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Abstract— Evaluating the side-channel resistance in practice is
a problematic and arduous process. Current certification schemes
require to attack the device under test with an ever-growing
number of techniques to validate its security. In addition, the
success or failure of these techniques strongly depends on the
individual implementing them due to the fallible and human
intrinsic nature of several steps of this path. To alleviate this
problem, we propose a battery of automated (Estimation of
Distribution Algorihm(EDA)-based) attacks as a side-channel
analysis robustness assessment of an embedded device. To prove
our approach, we conduct realistic experiments on two different
devices, creating a new dataset (AES_RA) as a part of our contri-
bution. Furthermore, in this context of automation, we propose
several novel improvements over current EDA-based attacks,
as follows: 1) optimization of the search process by employing two
proposed initialization techniques; 2) improvement and analysis
of the generalization of the obtained templates; 3) acceleration of
the search process by combining EDAs with Principal Component
Analysis (PCA). The last contribution also serves as an alternative
way of selecting optimal principal components automatically.
We support our claims with experiments on AES_RA and
a public dataset (ASCAD), showing how our, although fully
automated, approach can straightforwardly provide state-of-the-
art results.

Index Terms— SCA, profiling attacks, template attacks, EDAs,
evaluation.

I. INTRODUCTION

THE process of integrating and validating countermea-
sures against Side-channel attacks (SCA) on embedded

devices is known for being a complex and cumbersome task.
Current certification schemes like EMVCo [1] or Common
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Criteria (CC [2]) assess the security of the device under
test (DUT) by applying a battery of known SCA (e.g., dif-
ferential power analysis (DPA) [3], correlation power analysis
(CPA) [4], mutual information analysis (MIA) [5], [6], tem-
plate attacks (TA) [7]–[9], and machine learning-based attacks
(ML-SCA) [10]–[14]).

The evaluation approach is to rate each attack by con-
sidering the effort required to create and apply the attack
for the first time (identification step) and once knowing
the techniques developed in the identification (exploitation
step) [15]. However, the ever-growing number of possible
attack techniques makes it increasingly difficult to master
and correctly apply all of them. This makes it challenging
to perform a low-cost and efficient evaluation. Furthermore,
the success or failure of these attacks strongly depends on
the expertise and capabilities of the attacker: He/She not only
needs to stay up to date on the state-of-the-art but also to
master aspects of very different topics (statistics, electronics,
signal processing, machine learning, cryptography, program-
ming, etc.). All these issues make the estimates of the efforts
needed to compromise a device’s security quite conditional
on the person implementing the tests. And given that humans
are error-prone and knowledge is sometimes challenging to
transfer from one person to another, technicians and product
developers face a particularly challenging puzzle.

This problem has already been identified in the past, and
one of the proposed solutions are leakage assessment tests.
These tests (such as TVLA [16]) attempt to eliminate the need
to test devices against an accrescent number of attack vectors.
They commonly use statistical tests such as Welch’s t-test [17]
or Pearson’s X 2-test [18], or even Deep Learning [19] or
Mutual Information [20], to distinguish whether two sets of
data (e.g. random vs fixed) are significantly different. These
tests are used in other “conformance style” schemes like
ISO/IEC 17825:2016 [21]. The problem is that, as shown
in [22], assessing the SCA security of a device based on, e.g.,
TVLA only is usually not enough, as a false positive can occur.

In addition, there also exist works that propose the usage
of simulators for leakage assessment [23]–[25]. In a way,
those works also share the same objective as ours, since
they aim to reduce the evaluation’s cost, but the solutions
are very different: evaluating the leakage before tape-out
(e.g., using simulated power traces in the early stages of
the design process). The main advantage is in the ability
to test a chip before actually producing it. Conversely, the
major drawback is that current leakage simulators for SCA
such as ELMO [23], or its improved version ELMO* [25]
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are not generic enough. These emulators use a very sim-
ple (instruction-level) model, making a detailed hardware
description or information about the used process technology
not mandatory. However, they are only suitable for small
microcontrollers like Cortex-M0, small RISC-V processors,
or AVR processors like ATMEGA328p. Thus, the approach
may not be suitable for more advanced processors [25]. This
motivates the creation of a non-hardware-specific alternative
to determine the actual security of a device in a simple way,
as the one proposed in this paper.

In short, considering the ideas mentioned above, a com-
prehensive SCA evaluation requires attacking the device
exhaustively, which is highly complex and resource-intensive.
Between all types of SCA, profiling attacks (PA) are consid-
ered the most powerful, among which template attacks (TA)
and ML-SCA are the most prevalent today [26]. In any
case, these attacks can be quite complex, and the intrinsic
human nature of several parts of the operation (acquisition,
pre-processing, point of interest selection, hyper-parameter
tuning, etc.) utters the time and energy needed to succeed in
the attack quite subjective.

In this paper, we point toward the possibility of automated
attacks serving as a robustness test for a device and actually
of its cryptographic implementation against TA. Our goal
is to mitigate the bias and human dependency in the SCA
evaluation process. For this purpose, we perform automatic
attacks on different cryptographic implementations to have
an objective measure of their robustness against an exhaus-
tive profiling-based attack such as TA. Note that, although
DL-SCA is more recent and is becoming a method of choice,
in this work, we focus on template attacks as the more mature
of the two, representing an established and well-understood
option for the SCA community. Nevertheless, we claim that a
similar strategy can be deployed for other PAs.

In summary, we list he most important contributions of this
paper as follows:

1) We propose to use Estimation of Distribution Algorithms
(EDA)-based PA automated attacks (as introduced in [27]) in
an alternative and innovative way. Namely, orthogonal to [27]
that purely focused on EDA-based SCA attacks, we look into
another dimension by extending the method to also serve as a
robustness assessment test. Our approach advocates to measure
the performance of these attacks using newly (for this purpose)
proposed metrics that are based on the two best-known metrics
in the SCA field: Guessing Entropy and Success Rate [28]
and compare the robustness of several cryptographic imple-
mentations. Without claiming it being sufficient to determine
the security of a device, this test can serve as an automatic
check whether a masking protected implementation is secure
against profiling attacks. In other words, the approach can
easily detect whether close manipulation of the mask and
masked intermediate value exist, reducing the security order
and making it weak against profiling attacks. We demonstrate
the suitability of our method with attacks against two dis-
tinct devices (Piñata board [29] and STM32F411-Discovery
board [30]). Thus, we perform automated attacks against the
SBox of different AES [31] implementations on the same
device to assess its physical security. We also make our traces

public, creating the AES_RA dataset [32] as a part of our
contribution.

2) We propose several improvements over current
EDA-based PAs such as:

• Optimization of the search process, in terms of timing and
guessing entropy, by employing two proposed novel ini-
tialization techniques for the EDA’s probabilistic model.

• Improvement and analysis of the generalization of the
obtained templates through cross-validation during the
search process.

• Acceleration of the search process by combining
EDA-based TAs with Principal Component Analy-
sis (PCA) as an alternative way of performing EDA-based
PA by employing it on PCA-transformed power traces,
rather than on the “raw” traces.

