the SGX Integrity Tree
(SIT). Using a variant of AES-GCM, SIT achieves an excellent
latency. However, it has a scalability issue. By carefully examining
SIT, we develop a new ME scheme dubbed ELM. We present an
AES-based instantiation of ELM, and show that ELM significantly
reduces latency from SIT for large memories, and achieves the
provable security and equivalent hardware-protected (on-chip)
area. We also present preliminary hardware implementations to
substantiate our advantages.

Index Terms— Memory encryption, authentication tree,
latency, mode of operations, SGX.

I. INTRODUCTION

MEMORY encryption (ME) is widely deployed in mod-
ern systems. One typical method is sector-wise encryp-

tion, such as XTS [1]. A sector-wise encryption scheme
encrypts each memory sector in an independent and deter-
ministic manner, keeping the key in an on-chip area that is
physically protected. This prevents passive off-line attacks that
try to extract the data from the storage devices, such as [2].
However, it is vulnerable against active online attacks and
replay attacks, for the lack of authenticity. If we encrypt each
sector using a nonce-based authenticated encryption (AE) and
store all the nonces on-chip, it would protect against active
attacks. However, this would incur a linear increase of the on-
chip area. This is usually impractical because the on-chip area
is much more expensive than the main (off-chip) memory.

A well-known classical solution to this problem is to use
an authentication tree, also known as a Merkle Hash Tree [3].
By involving any unit memory data in the tree computation
and storing the root hash value on-chip, the authenticity

Manuscript received 6 December 2021; revised 20 April 2022;
accepted 9 June 2022. Date of publication 4 July 2022; date of current
version 22 July 2022. This work was supported in part by the Japan Science
and Technology Agency (JST) Core Research for Evolutional Science and
Technology (CREST), Japan, under Grant JPMJCR19K5. The associate editor
coordinating the review of this manuscript and approving it for publication
was Prof. Nele Mentens. (Corresponding author: Akiko Inoue.)

Akiko Inoue is with NEC, Kawasaki 211-8666, Japan (e-mail:
a_inoue@nec.com).

Kazuhiko Minematsu is with NEC, Kawasaki 211-8666, Japan, and also
with the Graduate School of Environment and Information Sciences, Yoko-
hama National University, Kanagawa 240-8501, Japan.

Maya Oda, Rei Ueno, and Naofumi Homma are with the Research Institute
of Electrical Communication, Tohoku University, Sendai 980-8577, Japan.

Digital Object Identifier 10.1109/TIFS.2022.3188146

against active attacks is guaranteed. Instead of a crypto-
graphic hash function, we can use a message authentication
code (MAC) to build an authentication tree. Merkle tree and
its (possibly MAC-based) improvements, such as PAT [4]
and Bonsai Tree [5], provide an authenticity of the whole
memory with a constant on-chip memory overhead, at the
cost of a logarithmic computation overhead for read and write
operations. Confidentiality of the memory can be achieved by
an additional encryption mechanism, e.g., by TEC-tree [6].
Due to the increasing threat of active attacks, tree-based ME
schemes, often with a confidentiality mechanism, are gradually
being deployed in real-world memory/storage systems. One
prominent example is Intel’s SGX [7], [8], which adopts a
variant of PAT with a dedicated AES-based MAC and AE
schemes similar to GMAC and GCM [9]. The widespread use
of non-volatile memory also pushes the need for ME with
authenticity.

Latency is a very important criterion for the aforementioned
ME schemes. Merkle tree can reduce latency by utilizing
parallelizability, but only for verification (read operation).
When one wants to replace a piece of data with a new one
(write operation), Merkle tree needs to serially update all hash
values on the path from the leaf (data) to the root. PAT is the
current state-of-the-art in this respect, as it is parallelizable for
both read and write operations by means of a clever use of
nonce-based MAC.

Tree-based MEs have been initially studied from the cryp-
tography community, however, it recently receives signifi-
cant attention from the system architecture community, such
as [5], [10]–[12]. The primary focus of these studies is the
data structure, such as the parameters/structures of integrity
trees [5], [11] and counter/nonce representations [10], [12]
that fits well into the target architecture, and cryptographic
components are often considered as black boxes or instantiated
by just picking a standard, e.g., the use of GCM in [10].
A notable exception is the aforementioned ME inside SGX,
which is also called SGX Integrity Tree (SIT). It develops
dedicated AE and MAC schemes based on AES-GCM, with
particular attention to latency in mind. SIT is quite efficient
and enables a very low-latency read/write operation on the
given tree structure that covers up to 96 Mbyte of memory
on an x86 platform. Moreover, as an important subsystem
of SGX, it is also quite widely deployed in practice.

In contrast to the numerous ME proposals from the system
architecture community, those from cryptography community
are rather scarce after [4], [6]. As mentioned above, SIT is
a notable exception, however its on-chip data size is linear

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0173-7245
https://orcid.org/0000-0002-3427-6772

INOUE et al.: ELM: A LOW-LATENCY AND SCALABLE MEMORY ENCRYPTION SCHEME 2629

to the unit data size. This poses a limitation on the amount
of covered memory sizes and hence is not scalable. In fact,
VAULT [11] and Morphable Counter [12] are two recent
MEs that aim at covering much larger memory than SIT and
improving the performance, mainly by the system architecture
approach.

This paper proposes a new ME scheme dubbed ELM
(Encryption for Large Memory), which enables a signifi-
cantly low latency for large amounts of memory. It achieves
on-chip and off-chip memory overheads comparable to exist-
ing schemes, which becomes possible by closely inspecting the
required operations in SIT and its baseline PAT. ELM adopts
several techniques known in the symmetric-key cryptogra-
phy literature. Specifically, we find that incremental MAC
(Inc-MAC) [13], [14] can be used securely and it works
quite effectively for the trees with large arity, a common
feature for the modern schemes targeting large memories.
By using an Inc-MAC at the internal nodes, ELM significantly
reduces the write latency without harming the read latency.
Our MAC is a variant of the classical XOR-MAC [15]
that optimizes the latency, number of primitive calls, and
security.

Another key component of ELM is a new low-latency
AE scheme. It is basically a variant of OCB [16]. OCB is
already quite good in terms of latency and parallelizability,
because it does not need an additional authentication function
unlike GCM. However, the decryption latency of OCB is
not sufficiently small due to its structure. By changing the
structure, our AE mode has a smaller latency than the original
for decryption, while retaining the other main features such as
parallelizability and provable security. In particular, when it is
viewed as a mode of a tweakable block cipher (TBC) [17], the
latency is optimally small for both encryption and decryption.
ELM is obtained by combining our MAC, our AE, and a
variant of tree structure of SIT which we call PAT2. Each
technique itself is not ultimately novel. However, we show
how to combine them in an optimal manner to reduce latency
and computation, which is, to the best of our knowledge, not
known in the literature. Our proposal is generic in principle,
and it can be instantiated by any block cipher or TBC.
Moreover, we prove that the security of ELM (and PAT2)
is reduced to the pseudorandomness of the block cipher we
use, which is the first formal security treatment of ME with
authenticity.

To showcase the effectiveness of ELM, we specify an instan-
tiation of ELM using the same components as SIT, namely
AES-128 and a full 64-bit field multiplier.1 We compare them
with (a generalized variant of) SIT for various memory sizes
and tree parameters under a certain practical implementation
setting. Our results show that ELM has a smaller latency than
SIT for most of the cases,2 and as memory size gets larger, the
difference becomes significant. We also conducted preliminary
ASIC implementations, and show that the total implementation
size is comparable to that of SIT. In addition, we discuss the

1We also use a 128-bit multiplier, but with a very small input size.
2This holds true even when SIT adopts a part of our idea of using Inc-MAC.

See Section V-B.

optimization of hardware implementations for our proposal
depending on the system constraints.

II. PRELIMINARIES

A. Notation

For a positive integer n, {0, 1}n denotes the set of n-bit

strings and let [n] = {1, . . . , n}. X
$← X means that the

variable X is uniformly sampled over the set X . For binary
strings A and B , A ‖ B denotes the concatenation of A and B .
The bit length of A is denoted by |A|, and |A|n := �|A|/n�.
Dividing a string A into blocks of n bits is denoted by
A[1] ‖ · · · ‖ A[m] n←− A, where m = |A|n and |A[i]| = n,
|A[m]| ≤ n for 1 ≤ i ≤ m−1. For t ∈ [|A|], msbt (A) (lsbt)
denotes the first (last) t bits of A. A sequence of i zeros is
written as 0i . For a function F : K × X → Y with the key
space K, F(K , ·) may be written as FK (·). Let GF(2n) be
a finite field of size 2n with characteristic 2 and extension
degree n. We focus on the case n = 128. Following [18], we
use (x128 + x7 + x2 + x + 1) for defining the field GF(2128).
Here, the primitive root x is interpreted as 2 in the decimal
representation. For a ∈ GF(2n), let 2a denote a multiplication
by x and a, which is also called doubling [18]. Similarly, let
3a denote 2a ⊕ a.

B. (Tweakable) Block Cipher

Let K and M be the set of keys and messages, respectively.
Let T W be the set of tweaks, where a tweak is a public
parameter. A tweakable block cipher (TBC) [17] is a function
Ẽ : K× T W ×M→M s.t. ẼK (T w, ·) is a permutation on
M for ∀(K , T w) ∈ K×T W . It is also denoted by ẼT w

K , ẼT w,
or Ẽ . If T W is singleton, it means a plain block cipher EK .
A TBC can be built on a block cipher [17], [18]. A block
cipher E or a TBC Ẽ is said to be secure if it is compu-
tationally hard to distinguish from the ideal primitive with
oracle access. Let Perm(n) denote the set of all permutations
on {0, 1}n. An n-bit tweakable permutation of t-bit tweak is
a function π : {0, 1}t × {0, 1}n → {0, 1}n s.t. π(Tw, ·) ∈
Perm(n) for ∀T w ∈ {0, 1}t . The set of all n-bit tweakable
permutations with t-bit tweak is denoted by TPerm(t, n). Let

P
$←− Perm(n) be a uniform random permutation (URP) and

P̃
$←− TPerm(t, n) be a tweakable URP (TURP). Let A be an

adversary who (possibly adaptively) queries an oracle O and
subsequently outputs a bit. We write Pr[AO → 1] to denote
the probability that this bit is 1. The advantages against Ẽ are

defined as Advtprp
Ẽ

(A) := | Pr[AẼ → 1] − Pr[AP̃→ 1]|, and

Advtsprp
Ẽ

(A±) := | Pr[(A±)Ẽ ,Ẽ−1 → 1]−Pr[(A±)P̃,P̃
−1 → 1]|,

where Ẽ−1 and P̃
−1

are decryption functions of Ẽ and P̃.
When the advantage is sufficiently small, Ẽ is said to be secure
against the underlying adversary.

