IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

5045

Fast and Accurate Likelihood Ratio-Based
Biometric Verification Secure Against
Malicious Adversaries

Amina Bassit™, Florian Hahn

Raymond Veldhuis

Abstract— Biometric verification has been widely deployed
in current authentication solutions as it proves the physical
presence of individuals. Several solutions have been developed to
protect the sensitive biometric data in such systems that provide
security against honest-but-curious (a.k.a. semi-honest) attackers.
However, in practice, attackers typically do not act honestly
and multiple studies have shown severe biometric information
leakage in such honest-but-curious solutions when considering
dishonest, malicious attackers. In this paper, we propose a
provably secure biometric verification protocol to withstand
malicious attackers and prevent biometric data from any leakage.
The proposed protocol is based on a homomorphically encrypted
log likelihood-ratio (HELR) classifier that supports any biometric
modality (e.g., face, fingerprint, dynamic signature, etc.) encoded
as a fixed-length real-valued feature vector. The HELR classifier
performs an accurate and fast biometric recognition. Further-
more, our protocol, which is secure against malicious adversaries,
is designed from a protocol secure against semi-honest adver-
saries enhanced by zero-knowledge proofs. We evaluate both
protocols for various security levels and record a sub-second
speed (between 0.37s and 0.88s) for the protocol secure against
semi-honest adversaries and between 0.95s and 2.50s for the
protocol secure against malicious adversaries.

Manuscript received April 14, 2021; revised August 13, 2021 and
October 13, 2021; accepted October 15, 2021. Date of publication Octo-
ber 26, 2021; date of current version November 5, 2021. This work was
supported in part by the Dutch Research Council [Nederlandse Organ-
isatie voor Wetenschappelijk Onderzoek (NWO)] and GenKey Netherlands
B.V. for the Research Programme Kennis Innovatie Mapping (KIEM)
under Project ENPPS.KIEM.018.001 and in part by the European Union’s
Horizon 2020 Research and Innovation Programme under the Marie
Sklodowska-Curie Grant under Agreement 860315 for PriMa Project. The
associate editor coordinating the review of this manuscript and approving
it for publication was Mr. Frederik Armknecht. (Corresponding author:
Amina Bassit.)

Amina Bassit, Florian Hahn, and Joep Peeters are with the Data Manage-
ment and Biometrics (DMB) Group and Services and CyberSecurity (SCS)
Group, University of Twente, 7522 NB Enschede, The Netherlands (e-mail:
a.bassit@utwente.nl; f.w.hahn@utwente.nl; joep@jjpeeters.nl).

Tom Kevenaar is with GenKey Netherlands B.V., 5656 AG Eindhoven, The
Netherlands (e-mail: tom.kevenaar @genkey.com).

Raymond Veldhuis is with the Data Management and Biometrics (DMB)
Group and Services and CyberSecurity (SCS) Group, University of
Twente, 7522 NB Enschede, The Netherlands, and also with the Depart-
ment of Information Security and Communication Technology, Norwe-
gian University of Science and Technology, 2802 Gjgvik, Norway (e-mail:
r.n.j.veldhuis @utwente.nl).

Andreas Peter is with the Data Management and Biometrics (DMB)
Group and Services and CyberSecurity (SCS) Group, University of Twente,
7522 NB Enschede, The Netherlands, and also with the Computer Science
Department, University of Oldenburg, 26129 Oldenburg, Germany (e-mail:
a.peter @utwente.nl).

Digital Object Identifier 10.1109/TTFS.2021.3122823

, Joep Peeters

, Tom Kevenaar™,

, Senior Member, IEEE, and Andreas Peter

Index Terms— Biometric verification, threshold homomorphic
encryption, secure two-party computation, semi-honest and mali-
cious models.

I. INTRODUCTION

IOMETRIC verification plays a pivotal role in cur-

rent authentication technologies. Through measuring
biometric modalities, such as faces, biometric verification
provides evidence of the physical presence of individuals.
Compared to passwords, PIN codes, and tokens, biometric
data is irreversible and cannot be reissued once leaked or
compromised. This categorizes it as highly sensitive data that
is constantly subject to severe security threats. The major chal-
lenges encountered concerning biometric data are its storage
and processing that tend to be performed in an unprotected
manner. Real-life examples confirm the seriousness of these
security threats. In August 2019, [1] reported a biomet-
ric data breach in the security platform BioStar2, exposing
facial recognition data and fingerprint data of millions of
users. In November 2020, [2] reported another biometric data
breach in TronicsXchange’s AWS S3 Bucket that was left
unprotected, leaking approximately 10.000 fingerprints. These
incidents show the urgency of protecting biometric data that
is Personally Identifiable Information (PII). At the same time,
many countries have legislations (e.g., the EU’s GDPR) that
govern how PII of their citizens should be handled, including
the use of strong data protection technologies.

Biometric verification systems (e.g., multi-user access con-
trol) involve two protocols: enrollment and verification that
include users, a client, and a server as main entities. The
client represents the acquisition device, such as a biometric
scanner. Its role is to capture the user’s biometric reference
data during the enrollment and the live probe during the
verification. The server, on the other hand, stores the biometric
reference data together with some auxiliary information in a
template during the enrollment and compares it with the live
probe during the verification. The aim of protecting the bio-
metric data throughout the entire verification process implies
secure storage and secure processing, which is achievable via
homomorphic encryption. On the one hand, homomorphic
encryption offers flexibility in manipulating encrypted data
without decryption. However, on the other hand, this same
flexibility makes tracking the computations a complicated task,
especially when the parties may not be trusted.

From a security point of view in the context of biometrics,
the client or the server could be compromised by an attacker

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0002-5407-9098
https://orcid.org/0000-0001-7615-4602
https://orcid.org/0000-0003-4049-5354
https://orcid.org/0000-0002-1331-9702
https://orcid.org/0000-0002-0381-5235
https://orcid.org/0000-0003-2929-5001

5046

who tries not to bypass the authentication but to leak sensitive
biometric data that is either stored (the template) or freshly
captured (the probe). In an attempt to remain unnoticed,
this attacker could either follow the biometric verification
protocol as intended or arbitrarily deviate from it by following
a specific strategy to achieve his desired adversarial goal,
which is not only inferring knowledge about a template or
probe but also attacking the protocol correctness using any
information gained or injected during the protocol execution.
The cryptography literature [3] describes the first type as
a semi-honest attacker and the second type as a malicious
attacker. The protection against malicious attackers is more
challenging than the protection against semi-honest ones since
a malicious attacker deviates from the protocol and hence
cannot only access the sent and received messages (as also a
semi-honest attacker can) but also alter the sent messages, e.g.,
by injecting messages, omitting messages or compromising the
protocol’s computation, with the goal of inferring sensitive
information or even altering the protocol’s outcome, which
threatens its correctness.

The security of state-of-the-art biometric verification sys-
tems can be split in three categories: semi-honest client and
semi-honest server [4]—[8], malicious client and semi-honest
server [9]-[12] and malicious client and malicious server
[13], [14]. In the first two categories, the existing systems run
relatively fast; however, they show severe biometric informa-
tion leakage when considering a malicious server as described
in [15]. For instance, in the case of the system studied in [16],
a malicious server can send encrypted computations of its
own choice instead of the ones dictated by the protocol.
Although the studied verification protocols in [16] employ
encryption schemes based on the ring-LWE problem, this
attack enables a server to learn the biometric template in at
most 2N — 6 queries (where N the bit-length of a biometric
template and @ the probe-template comparison threshold).
Both [15] and [16] emphasize that a biometric verification
assuming a semi-honest server or client puts the biometric
data in peril. Although biometric authentication systems are
vulnerable to hill-climbing and brute-force attacks [17], [18]
which, in practice, are mitigated by limiting the number
of authentication attempts per user. However, restraining the
client/server (the party who owns the access disclosure right)
to learn only the minimal functionality, that is access is
granted or denied, is crucial. This motivates security against
malicious attackers in the context of biometric authentication,
which guarantees the protection of the biometric probes and
templates in such a scenario.

Among the solutions that tried to address the problem of
both malicious client and malicious server, there is the bio-
metric verification system THRIVE [19]. While their overall
protocol is only proven secure against attackers that follow
the behavior defined in the semi-honest adversary model, the
authors introduce a secret key per user, which they use jointly
with the user’s biometric probe in a two-factor authentication
protocol. This makes it harder for an attacker to act maliciously
as he would be required to compromise both factors first.
In Section IX, we elaborate on why THRIVE does not achieve
security against malicious adversaries. There is also [13]
that proposed a continuous authentication three-party protocol
secure in the malicious model; however, the template-probe
distance is leaked to the server, which makes it vulnera-
ble to hill-climbing and brute-force attacks [17], [18]. The
most closely related work to ours is SEMBA [14] that

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

is a client-server multimodal biometric verification protocol
achieving security against malicious adversaries by using
SPDZ [20], [21] that follows the offline/online paradigm.
SEMBA was evaluated with an unrealistically low-security
strength of 46 bits (while we consider security strengths
of at least 96 bits), for which it runs nearly one order
of magnitude faster than our protocol, between 0.109s and
0.120s,! but achieves a biometric performance lower than
ours; EER between 0.98% and 1.15% from the fusion of iris
features of EER between 2.51% and 2.08% and eigenfaces of
EER 17.37%. For instance, in the case of faces, they achieve
17.37% while we achieve 0.27% EER. In Section VIII, we go
into more detail on SEMBA and also explain its high storage
requirements on the client-side as well as the implications of
having offline/online phases in the authentication setting.