To this end, we perform a detailed analysis of automated
attacks on masking-protected AES software implementations,
comparing the proposed alternatives with the “standard”
attacks and showing the advantages and disadvantages of each
method. Our results show that PCA can accelerate the process
when the power traces are clean enough, as the number of
relevant time samples in the EDA is decimated. Thus, the
number of variables involved in the EDA is also drastically
reduced.

3) Moreover, this novel combination of EDA-based PA and
PCA serves as an alternative way of selecting the number of
principal components (PCs) to keep. Our technique works as
a simple and automatic way of selecting not only the number
of PCs to keep but also which PCs give the best results.
As “there is no definitive answer [to the question of how
many components to choose]” [33], we claim that it is an
appealing choice when employing PCA in SCA or in some
other field. We showcase the performance of our proposal with
experiments on the aforementioned AES_RA and a widely
used dataset in the field of SCA (ASCAD [34]), providing
state-of-the-art results. We compare several EDA-based PAs
against “traditional” (not automated) template attacks using
PCA for the Point of Interest (POI) selection, showing the
advantages of this method. Our experiments are limited to
cryptographic implementations in software, and therefore the
approach is currently restricted to that scenario.

The remainder of this paper is organized as follows. Sect. II
summarizes the important background and related works on
this topic. In Sect. III we describe our proposed robustness
assessment test and the metrics employed for assessing the
performance of the EDA-based attacks. We introduce our
novel AES_RA dataset in Sect. IV. We specify the procedure
of EDA-based Robustness Assessment in Sect. V, providing
experimental results supporting our approach (Contribution 1).
In Sect. VI we elaborate our improved EDA-based PA
(Contributions 2 and 3). Sect. VII contains the experimental
results supporting the modifications proposed in the previous
section. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first present previous related works which
are relevant for this paper. Afterward, we briefly explain the
background necessary to understand our work.
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A. Related Work
1) Automated SCA: To the best of our knowledge, there is

hardly any work that aims to automate several of the phases of
an SCA and thus mitigate human dependency, apart from our
previous works [27], [35]. There, we proposed using stochastic
optimization techniques to perform and optimize several steps
of a conventional profiling attack (POI selection, template
building, and key recovery), relaxing the need for human
interaction. However, these works were limited to introducing
the method at a very early stage. Thus, some crucial concepts
such as the generalization of the obtained templates [36] or the
close manipulation of the mask and masked intermediate value
in protected implementations [25], [37], were not taken into
account. In this paper, we consider these factors and go a step
further and advocate that these automated attacks could serve
as an objective way of assessing SCA resistance. Besides,
we highlight the importance of selecting a good probability
initialization method for the EDA approach by systematically
comparing the performance of different, including the two
new, proposals.

2) PCA: PCA is a statistical technique that computes the
PCs and uses them to perform a change of basis on the data.
It is commonly used as a dimensionality reduction technique
by keeping only the first few PCs and ignoring the rest.
Furthermore, in the field of SCA, it has been used for very
different purposes. The first appearance of PCA in the field of
SCA was its usage as a method to improve power attacks [38].
Later on, PCA was used as a POI selection technique for
template attacks in [39]. Afterwards, it has been used for
POI selection in profiling attacks in a large number of works
(e.g., [34], [40]–[46]).

Other works try to enhance PCA (among other dimensional-
ity reduction methods) for SCA [47] or compare PCA against
other POI selection techniques [48]. PCA has also been used
as a pre-processing technique to improve the correlation for
the correct key candidate [49]. In [50] the authors followed
a different approach and used PCA not as a pre-processing
technique but rather as a common side-channel distinguisher.
In any case, our approach is very different from all those
papers as we use PCA to improve the performance of the
automated TAs (EDA-based PA).

Furthermore, we claim that this approach also serves as an
automated way of selecting optimal PCs. Choosing a proper
number of PCs to keep is crucial for obtaining favorable
results. There exist several “traditional” ways to obtain the
number of PCs needed, as shown in [51]. Generally speaking,
they rely on selecting the largest PCs (e.g., Scree test and
Cumulative Percentage of Total Variation). The problem is that
as several related works underline [49], [52], when the first few
components are selected to reduce the dimension of the data,
often the first ones contain more noise than information. This
is because the first components contain the most variance, but
since PCA does not take leakage information into account, that
variance can come from leakage or be mere noise. Therefore,
choosing not only the number of components but also which
particular components to keep is a complex and application-
dependent task. To the best of our knowledge, no related
works attempt to do this task in a simple, automated, and

generalized way. There exist only a few works that propose
selection methods for PCA in SCA [47], [49], but they have the
same drawback as they rely on the variance of the traces and
not on its leakage. In [49], the authors propose to compute
the Inverse Participation Ratio (IPR) score and collect the
PCs in decreasing order accordingly. In [47] authors suggest a
new technique (Explained Local Variance, ELV) based on the
compromise between the variance provided by each PC and
the number of samples necessary to achieve a consistent part of
such variance. Both those approaches are complex and human-
dependent, unlike ours. Another strength of our method is that
it can be employed in masking-protected traces following a
“Black-Box” approach (i.e., without knowing the mask), even
in high-noise environments.

B. Notation

In this section we briefly define the notation used throughout
the paper. We adopt the notation introduced in [53], with some
adjustments. T denotes a set of traces t. Each power trace
is composed of T time samples t = {t1, t2, t3 . . . , tT }. The
total number of power traces t in a set of traces T is denoted
by |T|. We use v = f (p, k) for the targeted intermediate
value, which is related to a public variable (plaintext p)
and a cryptographic primitive (secret key k). K denotes the
set of all possible keys. k∗ denotes the (correct) key used
by the cryptographic algorithm and the total number of key
hypotheses is denoted by |K|. Regarding TAs, we denote each
template by h = (m, C), where m and C denote mean vector
and covariance matrix, respectively.

C. Template Attacks

Template Attacks (TAs) were proposed in [7] and represent
the first form of profiling attacks, the strongest kind of SCA
nowadays. In these attacks, the general idea is to generate a
power consumption model to compare it with the actual power
consumption of the device and recover sensitive information
(i.e., cryptographic keys). Different types of profiling attacks
exist depending on how the model is generated. Whereas
template attacks use estimation theory to model the probability
distribution of the leakage [7], [8], other procedures use
linear regression (stochastic models approach [54]) or machine
learning [10], [11], including the lately introduced tendency
of using deep learning techniques [34], [48], [55] to build the
leakage model.

In practice, TAs are commonly used to recover the secret
key used by the DUT to perform cryptographic operations.
In order to do so, the attacker has to capture a large number
of power traces of the DUT while it manipulates some inter-
mediate value v = f (p, k). This intermediate value is related
to a known variable (usually the plaintext p) and the secret
key k. As the plaintext is known, guessing the intermediate
value enables the attacker to recover the secret key.

Then, in the first stage (profiling phase) a set of (Tp)
profiling traces are used to build a Gaussian multivariate model
for each possible intermediate value v, creating the so-called
templates (denoted by h).

After that, in a second stage (attack phase), the attacker
uses a set of (Ta) attack traces and its input/output data
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(plaintext/ciphertext). This information is employed to guess
the correct secret key (k∗) by making a hypothesis about its
value and computing all possible intermediate values. Then,
a discriminant score D

(
k j | ti

)
is calculated for each key

hypothesis k j and the key hypothesis are ranked in decreasing
order of probability. Given a power trace ti , a commonly
used discriminant derived from Bayes rule is D

(
k j | ti

) =
p

(
ti | k j

)
p(k j ) This discriminant is obtained by omitting the

denominator from Bayes’ rule, since is the same for each key
hypothesis k j [9], [53].