C. Message Authentication Code

Message authentication code (MAC) is a symmetric-key
function for message authenticity. We consider nonce-based
MAC, where a nonce is a non-repeating value used together
with a message. For the nonce space N and the tag space T ,
a nonce-based MAC scheme MAC consists of two functions:
the tagging function MAC.T : K × N × M → T and

2630 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

the verification function MAC.V : K × N ×M × T →
{�,⊥}. A tag for (K , N, M) ∈ K × N ×M is derived as
T = MAC.TK (N, M). The tuple (N, M, T) is considered
to be authentic if MAC.VK (N, M, T) = �, and otherwise
it is rejected. The security of MAC is defined as the prob-
ability that an adversary A creates a successful forgery by
accessing MAC.TK and MAC.VK . The security measure is
AdvmacMAC(A) := Pr[AMAC.TK ,MAC.VK forges], which means A
receives � from MAC.VK by querying (N ′, M ′, T ′) while
(N ′, M ′) has never been queried to MAC.TK . Here, A is
assumed to be nonce-respecting, that is, the nonces in the
tagging queries are distinct. The nonces in the verification
queries have no restriction, and A can repeat or reuse a nonce
that was used by a tagging query.

D. Authenticated Encryption

Authenticated encryption (AE) [19] is used to ensure the
privacy and authenticity of input data simultaneously. A nonce-
based AE scheme AE consists of two functions: the encryp-
tion function AE.E : K × N ×M → M × T and the
decryption function AE.D : K ×N ×M × T →M ∪ {⊥}.
A ciphertext and a tag for (K , N, M) ∈ K × N ×M are
derived as (C, T) = AE.EK (N, M). The tuple (N, C, T) is
considered to be authentic if AE.DK (N, C, T) returns the
message M �= ⊥, and otherwise it is rejected. The security
of AE is evaluated by two criteria: privacy and authenticity.
The privacy advantage is the probability that the adversary
successfully distinguishes AE.EK from the random oracle
$(∗, ∗). For any query (N, M), if (C, T) = AE.EK (N, M),
$(N, M) returns random bits of length |C| + |T |. Thus,
AdvprivAE (A) := | Pr[AAE.EK → 1] − Pr[A$ → 1]|. The
authenticity advantage is the probability that the adversary
creates a successful forgery by accessing AE.EK and AE.DK .
It is defined as AdvauthAE (A) := Pr[AAE.EK ,AE.DK forges],
which means the probability that A receives M ′ �= ⊥ from
AE.DK by querying (N ′, C ′, T ′) while (N ′, M ′) has never
been queried to AE.EK . For both advantages, we assume
the adversary is nonce-respecting in encryption queries. For
authenticity, however, there is no restriction on nonce in the
decryption queries, that is, A may repeat a nonce or reuse a
nonce that was used in an encryption query.

E. Tree-Based Memory Encryption Scheme

We assume two regions in storage memory: on-chip and
off-chip areas. The former is assumed to be secure in which
the adversary cannot eavesdrop or tamper the stored data. The
latter can be attacked by an adversary who may perform eaves-
dropping (getting information of plaintext from ciphertext),
tampering (modify the ciphertext without being detected), and
replay (replacing the ciphertext with an old legitimate one).
As mentioned in the introduction, tampering can be detected
by simply applying a MAC to each data unit and storing the
nonce and tag off-chip. If we use a nonce-based AE instead,
it also prevents eavesdropping. However, these means are not
sufficient to protect from replay attacks since the adversary can
perform a replay on the (nonce, ciphertext, tag) tuple. Since
the on-chip area is generally much more expensive than the

Fig. 1. An example of PAT2 with tree depth 2 and number of branches 2.
A trapezoid in a box denotes the nonce input, and a box with ‖ denotes
concatenation.

off-chip area, it is desirable to thwart all of these attacks with
as small an on-chip area as possible. In addition, since the
off-chip area is assumed to have large capacity, it is desirable
to be able to perform tampering/replay detection and plaintext
recovery with fewer memory accesses when only a part of the
off-chip area is accessed.

As described earlier, Merkle hash tree [3] (with additional
encryption layer for confidentiality) is a classical solution.
It divides memory data into small chunks and associates their
hashes with each leaf node of the tree. Every non-leaf node is
associated with a hash of the hash values of its child nodes.
By storing hash value of a root node on-chip and the others
off-chip, the tampering and replay attacks can be detected.
A similar scheme can be built by using MACs instead of hash
functions by storing the key on-chip. Among such schemes,
Parallelizable Authentication Tree (PAT) proposed by Hall and
Jutla [4] (hereafter referred to as HJ05) is quite efficient for its
parallelizability of both verify and update operations. It assigns
a nonce to each node and stores the nonce associated with a
root node in the on-chip area. PAT utilizes a MAC to compute
a tag by taking the nonce assigned to its own node and nonces
in its corresponding child nodes.3

In this paper, we use the term ME tree to refer to the
tree-based ME scheme that also encrypts the leaf nodes.
We introduce a generic construction of an ME tree, PAT2
(Fig. 1). It is mostly identical to PAT, but achieves confi-
dentiality of memory by applying an AE scheme to the leaf
nodes,4 and it splits any nonce of PAT associated with a node
into two values: an address and a local counter. The former
is the memory address of the node, and the latter is a counter
exclusively assigned to the node.

Fig. 1 shows an example of PAT2. Each nonce Ni assigned
to node i consists of the address addri and the local
counter ctri , which is initialized to 0 for all nodes. Memory
data is split into four units (M3 to M6). After initialization, the
tree keeps ctri , Ti for i = 1, . . . , 6, and C j for j = 3, . . . , 6 at
the off-chip area, and ctr0 at the on-chip area. When verifying

3To be more precise, [4] proposed to use a general deterministic MAC
with input being prepended by a nonce, which is a typical way to convert a
deterministic MAC into a nonce-based one.

4In fact, An ePrint version of HJ05 [20] specifies a combination of MAC
and AE schemes for confidentiality of leaf data.

INOUE et al.: ELM: A LOW-LATENCY AND SCALABLE MEMORY ENCRYPTION SCHEME 2631

a piece of data, say M3, we check if AE.DK (N3, C3, T3) is
authentic and MAC.VK ′(Ni , ctr2i+1 ‖ ctr2i+2, Ti) = � for
i = 0, 1. If all hold, M3 is considered to be authentic.
When updating M3, we first perform the above verification
procedure, increment the corresponding local counters (ctr0,
ctr1 and ctr3), and then renew (C3, T3), T1, and T0. Note
that the steps in the verification and update procedures are
independent and thus parallelizable. This is a crucial advantage
of PAT/PAT2 over the classical hash tree, which only allows
parallel verification. In addition, since an address is given
from the outer legitimate system anyway, it does not need
to be explicitly stored and it is always authentic. Therefore
PAT2 enables the MAC input and off-chip overhead from the
original PAT to be reduced. To the best of our knowledge, this
technique was first proposed by [5]. In fact, by specifying the
tree structures and the MAC and AE schemes, the resulting
scheme is mostly identical to SIT. Therefore, PAT2 can be
viewed as an abstraction of SIT. We consider PAT2 as our
baseline scheme for its simple structure and efficiency, and
present our scheme based on it in Section IV.

A number of ME trees that better handle the various
criteria (except for latency) have been proposed. TEC-tree [6]
provides confidentiality by encrypting data stored in all
nodes. MAES [21] provides security against differential power
analysis attacks. VAULT [11] and Morphable Counter [12]
reduce the overhead of off-chip memory and are suitable for
protecting large memory (e.g., GBytes); however there is a
tradeoff with the average latency because their counters are
compressed.

III. COMPONENTS OF ELM

To achieve low-latency operation, we designed dedicated
MAC (PXOR-MAC) and AE (Flat-OCB).

A. PXOR-MAC: Incremental MAC

Fig. 2 shows the tagging function of PXOR-MAC using
an n-bit block cipher EK . The second key K ′ $← {0, 1}n
is independent of K . The algorithm of PXOR-MAC.T is
obtained by replacing a TBC Ẽ of Alg. 1 with the following
block cipher-based TBC.

Ẽ0n ,i, j
K ,K ′ (M) = EK (M ⊕ K ′ · i ⊕ j · EK (0n)).

The verification function is trivially defined and thus omitted
here. We let |N | = n and |T | = τ . For simplicity, we exclude
the case of partial blocks.

1) Properties: Since L = EK (0n) can be computed in
advance, the latency of tag computation is essentially a sum of
the latencies of n-bit multiplication (K ′·i for the block index i)
and EK . The former can be large if i has large variations; how-
ever, m is usually not too large in practice, even when the total
memory size is huge. Typically, m is upper-bounded by the
number of branches, e.g., 27 according to [12]. The hardware
implementation is much more efficient than a full multiplier
(using Gray code; see Section V). Consequently, the latency of
mask computation becomes negligible, and PXOR-MAC has
the optimal latency of one EK call for tagging and verification
functions thanks to the full parallelizability of the block cipher
calls.

Fig. 2. PXOR-MAC.

PXOR-MAC is an Inc-MAC [13], which enables efficient
tag computation when a small number of message blocks are
changed. When a message block is changed together with a
new nonce, the new tag is obtained by encrypting the corre-
sponding blocks (i.e., XOR of the message block and its mask)
for both old and new ones, and taking an XOR of them and the
old tag. We can further improve the incremental property of
PXOR-MAC when used in PAT2. The MAC update function
in the update procedure of PAT2 also invokes the MAC
verification function, yielding some redundant EK calls; thus,
we can eliminate them. The resulting combined (verification
and update) procedure, denoted by PXOR-MAC.VU , is shown
in Alg. 2. It takes old nonce No, old plaintext Mo, old
tag To, new nonce Nn, and new plaintext Mn. It outputs new
tag Tn such that Tn = PXOR-MAC.TK ,K ′(Nn, Mn) holds
if To is authentic; otherwise, it outputs ⊥. For simplicity,
Alg. 2 assumes that Mo and Mn have m blocks. For example,
when one message block and nonce are changed, (which is
the case of ELM), PXOR-MAC.VU needs only m + 3 EK

calls except for mask derivation, while PXOR-MAC without
incremental update needs 2m. Even if we use the incremental
update feature of PXOR-MAC after verification, it still needs
m+ 5 calls. This difference is not negligible as update occurs
at all nodes on the path.

Algorithm 1 PXOR-MAC-T.TẼ (N, M)

1: M[1] ‖ · · · ‖M[m] n←− M , T ← 0τ

2: for 1 ≤ i ≤ m do
3: T ← T ⊕ msbτ (Ẽ0n,i,0

K ,K ′ (M[i]))
4: T ← T ⊕ msbτ (Ẽ0n,m,1

K ,K ′ (N))
5: return T

Algorithm 2 PXOR-MAC.VUEK (No, Mo, To, Nn, Mn)

1: L ← EK (0n), T ′ ← 0τ , Tn ← To
2: Mo[1] ‖ · · · ‖Mo[m] n←− Mo, Mn[1] ‖ · · · ‖Mn[m] n←− Mn
3: for 1 ≤ i ≤ m do
4: S← msbτ (EK (Mo[i] ⊕ K ′ · i)), T ′ ← T ′ ⊕ S
5: if Mo[i] �= Mn[i] then
6: Tn ← Tn ⊕ S ⊕ msbτ (EK (Mn[i] ⊕ K ′ · i))
7: S← msbτ (EK (No ⊕ K ′ · m ⊕ L)), T ′ ← T ′ ⊕ S
8: Tn← Tn ⊕ S ⊕ msbτ (EK (Nn ⊕ K ′ · m ⊕ L))
9: if T ′ �= To then

10: return ⊥
11: return Tn

2) Security: We assume the underlying block cipher of
PXOR-MAC is an n-bit URP P, which is denoted by
PXOR-MACP.