In this paper, we propose a practical biometric verifica-
tion protocol that achieves both security in the malicious
model and a low EER. We adopt the data-driven biometric
recognition approach based on the log likelihood ratio (LLR)
classifier [22], known for its optimality in the Neyman-Pearson
sense. Our approach, called homomorphically encrypted log
likelihood-ratio (HELR) classifier, allows us to speed up the
biometric recognition by pre-computing the classifier and stor-
ing it into lookup tables. Thus when applying an encryption
layer, the recognition performance does not degrade compared
to the unprotected classifier. Our HELR classifier supports
any biometric modality encoded as a fixed-length real-valued
feature vector (such as faces) and does not support the one
encoded as a binary-valued feature vector such as irises. Based
on our accurate (EER between 0.25% and 0.27% for faces)
HELR classifier, we first present a fast (between 0.37s and
0.88s depending on the desired bit security level) biometric
verification protocol secure against a semi-honest client and
server. Then we address the above-mentioned problem by
proposing a practical (between 0.95s and 2.50s depending on
the desired bit security level) biometric verification protocol
secure against both a malicious client and malicious server.
The template is encrypted using threshold homomorphic
encryption (THE) such that neither the client nor the server
can decrypt it on its own. The probe is encrypted by the client
only using homomorphic encryption (HE). Encryption alone
guarantees neither the outcome correctness nor the security in
the presence of malicious adversaries. Therefore, we force the
client and the server to follow our semi-honest construction
protocol’s steps by using zero-knowledge proofs (ZK-proofs)
to check and keep track of the computations. To realize
this, integer-oriented THE and HE schemes with compatible
ZK-proofs are required. We use the additive homomorphic
ElGamal encryption scheme and adapt three sigma protocols
to suit our construction. The proposed protocol protects bio-
metric information from leakage in the presence of malicious
adversaries. Also, it imposes on both the client and server to
follow the protocol honestly; if one of them tries to misbehave,
the other entity will detect it and terminate the protocol (in the
cryptography literature, this is called security with abort).

In summary, we make the following contributions:

o« We introduce the HELR lookup tables that speed up
and simplify the biometric recognition reducing it to

IThese are the online phase runtime of one authentication attempt on
different template sizes. However, the non-reusability of the preprocessed data
makes the runtime of the offline phase necessary to be included in the overall
runtime to fairly assess the efficiency of such a solution in practice.



BASSIT et al.: FAST AND ACCURATE LIKELIHOOD RATIO-BASED BIOMETRIC VERIFICATION SECURE

R N
Enrolment Pha Verification Phase
]
Feature Feature ;. AR

Extractor Extractor i Biometric

. Data

g8 Template = (2, -+, a3)

Probe = (y1.- -+ . 1)

1050 ol

2]
! Claimed *

¢ Identity :

Comparison

No Match Match

Fig. 1.  Overview of a multi-user biometric verification system where
the comparison is performed between the client and the server. Note that
(x1,---,xx) and (yy,---,yx) represent the feature vectors of the template
and a probe.

three elementary operations (i.e., selection, addition, and
comparison), paving the way for applying an encryption
layer over these operations without degrading the biomet-
ric accuracy.

o« We design two biometric verification protocols that per-
form the recognition under encryption preventing biomet-
ric information (i.e., template, probe, and score) from
leakage in the presence of semi-honest and malicious
adversaries.

« We prove the security of our protocols, evaluate their
computational performance, and show that we achieve
practical efficiency for widely accepted security levels.

II. PRELIMINARIES
In this work, we denote by x = (x1,---,xr) a
k—dimensional feature vector, X = (X, --,Xx) its cor-
responding multivariate random variable (from which the
features are sampled), fy its corresponding probability density
function (PDF) and fx y the joint probability density function
of X and Y.

A. Biometric Background

1) Overview: Biometric verification systems check the
authenticity of a claimed user identity by exploiting that bio-
metric traits discriminatively characterize individuals. Figure 1
depicts the main phases of those systems. The captured
biometric raw measurement goes through a feature extraction
step to yield a feature vector. During the enrollment phase, the
extracted feature vector represents the template and is stored
along with the user’s identity in the system’s database. Later in
the verification phase, a user claims to have a certain identity.
The extracted feature vector, in this phase, is called a probe.
Subsequently, the system compares the template obtained in
the enrollment with the probe and measures the similarity
between both feature vectors as a score. In case the score
exceeds a preset threshold 6, the system considers the user
genuine and outputs match; otherwise, it considers the user an
impostor and outputs no match.

2) Log Likelihood Ratio Classifier: In [22], the authors
show the optimality in the Neyman-Pearson sense of the
log likelihood ratio as a similarity measure comparing two
fixed-length feature vectors (one representing the template and
the other representing the probe). The decision comparison
is made based on the hypothesis that the system is dealing
with the same person (i.e., genuine verification) versus the

5047

’Px'yyl(xt,yihmpustor) l ’quy‘(xi,yiwenume) l Py,v, (xi, yilgenuine)
= LLR = log Py, (e, yilimpostor)
2 /)
L Y, 0 1 2
1 & Xir

01]32]-19]-5.1
0 \ 4 1(-21]21|-12
012 2 -52]-09] 3.1
®Bn=[-043,043]  —® —043043 4o a=1
© Left bottom is —co 0l 2 3 -2 -5
Right bottom and left topare +oo 2 2 1

This cell is located at(@;, b;) = (0,1)
a; € [-0,—0.43] and b; € [-0.43,0.43]
and quantized tod; = 0 and b; = 1

S -1 )03
@ i HELR

Fig. 2. Generation of the ith HELR lookup table using a feature level n = 3.
First the red n x n grid equiprobably partitions the impostor PDF with respect
to B; along both axes. Then the same grid is applied on the genuine PDF.
Subsequently, the LLR is computed then quantized using A = 1 and stored
in the i HELR table. The blue cell is an example of a sample (a;, b;) =
(—0.25,0.31).

hypothesis that it is dealing with a different person (i.e.,
impostor verification). Consider x (resp. y) a biometric feature
vector from the enrollment (resp. verification) and X (resp.
Y) its corresponding multivariate random variable where their
X; (resp. Y;) are assumed to be independent and normally
distributed. For the ith feature, the distribution of the genuine
verification is defined by

Px; v, (xi, yilgen) = fx; v, (xi, yi) (D

a cigar-shaped 2D Gaussian distribution (see Figure 2),
whereas the distribution of the impostor verification is defined
by

Px,.y,(xi, yilimp) = fx, (x;) - fv, (i) (2)

a circular-shaped 2D Gaussian distribution (see Figure 2). The
similarity between x; and y; is measured by calculating the
log likelihood ratio (LLR) score from these distributions.

PX,',Y; (-xia )’i|gen) )
Py, v, (x;, yilimp)

The LLR classifier is based on the data-driven approach
since it requires the knowledge of fx,, fy. and fx, y, that
are in practice estimated from a dataset representative of
the relevant population. Also, this approach assumes that
the features were extracted in a statistically independent and
identically distributed (i.i.d.) manner. In practice, this can be
achieved by applying a combination of principal component
analysis (PCA) and linear discriminant analysis (LDA) as
in [22] and [23]. As a consequence, the final similarity score
between two feature vectors x and y is given by the sum
of the individual LLR scores s(x;, y;) since the independence
between features is assumed.

k

s, y) = D s(xiy i) “)

i=1

s(xi, yi) = log( (3)

The verification system defines a threshold # based on
which only the final scores that are above ¢ are counted as a
match whereas those below are counted as a no match.

3) Performance Assessment: The performance of biometric
verification systems is tightly related to the performance of
their core comparison algorithm (called comparator). It is
expressed in terms of False Non-Match Rate (FNMR), that is,



5048

the probability that the comparator decides no match for two
samples coming from the same individual; and False Match
Rate (FMR) that is the probability that the comparator decides
match for two samples coming from two different individuals.
An infinitely high threshold 6 results in FNMR = 1 and
FMR = 0, lowering the threshold decreases (increases) the
FNMR (FMR), respectively towards an infinitely low threshold
6 for which FNMR = 0 and FMR = 1. This trade-off can
be graphically illustrated by a decision error trade-off (DET)
curve representing the FNMR as a function of the FMR. The
Equal Error Rate (EER) denotes the point on the curve where
FNMR and FMR are equal. FNMR@FMR = 0.1% denotes
the point on the curve where FMR= 0.1%. The system’s
threshold 6 is set to meet an amount of acceptable FMR, often
at FMR = 1% or 0.1%.