Finally, the attack outputs a key guessing vector g =
[g1, g2, . . . , g|K |], in decreasing order of probability. We are
assessing the performance of the attack by using an
SCA-specific metric (Guessing Entropy, GE [28]). The guess-
ing entropy is the average position of the correct key k∗ in the
key guessing vector over multiple experiments. The higher the
GE value, the more difficult it would be for an attacker to guess
the correct key.

To conclude, TAs are optimal from an information-theoretic
point of view. However, they have several limitations in prac-
tice, namely computational complexity problems and the need
for dimensional reduction being the most critical ones [9]. The
dimensionality reduction is usually selecting a small number of
time samples of the power traces (POIs selection [8]), or using
a more complex method like Principal Component Analysis
(PCA) [39], [40] or Fisher’s Linear Discriminant Analysis
(LDA) [56], [57]). Note that, with EDA-based PA, the POI
selection is made automatically by the algorithm [27].

D. Principal Component Analysis

Principal Component Analysis (PCA) is a widely used sta-
tistical technique usually employed to reduce noise or dimen-
sionality in a dataset. This technique is based on computing
Principal Components (PCs), derived as linear combinations
of the original variables. The most common way to implement
this technique is the following [58]:

• Step 1: A mean vector m is calculated, which includes
the mean for each of the T dimensions (time samples per
traces) of the traces T. Then, the mean is subtracted from
each of the T dimensions of each trace ti .

• Step 2: A covariance matrix � is constructed. In such a
matrix, each (i, j)th element is the covariance between
the i th and the j th dimension of the power traces. Thus,
the covariance matrix will be a T ∗ T matrix, where
T is the number of dimensions (number of samples of
the power traces). It should be noted that the computation
time increases quadratically relative to the number of
samples, as the main shortcoming of this method. The
covariance of two dimensions X and Y is defined by the
following formula:

C(X, Y) =
∑n

i=1

(
Xi − X̄

) (
Yi − Ȳ

)
n − 1

where n is the number of elements in both dimensions,
Xi and Yi are single elements of X and Y respectively,
and X̄ and Ȳ are the sample means of each dimension.

• Step 3: The eigenvectors and eigenvalues of the covari-
ance matrix are computed by � = U ∗ � ∗ U−1, where

� is the diagonal eigenvalue matrix and U is the eigenvec-
tor matrix of �. These matrices provide information about
patterns in the power traces. The direction with the most
variance coincides with the eigenvector corresponding to
the largest eigenvalue (“first principal component”). As T
eigenvectors can be derived, there are T PCs that must
be ordered from high to low eigenvalue.

• Step 4: Then, a number of p PCs can be selected
(to reduce the dimensionality of the dataset), building
a matrix with these vectors as columns (feature vector).
Note that we can also choose to select all the PCs and
just transform (i.e., make a change of basis of) the data,
as we do in this paper.

• Step 5: Once this feature vector Up of length p is gener-
ated, the original data can be transformed to retain only
p dimensions (samples). In order to do so, we can
transpose the feature vector Up ′ and multiply it with the
transposed mean-adjusted data X′, obtaining the trans-
formed dataset X̂:

Y = Up ′ ∗ X′ = (X ∗ Up)′

X̂ = Y′ = (
(X ∗ Up)′

)′ = X ∗ Up

E. Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs) are stochastic
optimization techniques that search for potential solutions by
building explicit probabilistic models of promising candidates.
Unlike other evolutionary algorithms, the main advantage of
EDAs is their simplicity. On the one hand, EDAs involve
a much smaller number of tunable parameters than other
evolutionary algorithms (e.g., genetic algorithms, GAs), as the
new population is generated from a probability distribu-
tion obtained from the best individuals of previous popula-
tions [27], [59], [60]. On the other hand, with heuristics such
as GA, we not only have to take into account the usual para-
meters in evolutionary algorithms (probabilities, population
percentage, etc.), but we also need an optimal operator design.
Namely, as highlighted in a recent study [61], designing and
validating mutation and crossover operators is not only critical
but an optimization problem in itself. This made us discard
other evolutionary techniques, as their inclusion increases the
complexity of the attack rather than simplifying the process.

1) Estimation of Distribution Algorithms in SCA: EDAs
were proposed in [27] in combination with template attacks
as a way to perform the POI selection step together with the
profiling and key recovery steps. This provides for automated
optimization of the attack, avoiding the need to perform
various types of analyses with different POI combinations
manually. As an exhaustive enumeration of all combinations
is exponential and definitively not feasible, our approach uses
a search strategy based on a quality measure combined with
this modern and efficient evolutionary computation algorithm.
Fig. 1 shows a graphical representation of the process.

First of all, an initial population D0 of R individuals
(POI selection candidates) is generated from a specified prob-
ability distribution. To this end, a vector of binary variables
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Fig. 1. Illustration of a generic EDA-based PA.

of length T (number of samples per trace) is considered:
x = {x1, x2, . . . , xn, . . . , xT } = (0, 1, 0, . . . , 0)

Each variable matches with one sample of the power traces,
and its probability represents the probability of that sample of
being selected for the template building. As in [27], we con-
sider that there are no interrelations between the variables, and
the probability distribution can be learnt as:

pl(x) =
T∏

i=1

pl(xi )

This probability distribution can be initialized at random
or based on some criterion, i.e., based on the leakage cor-
relation [27]. Then, these subset DN

l−1 of N individuals are
evaluated (R attacks are performed with the R candidates).
After that, the probability distribution p(x) of promising
candidates is estimated from the marginal frequencies of the
highest quality solutions (DN

l−1):

pl(xi ) =
∑T

j=1 δ j (Xi = xi |DN
l−1)

T

where:

δ j (Xi = xi |DN
l−1) =

{
1, if in the j -th case of DN

l−1, Xi = xi

0, otherwise

That is to say, the probability of each time sample of being
selected as POI for building the leakage model is recomputed
based on previous results. Then, a new population DN

l is
sampled, and the process is repeated in a new iteration until
a stop condition is reached. A “Toy examnple of a generic
EDA-based PA can be found on [62]. For a deeper explanation,
we refer to [27].

2) Complexity of the Approach: The time required to obtain
satisfactory results will depend on the difficulty of the attack,
i.e., the number of iterations needed for obtaining GE = 0.
It will also vary significantly from one computer (or program-
ming language implementation) to another. However, in terms
of time complexity, the cost of evaluating a set of discrete
variables with univariate EDAs is linear O(n) [63], which is
much less than manual approaches [27] or using DL [64].
In our setup, our tool takes between 10 minutes and an hour
to perform a complete iteration, depending on the number of
time points and power traces used to build the templates. Thus,

the 10 iterations considered in the experiments take between
2 and 10 hours approximately. However, it should be noticed
that the time-consuming part of our EDA-Based TA are the
template attacks themselves, which represent about 99% of the
computation. While challenging targets will require several
iterations to succeed, in many cases, success is achieved in
the first one, as shown in the experiments. Finally, note that
the method is in its early stage, and these results could be still
improved, as there is a lot of room for optimization (e.g., attack
parallelization, optimization of attack computation, etc. [27]).