2632 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Theorem 1: Let σmac be the number of accesses to P in the
MAC game s.t. σmac ≤ 2n−1, and qv be the number of queries
to the verification oracle. We obtain

AdvmacPXOR-MACP
(A) ≤ 2qv

2τ
+ 4.5σ 2

mac

2n
.

Note that this advantage is an information-theoretic bound.
The computational counterpart is derived from our bound.
Since this is fairly standard [22], we omit it here. This theorem
means that PXOR-MAC has the security bound of min{O(2τ),
O(2n/2)}, which is almost the same as that of MAC used in
SIT. PXOR-MAC only fulfills “basic” Inc-MAC security [13],
which requires that the update function of Inc-MAC always
takes benign inputs (in our case this corresponds to require
To = PXOR-MAC.TK ,K ′(No, Mo) holds whenever VU out-
puts Tn �= ⊥). We stress that, while a stronger, “tamper-proof”
security notion was also defined by [13], basic security is
enough for our case since the adversary cannot intervene in
the update procedure.

3) Proof of Theorem 1: Let P̃ be an n-bit TURP having the
same tweak space as Ẽ , and Ẽ be a TBC involving P and an
independent key K ′, defined as Ẽ

0n,i, j
(M) = P(M ⊕ K ′ · i ⊕

j · P(0n)). Then we obtain

AdvmacPXOR-MACP
(A) ≤ AdvmacPXOR-MAC-TP̃

(A)+ Advtprp
Ẽ

(B),

where B is the adversary against Ẽ. Regarding the first
term, we can prove AdvmacPXOR-MAC-TP̃

(A) ≤ 2qv/2τ in the

same manner as PMAC [18], and thus we omit. We then
evaluate the second term. We define the offset function F as
FK ′((i, j), P(0n)) = K ′ ·i⊕ j ·P(0n), where i ∈ {1, 2, . . .}, j ∈
{0, 1}. Then, Ẽ

0n,i, j
(M) = P(M ⊕ FK ′((i, j), P(0n))) holds

for any (i, j, M). We introduce the definition and the lemma
for offset functions. They are simplified ones of Definition 4.1
and Theorem 4.1 in [23].

Definition 1: Let V
$← {0, 1}n . An offset function F is said

to be (ε, γ, ρ)-uniform if F satisfies the following conditions.

max
l �=l′,δ∈{0,1}n

Pr[F(l, V)⊕ F(l ′, V) = δ] ≤ ε,

max
l,δ∈{0,1}n Pr[F(l, V) = δ] ≤ γ,

max
l,δ∈{0,1}n Pr[F(l, V)⊕ V = δ] ≤ ρ.

Lemma 1: Suppose that Ẽ uses an (ε, γ, ρ)-uniform offset
function F . We obtain the following evaluation.

Advtprp
Ẽ

(B) ≤ q2
(

2ε + γ + ρ + 1

2n+1

)
,

where q is the number of encryption queries s.t. q ≤ 2n−1.
Since K ′ and P(0n) are uniformly random and independent,
(ε, γ, ρ) = (1/2n, 1/2n, 1/2n) trivially holds. Thus, we obtain
Advtprp

Ẽ
(B) ≤ 4.5σ 2

mac/2n . This concludes the proof.

B. Flat-OCB: Low-Latency AE

To encrypt the leaf data of PAT2, an AE scheme is needed.
We take OCB as the baseline AE for its efficiency: it needs
m plus a few block cipher (EK) calls to process m blocks

Fig. 3. Flat-	CB.

(while a generic composition of Encryption and MAC needs
at least 2m calls). Because these m calls are parallelizable,
OCB has quite a low latency. However, when looking into
the dependency among “a few block cipher calls” mentioned
above, we find a problem in the decryption. In more detail,
the final EK call in the OCB decryption takes the sum of
the plaintext blocks after the plaintext blocks are obtained by
ECB-like decryption (see e.g., [16, Fig. 5]). This results in one
call that cannot be computed in parallel, and adds a significant
latency compared to the encryption. This is not desirable for
applications requiring low latency. We present a solution to
this problem. Concretely, we first propose an improved version
of the TBC-based interpretation of OCB (CB3 in [16],
hereafter referred to as 	CB), which we call Flat-	CB and
show its block cipher-based instantiation, Flat-OCB. It has a
smaller decryption latency than OCB, while keeping the same
encryption latency.

Algorithm 3 Flat-	CB.EẼ (N, M)

1: M[1] ‖ · · · ‖M[m] n←− M , T ← msbτ (Ẽ N,0,0
K (0n))

2: for 1 ≤ i ≤ m − 1 do
3: C[i] ← Ẽ N,i,0

K (M[i]), T ← T ⊕ msbτ (M[i])
4: C[m] ← Ẽ N,m−1,1

K (M[m]), T ← T ⊕ msbτ (M[m])
5: C ← C[1] ‖ · · · ‖C[m]
6: return C , T

Algorithm 4 MASKK1,K2,K3,K4(N)

1: N1 ← msbn/2(N), N2 ← lsbn/2(N)
2: return
← (N1 · K1 ‖ N2 · K2)⊕ (N2 · K3 ‖ N1 · K4)

Alg. 3 and Fig. 3 show the encryption of Flat-	CB.
Decryption is naturally obtained, thus omitted. It is based on
n-bit TBC, Ẽ , using n-bit nonce. We exclude the case of
partial blocks for simplicity. Flat-	CB is similar to 	CB,
however, the crucial difference is how the tag T is generated.
While 	CB encrypts the checksum M[1]⊕M[2]⊕· · ·⊕M[m]
using Ẽ to produce T , ours first encrypts N and then takes
a sum with the checksum. To build a block cipher-based AE,
we instantiate Ẽ with an n-bit block cipher EK as

Ẽ N,i, j
K (M) = EK (M ⊕
⊕ 2i 3 j L)⊕
⊕ 2i 3 j L, (1)

where i ∈ {0, 1, 2, . . .}, j ∈ {0, 1}, L = EK (0n) and
 is
derived from N . The value
 needs to be pairwise independent
for a pair of distinct inputs, and this may be realized by various
means. To keep the compatibility with SIT, we generate

using n/2-bit multiplications as Alg. 4 for some even n

INOUE et al.: ELM: A LOW-LATENCY AND SCALABLE MEMORY ENCRYPTION SCHEME 2633

TABLE I

COMPARISON OF AE MODES. m IS THE NUMBER OF INPUT BLOCKS, AND “MUL” IN THE LATENCY COLUMNS DENOTES n/2-bit FULL GF
MULTIPLICATION. THE LAST COLUMN DENOTES THE TOTAL ON-CHIP SIZE. FOR SIMPLICITY, THE ENCRYPTION AND DECRYPTION

LATENCY OF (T)BC ARE ASSUMED TO BE IDENTICAL, AND (T)BC HAS n-bit BLOCK SIZE AND n-bit KEY

and random and independent n/2-bit keys (K1, K2, K3, K4).
We define TBC as the block cipher-based TBC defined in (1)
with MASK (Alg. 4). We obtain Flat-OCB by instantiating Ẽ
of Flat-	CB with TBC.

1) Properties: Table I compares Flat-	CB and Flat-OCB
with other AEs. SIT-AE is a GCM-like AE inside SIT [8].
Notably, as a mode of TBC, the latency of Flat-	CB is the
lowest achievable – one TBC call – for both encryption and
decryption, which is achieved for the first time. In contrast,
the decryption latency of 	CB is two for the aforementioned
reason. For other properties, Flat-	CB has the same figures as
those of 	CB. Similarly, Flat-OCB has the same encryption
latency as OCB, and has the smaller decryption latency
than OCB. SIT-AE has even smaller decryption latency, how-
ever, it requires 2m multiplier circuits to achieve this, whereas
Flat-OCB requires only 4 multipliers.5 Moreover, the key size
of SIT-AE is linear to m, which will have a non-negligible
impact. In contrast, Flat-OCB requires 3n-bit key, plus the
n-bit preprocessed data L = EK (0n) used inside TBC.

2) Security: We assume that the underlying block cipher
is an n-bit URP P, and only present an information-theoretic
bound based on P.

Theorem 2: The advantages of Flat-	CB and Flat-OCB
are obtained as follows:

AdvprivFlat-	CBP̃
(A) = 0, AdvauthFlat-	CBP̃

(A±) ≤ 2qd

2τ
,

AdvprivFlat-OCBP
(A) ≤ 4.5σ 2

priv

2n
,

AdvauthFlat-OCBP
(A±) ≤ 2qd

2τ
+ 4.5σ 2

auth

2n
,

where σpriv, σauth, and qd are the parameters for A and A±.
The parameter σpriv (resp. σauth) is the number of accesses to
P in the privacy (resp. authenticity) game s.t. σpriv, σauth ≤
2n−1. The parameter qd is the number of queries to the
decryption oracle.
Flat-	CB has the same advantages as those of 	CB
(Advpriv	CBP̃

(A) = 0, Advauth	CBP̃
(A±) ≤ (2n−τ qd)/(2n − 1)),

hence there is no security penalty, up to the constant. The
security of Flat-OCB is comparable to those of OCB and
SIT-AE. Assuming n = 128 and τ = 64, Flat-OCB has
64-bit data security that is comparable to OCB and SIT-AE.

5The proper number of multipliers for hardware implementation depends
on the system constraint/architecture. See also Section V.

3) Proof of Theorem 2: Let P̃ be an n-bit TURP having the
same tweak space as TBC. Let Ẽ be the TBC mode obtained
by replacing EK in TBC with P. Then we obtain the following
inequations.