B. Additively Homomorphic ElGamal

We briefly recall the additively homomorphic ElIGamal and
its (2, 2)-threshold version [24]. Let ¢ be a large prime, G a
group of order ¢ and generator g. Let k = g° be the public

key corresponding to the private key s. The encryption of a
message m € Zq is [m] £ (¢, g™ k") where r € Zyg is ran-

dom. The decryption of the ciphertext [m] is the discrete log of
g™ -k"-(g")™*. The additively homomorphic ElGamal is secure
against Indistinguishable Chosen-Plaintext Attack (IND-CPA)
[24] under the Decisional Diffie-Hellman (DDH) assumption.
It supports the following operations: ciphertext multiplication
[m1] - [m2] = [m1 4+ m3], re-randomizing with randomness
ro: [m] - [0] = (g0, g0 .k +70) = [m], blinding with
blinding value rg: [m]d = (g, g™ - k') = [rg - m] and
subtraction of two ciphertexts [m1] — [m2] = [m1]-[m2]"! =
[m) — ma].

For implementing a (2, 2)-threshold additively homomor-
phic ElGamal, we use the technique described in [25]. Given
the key pair (pk;, sk;) for i € {1,2} such that pk; = g%k
Dk joint e pk1 - pka is the joint public key. The encryption
is performed under pkj,in; and denoted as [[m]| = (g",¢"-
pk; oint)- The decryption of [[m] comes into two stages.
First, each party i, using its private key sk;, produces a
partial decryption [m]; £ (g", g™ pk;oim - (g")~*%). Then
by combining the exchanged partial decryptions, the final
decryption is the discrete log of g™ -pk’,m.m-(g’)_Skl (g") ke,
Notice here that a partial decryption [m]; is a non-threshold
ElGamal ciphertext encrypted under pk, and vice versa for
[m]>. Threshold ElGamal is also IND-CPA secure [26] under
the DDH assumption and supports all the operations men-
tioned above.

C. Zero-Knowledge Proofs

ZK-proofs allow proving a statement without revealing the
secret. In the literature [27], ZK-proofs constructed from
Y -protocols are efficient and flexible to fit the desired proof.
It is also possible to combine them to prove the conjunction of
several statements (called AND proofs). In Table I, we recall,
from [28], the X-protocol, denoted as Zpj,n, that proves
the plaintext knowledge of an ElGamal ciphertext [m] =
(u, v). It can be enhanced by the generic construction in [27]
to transform it into a zero-knowledge proof of knowledge;
that we denote as ZKPoKppin and use later in Protocol
Figure 4. In the same protocol, we also use non-interactive
ZK-proofs constructed from X-protocols using the Fiat-Shamir
transformation [29].

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE I

YprLaiy PROTOCOL THAT PROVES THE PLAINTEXT KNOWLEDGE OF AN
ELGAMAL CIPHERTEXT [m] = (u, v)

Commitment | Challenge | Response | Verification
_ . . Zr 7] .0 €
o | | T [T
=g - Zm=m'+e-m | g#m="V-v

III. SECURITY MODEL
In this work, we follow Canetti’s security model [30] for
malicious static adversaries in the special case of two parties.
We use the notations and extensions from [31] where each
party P; receives a secret input xi(s) and a public input xi(p )
and returns a secret output yi(s) and a public output yl.(p ), Also,
the adversary receives the public input and output of all parties.

A. Real-World Model

Let # be a Let X =
) _(p)

(x{s),xfp),xz , Xy ) be the parties’ inputs, ¥ = (r1, r2,74)
be the parties’ and the adversary’s .4 random inputs and
a € {0, 1}* be the adversary’s auxiliary input. We assume that
only one party, P; where j € {1, 2}, is corrupted at the time.
ADVR; 4 (k,X,{j}, a,7) denotes the output of the adversary
and EXEC, 4 (k, X, {j}, a,7); the output of the party P; after
a real-world execution of 7 in the presence of the adversary
A corrupting the party P;.
EXECH,A (k9 )_55 {.]}5 a» ;) = (ADVRH,A (k9 )?» {.]}5 a» ;) B
EXECH,A (k9 )?» {.]}5 a, ;)l s
EXECI,A (k’ )_5, {J}a a, ?)2)
EXEC, A (k,X,{j},a) denotes the random variable
EXEC, a(k,%, {j},a,7) where 7 is chosen uniformly
rando‘m .and. EXEC; 4 = {EXECE’A (k, x, {j.}, a)}k,)'c',{j},a
the distribution ensemble indexed by the security parameter

k € N, the input X, the corrupted party P; and the auxiliary
input a.

two-party  protocol.

B. Ideal Model

Let f be a probabilistic two-party function com-
putable in PPT defined as f(k,xfs),xfp),xés),xép),r) =

(yl(s) , yl(p ), yés), yép )) where k is the security parameter and r

is the random input. In the ideal model, each party P; sends

its input (xl( l.(p )) to the trusted party T that computes f

on the inputs and a uniformly chosen random r then returns to

each party P; its output (yi(s) yl-(p )). Note that the malicious

static adversary S 4, operating in the ideal execution, uses the
real-world adversary .4, which corrupts the party P;, as a
subroutine. At the beginning of the execution, S sees the
public values of both parties and the secret values of the
corrupted party P; and also substitutes P;’s input by values of
his choice. Again, we denote by IDEAL s, (k, X, {j}, a,7);
the output of the party P; after an ideal execution of f in the
presence of the adversary S 4.

IDEAL;s, (k, %,1j},a,7) = (ADVR s, (k, %, (j},a,7),
IDEALy s, (k, %, {j}, a,7);,
IDEAL s, (k, X, {j},a,7),)

5)
, X



BASSIT et al.: FAST AND ACCURATE LIKELIHOOD RATIO-BASED BIOMETRIC VERIFICATION SECURE

We denote by IDEALy s, (k, X, {j}, @) the random variable
IDEALf s, (k,X,{j},a,7) where 7 is chosen uniformly ran-
dom and IDEALss, = {IDEAL;s, (k. %, {j}, @)}z )
the distribution ensemble indexed by the security parameter
k € N, the input X, the corrupted party P; and the auxiliary
mput a.

C. Hybrid Model

In the (g1, -, g)-Hybrid model, the execution of a pro-
tocol = proceeds as in the real-world model, except that
the parties have access to a trusted party T for evaluating
the two-party functions gp,---, g;. These ideal evaluations
proceed as in the ideal-model. As above, we define the
following distribution ensemble

8157581 815581 ¥ i
EXECS") % = {EXEC,T,A (k, x, {J},G)}k’zj{j}ja

The security in this model is defined by requiring that a
real-world execution or (gp,---, g/)-Hybrid execution of a
protocol 7 for computing a function f should reveal no more
information to the adversary than what the ideal evaluation of
f does, namely the output.

Definition 1: Let f be a two-party function and © be a
two-party protocol. We say that © securely evaluates f in
the (g1,---,g)-Hybrid model if for any malicious static
(g1, ,&)-Hybrid adversary A corrupting one party, there
exists an adversary S 4 operating in the ideal world such that

£ 8158l
IDEAL; s, ~ EXECS";

where ~ means the computational indistinguishability of
ensembles, see Definition 3 in [30].

IV. PRE-COMPUTED HELR CLASSIFIER

Recall from Section II-A the biometric comparison of
two feature vectors using the LLR classifier is a data-driven
approach where the parameters of the genuine and impostor
distributions are estimated from a given dataset representative
of the relevant population. For each feature, we draw the
PDFs in Equation (1) and Equation (2) as estimated from the
training dataset. Assuming that the extracted features follow
the Gaussian distribution, they are rendered i.i.d. by applying a
combination of PCA and LDA as shown in [22] and [23]. Then
we compute the LLR per feature as in Equation (3) in order to
produce the final score in Equation (4) for each comparison.

The LLR in Equation (3) can be visualized as a function
with two inputs (the i feature, one from the template and
one from a probe) and one output (individual score). This
function can be arranged into a lookup table where the rows’
indexes represent the possible values of the first input (features
from the template), the columns’ indexes represent the possible
values of the second input (features from a probe) and the
cells contain the output (individual scores). In order to produce
such a lookup table, a mapping from a continuous domain to a
finite set is needed to limit the possible feature values allowing
the storage of a representative score per cell. This respective
score is then quantized to an integer in order to facilitate
the application of homomorphic encryption. An example of
generating the HELR lookup table of one feature is given in
Figure 2.

5049

A. Feature Quantization

We describe the feature quantization procedure for the
it" feature; the same is applied for the remaining features.
Assuming the PDFs are zero-mean, which is achievable by
subtracting the mean, implies that the impostor PDF has a unit
variance. Recall, that X; and Y; are normally distributed, hence
we get X; ~ N(0,1) and ¥; ~ N(0, 1). To perform a feature
quantization on n levels (called feature level), we divide the
2D impostor PDF in an equiprobable manner so that all
bins will have the same probability; thus, an arbitrary feature
observation is just as likely to land on any of those bins. This is
done by determining the bins’ borders following Algorithm 1
where ICDF(p,0, 1) is the inverse cumulative distribution
function of a A(0, 1) at the cumulative probability p and it
returns the value associated with p.