III. ROBUSTNESS ASSESSMENT TEST

This section describes our approach for the robustness
assessment test and the proposed metrics. Fig. 2 shows a
schematic of the process. In a nutshell, the idea is to perform a
battery of automated attacks, using our improved EDA-based
TA (see Sect. VI), and compute the metrics as described below.
If the attacks are successful and the model is generalizable,
we conclude that the implementation is weak against PAs.

A. Metrics

To assess the performance of our improved EDA-based TA
(Sect. VI), and hence execute the robustness assessment test,
we propose to compute four simple metrics. These metrics give
us information about the performance of the obtained models
and how difficult it would be for an attacker to recover the
secret key. They rely on the two more established metrics in
the SCA field nowadays [28]: Guessing Entropy and Success
Rate.

1) Success Rate [SR](%): When executing an automated
attack, an important factor is how accurate the algorithm has
been in executing the attacks. To determine this, we propose
a modified version of a widely used metric in the SCA field:
the success rate [28]. Generally speaking, the success rate of
order “o” is the average empirical probability that the correct
key candidate is located within the first “o” elements of the
key guessing vector.

In our case, we compute a modification of the success
rate of order 10, i.e. we divide the number of successful
attacks (G E ≤ 10) by the number of attacks performed by
the EDA. This metric helps us to compare the efficiency of
different EDA-based attacks, as we clearly see how certain
the EDA-based attack has been. A high SR indicates that
the proven implementation is not particularly secure as the
algorithm managed to succeed effortlessly. We compute this
metric as:

S R =
(

nSuccess

n Attacks

)
× 100 (1)

where nSuccess is the number of successful attacks and n Attacks

is the total number of attacks.
2) Convergence Rate [CR](%): Another relevant factor is

the effort it takes the EDA to achieve successful results.
For this we define a metric to assess the number of
attacks/iterations of the EDA until the first success.

Therefore, we propose to divide the number of attacks
required until a successful attack is obtained by the total
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Fig. 2. Robustness assessment test scheme.

number of attacks (i.e., we measure the number of trials
needed to get one success). If we succeed in the first iteration
we will see a very high convergence rate. The more attacks
it takes the less convergence rate we get. We compute it as
follows:

C R =
(

1 − nT rials − 1

n Attacks − 1

)
× 100 (2)

where nT rials is the number of trials before a successful attack
and n Attacks is the total number of attacks.

3) Averaged Cumulative Final Guessing Entropy [geaccavg ]:
This metric shares goal with the SR, but as SR is quantitative
(we take into account whether the attacks are successful or
not) we also wanted to compute a qualitative metric that com-
plements the previous one. Since the Guessing Entropy [28]
does not quantify whether the attack has been successful or
not, but rather how close we are to the optimal solution, it is
a perfect candidate for this purpose.

We therefore propose to use a modified version of this met-
ric that fits the particular needs of this scenario. To calculate it,
we simply divide the cumulative final guessing entropy value
of the attacks by the total number of attacks:

geaccavg = geacc

n Attacks
=

∑n Attacks
i=0 GEi

n Attacks
(3)

where n Attacks is the total number of attacks and G Ei corre-
sponds with the final GE value of the ith attack. This gives us
an estimate of how hard it is to obtain a correct GE value.

4) Generalization Error [εGen](%): The goal of this metric
is to ensure the applicability of the obtained models, and verify
that they are employable in a real attack scenario. In traditional
profiling attacks, techniques to avoid overfitting and enhance
generalization are usually not contemplated. Today, thanks to
the increasingly established trend of ML-SCA, these concepts
are becoming more prevalent [36].

Hence, in this paper, we take into account the generalisation
of the models by using a specific measure. The idea is to
apply the templates built by our EDA to unseen data, and
thus test their performance. To do so, we execute a battery
of N attacks over the unseen data (using the optimized
model) and compute its averaged final guessing entropy geG .
We then calculate the difference between this and the averaged
final guessing entropy obtained with that model during the
searching phase geS . Finally, we compute the relative error
between these two values as:

εGen = geS − geG

gemax
× 100 (4)

where gemax is the maximum (worst-case) GE. In this case,
as we are targeting 8-bit values and the worst-case is 256.
If the generalisation error is high it means that, although we
succeeded during the search of the model, the templates are
not applicable in practice and therefore the attack cannot be
considered successful.

5) Diff Score[DS](%): Additionally, the evaluator can also
compute a “Diff score” to quantify how weak the considered
implementation is compared to an unprotected implementa-
tion. We mainly use this metric for explanatory reasons, but
it can be helpful for comparing the results of the attacks over
different implementations. To do so, one has to repeat the
approach on different implementations (including an unpro-
tected one) and compute the score(s). The larger the value
is, the more difficult it gets to recover the secret key for
an attacker. We compute it using the following formula,
Equation (5), as shown at the bottom of the next page.

Here the sub-index U or M indicate whether the metric
corresponds to the attack on the unprotected or masked imple-
mentation, respectively.

IV. THE AES_RA DATASET

In this section, we briefly describe our new AES_RA
dataset [32]. Most of the results in relevant previous works
mentioned above have been obtained using ASCAD in their
experiments. However, although we have used ASCAD too for
the sake of comparison (see Sect. VII), we also introduce an
additional dataset: AES_RA. The motivation is that we wanted
to tackle a more complicated problem, with noisy real-world
traces collected from an actual device on the field. In addition,
AES_RA fills the gap of an extensive dataset including traces
from different AES implementations on the same DUT.

Thus, this dataset contains traces from two different embed-
ded systems which use microcontrollers from the same family.
With each device, we acquire traces from three AES imple-
mentations: an unprotected software AES and two different
masking schemes, resulting in six different setups. Thus, this
dataset is divided into two parts: power consumption traces
from the Piñata board and capacitor EM power traces from the
STM32F411E-Discovery Board. We believe that this dataset,
together with ASCAD, allows us to validate our approach
comprehensively.

A. AES Implementations

Three different AES software implementations have been
considered. There is a brief explanation of each one of them
is given in the sequel.
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Fig. 3. Piñata board: Leakage of MS1 (left) vs MS2 (right).

• Unprotected AES: typical AES-128 (in ECB mode)
software implementation [65].

• Masking Scheme 1 (Weak): A modification of the
previous one which matches the same masking method
as described in [53] (Masked Lookup Table). In this
implementation, the output mask of the SBox operation
is removed after each 1-Byte lookup and hence we see a
clear correlation of the mask in the SBox time window
(See Fig. 3 below). This makes the scheme similar to
the one used in ASCAD, as can be observed in its
pseoudocode [34]. As we show in the experiments below,
the close manipulation of the shares (i.e., mask and
masked intermediate value) make this implementation
weak against PAs.

• Masking Scheme 2 (Robust): A modification of the
previous one in which the output mask is removed
after the ShiftRows operation. Thus, the output mask
does not leak during the SBox computation, unlike in
the previous scheme. Thus, there is no close manipu-
lation of the shares, making the implementation secure
against PAs.

For the pseudocode of both masking schemes and more
information about the dataset organization, please see the
AES_RA GitHub [32].