AdvprivFlat-OCBP
(A) ≤ AdvprivFlat-	CBP̃

(A)+ Advtprp
Ẽ

(B),

AdvauthFlat-OCBP
(A±) ≤ AdvauthFlat-	CBP̃

(A±)+ Advtsprp
Ẽ

(B±),

where B and B± are adversaries against Ẽ. To derive the
advantages of B and B±, we use the tsprp version of
the methodology in [23], which is almost the same as
the tprp one (i.e., Def. 1 and Lem. 1), thus we omit the
details. We define the offset function F of Ẽ as F((N, i, j),
P(0n)) = MASK(N)⊕2i ·3 j P(0n). Since keys of MASK and
P(0n) are uniformly random and independent, and MASK is
pairwise independent, (ε, γ, ρ) = (1/2n, 1/2n, 1/2n) trivially
holds. Thus, Advtprp

Ẽ
(B) ≤ 4.5σ 2

priv/2n , and Advtsprp
Ẽ

(B±) ≤
4.5σ 2

auth/2n hold.
We then evaluate the security bounds of Flat-	CB. For

the privacy, AdvprivFlat-	CBP̃
(A) = 0 holds since every TURP

call in the game takes different tweaks. For the authen-
ticity, We start with the case qd = 1. Let {(N1, M1,
C1, T1), . . . , (Nqe , Mqe , Cqe , Tqe)} be the transcript in encryp-
tion queries, and (N ′, C ′, T ′) be the decryption query. If ∀i ∈
[qe], N ′ �= Ni , the probability A± forges is at most 1/2τ .
We then evaluate the case ∃α ∈ [qe], N ′ = Nα . If |Cα|n �=
|C ′|n := m′, the TURP which decrypts C ′[m′] takes a different
tweak from all tweaks invoked in the encryption queries. Thus,
the probability A± forges is at most 1/2τ . If |Cα|n = |C ′|n =
m′, all tweaks invoked in the decryption query are the same
as those in the α-th encryption query. However, C ′[i] �= Cα[i]
holds for ∃i ∈ [m′], and thus, the probability A± successfully
guesses msbτ (M∗[i]), where M∗[i] is the decrypted value
of C ′[i], is at most 2/2τ . From the above, we obtain the
advantage for the case qd = 1: AdvauthFlat-	CBP̃

(A±) ≤ 2/2τ .
We apply the standard conversion from single to multiple
decryption queries [24] and obtain the bound qd (2/2τ) for
qd ≥ 1. This concludes the proof of Flat-	CB.

IV. ELM

ELM is based on PAT2, where the internal MAC and AE
are instantiated by PXOR-MAC and Flat-OCB.

A. Notations for the Tree

Let b ≥ 2 be the number of branches, and let d be the
tree depth, where the root has depth 0 and a leaf node has

2634 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

depth d . ELM uses a balanced tree, so we have bd leaves.
The entire memory (plaintext) is divided into �-bit chunks
and i -th leaf node is denoted by leaf(i) for i ∈ [bd]. The
whole input memory is M = M[1] ‖ · · · ‖M[bd] s.t. |M[i]| =
� for i ∈ [bd] and M[i] is associated with leaf(i). The
ciphertext chunk corresponding to M[i] is denoted by C[i],
which is stored in leaf(i). For node u, the memory address,
the counter, and the tag are denoted by add(u), ctr(u), and
tag(u), respectively, where |add(u)| = α, |ctr(u)| = β, and
|tag(u)| = τ . The entire data to construct the tree stored in
the on-chip and off-chip areas is denoted by σ , which includes
C[i] for i ∈ [bd], ctr(u), and tag(u) for all nodes u. Note
that we exclude the key and the preprocessed data from σ .
As we adopt PAT2, we exclude the node addresses from σ
and assume they are given by the system when needed. For
the root node ur, we store ctr(ur) on-chip. The leftover data
of σ is stored off-chip. We may also use σ to refer to the tree
construction itself. We also write a node u, leaf node, plaintext
chunk, and ciphertext chunk of σ as uσ , leaf(i)σ , Mσ [i], and
Cσ [i], respectively. If no confusion is possible, we omit their
superscript σ . For any non-leaf node uσ and i ∈ [b], chi (uσ)
denotes its i -th child node.

Algorithm 5 IT: Initialization of a Tree Construction σ

Input M = M[1] ‖ · · · ‖M[bd] s.t. |M[i]| = � for i ∈ [bd]
Output σ

1: σ ← 0

(
bd−1
b−1

)
×(β+τ)+bd×(�+β+τ))

2: for all nodes u do
3: ctr(uσ)← 0β−11
4: for 1 ≤ i ≤ bd do
5: (C[i], tag(leaf(i)σ))

← Flat-OCB.E(add(leaf(i)σ) ‖ ctr(leaf(i)σ), M[i])
6: M ′ ← ctr(ch1(uσ

r)) ‖ · · · ‖ ctr(chb(uσ
r))

7: tag(uσ
r)← PXOR-MAC.T (add(uσ

r) ‖ ctr(uσ
r), M ′)

8: for all intermediate nodes u do
9: tag(uσ) ← PXOR-MAC.T (add(uσ) ‖ ctr(uσ), M ′)

10: return σ

Algorithm 6 VT: Checking the Validity of leaf(idx).
Input idx , σ
Output � or ⊥
1: (uσ

0 , · · · , uσ
d)← path of nodes from root to specified leaf

(i.e., uσ
0 is the root node uσ

r , and uσ
d is equal to leaf(idx).)

2: for 0 ≤ i ≤ d − 1 do
3: if PXOR-MAC.V(add(uσ

i) ‖ ctr(uσ
i),

ctr(ch1(uσ
i)) ‖ · · · ‖ ctr(chb(uσ

i)), tag(uσ
i)) = ⊥ then

4: return ⊥
5: if Flat-OCB.D(add(uσ

d) ‖ ctr(uσ
d), C[idx], tag(uσ

d)) = ⊥ then
6: return ⊥
7: return �

B. Specifications of ELM

ELM consists of three algorithms: IT, VT, and UT defined
in Algs. 5, 6, and 7. ELM’s key consists of the AE and MAC
keys, which are chosen uniformly at random and independent.
IT initializes the tree. It takes an input plaintext M , and
outputs a tree σ . Here, σ consists of the local counters

Algorithm 7 UT: Updating the Message of leaf(idx) to B .
Input idx , B, σ
Output σ̃ or ⊥
1: σ̃ ← σ , (u0, · · · , ud) ← path of nodes from root to specified

leaf
2: for 0 ≤ i ≤ d do
3: ctr(uσ̃

i)← ctr(uσ̃
i)+ 1

4: for 0 ≤ i ≤ d − 1 do
5: No ← add(uσ

i) ‖ ctr(uσ
i), Nn ← add(uσ

i) ‖ ctr(uσ̃
i)

6: Mo ← ctr(ch1(u
σ
i)) ‖ · · · ‖ ctr(chb(uσ

i))

7: Mn ← ctr(ch1(uσ̃
i)) ‖ · · · ‖ ctr(chb(uσ̃

i))

8: tag(uσ̃
i)← PXOR-MAC.VU(No, Mo, tag(uσ

i), Nn, Mn)

9: if tag(uσ̃
i) = ⊥ then

10: return ⊥
11: if Flat-OCB.D(add(uσ

d) ‖ ctr(uσ
d), Cσ [idx], tag(uσ

d)) = ⊥
then

12: return ⊥
13: (C σ̃ [idx], tag(uσ̃

d))← Flat-OCB.E(add(uσ
d) ‖ ctr(uσ̃

d), B)
14: return σ̃

being initialized to zero, the tags for the non-leaf nodes, and
the (ciphertext, tag) pairs for the leaf nodes. VT checks the
validity of a specified leaf node. It is associated with a read
operation. VT takes an index of a leaf node idx ∈ [bd]
and a tree σ as input. It outputs � if all the verifications of
PXOR-MAC and the decryption of Flat-OCB are successful,
and otherwise ⊥. UT renews plaintext chunk assigned to the
specified leaf node, which is associated with a write operation.
UT takes an index of leaf node idx , an update value (new
plaintext) B s.t. |B| = �, and a tree σ as input. It returns a
renewed tree σ̃ if the verification is successful, otherwise ⊥.
Note that it is essential for UT to check the validity of the
data associated in node path in order to prevent a replay
attack. If the verification in UT is bypassed, the adversary
can roll back the value of ctr(·) and mount a replay attack.
For the verification and update of intermediate nodes in UT,
we use PXOR-MAC.VU to eliminate redundant computations.
Similarly, Flat-OCB in lines 7–7 of Alg. 7 can eliminate some
redundant field multiplications in deriving
 by caching.

C. Efficiency of ELM

ELM is designed to achieve low latency by utilizing the
incremental property of MAC and full parallelizability of the
cryptographic components and the tree structure. In particular,
the incremental property greatly reduces the latency of UT.
An Inc-MAC with basic security works (See Sec. III-A.1).
Suppose α = β = n/2 and some even b. One VT call needs
(1+2/b)d EK calls for intermediate and root nodes. One UT
call needs (3+2/b)d EK calls for intermediate and root nodes,
while UT with a non-incremental MAC needs at least twice as
many EK calls as VT does. In addition, ELM is scalable for
its constant on-chip size (the key and the preprocessed data,
total 7n bits). However, (a generalized version of) SIT needs
an on-chip area linear to b and β.

D. Security of ELM

To the best of our knowledge, the provable security of
PAT2 have not been formally shown in the literature. Among

INOUE et al.: ELM: A LOW-LATENCY AND SCALABLE MEMORY ENCRYPTION SCHEME 2635

many ME proposals, the concrete provable security of the
proposed scheme (as in the same manner to the seminal
Bellare et al. [22]) is rarely shown, or even the formal, game-
based security notion is often missing. It is true that HJ05
defines the security notion for PAT and proves the security,
however, PAT has slightly different tree construction from
PAT2, and more importantly, it lacks a confidentiality notion
as the original PAT does not encrypt data. We remedy this
situation by defining two appropriate security notions for
ME trees: privacy and unforgeability. The former is for the
confidentiality of plaintext and is defined analogously to the
standard “privacy” notion for AE. The latter is mostly identical
to the notion introduced by HJ05. We show the concrete
security bounds of PAT2 under these notions. Although our
analysis is not surprising, we think a formal security frame-
work is important and will facilitate further studies on ME
schemes. In particular, the security model is identical to what
SIT considers.

1) Security Notion of ME Tree: Suppose that Tree is an
ME tree scheme defined as a tuple of three functions: the
initialization function IT, the verification function VT, and the
update function UT. We assume that UT contains VT and
performs VT first. Recall that IT(M) = σ , VT(idx, σ) = �
or⊥, and UT(idx, B, σ) = σ̃ or⊥. Also recall that σ includes
data stored in the on-chip area.6

For the privacy of Tree, we define IT-$ and UT-$. They
return their ciphertexts and tags to be stored in the leaf nodes
as random strings whose lengths are the same as those of IT
and UT, respectively. Regarding other variables, for example,
the data associated with the intermediate nodes, they return
the same outputs as IT and UT. The privacy security of Tree
is defined as the probability that an adversary A successfully
distinguishes (IT, UT) from (IT-$, UT-$). It is written as

AdvptTree(A) := | Pr[AIT,UT → 1] − Pr[AIT-$,UT-$ → 1]|,
where A plays the following game.

1) A queries M to the tree initialization oracle (IT or IT-$)
and obtains σ̃0.

2) A makes q adaptive queries to the update oracle (UT or
UT-$). Let {(idx1, B1, σ1, σ̃1), . . . , (idxq, Bq , σq , σ̃q)}
be the transcript obtained by the update queries. Here,
we assume that σi = σ̃i−1 for i ∈ [q] so that A can
always obtain an updated tree, not ⊥.