Algorithm 1 Procedure to Determine the Bins’ Borders

Input: n feature quantization level

Output: Bn array containing the bins’ borders
Bn array of size n — 1;

for j <~ 1ton—1do

p=j/n;
Bn[j] =ICDF(p,0, 1);
end

a; € Bng,; (resp. b; € Bny,) denotes the measured value for
feature x; (resp y;) from the first (resp. second) sample and
is quantized to d; (resp. b;) following Algorithm 2 using the
same Bn bins’ borders array of the i feature.

Algorithm 2 Feature Quantization on n Feature Levels

Input: q; raw feature value of the ith feature and Bn array
containing the bins’ borders of the ith feature

Output: ¢; quantized value

for j <~ 1ton—1do

| if a; < Bn[j] then return j — 1

end

return n — 1

B. Score Quantization

As we are dealing with 2D distributions, we partition the
impostor PDF and the genuine PDF according to an n x n grid
using Bn for both axes x; and y;; see the red grid Figure 2.
For a cell located at (a;, b;), where a; and b; the measured
values, we compute the genuine probability distribution (see
Equation (5)) inside that cell by calculating the area under the
curve delimited by its borders Bn,; and Bny,, see the dotted
surface depicted in Figure 2. Based on Equation (1) we hence
get:

fxi v (i, yi)dxidy;  (5)

Bnai

Px, v;(a;, bi|gen) =/

Bnbi

Note that Bng,, and Bnj, have one of the three forms | —

oo, Bn[1][, [Bnlj1, Bnlj + 1][ or [Bn[n — 1], +o00[. For the

impostor distribution, all cells have identical probability since
it was equiprobably divided:

Px,.y, (a;, b |imp) = (6)

nxn



5050

After that, we calculate the LLR for that cell (a;, l;i) and
place the resulted non-quantized score in a lookup table at row
a; and column b;. As described in Section II-B, homomorphic
encryption requires integers and the resulted LLR scores
are real-valued. We perform a second quantization to map
each real-valued non-quantized score to an integer that we
call quantized score by dividing the real-valued score by a
quantization step A and rounding the result to the nearest
integer to yield the quantized score s(a;, b;).

C. HELR Lookup Tables

For each feature, we generate an n x n HELR lookup table
where its cells contain the quantized score resulted from a
row (resp. column) that refers to the quantized feature value
of the first (resp. second) feature vector. To calculate the
similarity score of two feature vectors @ = (ay, --- , ax) and
b= (b1, ,by) using the HELR tables, we map each feature

a; (resp. b;) to its quantized value a; (resp. l;,-) and select
its corresponding score s(d;, b;) from the i HELR table, the
value at location row @; and column b;. Based on Equation (4)

we calculate the final score as § = Z;‘zl s(fzi,l;i). Recall
that we can sum the individual scores since the features are
assumed to be independent. The dimension of an HELR table
is bounded by the Signal-to-Noise ratio, or within-subject
variation, under the Gaussian assumption [32] which depends
on how much identity information the features carry. Note
that this dimension impacts only the template size that is
formed by choosing one row per table. Since the HELR
lookup tables are generated from a dataset representative of
the relevant population, we assume that they are public and
accessible by any party, namely the client and the server.
The comparison outcome is determined by the final score that
is calculated using sensitive biometric data. Thus, all values
that are involved in this calculation are sensitive. Hence, row
and column positions as well as the individual scores and
the final score must be protected. In the following sections,
we aim to perform biometric verification under encryption
using the HELR tables where the biometric data is kept
encrypted throughout the process and only the comparison
outcome (match or no match) is revealed.

V. PROPOSED VERIFICATION PROTOCOLS

Our final goal is to achieve security against both mali-
cious client and malicious server. We first design a biometric
verification protocol that ensures zero-biometric information
leakage secure against semi-honest client and server. Then,
we modify this construction to force them to behave honestly.
Thus, we obtain a protocol secure against malicious client
and server, ensuring both the correctness of the comparison
outcome and zero-biometric information leakage. In both
scenarios, the server must not learn the probe, the unprotected
template, the individual scores, the final score, and the com-
parison outcome. The same requirements apply to the client
except for the probe and the comparison outcome that it should
be able to learn.

In the following, we suppose that the client and the server
respectively hold the key pairs (pkcis, skcir) and (pkser, Skser)

from which the threshold ElGamal public key pkjoins is

calculated; see Section II-B. The HELR lookup tables, the
comparison threshold #, and the maximum score Sp.x are
public knowledge. We assume that the initial enrollment
process is performed in a fully controlled environment.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Request authentication of user uIDA ulD Check if ulD is registered
Extract user’s probe P = (fi,---, fi) If not abort
T,
For each row: [Tu] Fetch the encrypted template [Tyuip]
Select the f;  component
k
Compute [S] = | |[s". ;]
_ 1:[1 Sk 151 Encrypt [£] for all t € [0, S,]
Re-randomize [S] = [S] - [0] Compute [C] = (([S] — [t])),
= ([[Q]l)rql.lm}
Choose @ = (a:);cfy jen) St @i # 0
Blind [C] with @ such that
[aC] = ([aicil)icptten)
Permute using 7 such that
[aC] =7 ([aC])
e Partially decrypt [aC]:
A ser aCl,,, = ([aici],)icr e
Run final decryption e [aCl,,, = ([@iCi]ger)ieqren)
a;c; = [[aici),, ), Vi€ [1,1en]
If 3i € [1,len] : aje; == 0
Output 1 Match)
Otherwise 0 (i.e. No Match)

Fig. 3.
saries.

Biometric Verification Protocol Secure Against Semi-Honest Adver-

A. Protocol Secure Against Semi-Honest

Prior to a biometric verification, a user should enroll in order
to register his template. In this semi-honest construction, a new
user uID presents his biometric modality to the client that first
extracts a k-dimensional feature vector (fi, -, fr). Then for
the i-th feature, the client selects the f;-th row from the i-th
HELR lookup table to form the user’s template T,1p; which
can be seen as a vector of vectors.

o= (4. 7
uID ( S 16[1’”1)1'5[1,1{] @)

where s}, j is the score at the intersection of row f; and
1>

column j from the HELR lookup table i. Finally, the client
encrypts Tyip using pkjoin, then along with ulD sends the
encrypted template [T,p]l, that is of size n - k ciphertexts,
to the server who stores them for later retrieval.

[Tu] = (([[s;;,., f“),-en,n]) ®)

ie[l,k]

Figure 3 describes our verification protocol secure against
semi-honest adversaries where the veracity of a user claiming
an identity uID is assessed. After extracting a k-dimensional
feature vector P from the acquired live biometric modality,
the client requests, from the server, the user’s corresponding
encrypted template [7,p]l. Recall, from Section II-B, that
in the additively homomorphic ElIGamal, multiplication under
encryption is equivalent to addition in the plain domain. That
is, the client selects and multiplies the encrypted individual
scores to form the final score [[S]] then re-randomizes it
before sending it back to the server. This re-randomization
prevents the server from guessing the selected individual
scores from the encrypted template since the multiplication
of two ciphertexts twice yields the same ciphertext.

The server needs to perform the comparison under encryp-
tion to determine whether the encrypted final score is above
or below the threshold 6. One would think of subtracting only
[@] from [ST; however, this yields a zero only when both are
equal and non-zero value when S is above or below. To solve
this, one should compare S with the integers between 6 and
Smax- If & < S then exactly one single subtraction results
in 0, and if S < @ then all the subtractions are unequal to 0.
In addition, a multiplicative blinding must be applied to these
subtractions to protect the final score S when a decryption



BASSIT et al.: FAST AND ACCURATE LIKELIHOOD RATIO-BASED BIOMETRIC VERIFICATION SECURE

occurs. Note that the multiplicative blinding preserves only
the O in contrast with the values unequal to 0, which become
random.

Applying this, the server encrypts the integers between 6
and Smax under pkj,in, then computes the blinded comparison
vector [[aC] from the comparison vector [@¢C] and a a vector
of random values. After that, it applies a random permuta-
tion = to [[@aC] and partially decrypts the blinded-permuted
comparison vector and sends [aC].,. The client runs the
final decryption on [aCly,, to retrieve the plain values of the
blinded-permuted comparison vector aC. If it finds a value
aic;i == 0 in aC that means S is equal or greater than the
threshold 6. In this case, the client outputs match. If all values
in aC are different from zero, that means S is strictly below
the threshold 6. In this case, the client outputs no match.

Protocol Figure 3 requires two rounds and a communication
complexity of O (n-k)+O(len)+1. For the local computational
complexity, the client requires O (k) + O(len) and the server
requires O (len), where len = Spax — 6 + 1, k features and n
feature levels.