B. Pi nata Board

Piñata is a development board created by Riscure based
on an ARM Cortex-M4F core working at a 168 MHz clock
speed [29]. It has been physically modified and programmed to
be a training target for SCA and Fault Injection. We measure
the power consumption of the board during the AES encryp-
tion with a Tektronix CT1 current probe attached to a 20 GS/s
digital oscilloscope (LeCroy Waverunner 9104) triggered by
the microcontroller, which rises a GPIO signal when the
internal computation starts. Each power trace consists of

1 260 samples (1 500 and 1 800 for the masked implemen-
tations 1 and 2 respectively) taken at 1 GHz with 8-bit
resolution, corresponding to the first SBox operation.

C. STM32F411E-DISCO Board

The STM32F411E-DISCO is a development board with
an STM32F411VE [66] high-performance Arm® Cortex®-
M4 32-bit RISC microcontroller working at 100 MHz. This
board (STM32F411E-DISCO) is similar to Piñata (micro-
controllers are from the same family), and uses exactly the
same code. We measure the power consumption of the board
during the AES encryptions with a Langer EM probe over
a decoupling capacitor (C38) attached to the oscilloscope
(LeCroy Waverunner 9104), which again is GPIO-triggered
by the microcontroller. Each power trace consists of
1 225 samples (1 500 and 1 800 for the masked implementa-
tions 1 and 2 respectively).

V. ROBUSTNESS ASSESSMENT TEST ON AES_RA

In this section, we show how the aforementioned attacks
could be employed as a robustness assessment test to evaluate
the robustness of a device against profiling attacks (template
attacks more specifically). Hence, following the scheme from
Fig. 2, we perform three EDA-based attacks over three distinct
AES implementations: unprotected software AES, AES with
masking scheme 1 or MS1 (Weak), and AES with masking
scheme 2 or MS2 (Robust). As mentioned in Sect. IV, the
main difference between masking schemes 1 and 2 is that,
due to their implementations, on the former we see a clear
correlation with the mask in the targeted time window (SBox)
whereas in the latter not. A graphical representation of this
fact can be observed in Fig. 3. We repeat this robustness
assessment approach two times with two different boards
(Piñata and Discovery) and different probes/measures (current
and capacitor EM probes respectively).

A. Experimental Results on Riscure Pi nata Board

We perform three different EDA-based attacks over the
three implementations and compute the metrics. The results
of the robustness assessment test on the SBox of the three
different AES implementations are shown in Table I. Each row
represents either a metric (SR, CR, geaccavg and εGen) or the
parameters needed to calculate it (nSuccess , n Attacks , nT rials ,
geacc, geS and geG), which are marked in gray. For the EDA
parameters, we are using 10 iterations and 50 individuals per
population. If all the attacks of one iteration are successful,
we stop the EDA process. Since we are evaluating the leakage,
we are following a “White-Box” initialization (as explained in
Sect. VI-B). Regarding the TA, we are using 20 000 profiling
traces (50 000 profiling traces for masking scheme 2 for being
a more challenging attack) and 2 000 attack traces.

DS(%) = |S RU − S RM | + |C RU − C RM | + ∣∣(geaccU − geaccM

)
/256

∣∣ + ∣∣εGenU − εGenM

∣∣
4

(5)
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TABLE I

ROBUSTNESS ASSESSMENT: PI NATA

From this test, we can conclude that the masking scheme 1
does not provide any security to the SBox as the results of the
attacks are almost the same as the unprotected implementation:
we succeed in all the attacks since the first one (SR and
CR are in their maximum values and geaccavg is almost 1)
and the generalization of the models is perfect (εGen = 0).
In the AES masking scheme 2 there is no clear leakage of
the output mask (in the time window we are targeting), and
hence the model has an especially poor generalization (we
do not succeed in this attack, geG = 84). This makes sense
since, as stated in [26], when the mask value is unknown to
the attacker during the profiling step, the leakages associated
with a key follow a multimodal distribution. This leads to
assumption errors whether the adversary exploits Gaussian
template attacks. Nevertheless, as highlighted in [67], when
the mask leakage is included in the observation time window,
the templates are able to relate the dependence between the
mask and the masked variable leakage. This explains why
we succeed with Masking Scheme 1 but not with Masking
Scheme 2 (large generalization error). Other works show how
when there is close manipulation of the mask and masked
intermediate value, the security order is reduced, making the
scheme vulnerable even to first-order attacks [25], [37]. In fact,
it is unclear whether the attack works because of unintended
interactions or because, due to the presence of mask leak-
age in the observed time window, templates can relate the
dependence between the mask and the masked variable leakage
(or both). However, our approach shows the weakness of the
implemented masked scheme straightforwardly. To conclude,
note that these two masking implementations are susceptible
to a second-order attack, which combines the leakage of two
bytes of the key at a time when the mask is removed [53].

B. Experimental Results on STM32F4 Discovery Board

As we show later in Sect. VII, the traces from STM32F4
have much more noise from the environment than the previous
ones with Piñata (due to the acquisition method). Nevertheless,
the leakage is still present, as can be observed in Fig. 4, where
the difference in the leakage between the two masking schemes
in this board is shown.

Table II shows the results of the robustness assessment test
over the three AES implementations. We are using the same
EDA parameters as in the previous case. Regarding the TA,

Fig. 4. STM32F411 board: Leakage of Masking Scheme 1 (left) vs Masking
Scheme 2 (right).

TABLE II

ROBUSTNESS ASSESSMENT: STM32F4

we are using 50 000 profiling traces (100 000 profiling traces
for Masking Scheme 2 for being a more challenging attack)
and 2 000 attack traces.

From this test, we can obtain similar conclusions to
the previous one, which is not unexpected given that the
same AES implementations are being used. Again, Masking
Scheme 1 does not provide any security against TA since
we are achieving nearly the same result as attacking the
implementation without countermeasures. In contrast, Mask-
ing Scheme 2 does provide a high level of protection: not
only obtaining a model that works on the search set is much
more difficult, but the generalization of the model, in this
case, is even worse than in the previous one (we obtain a
geG of 136.4).

VI. IMPROVEMENTS OVER EDA-BASED TA

In this section, we go into more detail about the improve-
ments we propose over the current EDA-based TAs [27].
In other words, this section describes our second and third
contributions as follows: optimization of the search process
by employing two proposed EDA’s probability distribution
initialization methods, improvement and analysis of the gener-
alization of the obtained templates, and an acceleration of the
search process by combining EDAs with Principal Component
Analysis (PCA).
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Fig. 5. ASCAD: Raw power traces (left), PCA-transformed traces (right)
and leakage correlation.

A. Combining EDA-Based PA With PCA

In order to accelerate the EDA-based PA process, in this
paper we propose to preprocess the traces using PCA before
launching the EDA-based PA. Although this implies a higher
degree of complexity (as PCA is computationally expensive),
this has several advantages that can justify its usage in some
applications. The reason is that, if PCA behaves correctly, all
the relevant information will be gathered on the first PCs. This
can be used to reduce the number of varaiables (time samples)
in the EDA-based PA.