3) A guesses which oracle pair she has queried ((IT, UT)
or (IT-$, UT-$)) and accordingly outputs a bit.

For the unforgeability of Tree, our definition follows [4].
It is defined as the advantage of an adversary A′ querying
IT and UT successfully distinguishes VT from ⊥T(·, ·) which
always returns ⊥ for any inputs. The unforgeability advantage
of A′ is defined as

AdvuftTree(A′) := | Pr[A′IT,UT,VT → 1] − Pr[A′IT,UT,⊥T → 1]|,
where A′ plays the following game.

6Recall that σ does not include the secret key and the preprocessed data.
In this paper, we do not assume the confidentiality of Sec(σ), thus the
adversary can look into it. It is a weaker assumption than that assuming
both the confidentiality and tamper freeness.

1) A′ queries M to IT and obtains σ̃0.
2) A′ makes q ′ adaptive queries to UT. Let {(idx1, B1, σ1,

σ̃1), . . . , (idxq ′, Bq ′, σq ′ , σ̃q ′)} be the transcript obtained
by update queries. As well as the privacy game,
we assume that σi = σ̃i−1 for i ∈ [q].

3) A′ queries (idx ′, σ ′) to the verification oracle (VT or
⊥T) and obtains � or ⊥. Let (u0, . . . , ud) be the path
of nodes from the root node to leaf(idx ′). To exclude
a trivial win, we assume that there exists i ∈ {0, . . . , d}
such that uσ ′

i stores different data from that stored in

u
σ̃q′
i . Moreover, Sec(σ ′) = Sec(σ̃q ′) also must hold

since the data in the on-chip area cannot be tampered.
4) A′ guesses which oracle pair she has queried ((IT,

UT, VT) or (IT, UT,⊥T)) and accordingly outputs a
bit.

We stress that A′ can perform a verification query s.t. uσ ′
i

stores the same data as that stored in u
σ̃ j
i for 0 ≤ i ≤ d

and 0 ≤ j ≤ q ′ − 1, unless the data stored in u
σ̃ j
i is the

same as that stored in u
σ̃q′
i for all i ∈ {0, . . . , d} as described

in the third operation of the above game. This condition is
essential for the unforgeability notion to capture an adversary
who performs a replay attack. We remark that the security
notion Advuft also captures the adversary who tampers the
data before update, i.e., a forgery attack against UT, since UT
contains VT.

2) Security Bounds of PAT2 and ELM: The algorithms of
PAT2 are obtained by replacing PXOR-MAC and Flat-OCB
in Algs. 5, 6, and 7 to general MAC and AE denoted by MAC
and AE. Note that PXOR-MAC.VU in Alg. 7 is interpreted
as a combined function that outputs Tn = MAC.T (Nn, Mn) if
MAC.V(No, Mo, To) = �, otherwise outputs ⊥.

Theorem 3: We obtain the following bounds:

AdvptPAT2(A) ≤ AdvprivAE (Aae), (2)

AdvuftPAT2(A′) ≤ AdvauthAE (A±ae)+ AdvmacMAC(Amac). (3)

The parameters of Aae, A±ae, and Amac can be determined by
those of A and A′. Theorem 3 means that the security of PAT2
can be reduced to those of MAC and AE. This is not surprising,
but we cannot find such a formal treatment (in particular for
the combination of MAC and AE to guarantee privacy and
unforgeability) in the literature. The security bounds of ELM
can be derived by combining the advantages of PAT2 (2), (3)
and those of Flat-OCB and PXOR-MAC. When assuming the
underlying block cipher of ELM is P, we obtain

AdvptELM(A) ≤ 4.5σ 2
priv

2n
,

AdvuftELM(A′) ≤
(

2qd

2τ
+ 4.5σ 2

auth

2n

)
+

(
2qv

2τ
+ 4.5σ 2

mac

2n

)
,

where σpriv, qd , σauth, qv , and σmac are parameters of Aae,
A±ae. This means that the security of ELM can be reduced to
that of the underlying block cipher. Also, the security bounds
of ELM are standard birthday type (O(2n/2)) as with GCM
and OCB.

2636 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

E. Proof of Theorem 3

Let KM and K A be the keys of MAC and AE. Suppose that
they are uniformly random and independent.

1) Privacy: We assume that A is given KM , denoted by
A(KM). Since A(KM) can compute the data associated with
the root node and the intermediate nodes, we can assume that
A(KM) obtains only the data associated with leaf nodes from
the tree initialization oracle and the update oracle. Let Aae

be the privacy adversary against AE. If A(KM) queries IT
(resp. IT-$), Aae can simulate it by querying AE.E (resp. $)
in the same manner as Alg. 5. Note that a query to IT/IT-$
invokes nonce-respecting encryption queries of Aae since
add(leaf(i)) ‖ ctr(leaf(i)) �= add(leaf(j)) ‖ ctr(leaf(j)) nec-
essarily holds for 1 ≤ i �= j ≤ bd . Regarding the update
queries, A(KM) invokes AE.D. However, AE.D in the update
queries always outputs � since σi = σ̃i−1 for i ∈ [q]. Thus,
Aae can always output � regardless of inputs to simulate
AE.D in update queries. The adversary Aae can simulate
the leftover pure update function in the same manner as
the simulation of the initialization oracles. Also, the update
query of A(KM) invokes nonce-respecting encryption queries
of Aae due to the node-unique property of add(·) and the
one-time property of ctr(·). Namely, the sequence of queries
in the privacy game of A(KM) can be simulated by Aae. Thus,
AdvptPAT2(A) can be upper-bounded by

| Pr[A(KM)IT,UT → 1] − Pr[A(KM)IT-$,UT-$ → 1]|
= AdvprivAE (Aae),

where Aae queries bd + q times to encryption oracle because
an initialization query of A(KM) invokes bd encryption
queries of Aae and update queries of A(KM) invoke q
encryption queries of Aae.

2) Unforgeability: Let A′ma denote an adversary who
queries MAC.T , AE.E , MAC.V , and AE.D. We show
A′ma can simulate IT, UT, and VT following the rules
of the security notions of MAC and AE. As in the case
of the privacy advantage, A′ma can simulate IT and UT
by querying MAC.T and AE.E . Note that all queries are
nonce-respecting. For the simulation of IT, A′ma queries
(bd − 1)/(b − 1) times to MAC.T and queries bd times to
AE.E . To simulate q ′ invocations of UT, A′ma queries q ′d
times to MAC.T and queries q ′ times to AE.E . The query to
VT may invoke replay queries to MAC.V and AE.D. A replay
query means that A′ma queries (N, M, T) (resp. (N, C, T))
to MAC.V (resp. AE.D) while (N, M) (resp. (N, M)
s.t. (C, T) = AE.E(N, M)) has been queried to MAC.T
(resp. AE.E). Such queries are prohibited in the security
notions of MAC and AE whereas they may appear in the
simulation of unforgeability game since the game captures
A′ performing a replay attack. To avoid replay queries, we
suppose A′ma stores input/output of MAC.T and AE.E invoked
in IT and UT. Let ListMAC and ListAE be the set of such
tuples. Specifically, elements of ListMAC and ListAE are
defined as (add(uσ) ‖ ctr(uσ), ctr(ch1(uσ)) ‖ · · · ‖ ctr(chb

(uσ)), tag(uσ)) and (add(leaf(i)σ) ‖ ctr(leaf(i)σ), C[i],
tag(leaf(i)σ)), where u is a node of a tree construction σ
and i ∈ [bd]. When A′ invokes replay queries to MAC.V and

AE.D, A′ma can notice it by checking ListMAC and ListAE,
and can simulate the response of MAC.V and AE.D by just
returning �. Regarding the queries except for replay queries,
A′ma can simulate them by querying MAC.V and AE.D in
the same manner as Alg. 6. For the simulation of VT, A′ma
queries at most d times to MAC.V and queries at most one
time to AE.D. From the above discussion, we obtain

Pr[A′IT,UT,VT → 1] = Pr[A′A′maMAC.T ,AE.E,MAC.V,AE.D → 1],
(4)

where A′A
′
ma

MAC.T ,AE.E,MAC.V,AE.D
means that A′ queries to A′ma

pretending to be functions IT, UT, VT.
We define new adversary A′′ma querying MAC.T , AE.E , and
⊥T to simulate IT, UT, and ⊥T. A′′ma can simulate IT and UT
by employing MAC.T and AE.E in the same way that A′ma
dose. For ⊥T, A′′ma only needs to mediate A′’s query to ⊥T.
Thus, we obtain the following equation.

Pr[A′IT,UT,⊥T → 1] = Pr[A′A′′maMAC.T ,AE.E,⊥T → 1]. (5)

From (4) and (5), we obtain

AdvuftPAT2(A′) = | Pr[A′A′maMAC.T ,AE.E,MAC.V,AE.D → 1]
− Pr[A′A′′maMAC.T ,AE.E,⊥T → 1]|. (6)

We can evaluate the upper bound of (6) by adding the
following three inequation’s left sides and right sides, respec-
tively, then obtain (3).

| Pr[A′A′maMAC.T ,AE.E,MAC.V,AE.D → 1]
− Pr[A′A′maMAC.T ,AE.E,MAC.V,⊥AE → 1]|
≤ AdvauthAE (A±ae), (7)

| Pr[A′A′maMAC.T ,AE.E,MAC.V,⊥AE → 1]
− Pr[A′A′maMAC.T ,AE.E,⊥MAC ,⊥AE → 1]|
≤ AdvmacMAC(Amac), (8)

| Pr[A′A′maMAC.T ,AE.E,⊥MAC ,⊥AE → 1]
− Pr[A′A′′maMAC.T ,AE.E,⊥T → 1]| = 0, (9)

where ⊥AE(·, ·, ·) (resp. ⊥MAC(·, ·, ·)) is the function for
decryption (resp. verification) queries to AE (resp. MAC),
which always returns ⊥ for any inputs. A±ae is an authenticity
adversary against AE performing bd + q ′ encryption queries
and one decryption query. Amac is an adversary against MAC
performing (bd − 1)/(b − 1) + q ′d tagging queries and d
verification queries. The remaining part of this section is
devoted to the proof of (7), (8), and (9). We can prove (7)
and (8) in the same manner, thus we omit the proof of (8).
Suppose that A′ma eventually outputs a bit in her simulation of
the unforgeability game and A′ outputs the same bit as A′ma.
Then the left side of (7) is upper-bounded by the probability
that A′ma querying MAC.T , AE.E , and MAC.V successfully
distinguishes AE.D from ⊥AE. Then it also can be upper-
bounded by the probability that A′ma(KM) querying AE.E
successfully distinguishes AE.D from ⊥AE. Without loss of
generality, we can assume that this distinguishing probability

INOUE et al.: ELM: A LOW-LATENCY AND SCALABLE MEMORY ENCRYPTION SCHEME 2637

is equal to the probability that A′ma(KM) querying AE.E and
AE.D obtains something other than ⊥ from AE.D under the
unforgeability game for ME trees. The authenticity adversary
against AE, A±ae, can simulate the oracles that A′ma(KM)
queries because the query sequence of A′ma(KM) respects the
rule of authenticity game for AE schemes (performing nonce-
respecting queries to AE.E and not performing replay queries
to AE.D). Thus, we obtain inequation (7).