Limitations: This verification protocol is suitable for a client
and a server that trust each other regarding the correctness of
the exchanged messages. However, in an untrusted setting, this
protocol leads to serious security threats. Consider the case of
a malicious client that can arbitrarily deviate from the protocol.
Since the system’s threshold 6 is public, it can encrypt 6 using
the joint public key pkjoins to receive a blinded-permuted
comparison vector aC that contains a zero; thus, it succeeds in
forcing a match. For the case of a malicious server, instead of
sending the actual encrypted template, it can craft a template of
the form ((0,---,0),---,(,---,n),---,(0,---,0)), fixing
the individual scores of the iM feature to (1,---,n) and the
individual scores of the remaining features to zero. He then
encrypts the crafted template with his public key pkg.r and
sends it to the client, who will send back a sum of the
encrypted individual scores. By decrypting the sum, the server
learns the value of the i component of the probe. Repeating
this for all £ components reveals the probe. Another attack
could be: instead of sending the partial decryption of the
permuted comparison vector aC, it sends a non-zero values
vector of the same length as aC and encrypted with the client’s
public key pk.;;. Thus it forces a no match to a genuine user
since the decryption of aC yields a non-zero vector.

B. Protocol Secure Against Malicious

To address the limitations mentioned in Section V-A,
we transform the construction in Figure 3 into a protocol
secure against both malicious client and malicious server using
adapted ZK-proofs.

Adapted ZK-Proofs: In order to check and track the cor-
rectness of the computations over ElGamal encrypted data,
we construct three ZK-proofs from three X-protocols and
provide their proofs in Appendix A. Table II presents the cor-
responding non-interactive ZK-proofs using the Fiat-Shamir
transformation where H : G — {0, 1}’ is a hash function.
In our construction, we use an AND proof of ZK-proofs,
as shown in [27], using the same challenge for all individual
ZK-proofs.

We introduce a trusted enrollment party called enrollment
server which is merely involved during the enrollment and
offline during the verification. In real-world biometric appli-
cations, such a party is needed to guarantee the validity of the
identity claim and the quality of biometric templates that are

5051

TABLE 11
ADAPTED NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS (NIZKS)

NIZKpeczero NIZKgjina NIZKpartial
for [my]—[ma] = (uw) | for [m]"=(u"v")=(ab) | for [m];=(uv-u=%)=(uc)
Commitment | X=¢"U=u" | U=u' v =v" | X=g" U=u"
Challenge | e=H(k,X,U) | e=H(k,U\V) | e=H(pki,X,U)
Response | z=r'+es | z=r'+er | z=r'+e-sk;
Verification Equations | e=’#(k,X,U) e="H(kU,V) e=H(pki,X,U)
g =7 X ke P Yo oF =7 X pke
w?="U-v® vi="V.b¢ u?="U-(v-c1)°

to be stored (in a protected form) on the verification server.
To reflect this, we assume that the enrollment server holds a
signature key pair (venr, Senr) to sign the encrypted templates.
Unlike the enrollment in our protocol Figure 3, the client
has an additional key pair (k¢;, s¢;) for an additively homo-
morphic ElGamal encryption and generates k pseudo-random
permutations (PRP) (z1, - - - , 7x). The template is formed dif-
ferently as well. After selecting the corresponding rows as in
Equation (7), the client performs the following modifications
on Equation (8). The component [[S;‘,', j]] becomes a vector that
contains the encryption, under k., of its column position (i.e.
[/]) and an index r; ; = z;(j) by which this component will
be located later. The components of the i vector are ordered
according to the indexes r; ;. Thus [[TI:ID]] becomes

I, ]1=((r-,»,['1,[[si. 1) ) ©)

D = N VBT st ) e
The client then sends [[TI:ID]] to the enrollment server
who appends to each component two signatures: o;; =
Sign (se,,,, i, Ll uID) that binds the index r; ; with encryp-
tion of the column position j and uID; and «a;; =

Sign (s 1. Is), j]],uID) that binds [/] with [s%, ] and

ulD. Those signatures ensure the authenticity of the template
during the verification. The final protected template (10) is of
size n -k components where each of them comprises an index,
two ciphertexts, and two signatures.

[T.p]l = ((ri>j 1, IIS};‘;]“’ ij> ai’j)jE[l,n])

Besides, the enrollment server generates a permutation 7,
to form @ the permuted-encrypted threshold vector under

Pkjoint-

(10)
iel1,k]

O = ([7nr @)ico. San] (1D

Note that only the enrollment server knows the order of
the plain values of @. Finally, it sends ® to the client and
ulD, [Tyip]l and ® to the server that stores them for later
retrieval. This template’s structure facilitates the transition
from a semi-honest construction to a more suitable one that
withstands malicious adversaries.

Figure 4 describes our biometric verification protocol secure
against malicious adversaries. Unlike in our protocol Figure 3,
in step (2, the client sends its probe encrypted [ P] and proves
the knowledge of the underlying plain probe. He also sends
the corresponding indexes R to allow the server to locate the
desired components. The server, in step (3, sends the first
half of the components to allow the client to prove that the
requested components correspond to the ones that appear in
the protected template. Once the server is convinced, it then



5052

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

©

Request authentication of user uID

ulD

v

Check if uID is registered. If not abort

@ 7

[P] and R

Extract user’s probe P = (fl; s afk)

+

Verify; if at least one proof fails: abort

Encrypt the probe [P] = ([fl] AR [fk])

Retrieve R = (rq,--- ,ry) where r; = m; ( f;

— Z\l ZKPoK prain ([ ﬁ} ) I :

For the i® row, locate the r* component

©,

VerSign (venr, 74, [f7] , 04) Livie [1,K]

i

{(Tu [fz*] 3 Ui>}7-,ER,i€[I.k]

Send 1°* half of each 7t* component

If at least one fails abort

— Z\l NIZKpeczero ([f,] - [ﬂ) —

Verify; if at least one proof fails: abort

@ ;
VerSign ('z)em, (11, [[9} f]]’ ulD, ai) =1Viellk

i

If at least one fails abort

A~

{(r 151151, ;1 ) }%RJEM

Send 2"¢ half of each 7" component

Compute [S] = H[[sz,f}]]
i=1

Compute [C] = (([ST = 9))ier
= ([[Cl]])ze[l.len]

Verify; if at least one proof fails: abort

[eC] and [aC],,, [aCl,,, = ([aici]ser>i6[l,len]

k
Compute [S] = H[[sjﬁ“fl]]

Compute [C] :1:(1([[51] = ))ier
= (HC,,]])ie[l,len]

Choose @ = (i) e[y jer) St @i # 0
Blind [C] with a such that
[aC] = (alci)ig[l,len]

Partially decrypt [aC]:

Prove for each i € [1,len] that

Run final decryption ,

aic; = [[aici],,] 4, Vi € [1, len] -
If 3i € [1,len] : ajc; ==0 e
Output 1 (i.e. Match); otherwise 0 (i.e. No Match) LAY

NIZKpijina ([a:ici])
NIZKpartial ([aici]

[aic;] is a blinded value of [¢;]
la;ci],,, 1s the partial decryption of [a;¢;]

ser) ser

Fig. 4. Biometric Verification Protocol Secure Against Malicious Adversaries.

sends, in step (@), the second half that contains the encrypted
scores. Before engaging in any proof, the client checks the
authenticity of the received data by verifying the signatures
o; and a;, in steps @) and @. In step @, with respect to the
same order determined by R as well as ©, both the client
and the server compute [[S] and [C]. Note that here they
must have the same resulted values with the same randomness.
Next only the server blinds the comparison vector [C]] using a
vector of random values a to get [[aC] and partially decrypts
it as [aCl,,,. He then proves to the client that [aC] is a blind
version of [C] and that [aC];,, is its partial decryption. If the
client is convinced, it runs the final decryption and parses the
blinded comparison vector aC. If there is a zero, it outputs a
match otherwise outputs a no match.

Protocol Figure 4 requires four rounds and a communication
complexity of O(k) + O(len). For the local computational
complexity, both the client and the server require O (k) +
O(len), where len = Smax — 0 + 1 and k is the number of
features.

VI. SECURITY ANALYSIS

As mentioned in Section V, the enrollment is performed
in a fully controlled environment. Therefore, we only discuss
the security of verification protocols by separately analyzing
the case of compromised client and the case of compromised
server. Regardless of noise measurement, the correctness of
both protocols is straightforward. For a perfectly captured
user’s probe, an honest client who is interacting with an honest

server will yield a match if the user is genuine and a no match
if the user is an impostor.

A. Security Proof of Protocol 3

1) Semi-Honestly Compromised Client: it receives first the
template (8) that is encrypted under threshold ElGamal, which
means that the client can not decrypt on its own to learn the
scores. However, it may tend to use the public HELR lookup
tables and the encrypted template to learn which rows were
encrypted. Thanks to the IND-CPA property of ElGamal, the
client is unable to link the i vector of [Tump] to any row
of the i public HELR lookup table. In the second round,
the client receives the partial decryption of the comparison
vector that was blinded and permuted by the server. Again the
client fails in attempting to infer any significant information
from the comparison vector. Given that aC was blinded and
permuted by the server, the only leaked information here is the
comparison outcome. In the case of a match, the client will find
a value zero in a random position of the comparison vector.
In case of a no match, all values it will obtain are random;
thus, in both cases, it can not learn the final score S. Moreover,
the client may try to combine both the encrypted [T, p]l and
the blinded-permuted comparison vector aC; again, nothing
can be inferred thanks to the robustness of threshold ElGamal,
the applied permutation and the randomness introduced by the
blinding.