An example of how PCA behaves in practice can be
observed in Fig. 5. On the left side of the figure (“Raw” power
traces), we can observe that the leakage correlation of the mask
and the masked intermediate value appears on two distinct
zones. Note that in this dataset (ASCAD [34], as explained
below) each power trace has 1 400 time samples. Thus, if we
follow the approach of [27] and use a uniform initialization
of probabilities, it will take time for the EDA to find the right
time samples as each one of the 1 400 samples has the same
probability of being selected (see Sect. VII-A2). Conversely,
if we observe the right side of Fig. 5 (PCA-Transformed
traces), we can see how the relevant leakage information is
congregated on the first PCs. This allow us to accelerate the
search, as we can consider only a number of first PCs for
the EDA-based PA, and hence reduce the complexity of the
probabilistic model of the EDA (i.e., number of variables
involved). Therefore, the EDA will find proper POIs (PCs in
this case) more efficiently, as we show in Sect. VII.

In addition, this approach serves as an automated alternative
for selecting not only the number of PCs to keep but also
which ones in particular. As shown below, in the experiments,
there usually exist some PCs that not only do not provide
any relevant information to the model, but their inclusion
negatively affects its performance. In addition, there is usu-
ally a tipping point beyond which the results worsen if we
add more PCs. This appropriate number of relevant PCs is
complex to find manually in practice (especially for the less
experienced). It should be noticed that, as mentioned in Sect. II
there exist other methods for selecting the number of PCs
to keep. The problem is that the success or failure of these
techniques depends significantly on the application and the
technician implementing them. In contrast, we claim that our
approach can find optimal PCs effortlessly. Nevertheless, for
the sake of comparison, a “traditional” TA has been conducted

TABLE III

INITIALIZATION METHODS FOR EDA’S PROBABILITY DISTRIBUTION

(i.e., without the usage of the EDA-based PA approach). As in
a number of related works [34], [55], [67], we perform the POI
selection by using PCA and selecting different numbers of PCs
to accomplish the attack.

B. EDA’s Probability Distribution Initialization

As mentioned in Sect. II-E, when performing a EDA-
based PA, different strategies can be followed for setting the
initial probability distribution (i.e., probabilities of each time
sample of being selected). As we show in experimental results,
how we initialize the probabilities of the EDA has a strong
impact on the attack results. Thus, apart from comparing
the “raw” and “PCA” approaches, we also consider different
initializations for each one. In this work, we consider the
random initialization method proposed in [27] and two novel
approaches. Table III summarizes the details of each one of
them.

In a nutshell, given the limitations of the initialisation
method proposed in [27] (Random Uniform in Table III)
when attacking masking implementations, we propose two
alternatives for this case. As explained before, this approach is
not optimal for this use case as we do not give any information
to the EDA about where the leakage is located and it will
take time for the EDA to find the leaking time samples. Thus,
we propose two alternatives: Decreasing Probabilities (for
PCA-Transformed traces only) and a “White-Box” approach
in which we initialize the probabilities using the correlation
of the unmasked intermediate value SBox(p ⊕ k) ⊕ m. Note
that this approach was used in [27], but only with unprotected
implementations, as masking randomizes the intermediate
values making the correlation with the intermediate values
null. In this work we propose to employ this approach also
with masked implementations. We consider this a “White-
Box” approach as, contrary to the other two cases, we need
to know the mask m to compute the unmasked intermediate
value SBox(p ⊕ k)⊕m. In contrast, we consider the “Rndm”
and “Dec” initialization methods “Black-box” methods, as no
information about the leakage (and the masks) is used.

C. Generalization of the Templates

As mentioned in Sect. II-A, in [27] the generalization of
the obtained templates was not taken into account. Thus,
in this paper, we not only evaluate the generalization of
the obtained templates but also propose a way to improve
it. To do so, we suggest performing cross-validation during
the search process. Namely, instead of performing one attack
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Fig. 6. Improved EDA-based TA flowchart.

per individual, as suggested in [27], performing a battery of
N attacks during the searching process. This analysis, com-
bined with the assessment of the generalization by computing
the Generalization Error (as mentioned in Sect. III), allows for
a better generalization of the obtained templates.

D. Improved EDA-Based TA Workflow

This section describes the workflow that an evaluator should
follow while using our improved attack. Fig. 6 includes a
flowchart of the strategy. First, we check if the signal is clean
enough to apply PCA. For this, we propose calculating the
Signal-to-noise-ratio (SNR) of the signal (explained below).
Then, one should choose the appropriate initialization method
based on whether the mask values are available or not. Note
that this procedure indicates which method is most suitable,
but this only accelerates the search process. As shown in
Sect. VII, all variations manage to obtain successful results
with the appropriate number of iterations.

More precisely, we propose to compute the sample Signal-
to-noise-ratio (SNR) as the ratio of the mean and the standard
deviation [68]:

SNR = x̄

s
where s is the sample standard deviation and x̄ is the sample
mean. This method allows us to compute the SNR even in

Fig. 7. SNR of Pinata (left) and STM32F4 (right).

a “black-box” scenario, i.e., without knowing the leaking
intermediate value (nor the masks). However, another method
could be used to determine if the signal is clean, such as
computing the normalized inter-class variance (NICV) [69]
or a simple visual inspection.

Figure 7 shows the SNR of the Piñata and STM32F4 traces.
Before computing the SNR, we have normalized the value of
the traces between 0 and 1. This ensures that the magnitude
differences observed in the SNR plots are due to the presence
or absence of noise and not to a difference in scale. In Figure 7
we can observe how the SNR is about ten times higher than in
the STM32F4. This confirms what can be seen with the naked
eye: the STM32F4 traces contain a lot of measurement noise.

To the best of our knowledge, there is no exact threshold
in the literature that indicates the minimum SNR for applying
PCA. In any case, in our experiments, we have observed that
an SNR lower than 10 (in these conditions) can be an indicator
not to use PCA.

VII. IMPROVED EDA-BASED TA:
EXPERIMENTAL RESULTS

In this section, we compare the performance of different
EDA-based attacks on different datasets, including the mod-
ifications proposed in the previous section. We first perform
various attacks over a public dataset to demonstrate that our
approach can provide state-of-the-art results without human
intervention. Then, we conduct the same analysis over our
novel AES_RA dataset [32]. Finally, we draw some con-
clusions about the experiments. Note that, although in the
previous section we have specified which improvements to
apply in each case, in this section we apply all the variants to
compare the performance of the different approaches.

A. Results on a Public Dataset

For demonstrating our approach, apart from our own dataset,
we have employed a widely used dataset in the SCA field:
ASCAD (Random Key). We first perform a “regular” TA
using PCA for the POI selection. Then, we perform different
automated attacks, with the settings explained in the previous
section.