We then prove (9). Recall that (idx ′, σ ′) is the tree veri-
fication query of A′ and (uσ ′

0 , . . . , uσ ′
d) is the path of nodes

from the root to the specified leaf. The left side of (9) can be
seen as the probability that A′ querying IT and UT obtains
� from the tree verification oracle simulated by ⊥MAC, ⊥AE,
ListMAC, and ListAE. This is the probability that all the
data associated with uσ ′

0 , . . . , uσ ′
d consist of the elements of

ListMAC and ListAE. We prove the probability is equal to
zero in the following claim.

Claim 1: Either (a) or (b) described below must hold.
(a) There exists i ∈ {0, . . . , d − 1} s.t. the tuple

(add(uσ ′
i) ‖ ctr(uσ ′

i), ctr(ch1(uσ ′
i)) ‖ · · · ‖ ctr

(chb(uσ ′
i)), tag(uσ ′

i)) /∈ ListMAC.
(b) (add(uσ ′

d) ‖ ctr(uσ ′
d), Cσ ′ [idx], tag(uσ ′

d)) /∈
ListAE.

This claim states that A′ma querying MAC.T , AE.E , ⊥MAC
and ⊥AE has to query to ⊥MAC or ⊥AE in her simulation of
the tree verification query. Thus, she always obtains ⊥ from
⊥MAC or ⊥AE and she returns it to A′. Note that HJ05 shows
almost the same claim and its proof, and thus, we omit the
proof of the claim.

V. IMPLEMENTATION AND EVALUATION

We evaluate the hardware implementation of ELM using
logic synthesis. We use AES-128, thus n = 128. Counter,
address and tag is set to 64 bits, so α = β = τ = n/2.
The 64-bit tag corresponds to the security level of SIT for a
fair comparison. We focus on a high-throughput and area-time
efficient architecture based on an unrolled and pipelined AES
datapath, similar to that of SIT in [8], whose throughput is one
block encryption per clock cycle. This high-throughput archi-
tecture suits the context of memory encryption. Note that our
architecture can utilize other block ciphers and architectures
(e.g., round-based and byte-serial ones) in accordance with the
optimization goals.

A. Hardware Architectures

Figure 4 shows the proposed hardware architecture of
PXOR-MAC. The primary inputs consist of a block index, the
number of branches len (= b), nonce (add(uσ

i) ‖ ctr(uσ
i)),

two n-bit keys, and an n-bit segmented plaintext block
(ctr(ch2 j+1(uσ

i)) ‖ ctr(ch2 j+2(uσ
i))) (0 ≤ j ≤ b/2 − 2), and

the primary output is given as tag. One plaintext block is fed
to the hardware every clock cycle one after another and an
encoding is completed with 11 clock cycles. In this architec-
ture, the AES datapath is fully unrolled and pipelined. The
pipeline registers are inserted at the boundaries of each round
in order to increase the throughput. This enables the encryption
of one plaintext block in one clock cycle with the frequency
corresponding to the critical path of one round datapath.

Fig. 4. Proposed MAC hardware architecture.

An up-to-date AES round datapath with a tower-field
S-box presented in [25] is adopted for ELM (and SIT [8]
for a comparison in this paper) in the following hardware
implementation. A mask value for the input block to the AES
core (K ′ · i in Alg. 2) is generated by the multiplication of a
gray code (converted from a block index) and a key K ′ over
GF(2n). The conversion from a block index to a gray code is
given by a combinational circuit and the generation of a mask
value is implemented using a (n × log b)-bit GF multiplier.
This multiplier generates mask values from all indices in a
tree with b branches in one clock cycle. The mask value for
the nonce (No⊕K ′ ·m⊕ L in Alg. 2) is computed as the sum
of the last mask value and L without any GF multiplication.
The accumulation in the tag generator is implemented by a
feedback loop consisting of a bit-parallel-XOR (i.e., GF(2n/2)
adder) and registers, which realizes the for loop at lines 2–2
in Alg. 2.

Figure 5 shows the hardware architectures of the pro-
posed AE, where one encryption core and one decryption core
are utilized. Both cores are unrolled and pipelined similarly
to the above MAC hardware to ensure high throughput. The
encryption and decryption cores are separately implemented
(without unifying them like [25], [26]) in order to perform a
decryption in the pre-verification process and an encryption
in the update process simultaneously for UT. The pre-mask
and post-mask generators compute the mask values for the
input and output of encryption/decryption, respectively. The
proposed architecture utilizes two pre-mask generators and
two post-mask generators for simultaneous encryption and
decryption. The field doubling and tripling for mask value gen-
eration are achieved by combinational circuit blocks denoted
by ×2 and ×3, which consist of four and 132 two-way
XOR gates, respectively. The architecture can be implemented
with less area than another one consisting of one pre-mask
generator, one post-mask generator, and two 128-bit-wise first-
in first-out (FIFO) buffers.7 Plaintext accumulators obtain

7The mask value generated by the pre-mask generator should be retained
for ten clock cycles for post-mask addition. This indicates that we require a
(128 × 10)-bit register to implement one FIFO if we use AES as the block
cipher, which consumes a larger area and power than the four mask generators
in our architecture.

2638 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

Fig. 5. Proposed AE hardware architecture.

truncated plaintext blocks to generate the tag, which is given
by a feedback loop with a bit-parallel-XOR (i.e., GF(2n/2)
adder). Ẽ N,0,0

K (0n) is added before outputting the tag.
The mask value
 is generated from a nonce by the

generator module following Alg. 4, using a ((n/2) × (n/2))-
bit GF multiplier with four clock cycles. The generated
 is
added to the mask values at the pre/post-mask generators.

B. Performance Evaluation

We evaluate performance of the proposed architectures,
on the basis of logic synthesis results. We assume that one
MAC module is used at the top and each middle layer in the
tree and one AE module is used at the lowest layer. Thus
we use d MAC modules and one AE module, which fully
exploits the parallelism of ELM. We investigate the best-case
performance given a constraint in area and power (i.e., the
number of available MAC modules), and clarify the area-
latency trade-offs from the evaluation results.

We use Synopsys Design Compiler I-2013.12-SP5 and
Nangate 15nm Open Cell Library. The performance with
d = 3, 5, and 7 are evaluated, following [8]. Table II
lists the area obtained from the logic synthesis. We set the
timing-constraint for the synthesis to the operating frequency
of 4GHz, assuming modern high-end CPUs operating at 3GHz
or faster. The synthesis result found no timing violation,
thus the proposed architecture can be used even for modern
high-end CPUs without degrading the system clock frequency.
For comparison, Table II also lists the synthesis results of SIT
(following [8]) implemented under the same conditions and
assumption as above.

Table II shows that our implementation has a similar size as
that of SIT, and the gap is closer as depth grows. The archi-
tectures for Flat-OCB require both encryption and decryption

TABLE II

CIRCUIT AREAS SYNTHESIZED WITH 4GHz TIMING CONSTRAINT [GE]

Fig. 6. Numbers of clock cycles to update and verify tag.

cores, which resulted in a larger area than the inverse-free
AE of SIT. However, our MAC hardware needs only one
AES encryption core, while SIT needs a GF(264) multiplier
in addition to one AES encryption core.

Fig. 6 shows the numbers of clock cycles (i.e., latency)
of ELM and SIT. The tuple (Number of branches, Chunk
size) determines the sizes of the covered memory region.
Incremental SIT (Incr. SIT for short) indicates the evaluation
result of SIT when UT is performed in an incremental manner.
We stress that such an incremental update has not been shown
in the literature including [8]; we do this for a fair comparison.
Each clock cycle shown here is given by a larger one of either
AE or MAC.

Fig. 6 shows that the advantage of ELM is greater as the
covered region gets larger. One major reason is that ELM
utilizes a n-bit block cipher for encryption, whereas SIT
processes a plaintext in a n/2-bit-wise manner (i.e., inner-
product MAC over GF(2n/2)). More precisely, since the MAC
module at each layer (and AE module) should process more
bits for a larger parameter, the n-bit-wise computation of
PXOR-MAC in ELM enables fewer calls of the underlying
pseudorandom function than the n/2-bit-wise computation of
SIT, which results in a lower latency of ELM. In addition, the
number of cycles in the update process of AE is reduced by
using a distinct decryption core to perform the pre-verification
and update processes simultaneously. Note that SIT uses an
Encrypt-then-MAC style AE composing counter mode encryp-
tion and an inner-product MAC. Since SIT does not utilize
any decryption function and the MAC computation becomes
critical for the latency, the latency of SIT cannot be reduced
in the same manner as ours. The precise numbers of cycles for
various tree parameters are shown in Appendix A. The results
suggest that ELM is superior to SIT when covering a larger
region. As the protected memory region becomes larger, the
advantage of ELM increases significantly.

INOUE et al.: ELM: A LOW-LATENCY AND SCALABLE MEMORY ENCRYPTION SCHEME 2639

TABLE III

REQUIRED MEMORY SIZES

Table III lists the on-chip and off-chip memory sizes for
each architecture. Here, both counter and tag lengths are
56 bits to be (perfectly) compliant with SIT. With respect to
the on-chip storage, ELM requires four 64-bit round keys for

 gen., a 128-bit L, a 128-bit plaintext/ciphertext processing
key K , and a 56-bit ctr(uσ

r). Here, the amounts of on-chip
storage is constant regardless of parameters b and �. In con-
trast, SIT needs to store the 2×128-bit keys and inner-product
MAC for nonce processing and mask generation, depending
on the size of the tree parameters. As a result, the on-chip size
gets larger when b and � are larger because the key length of
inner-product MAC increases in proportion to the input block
length (b). For example, the on-chip sizes of SIT are 768 and
8,448 bits when b = 8, � = 512 and b = 128, � = 8,192,
respectively. On the other hand, the off-chip size of ours is
comparable with that of SIT. For example, when d = 3 and
b = 8, the off-chip sizes of SIT and ours are 66,049 and
65,464 bits, respectively.

VI. DISCUSSION

A. Design Optimizations

Our evaluations did not consider system constraints in order
to demonstrate the scalability of our proposal. In practice,
we would design the total hardware configuration depending
on various system/architecture constraints, such as system
clock frequency, memory size, available on-chip size, memory
bandwidth, cache memory structure, and so on. The sizes
of the MAC and AE modules should also be determined
considering the above constraints.

A gap in latency between AE and MAC also leads to a
loss of efficiency for ME tree because the entire latency is
determined by a larger latency of either AE or MAC. While
we evaluated the typical tree structures in Section V-B using
power-of-two parameters, they should be determined such that
the latencies of AE and MAC are well-balanced. In summary,
when designing the ME tree and its hardware, we should
first determine the optimal (i.e., well-balanced) tree structure
parameters for the required covered region. Then, we can
mitigate the remaining gap in latency between AE and MAC
on the basis of the above hardware optimization approach.