2) Semi-Honestly Compromised Server: regardless of the
user’s identity, it receives only one message from the client
that is the threshold encrypted final score [[S], so the server



BASSIT et al.: FAST AND ACCURATE LIKELIHOOD RATIO-BASED BIOMETRIC VERIFICATION SECURE

can not decrypt on its own. Given the fact that [S] is only
a multiplication of the chosen, accordingly to the probe,
encrypted individual scores from the template, the server
may try to select some encrypted values from the template
and compare their multiplication with the received [S]. This
comparison is meaningless since the client re-randomizes [S]
before sending it, and thanks to the IND-CPA property of
ElGamal, the server is unable to learn any information about
the probe.

Both cases demonstrate that no biometric information is
leaked except the comparison result, which is the protocol’s
output. Therefore, our protocol in Figure 3 is secure in the
semi-honest model.

B. Security Proof of Protocol 4

Theorem 1: Assume that 'H is a collision resistant hash
Sfunction and the signature scheme is EUF-CMA secure then

R . . Rpiain Rbec
the protocol in Figure 4 is secure in the (fyimy. fame s

fl\g%“”“’, fl\z%’[(”"” )-Hybrid world in the presence of malicious
adversary.

Proof: Note that the enrollment server is offline during
the verification phase; thus, it is not modeled in this proof.

1) Maliciously Compromised Client: Let A be an adversary

L Rplai R Rei Rparti .
operating in the (f/pm, A" gk iae)-Hybrid

world that is controlling the client, we construct S4 an
adversary operating in the ideal world that uses A as a

subroutine. S 4 is given the description of A, the probe P,
the user’s identity uID, permuted-encrypted threshold vector
O (11), venr, keirs pkeirs pkjoint, skey; and ke, Moreover,
S 4 is also given the public input of the server, i.e. the set of
templates {[T,p]},p (10) and pks,,. During the simulation,
S 4 will be playing the role of the honest server and the trusted
party that computes the functionalities used in the hybrid
world. We describe S 4 as follows:

@ S 4 receives ulD from A and verifies if #ID has been
enrolled before if not abort.

(@ S 4 receives [P 4] and R 4 from A and a request contain-

ing the statements [P 4] and the witness P4 = (ﬂ) A
iell,

to be sent to leg’g“o"K At this stage, S4 sends uID and P4 to
the trusted party and receives back b € {0, 1} the public output
of the client. Here 0 means no match and 1 means match. S 4
verifies whether the statements are consistent with the witness
if not abort. According to R4 and user’s uID template, S 4
sends to A the first half of the requested components extracted
from the set of templates {[7,m 1} ,p-

® S 4 receives the statements [P 4] and ([ fl*])

. R
witnesses that A sends to A%

et and
. S 4 verifies whether the

statements are consistent with the witness if not abort. Sy

sends the second half of the requested components to .A.

@ At this stage, there are the following two cases:

Case b = 0: S generates a random vector aCs, =
(ti)ier1 ten) such that Vi € [l,len] 1t # O then encrypts
it first using pkjoin; to get [[aCs 4] then encrypts it using
pkeir 1o get [aCs ], so that A will succeed in decrypting
it and the resulted vector will contain non-zero values. This
is possible since in ElGamal, a partial decryption under sk,
yields an encryption under pk.;; and the final decryption of an
ElGamal threshold encryption is the decryption of an ElGamal
non-threshold encryption.

5053

Case b = 1: S generates a random vector aCs, =
(ti)ieq1 ten) Such that 1; = 0 and Vi # j : #; # 0O then
encrypts it first using pkjin to get [aCs ] then encrypts
it using pk.; to get [aCsA]ser so that A will succeed in

decrypting it and the resulted vector will contain exactly one

zero. This is also possible for the same reasons mentioned in
case b = 0.

Since the simulator can not partially decrypt on behalf of the
server, the only alternative for him is to encrypt using pke;.
Then sends both vectors [aCs 4] and [aCs, |, to A who

ser
RBlind Rpartial
requests the answer of fy7g" and f 7k on these statements.

S 4 hands 1 to A and outputs whatever A does. Given the fact
that S 4 outputs whatever A does, what remains to be proven is

the indistinguishability of A’s view in both worlds: (leigg‘g}(,

Rbeczero RBlind Rpartial . : : . s
AN Ak Ak )-Hybrid and ideal (simulation). A’s

view consists of sent and received messages. Here the differ-

ence lies in the fact that the received messages were generated
by the honest server in the real execution while, during the
simulation, they were generated by the simulator S 4.

The steps (D, @ and @) are identical to the real execution
since the only thing S4 sends is some components from the
template. In step @, in the real execution, the honest server
always forms valid proofs. However, in the simulation, Sy
hands A fake valid proofs according to the output that it
has received from the trusted party. As a result, the indis-
tinguishability is maintained since A in both worlds receives
the blinded vector encrypted using pk join; (IND-CPA property
of the threshold ElGamal) and a ciphertext decryptable under
its own private key sk.;; (IND-CPA property of non-threshold
ElGamal) and 1 as an answer from fI\ﬁBZligd and fl\ﬁ‘%{?’“. There-
fore, (leié’}?g‘K, fl\ﬁ%elgze“’, bﬁ%‘iﬁ“, Iﬁ‘;‘fg“‘)-Hybrid and simulation
are indistinguishable.

2) Maliciously Compromised Server: Let A be an adversary

. Rpla Rbec R Rparti .
operating in the (fzgpox. fizk > Mizk > Aizk)-Hybrid

world controlling the server, we construct S4 an adversary
operating in the ideal world using A as a subroutine. S 4
is given the description of A, set of templates {[Tup1}, 1D
(10), permuted-encrypted threshold vector ® (11), vepr, Pksers
Pk join: and skg.,. Moreover, S 4 is also given the public input
of client uID the user’s identity, k. and pke;;. During the
simulation, S4 will be playing the role of the honest client
and the trusted party that computes the functionalities used in
the hybrid world. We describe S 4 as follows:

@ S 4 verifies if uID has been enrolled before if not abort.

S 4 generates a random probe P, = (f* as
@ Sa g p S i )ietia
iell,

a k— dimensional feature vector and encrypts it using k.
to get [Ps, |- Sa generates another random vector Rs, =
(r})ier1,k) where ri € [1, n]. Then sends uID, [ Ps, | and Rs

to A. S4 receives the statement [Ps, ] that A sent to firan

and hands 1 to A.

B® Sy receives from A the first half of the requested
components and verifies the signatures o;. If at least one
of them fails abort otherwise continue. S4 receives the
statements [Ps,] and ([f7])ic[1,k) that A sent to fl\ﬁ'%elgzm
then hands 1 to A.

@ S 4 receives the second half of the requested components
and verifies the signatures a;. If at least one of them fails
abort otherwise continue. S 4 receives the statements [[S]],
[[C ]] |IaC ]] [aC]l,., along with their proper witnesses that



5054

A sent to fgBind and £RBtal S 4 checks the statements and

their witnesses, if at least one of them is not correct abort
otherwise S 4 outputs whatever A does.

Since S 4 outputs whatever A does, what remains to be
proven is the indistinguishability of A’s view in both worlds:

Z%’EA“K, fl\ﬁ%ﬁgze“’, I\ﬁ‘%'igd, I\ﬁ‘;‘k‘i“‘)-Hybrid and ideal (simula-
tion). A’s view consists of sent and received messages. Here
the difference lies in the fact that the received messages
were generated by the honest client in the real execution
while, during the simulation, they were generated by the
simulator S 4.

In both executions, the steps () and (2) are indistinguishable.
Indeed, the IND-CPA property of ElGamal ensures the indis-
tinguishability between the random encrypted probe [Ps, ]
and the real encrypted probe [P]. The permutation used by
the honest client is a PRP permutation. So in both worlds,
A is unable to distinguish between (r;);c[1,4] received from
the honest client and (r7);[1,x) received from S4. S4 has
generated then encrypted the vector Ps, correctly (as the
honest client would do). As a consequence, it gives A the
value 1 instead of querying the ideal functionality lefg}';‘(‘)“K.
In step ), S4 checks the signatures o;, and if at least one
of them fails, it aborts as the honest client would do. Then A
always receives 1 from S 4 as an answer for fl\ﬁ%%”" which
is always the case in the hybrid execution where the client is
assumed to be honest. As a result, step 3 is indistinguishable
in both executions. In step @), S4 checks the signatures a;
and if the honest client would abort S 4 will also abort. Then
it checks the statements and the corresponding witnesses for
fbﬁ‘%"igd and fbﬁ%‘{ga‘. If at least one of them is incorrect, it aborts
as the honest client would do. If not, it outputs whatever A
does. Therefore, (leié’}‘;‘g“K, fl\ﬁ%elgze“’, Iﬁ‘%‘igd, I\fll%{g“‘)-Hybrid and
simulation are indistinguishable. The cases client malicious
and server malicious conclude our proof.