1) The ASCAD Dataset: ASCAD [34] was the first open
database for DL-SCA and includes electromagnetic emana-
tion traces of an 8-bit AVR microcontroller (ATmega8515),
implementing a masked AES-128 implementation (see [34]).
The dataset is divided into two parts: fixed key and random
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TABLE IV

PARAMETERS OF THE ATTACK (ASCAD)

key. Although many related works use the fixed key version
for being an easier problem [55], [67], [70], [71], for this
work we are using the random key version. This allows us
to perform a more realistic use case, as we can use random
keys for the profiling step and a fixed key for the key recovery
step, as an attacker would do in practice. The data set provides
300 000 traces where 200 000 are used for profiling (random
key) and 100 000 are used for the attack (fixed key). These
traces contain a window of 1 400 relevant raw samples per
trace, representing the third byte of the first round masked
S-Box operation (See Fig. 5). For a deeper explanation of the
ASCAD dataset, we refer to [34]. As the sensitive intermediate
value we use the Hamming Weight of an S-box output:
Y (i) (k∗) = SBox[P(i)

3 ⊕ k∗].
2) Experimental Results on ASCAD: As mentioned before,

the selection of a proper number of PCs is not so straightfor-
ward. Some previous works have already performed attacks on
ASCAD (fixed key) using TAs combined with PCA for POI
selection. For instance, in the ASCAD introductory paper [34],
among other relevant papers [55], [70], authors tested different
number of first PCs to perform the attacks. This motivated us
to combine EDAs and PCA since our approach is able to select
the best PCs, not in sequential order, i.e., the best number
of (first) components, but the optimal components, i.e., which
components, in particular, provide the best results. To the best
of our knowledge, there are no papers that implement TAs
combined with PCA in the ASCAD random key version. Only
in the fixed key version [34], [55], [70], which makes them not
very realistic attacks. Therefore, in this paper, we not only test
the performance of selecting a number of PCs in sequential
order for a “regular” TA, but also we enhance these results by
using EDAs for PC selection.

Table IV summarizes the parameters of the automated
attacks. Figure 8 (left) shows the results of several attacks
using a different number of PCs. Generally speaking, adding
more PCs has a good effect on the results until we reach a
point (around 25 PCs) in which the addition of more makes the
attack not feasible. It should be noticed that, if we follow the
Scree Test approach (classical PC selection method [51]), and
we plot the eigenvalues to manually inspect where the curve
changes from a steep line to a straight line (elbow), the relevant
information is supposed to be on the 15 first PCs. Nevertheless,
we obtain better results with 25 PCs. If we observe Fig. 5
(right) we can understand why. Although the biggest part of the
leakage of m is concentrated around the 15th PC, the leakage
of the unmasked intermediate value SBox(p ⊕k)⊕m spreads
around the first 200 PCs.

At this point we compare two types of attacks using EDAs,
one over “raw” traces (EDA in figures) and one over “PCA-
Transformed” traces (EDA_PCA in figures), using different
initialization approaches (see Table III). Fig. 8 (right) show

Fig. 8. ASCAD random keys: regular PCA+TA (left) and EDA-based TAs
(right).

TABLE V

“RAW EDA” APPROACH VS “PCA+EDA”
APPROACH (ASCAD RANDOM KEY)

the results of the best candidate of the first and last iteration
of each approach.

If we observe the results of the metrics defined above
(Table V), the improvement of using the EDA+PCA approach
in this dataset can be observed. In general, the attacks using
EDA+PCA are more efficient and achieve better results than
using EDA only. The improvement in the SR and CR shows
that with EDA+PCA the procedure is more efficient (we
succeed earlier and in more attacks). The same happens in
terms of guessing entropy, geaccavg is lower in the EDA+PCA
case, as we succeed in more attacks. If we observe Fig. 8
(right), we can see that the attacks using EDA+PCA have a
very good performance, with its guessing entropy converging
around 200 traces. The EDA attack using the “White-Box”
initialization has a very good performance too, but the attack
with random initialization is less effective. Nevertheless, all
attacks are successful and show a good generalization ability.
In addition, our approach is able to reduce the number of
traces needed for the secret disclosure from 400 to 200,
when compared to the PCA+TA approach. In the best case,
we manage to recover the key with around 100 traces, a state-
of-the-art result in this dataset (ASCAD with random keys),
when comparing with other related works [72]–[74] Table VI
shows a comparison of the best performing attacks on ASCAD
Random Keys (using the Hamming Weight model) in terms
of number of attack traces required to reach GE = 0 (N̄ tG E ).

B. Results on AES_RA

To test the performance of our approach in a noisier
environment, we use AES_RA. To this end, we repeat the same
analysis as with ASCAD. Note that, for this experiment, we are
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TABLE VI

TOP RESULTS ON ASCAD (RANDOM KEY)
WITH HAMMING WEIGHT MODEL

TABLE VII

PARAMETERS OF THE ATTACK (STM32F4)

Fig. 9. Attacks on STM32F4: regular PCA + TA (left) and EDA-based TAs
(right).

Fig. 10. STM32F4: Raw power traces (left), PCA-transformed traces (right)
and leakage correlation.

using traces from STM32F4 with Masking Scheme 1 (Weak).
Besides, we also employ a time window of 100 samples
corresponding to the first byte of the masked SBox lookup
(See Fig. 10) instead of using the full window of 16 lookups.
This makes this experiment similar to the previous one with
ASCAD. Table VII summarizes the parameters of the attacks.

As in the previous experiment, Fig. 9 (left) shows the results
of performing a “traditional” TA using a different number
of PCs. As before, there is an inflexion point (20PC) after
which the results worsen if we use more PCs to generate the
model. Again, the Scree Test does not provide a good number
of PCs to keep (50). In this case, although the masked AES
implementation is similar to the one used in ASCAD, the
attack is more difficult due to the amount of measurement
noise included in the traces. This makes PCA less effective
as apart from the variation produced by the leakage there is a
lot of variation in the power traces due to environmental noise
captured by the capacitor EM probe.

Again, we compare the “raw” EDA-based attack and the
attack on the “PCA-Transformed” traces (Fig. 9 (right)). Please
note that the results are shown in the same manner as in the

TABLE VIII

“RAW EDA” APPROACH VS “PCA+EDA” APPROACH (STM32F4)

Fig. 11. Attacks on STM32F4 (Full Window): regular PCA + TA (left) and
EDA-based TAs (right).

previous use case. This time the results are slightly different.
Although we succeed with all approaches, EDA+PCA does
not improve the results so much in this case. In terms of Guess-
ing Entropy, the best performing methods are the “White-
Box” approaches (EDA_wPOI and EDA_PCA_wPOI). Note
that EDA_Rndm and EDA_PCA_Dec also provide relatively
good results.

Table VIII shows the results of our metrics. Generally
speaking, the results are worse than in the previous use case
(due to noise), but they are in line with the results shown
in Fig. 9 (right). In this case, not only all metrics are not
better while using the PCA+EDA approach, but they are worse
in general. About generalization, all methods show a small
generalization error except EDA+PCA(Dec), which do not
succeed in the attack on unseen data. The main reason for
this, as can be observed in Fig. 10, is that the leakage is not
concentrated on the first PCs. Thus, we are including PCs
that do not contain leakage information and hence worsen
the model. This makes both the approach of performing
“traditional” attacks and using the EDA+PCA(Dec) not the
most optimal for this case.

1) The Challenge of EM Capacitor Probe Traces: As shown
in the previous experiments, although the masking implemen-
tation 1 (Weak) is similar to the one employed in ASCAD,
obtaining good results is more complicated. The main reason
for that is the acquisition method: STM32F4 power traces were
obtained using a EM capacitor probe (Langer probe). This
allows a less invasive acquisition (as there are not removed
capacitors and the board is not modified at all) but the leakage
of the traces is weaker as it is merged with the variation caused
by the environmental noise.