B. Application of Split Counter

ELM can use Split Counter [10], the up-to-date method to
reduce the amount of counters for ME trees. Figure 7 shows
the numbers of cycles when an overflow of minor counters
occurs in MAC and AE, respectively. (See Appendix A for
more details.) Here, we evaluate the cases of four different
numbers of branches. Since the reset counter is always the

Fig. 7. Number of clocks when minor counter overflows.

same value, the encryption result of reset counter in MAC
can be pre-computed for both SIT and our trees. Thus, ELM
maintains superiority to SIT under the condition where an
overflow occurs. We also found that the proposed AE is
advantageous even with the split counter thanks to the simul-
taneous execution of pre-verification and update. In particular,
when the number of branches increases, the proposed scheme
becomes more advantageous in comparison with that without
the split counter.

VII. CONCLUSION

We have presented ELM, a new memory encryption scheme
with tree-based authentication. Unlike many recent proposals
from computer architecture perspective, we focus on the
internal MAC and AE modes, including their interactions,
to reduce the entire read/write latency. ELM combines fully
parallelizable MAC and AE modes and utilizes the incremental
property of the MAC mode. Our AE mode is similar to OCB,
however has a better decryption latency and it can be of
independent interest as a stand-alone AE mode. We provide
provable security results for these components as well as
the whole scheme. Since Intel SGX’s scheme (SIT) is a
representative work on the same direction, we instantiated
ELM using the same AES and compared ELM with SIT, and
presented preliminary hardware implementations. The results
showed that ELM achieves significantly lower latency, while
keeping the comparable implementation size of SIT. Several
future directions can be considered, as follows:

A. Other Instantiations

A low-latency (tweakable) block cipher such as
PRINCE [27] or QARMA [28] will significantly improve
both latency and size of ELM. Using multiple primitives
of possibly different block sizes may further boost the
performance.

B. Side-Channel Attacks

Cryptographic hardware frequently needs to be resistant
against side-channel attacks (SCAs). Design and evaluation of
SCA-resistant hardware architecture for ELM is an interesting
future topic. The use of a SCA-resistant AES implementation
will thwart typical SCAs trying to recover the AES key.
For example, we can use a low-latency masked round-based
AES [29]. However, it will significantly reduce throughput

2640 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

TABLE IV

NUMBERS OF CLOCKS TO UPDATE AND VERIFY TAG

due to a large area overhead and on-the-fly random number
generation.

The usage of a (first-order) masking-friendly light-
weight (tweakable) block cipher such as PRESENT [30] or
Skinny [31] would be a practical alternative with less area
overhead and no on-the-fly randomness.

Furthermore, it would be interesting to design leakage-
resilient TBC/permutation-based AE (e.g., [32], [33]) and
MAC that enable low-latency operation and are suitable to
be used with ELM.

APPENDIX A
DETAILED PERFORMANCE EVALUATION

Table IV of page 15 shows the numbers of clock cycles (i.e.,
latency) and the size of protected memory region (namely,
the covered region) of ELM and SIT in details for various
tree parameters. Each clock cycle shown here is given by a
larger one of either AE or MAC. For example, if our ME
tree has eight branches b = 8 and handles 512-bit blocks
� = 512 [bit] at the leaf (or lowest) node, ELM requires 18 and
21 clock cycles for MAC and AE, respectively; hence the
clock cycle of this ME tree is given as 21 clock cycles in
the table. The bold-face characters in each row highlight the
scheme that achieved the lowest latency (minimal clock cycles)
under the parameter condition of the row. The parameters used
in Fig. 6 in Section V-B are underlined in the chunk size
column in Table IV. The table shows the results of all tree
structures comprehensively, where some rows hatched in gray
indicate better clock cycles than those in white in terms of the

latency required for the covered regions. For example, a tree
with b = 8 and � = 4,096 requires a larger latency and a
smaller covered region than that with b = 16 and � = 512,
and therefore there is no reason to use the former tree rather
than the latter. Such meaningless parameters are caused by
the gap in latency between AE and MAC, as discussed in
Section VI.

In addition, we show the numbers of clock cycles in details
for the cases that the split counter is applied. The split counter
is a method to reduce the amount of counters stored in an
off-chip for ME trees [10]. It uses two types of counters: major
and minor ones. A major counter is shared by the children
nodes of the node of interest (or a parent node), and each
child node is equipped with a minor counter. In other words,
in an ME tree with split counter, children nodes having the
same parent node share the upper bits of the same major
counter. Here, we should point out that overflows of the minor
counters frequently occur, since each minor counter is given
with a small bit length. When such an overflow occurs, the
corresponding major counter is incremented and all the minor
counters associated with it are reset to zero. Accordingly,
we need to update all the tags where the nonces are reset. The
tag update with the split counter requires b times tag updates
at the layer where a major counter is incremented (i.e., the
overflow of minor counter occurs), which is non-trivial in the
update process (i.e., UT). In ELM, b counters are originally
used as the input for the plaintext part of tag generation by
the MAC algorithm, that is, b × n/2 bits should be verified
by MAC. More precisely, let ctr be the counter of the parent

INOUE et al.: ELM: A LOW-LATENCY AND SCALABLE MEMORY ENCRYPTION SCHEME 2641

TABLE V

NUMBER OF CLOCKS WHEN MINOR COUNTER
IN MIDDLE NODES OVERFLOWS

node and let ctr′1,ctr′2, . . .ctr′b be the counters of children
nodes without the split counter, where b is the number of
branches in the tree structure. In ELM, a tag T is generated
as

T = PXOR-MAC.TK ,K ′
(

(add ‖ ctr),

(ctr′1 ‖ ctr′2 ‖ · · · ‖ ctr′b)
)

,

where PXOR-MAC.TK ,K ′(N, M) calculates a tag from a
nonce N and a plaintext M . Each counter is given by n/2 bits
and b × n/2 bits should be encrypted.

In contrast, we consider the tag generation when utilizing
the split counter. Let Mctr and mctr be the major and
minor counters of a parent node, respectively. Let Mctr′ and
mctr′1,mctr′2, . . .mctr′b be the major counter and minor
counters of children nodes, respectively. In this case, unless
the overflow of minor counters occurs, a tag is generated as

T = PXOR-MAC.TK ,K ′
(

(add ‖ Mctr ‖ mctr),

(Mctr′ ‖ mctr′1 ‖ · · · ‖ mctr′b)
)

.

Here, let s and t be the bit lengths of major and minor counters,
respectively (s+ t = n/2). When the split counter is used, the
input is given with s + bt bits. Since s + bt ≤ b(s + t)/2, the
input bit length of the MAC algorithm is reduced thanks to
the split counter. In addition to the tag generation algorithm
(i.e., PXOR-MAC.T), VT (i.e., PXOR-MAC.V) and UT (i.e.,
PXOR-MAC.VU) algorithms are performed with the split
counter as well. The tags of leaf (or lowest) nodes can also
be generated, verified, and updated in a similar manner even
when the split counter is applied.

As a result, Table V of page 15 and Table VI of page 16
show the numbers of clock cycles when the split counter is
applied and an overflow occurs in MAC and AE, respectively.
When the major counter is incremented due to the overflow of
a minor counter, all minor counters associated with the major
counter are reset to 0.

APPENDIX B
PROOF OF CLAIM 1

In this section, we show the proof of Claim 1. The liter-
ature [4] shows almost the same claim and its proof for the
proposed ME tree without encryption of leaf nodes, however,
the proof is a little bit complex. We recast it for the sake of

TABLE VI

NUMBER OF CLOCKS WHEN MINOR COUNTER
IN LEAF NODES OVERFLOWS

ease to understand and the ME tree with encryption of leaf
nodes.

If (b) occurs, the claim is simply proved. We need to
see that if (b) does not occur, the case (a) must hold. First
we discuss u0 (i.e., the root node). Let (Nu0 , Mu0 , Tu0) =
(add(uσ ′

0) ‖ ctr(uσ ′
0), ctr(ch1(uσ ′

0)) ‖ · · · ‖ ctr(chb(uσ ′
0)),

tag(uσ ′
0)). If (Nu0 , Mu0 , Tu0) /∈ ListMAC holds, it means that

(a) holds. Suppose that (Nu0 , Mu0 , Tu0) ∈ ListMAC, and we
obtain the following equation.

(Nu0 , Mu0 , Tu0)

= (add(u
σ̃q′
0) ‖ ctr(u

σ̃q′
0),

ctr(ch1(u
σ̃q′
0)) ‖ · · · ‖ ctr(chb(u

σ̃q′
0)), tag(u

σ̃q′
0)), (10)

which means that the data stored in uσ ′
0 is the same as that

stored in u
σ̃q′
0 . This holds because Nu0 cannot be tampered

by definition, and the element of ListMAC including Nu0

is uniquely determined as (10) since nonces included in
ListMAC are distinct. Note that we also obtain ctr(uσ ′

1) =
ctr(u

σ̃q′
1) from (10).

Next, we discuss u1. Let (Nu1 , Mu1 , Tu1) = (add(uσ ′
1)

‖ ctr(uσ ′
1), ctr(ch1(uσ ′

1)) ‖ · · · ‖ ctr(chb(uσ ′
1)), tag(uσ ′

1)).
As well as the case of u0, we can suppose that
(Nu1 , Mu1 , Tu1) ∈ ListMAC since (a) occurs when
(Nu1 , Mu1 , Tu1) /∈ ListMAC holds. In the same manner as

2642 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 17, 2022

the case of u0, we obtain

(Nu1 , Mu1 , Tu1)

= (add(u
σ̃q′
1) ‖ ctr(u

σ̃q′
1),

ctr(ch1(u
σ̃q′
1)) ‖ · · · ‖ ctr(chb(u

σ̃q′
1)), tag(u

σ̃q′
1)),

since add(uσ ′
1) cannot be tampered and ctr(uσ ′

1) = ctr(u
σ̃q′
1)

holds from (10).
Suppose that we repeat the same discussion as

u0 and u1. For 2 ≤ i ≤ d − 1, we define
(Nui , Mui , Tui) = (add(uσ ′

i) ‖ ctr(uσ ′
i), ctr(ch1(uσ ′

i)) ‖ · · ·
‖ ctr(chb(uσ ′

i)), tag(uσ ′
i)). When (Nui , Mui , Tui) ∈ ListMAC

for 0 ≤ i ≤ d − 1, we obtain the following equation.