VII. EXPERIMENTATION AND EVALUATION

We used a 64-bit computer Intel(R) Core i7-8650U CPU
with 4 cores (8 logical processors) rated at 2.11GHz and
16GB of memory. We used Python 3.5.2 to implement the
HELR classifier and generated the lookup tables on the cluster.
For the protocols, we used Linux Ubuntu 18.04.4 LTS ran on
Windows-SubLinux (WSL) on Windows 10. Our implemen-
tations are publicly available at.? 3

Note that our baseline biometric comparison metric is the
HELR classifier. Its performance is influenced by the number
of features k, the chosen feature levels n (where n x n is the
dimension of an HELR table) and the quantization step A; the
higher A is, the smaller the distance between maximum score
and the comparison threshold Sp,x — @ gets. The following
evaluation depends on the parameters mentioned above that are
crucial to determine the efficiency of our verification protocols
since it depends on k and the length of the comparison vector
len = Smax — 6 + 1 which depends on Sp,x and 6. The
parameter values mentioned in Table III are not the optimal
values. Determining the best parameters requires solving an
optimization problem that is out of the scope of this paper.

A. Generation of HELR Lookup Tables

Our approach supports any biometric modality that can be
encoded as a fixed-length real-valued feature vector. To show

2https://github.com/aminabassit/helr—classiﬁer
3 https://github.com/aminabassit/bvsma

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

this we conducted experiments on dynamic signatures (DS2
of BMDB [33] only genuine signatures are considered and
skilled forgeries are not) and faces (PUT [34] and FRGC2.0
(Experiment 1, mask II) [35] datasets).

For the BMDB dataset, the initial features were extracted
by the algorithm described in [36] and were rendered i.i.d.
using PCA and LDA as described in [22]. Their dimensionality
was reduced to 36, and then they were split into a training
set containing 1350 feature vectors (45 users) and a test set
containing 4800 feature vectors (160 different users). For
the PUT dataset, the initial features were extracted by the
VGGFace network [37] (the first layers’ weights were taken
from [38] and the last layer was retrained for PUT to learn a
projection from the 4096-dimensional last layer’s output of the
pre-trained model to a 64-dimensional latent space) and were
rendered i.i.d. as above. Their dimensionality was reduced to
49, and then they were split into a training set containing
1100 feature vectors (50 users) and a test set containing 1095
feature vectors (50 different users). For the FRGC dataset,
the initial features were extracted by the VGGFace network
[37] and were rendered i.i.d. as above. Their dimensionality
was reduced to 94, and then they were split into a training
set containing 12776 feature vectors (222 users) and a test
set containing 16028 feature vectors (466 users) with identity
overlap between both sets of 153 users. Because of the identity
overlap, we use FRGC only to evaluate our protocols’ speed
on different HELR parameters.

We generated the HELR lookup tables using the training
set and measured the HELR classifier performance using the
test set. Figure 5 depicts the DET curves of LLR, HELR, and
Cosine similarity on the three datasets. The difference between
LLR and HELR DET curves and the Cosine DET curve is very
pronounced and confirms the optimality of those classifiers in
the Neyman-Pearson sense. The LLR and HELR classifiers
were generated based on the parameters in Table III. For those
parameters, the HELR performs better than the LLR. This can
be justified by the data-driven nature of LLR, which makes it
prone to slightly overfitting on the data. HELR reduces the
effect of this model mismatch by applying quantization and
rounding. Plus, HELR achieves an EER of 2.4% for BMDB
outperforming [36] and an EER of 0.27% for PUT and 0.25%
for FRGC that is similar to the state-of-the-art 0.2% [39].

To further demonstrate the practicality of the HELR clas-
sifier, we evaluated its performance in the case where the
HELR lookup tables are generated using a genuine distribution
estimated from one dataset and then tested on a different
dataset. On the same FRGC test set, Figure 6 compares the
performance of the LLR and HELR classifiers (for which the
genuine distribution was estimated from two different datasets:
FRGC and CelebA) with Cosine similarity that requires no
prior distribution knowledge. We used the FRGC training set
and a subset ¢ of the CelebA dataset [40] to estimate the
genuine distribution for the LLR and generate the HELR
lookup tables (with the same number of features 94, HELR
dimension 64 x 64 and quantization step A = 1.5) and
then measure the LLR and HELR classifiers’ performances
on the same FRGC test set. In the blue DETs (the genuine
distribution is estimated from FRGC) and red DETs (the
genuine distribution is estimated from CelebA), we observe
an identical effect as in the previous experiment, Figure 5,

It contains 31351 samples of 2476 different users for which the features
were extracted as those of FRGC.



BASSIT et al.: FAST AND ACCURATE LIKELIHOOD RATIO-BASED BIOMETRIC VERIFICATION SECURE

5055

TABLE IIT
PARAMETERS OF HELR LOOKUP TABLES GENERATED FROM BMDB, PUT AND FRGC DATASETS

. #Features HELR Score step Threshold 0 #Genuine #Impostor FNMR
Dataset ‘ Modality after LDA ‘ dimension A at 0.1% FMR ‘ Smax comparison | comparison ‘ EER at 0.1% FMR
BMDB | Signawre | 36 | 16x16 | 05 | 14 | 99 | 6.96x10% | 1.14x107 | 24% | 11.07%
PUT | Face | 49 | 64x64 | 1 | —53 | 82 | 1.14x10* | 587x10° | 0.27% |  0.81%
FRGC | Face | 94 | 64x64 | 15 | -1 | 73 | 3.99x10° | 1.28x10% | 0.25% |  0.49%
100% : . . (the red DETs are above the blue DETs) when the classifiers
S BMDB ¢ EER have prior knowledge coming from the CelebA dataset, which
...................... o _;%ER can be due to the low quality of the facial images containing
.......... Cosine diverse variations (such as pose variations). The results of

-, |

0.1%

0.01%

0.1% 1%

Fig. 5. LLR (solid line), HELR (dashed line), and Cosine similarity (dotted
line) DET curves of BMDB (red), PUT (green), and FRGC (blue) datasets.
From [36], EER of 5.05% for Cosine similarity (grey diamond) and EER
of 4.89% for Euclidean distance (yellow diamond) both on BMDB with 5
signatures per subject in the enrollment. HELR is tested using one signature
in the enrollment and achieves an EER of 2.4%.

100% T T T

10%

a4
Z 1% 3
=
0.1% 4
0.01% 0.1% 1% 10% 100%
FMR
Fig. 6. Cross-validation experiment: LLR (solid line), HELR (dashed line),

and Cosine similarity (dotted line) DET curves of FRGC dataset. In the blue
curves, the genuine distribution was estimated from the FRGC dataset to
estimate the LLR parameters and generate the HELR lookup tables, while in
the red curves, it was estimated from the CelebA dataset to generate them.
For the green curve, the Cosine similarity does not require a prior knowledge.

where HELR is slightly better than LLR, and both outperform
Cosine similarity (the green DET curve Figure 6). However,
we notice a performance degradation of LLR and HELR

this cross-validation experiment demonstrate that although the
LLR and HELR recognition performances have dropped, they
are still outperforming the Cosine similarity.

B. Verification Protocols

We implemented the prototype of both protocols as
described in Figure 3 and Figure 4 following the client/server
architecture in C++ using libscapi library [41] for secure
two-party computation and OpenMP [42] to parallelize the
implementation.

Figure 7 shows the runtime, per elliptic curve, of 500
genuine verifications via protocols 3 and 4 tested on the
three datasets and their median runtime is given in Table IV.
The runtime increases as the size of the elliptic curve’s
prime increases implying the increase of the security strength.
According to [43], the security strength of P192, P224 and
P256 corresponds respectively to 96, 112 and 128 bits.
We recall that in the last step of our protocols, the client
decrypts a permuted vector and makes his comparison decision
as soon as the first zero is found. The server does not learn the
comparison outcome as it is not contacted again after sending
this vector. The decryption of a permuted vector justifies
the boxplots overall outliers in Figure 7. The runtime of a
false non-match (genuine) or a true non-match (impostor) is
slower, approximately the upper outliers of the boxplots in
Figure 7, since the vector will be fully parsed searching for
a zero.

Among HELR parameters (see Table III), the comparison
vector length (Spax —6@ 4+ 1) has more influence on the runtime
since the test on FRGC shows the fastest runtime although
it has the largest parameters except for the vector length.
This can be justified by the expensiveness of the decryption
operation.