This is especially problematic when we use a wider window.
If we repeat the previous experiment with a window of
1 800 time samples corresponding to the 16 lookups, the results
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Fig. 12. STM32F4 (Full Window): Raw power traces (left), PCA-transformed
traces (right) and leakage correlation.

Fig. 13. Pinata (Full Window): Raw power traces (left), PCA-transformed
traces (right) and leakage correlation.

are extremely defective (See Fig. 11 and Table IX). With the
full window, we cannot succeed with a “traditional” TA using
PCA for POI selection (Fig. 11 (left)). Regarding EDA-based
attacks, only attacks without PCA provide particularly good
results (Fig. 11 (right)). To understand this, one should take a
look at Figures 12 and 13.

Fig. 12 shows “raw” power traces, PCA-transformed traces
and their respective leakage graphics for the STM32F4 board
(Full Window). Fig. 13 shows the same graphics for the
same implementation in Piñata board (clean traces taken with
a current probe). With Piñata, the traces are clean from
enviromental noise. This allows PCA to perform successfully
as all leakage is gathered on the largests PCs. In this case, the
attack is extremely easy, as shown previously in Sec. V-A.

Conversely, in our traces from SM32F4, instead of collect-
ing all the leakage in a few PCs, PCA mixes this leakage with
the variation produced by the environmental noise, causing
the leakage to be attenuated and distributed over the entire
PCA-transformed trace. Indeed, there is almost no leakage
in the first 100 PCs (See Fig. 12). Moreover, the magnitude
of the leakage has decreased substantially. This explains
why the “traditional” TA+PCA does not work in this setup
(Fig. 11, left). Regarding the Scree Test, it suggests

TABLE IX

“RAW EDA” VS “PCA+EDA” (STM32F4 - FULL WINDOW)

using 550 PCs, which is completely impractical. On the one
hand, this number is too large to build templates, especially
taking into account that the purpose of using PCA in this case
is to reduce the dimensionality of the traces. On the other
hand, as shown in the previous use case, building templates
with PCs that do not contain leakage information but rather
noise variation, worsens the model.

For all these reasons, as can be seen in Table IX, PCA
not only performs worse in this case but does not work at all
if we do not select the appropriate PCs, which is extremely
tedious to do manually. Among the attacks using PCA, only
EDA_PCA_Rndm and EDA_PCA_wPOI manage to find a
model which works in the set of traces used for the search,
but they have very bad generalization. On the other hand, the
attacks EDA_Rndm and EDA_wPOI perform quite good and
have a small and tolerable generalization error.

C. Summary

We can draw the following conclusions from the experi-
ments above:

• Using PCA-Transformed traces accelerates the
EDA-based PA process when the traces are clean (clean
EM measurements/current probe and no capacitors). This
is the best option when seeking to optimize a model,
provided that the nature of the traces allows it: they must
be free of, or with little, ambient noise.

• Another limitation could be the number of traces and
time points per trace. Since the computation time grows
exponentially with these two factors, it may be prevented
for very large datasets or very wide attack windows.

• However, our approach has shown an excellent perfor-
mance as a PC selection method, being able to auto-
matically identify the best components even in the more
challenging use cases. This makes it an engaging option
when working with PCA in SCA, or in some other field.

• Nevertheless, although they require knowing the mask m,
“White-Box” approaches work properly in both situa-
tions (with and without PCA), being the best approach
from an evaluation perspective. In our experiments, these
approaches have substantially improved the performance
of “traditional” attacks, with the additional benefit of
being done automatically and with no user intervention.

VIII. CONCLUSION AND FUTURE WORK

Our results show the suitability of automated TAs working
as a robustness assessment test of an embedded device’s
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physical security. It allows the evaluator to determine whether
protected AES implementations are secure without user inter-
vention.

We have shown that masking schemes like Masking
Scheme 1 or the one used in ASCAD are especially weak.
Our approach shows whether there exist close manipulation
of the mask and masked intermediate value and hence possi-
ble unintended interactions making the scheme weak against
profiling attacks. As a consequence, the SBox’s output mask
should be removed from the state matrix out of the time
window of the SBox to make them more robust against PAs.
Nevertheless, we were able to find models that work in some
sets of traces with Masking Scheme 2, and we claim that
AES_RA can serve as a relevant candidate to further study
PAs on masking-protected AES implementations. Besides,
although we have chosen software AES implementations for
demonstrating our approach, we claim that the approach could
be extendable to other use cases and is a good starting point for
future work that will consider AES hardware implementations,
implementations of other ciphers, other dimensionality reduc-
tion techniques like LDA, or other kinds of profiling attacks.

We have also shown that using PCA-transformed traces
can hasten the EDA-based PA in some scenarios, achieving
superior results. Furthermore, we have demonstrated how this
approach can be used as an automated way of selecting optimal
principal components, obtaining state-of-the-art results without
manual intervention even some more troublesome cases (very
noisy traces).

Finally, as an open research question, we would like to
mention the common gap between security evaluation in acad-
emia and in commercial labs. As mentioned above, concepts
like generalization were “traditionally” not considered when
working with TAs. Indeed, current evaluation schemes specify
which types of tests (attacks) to undertake, but without much
detail on how to conduct them. This makes it relatively easy
for false negatives/positives to occur. As we have seen in
the experimental results with the Masking Scheme 2, finding
a model that works on a finite set of traces is relatively
simple. Conversely, getting one that is generalizable and can
perform an actual attack is much more complex. Unless we
take this into account, we might think that the implementation
is weak as we have succeeded in the attack, however, this
model is not applicable in the real world by an attacker.
Therefore, we believe that a more comprehensive common
framework on SCA resistance assurance could be interesting.
This, together with the application of artificial intelligence to
mitigate the human dependency, could make life much easier
for cybersecurity evaluators and product developers.

APPENDIX A
RESULTS ON ASCAD (RANDOM KEYS) WITH

DESYNCHRONIZATION = 50

The ASCAD traces we have used for the experiments do
not feature desynchronization. In fact, applying EDA-based
TAs over misaligned traces goes against the very nature of
template attacks. On the one hand, ASCAD was created as a
benchmarking reference for DL-based SCAs [34]. Note that
neural networks can deal with slight shifts in the signal [75].

Fig. 14. ASCAD Random Keys (desync = 50): regular PCA+TA (left) and
EDA-based TAs (right).

However, some works have shown that, rather than eliminating
the need to realign traces, DL approach merely mitigates it,
as pre-processing can significantly improve the performance of
neural networks [76]. Besides, DL-based attacks present some
other disadvantages against EDA-based PAs, as shown in [64].
On the other hand, when traces are misaligned (due to a poor
trigger signal or random delays introduced by some counter-
measure), one has to apply a resynchronization method before
running the template attack [9]. There exist different tools
for this propose: static alignment [53], wavelet transform [77]
or elastic alignment [78], among other solutions [79]–[81].
When the misalignment is small, a larger number of traces
can sometimes compensate for it. In ASCAD, the proposed
misalignment is 50 or 100 samples, which is too much for the
attack to work (without realigning the traces), at least using
the same setup.

In any case, to illustrate this issue we have repeated the
same experiment but with desynchronization of 50 samples
(See Fig. 14). Note that, although the attack does not work
under these conditions, a resynchronization of the traces is
trivial in this case, which would provide results comparable to
those of Sect. VII-A2.
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