(Nui , Mui , Tui)

= (add(u
σ̃q′
i) ‖ ctr(u

σ̃q′
i),

ctr(ch1(u
σ̃q′
i)) ‖ · · · ‖ ctr(chb(u

σ̃q′
i)), tag(u

σ̃q′
i)). (11)

Finally, we discuss ud (i.e., the leaf node). Let
(Nud , Cud , Tud) = (add(uσ ′

d) ‖ ctr(uσ ′
d), Cσ ′ [idx], tag(uσ ′

d)).
Recall that we assumed that (b) did not occur, thus

(Nud , Cud , Tud) ∈ ListAE. Here, add(uσ ′
d) = add(u

σ̃ ′q
d) holds

since add(·) cannot be tampered, and ctr(uσ ′
d) = ctr(u

σ̃ ′q
d)

holds due to (11) when i = d − 1. Thus, we have

(Nud , Cud , Tud)

= (add(u
σ̃q′
d) ‖ ctr(u

σ̃q′
d), C σ̃q′ [idx], tag(u

σ̃q′
d)), (12)

since nonces included in ListAE are distinct, hence the
element of ListAE including Nud is uniquely determined
as (12).

From (11) and (12), we proved that the data stored in uσ ′
i

is the same as that stored in u
σ̃q′
i for all i ∈ {0, . . . , d}, which

is a forbidden query. Therefore, there must exist i ∈ {0, . . . ,
d − 1} such that (Nui , Mui , Tui) /∈ ListMAC. This concludes
the claim.

REFERENCES

[1] M. Dworkin, Recommendation for Block Cipher Modes of Operation:
The XTS-AES Mode for Confidentiality on Storage Devices, docu-
ment NIST Special Publication (SP) 800-38E, 2010.

[2] J. A. Halderman et al., “Lest we remember: Cold boot attacks on
encryption keys,” in Proc. USENIX Secur. Symp., 2008, pp. 45–60.

[3] R. C. Merkle, “A digital signature based on a conventional encryp-
tion function,” in CRYPTO’87 (Lecture Notes in Computer Science),
vol. 293, C. Pomerance, Ed. Berlin, Germany: Springer, Aug. 1988,
pp. 369–378.

[4] W. E. Hall and C. S. Jutla, “Parallelizable authentication trees,” in SAC
2005 (Lecture Notes in Computer Science), vol. 3897, B. Preneel and
S. Tavares, Eds. Berlin, Germany: Springer, Aug. 2006, pp. 95–109.

[5] B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using
address independent seed encryption and bonsai Merkle trees to
make secure processors OS- and performance-friendly,” in Proc. 40th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Dec. 2007,
pp. 183–196.

[6] R. Elbaz, D. Champagne, R. B. Lee, L. Torres, G. Sassatelli, and
P. Guillemin, “TEC-tree: A low-cost, parallelizable tree for efficient
defense against memory replay attacks,” in CHES 2007 (Lecture Notes
in Computer Science), vol. 4727, P. Paillier and I. Verbauwhede, Eds.
Berlin, Germany: Springer, Sep. 2007, pp. 289–302.

[7] S. Gueron, “Memory encryption for general-purpose processors,” IEEE
Secur. Privacy, vol. 14, no. 6, pp. 54–62, Nov. 2016.

[8] S. Gueron, “A memory encryption engine suitable for general purpose
processors,” Cryptol. ePrint Arch., Tech. Rep. 2016/204, 2016. [Online].
Available: https://eprint.iacr.org/2016/204

[9] M. Dworkin, Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC, document NIST Special
Publication 800-38D, 2007.

[10] C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in Proc. 33rd Int. Symp. Comput. Archit. (ISCA),
May 2006, pp. 179–190.

[11] M. Taassori, A. Shafiee, and R. Balasubramonian, “VAULT: Reducing
paging overheads in SGX with efficient integrity verification structures,”
in Proc. ASPLOS. New York, NY, USA: ACM, 2018, pp. 665–678.

[12] G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, J. A. Joao, and
M. K. Qureshi, “Morphable counters: Enabling compact integrity trees
for low-overhead secure memories,” in Proc. 51st Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Oct. 2018, pp. 416–427.

[13] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental cryptogra-
phy: The case of hashing and signing,” in CRYPTO’94 (Lecture Notes
in Computer Science), vol. 839, Y. Desmedt, Ed. Berlin, Germany:
Springer, Aug. 1994, pp. 216–233.

[14] M. Bellare and D. Micciancio, “A new paradigm for collision-free
hashing: Incrementality at reduced cost,” in EUROCRYPT’97 (Lecture
Notes in Computer Science), vol. 1233, W. Fumy, Ed. Berlin, Germany:
Springer, May 1997, pp. 163–192.

[15] M. Bellare, R. Guérin, and P. Rogaway, “XOR MACs: New meth-
ods for message authentication using finite pseudorandom functions,”
in CRYPTO’95 (Lecture Notes in Computer Science), vol. 963,
D. Coppersmith, Ed. Berlin, Germany: Springer, Aug. 1995, pp. 15–28.

[16] T. Krovetz and P. Rogaway, “The software performance of authenticated-
encryption modes,” in FSE 2011 (Lecture Notes in Computer Sci-
ence), vol. 6733, A. Joux, Ed. Berlin, Germany: Springer, Feb. 2011,
pp. 306–327.

[17] M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable block ciphers,”
in CRYPTO 2002 (Lecture Notes in Computer Science), vol. 2442,
M. Yung, Ed. Berlin, Germany: Springer, Aug. 2002, pp. 31–46.

[18] P. Rogaway, “Efficient instantiations of tweakable blockciphers and
refinements to modes OCB and PMAC,” in ASIACRYPT 2004 (Lecture
Notes in Computer Science), vol. 3329, P. J. Lee, Ed. Berlin, Germany:
Springer, Dec. 2004, pp. 16–31.

[19] M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,” in
ASIACRYPT 2000 (Lecture Notes in Computer Science), vol. 1976,
T. Okamoto, Ed. Berlin, Germany: Springer, Dec. 2000, pp. 531–545.

[20] W. E. Hall and C. S. Jutla, “Parallelizable authentication trees,” IACR
Cryptol. ePrint Arch., vol. 2002, p. 190, Jan. 2002.

[21] T. Unterluggauer, M. Werner, and S. Mangard, “MEAS: Memory encryp-
tion and authentication secure against side-channel attacks,” J. Crypto-
graph. Eng., vol. 9, no. 2, pp. 137–158, Jun. 2019.

[22] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security
treatment of symmetric encryption,” in Proc. IEEE 38th Annu. Symp.
Found. Comp. Sci., Oct. 1997, pp. 394–403.

[23] K. Minematsu and T. Matsushima, “Generalization and extension of
XEX* mode,” IEICE Trans. Fundam. Electron., Commun. Comput. Sci.,
vol. E92-A, no. 2, pp. 517–524, 2009.

[24] M. Bellare, O. Goldreich, and A. Mityagin, “The power of verifica-
tion queries in message authentication and authenticated encryption,”
Cryptol. ePrint Arch., Tech. Rep. 2004/309, 2004. [Online]. Available:
https://eprint.iacr.org/2004/309

[25] R. Ueno et al., “High throughput/gate AES hardware architectures
based on datapath compression,” IEEE Trans. Comput., vol. 69, no. 4,
pp. 534–548, Apr. 2020.

[26] R. Ueno, S. Morioka, N. Homma, and T. Aoki, “A high throughput/gate
AES hardware architecture by compressing encryption and decryp-
tion datapaths—Toward efficient CBC-mode implementation,” in CHES
(Lecture Notes in Computer Science), vol. 9813. Cham, Switzerland:
Springer, 2016, pp. 538–558.

[27] J. Borghoff et al., “PRINCE—A low-latency block cipher for pervasive
computing applications—Extended abstract,” in ASIACRYPT 2012 (Lec-
ture Notes in Computer Science), vol. 7658, X. Wang and K. Sako, Eds.
Berlin, Germany: Springer, Dec. 2012, pp. 208–225.

[28] R. Avanzi, “The QARMA block cipher family,” IACR Trans. Symm.
Cryptol., vol. 2017, no. 1, pp. 4–44, 2017.

[29] P. Sasdrich, B. Bilgin, M. Hutter, and M. E. Marson, “Low-latency
hardware masking with application to AES,” IACR Trans. Cryptograph.
Hardw. Embedded Syst., vol. 2020, pp. 300–326, Mar. 2020.

INOUE et al.: ELM: A LOW-LATENCY AND SCALABLE MEMORY ENCRYPTION SCHEME 2643

[30] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,”
in Proc. 9th Int. Workshop Cryptograph. Hardw. Embedded Syst.
(CHES), in Lecture Notes in Computer Science, vol. 4727, P. Pail-
lier and I. Verbauwhede, Eds. Vienna, Austria: Springer, Sep. 2007,
pp. 450–466.

[31] C. Beierle et al., “The SKINNY family of block ciphers and its
low-latency variant MANTIS,” in CRYPTO 2016, Part II Advances
in Cryptology—CRYPTO 2016 (Lecture Notes in Computer Science),
vol. 9815, M. Robshaw and J. Katz, Eds. Berlin, Germany: Springer,
Aug. 2016, pp. 123–153.

[32] C. Dobraunig, M. Eichlseder, S. Mangard, F. Mendel, and
T. Unterluggauer, “ISAP—Towards side-channel secure authenticated
encryption,” IACR Trans. Symmetric Cryptol., vol. 2017, pp. 80–105,
Mar. 2017.

[33] F. Berti, C. Guo, O. Pereira, T. Peters, and F.-X. Standaert,
“TEDT: A leakage-resistant AEAD mode,” IACR TCHES, vol. 2020,
no. 1, pp. 256–320, 2019. [Online]. Available: https://tches.iacr.org/
index.php/TCHES/article/view/8400

Akiko Inoue received the B.E. and M.E. degrees
from Kyushu University in 2015 and 2017, respec-
tively. She joined NEC in 2017. She works on
design and analysis of symmetric-key ciphers and
related systems. She received the Best Paper Award
at CRYPTO 2019.

Kazuhiko Minematsu received the B.E., M.E.,
and D.S. degrees from Waseda University in 1996,
1998, and 2008, respectively. He joined NEC in
1998. He currently works as a Research Fellow.
Since 2019, he has also been a Visiting Professor
with Yokohama National University. His research
interests are design and analysis of symmetric-key
ciphers and its application systems. He received the
best paper awards at FSE 2015 and CRYPTO 2019.

Maya Oda received the B.E. and M.S. degrees
from Tohoku University in 2019 and 2021, respec-
tively. Her research interests include hardware secu-
rity, cryptographic implementation, and memory
protection.

Rei Ueno (Member, IEEE) is currently an Assistant
Professor with the Research Institute of Electri-
cal Communication, Tohoku University. He is also
working with the JST as a Researcher for a PRESTO
Project. His research interests include arithmetic
circuits, cryptographic implementations, formal ver-
ification, and hardware security.

Naofumi Homma (Senior Member, IEEE) received
the B.E., M.S., and Ph.D. degrees from Tohoku Uni-
versity in 1997, 1999 and 2001, respectively. He is
currently a Professor with the Research Institute of
Electrical Communication, Tohoku University. He is
also working as a Researcher with the JST CREST.
His research interests include hardware security,
computer arithmetic, and EDA methodology.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