Table IV summarizes the performance of our work and pre-
vious work, as reported in the respective papers, in terms of the
runtime, tested modality, and security strength. It is important
to emphasize that this table is not meant to compare detailed
performance numbers but to indicate the order of magnitudes
as each protocol was tested on different machines (i.e., mobile,
laptop, workstation, etc.). The top half of the table reports
results of protocols belonging to the first category (semi-honest
client and semi-honest server), while its bottom half concerns
the second category (malicious client and semi-honest server)
and the third category (malicious client and malicious server).
What stands out in this table is that the reported runtimes of the
existing protocols are limited to a security strength of 80 bits,
which is no longer recommended by [43]. We show here that



5056

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Test on BMDB dataset Test on PUT dataset Test on FRGC dataset
4000 ¢ 4000 4000
[""]Semi-Honest [""1Semi-Honest [ 1Semi-Honest
3500 | |[C——Malicious 3500 | [C——IMalicious * 3500 F |[C__IMalicious
—6— Same User —6— Same User —6— Same User
3000 3000 3000

N}
133
=)
S

Millisecond
o
S
(=}

)
133
1=}
S

Millisecond
o
(=]
5]

Millisecond
S
8

1500 1500 « 5 1500
i i
1000 | ; [ * H 1000 g 1000
500 500 x 500
%
P192 P192 P224 P224 P256 P256 P192 P192 P224 P224 P256 P256 P192 P192 P224 P224 P256 P256
Fig. 7. Runtime of Protocol 3 (green) and Protocol 4 (purple) on 500 genuine verifications over three elliptic curves.
TABLE IV
PERFORMANCE SUMMARY OF OUR WORK AND PREVIOUS WORK AS REPORTED IN THE RESPECTIVE PAPERS
Adversarial | | Modality | | Classification | Cryptographic |  Security | . N
model Protocol #Features method technique strength [43] Runtime (s)
‘ ‘ Supported T Tested ‘ ‘ ‘
7] Binary Iris 2400 HD! Bﬁgé“d 80 8&? ((SCCI:Ire]:‘))
. THE 0.25 (Client)
1
SH Client (19] Binary Face 192 HD Xor GM 80 0.76 (Server)
H
SH Server Domamic 96 0.42
Sifg’gamre 36 112 0.48
Our work 6 THE 128 0.50
(Protocol 3) |, Real-valued HELR ElGamal
96 0.79%| 0.37%
Face 49 and 94 ¥ 112 0.82 0.39
128 0.88 | 0.43
. User’s 5 o 1.13 (Client)
9] Binary profile 1 AAD Paillier 80 0.04 (Server)
MAL Cli
SH Secr;z'r“ [10] Real-valued | Touchscreen 10 MD? Sgﬁiﬁoeg‘s‘i Unknown 3.70
| [ | Real-valued | Face | 60 | SVM* | ZKproofs | 80 15.42
| 021 | Realvalued |  Face | 128 | ED’ | HE \ 80 1.07
[14] Binary & | Multimodal | (5760,2)!|  HD!(Iris) SPDZ 46 0.10991 8
Real-valued | Iris & Face (6400,2)12|  EDFace) 0.120728
MAL Client Dynamic 96 1.71
MAL S Y
" ourvok Sgawre | THE 128 201
(Protocol 4) Real-valued HELR® ElGamal :
and ZK-proofs 96 2.10%| 0.95%
Face 49 and 94 112 2.36 | 1.17
128 2.50 | 1.22
! Hamming Distance 2 Absolute Average Deviation 3 Manhattan Distance ~ * Support Vector Machine 3 Euclidean Distance

6 Homomorphically Encrypted log Likelihood-Ratio classifier

feature vector.

T Supported modality representation can be either binary feature vector or a real-valued
* This column represents, unless specified, the overall runtime of an authentication session without considering the feature extraction. The

reported numbers are determined on different systems which makes them not directly comparable but only compared in terms of the orders of magnitude.
* PUT dataset $ FRGC dataset 91 5760 iris features have an EER of 2.51%, 2 eigenfaces have an EER of 17.37% while their fusion has an EER
of 0.98% for fusion coefficients « =0.80 and B=1—«v. 92 6400 iris features have an EER of 2.08%, 2 eigenfaces have an EER of 17.37% while
their fusion has an EER of 1.15% for fusion coefficients «=0.80 and =1—c.  § This takes into account the online phase only.

even when considering security levels higher than what was VIII. DISCUSSION
considered in prior work, our solution for the semi-honest
model (Protocol 3) runs similarly fast, in the order of hundreds
of milliseconds, as existing work. Also, our Protocol 4 is the
only solution that achieves security in the malicious model
while maintaining a similar runtime as existing semi-honest

solutions in terms of order of magnitude.

A. MPC-Based Biometric Verification Systems

These systems are based on generic MPC frameworks
(such as SPDZ [20], [21]) that comprise an offline phase,
where all the expensive computations are performed, and an
online phase with only cheap operations. The offline phase is



BASSIT et al.: FAST AND ACCURATE LIKELIHOOD RATIO-BASED BIOMETRIC VERIFICATION SECURE

independent of the inputs and the to-be-evaluated function.
During that phase, the parties collectively produce a large
amount of shared preprocessed data (input preparation masks,
multiplication triples, square pairs, and shared bits) that will
be consumed when evaluating the function’s circuit during the
online phase in an authenticated secret sharing manner. As
also noted by other work (e.g., [44]), the shared preprocessed
data is only used once (before being revealed). While the
function still requires further evaluations, this makes the offline
phase subject to a relaunch as soon as the preprocessed data
is entirely consumed; for instance, an authentication function
is meant to be evaluated several times. The efficiency of
those MPC frameworks comes from the cheap nature of
operations performed when using authenticated secret sharing.
Each party has its input in the clear and shares it with the
other parties before evaluating the function’s circuit on its
shares, and the other parties’ input shares with the help of the
shared preprocessed data. Subsequently, the parties perform
the evaluation on their sides, and then they open their output
share to reveal the output value for which they check a MAC
before accepting it as a correct output. MPC-based biometric
verification systems (such as SEMBA [14]) assume sharing
the template between the client and the server. This implies
that the client must store the remaining part of each shared
template which is of equal size as the share of the template
stored on the server. Hence, the client is required to have the
same storage capacity as the server itself.

The application of MPC frameworks in the context of
biometric verification requires: (1) the knowledge of the inputs
(template and probe) in the clear, (2) secret sharing the
template between the server and the client so that each one
of them stores its part of the share to be used during the
authentication, (3) the storage of a large amount of shared
preprocessed data on the client and the server sides, and
(4) its non-reusability once it is consumed; when a shared
value is revealed to all parties, it cannot be reused as a
share which makes its size depending on the number of
authentication attempts. Thus, the relaunch of the offline phase
is necessary [44] after sg)ending all the preprocessed data on
authentication attempts.” Contrary to (1) and (2), we assume
that the server stores the encrypted template, and we require
the client to learn no information about the clear-text template.
During the verification, the server possesses an encrypted
template as input, and the computations are performed over
ciphertexts. Applying a generic MPC framework in our setting
would involve performing the secret sharing under encryption.
However, this would be counterproductive as the online phase
of MPC frameworks is very efficient because all operations are
performed on the clear-text shares and not under encryption;
performing this phase on homomorphically encrypted shares
would inherit the performance deficiency of homomorphic
encryption. In opposition to (3) and (4), our setting protocol
(as shown in Figures 3 and 4) is online-only with limited
client-storage that only contains the keys, the PRPs, and the
permuted-encrypted threshold vector, which are independent
of the number of enrolled users and the number of authenti-
cation attempts.

For iris features of size 5760 (resp. 6400) with an EER
of 2.51% (resp. 2.08%) and two eigenfaces with an EER

5The communication cost of one offline phase in SPDZ for calculating a
single two-party authentication based on Euclidean distance using a template
of size 128 features is 21.19MB [12].

5057

of 17.37%, SEMBA generates a list of 17332 (resp. 19252)
multiplication triples and two square pairs for which it runs
in 0.109s (resp. 0.120s), that is nearly one order of magnitude
faster than our protocol, with a low-security strength of 46
bits and a multimodel biometric performance EER of 0.98%
(resp. 1.15%). Unlike our protocol (summarized in Figure 4)
that for a security strength of 96 bits, it runs in 0.95s with an
EER of 0.25% for 94 facial features and runs in 2.10s with
an EER of 0.27% for 49 facial features.

B. Flexibility of the Recognition Outcome Disclosure Right

The international standard ISO/IEC 24745 [45] defines sev-
eral application models; some of them perform the biometric
comparison on the client-side and others on the server-side.
The disclosure right of the recognition outcome granted to
either the client or the server depends on the application
model. The biometric comparison in our protocol Figure 4
is a distributed comparison between the client and the server.
The disclosure right is given to the client since the server
performs the blinding [[aC] and the initial partial decryption
[aC]ser then sends [[aC] and [aCls.r along with ZK-proofs
to the client (the last two arrows of Step 4 of the same
Figure). Note that our protocol can be modified with no
effect on the total runtime by letting the client perform the
blinding and the initial partial decryption then sends [aC]l
and [aC].;; along with ZK-proofs to the server (inversion of
the last two arrows of Step 4 of the same Figure). Moreover,
our protocol can be adjusted to allow the client and the
server to learn the recognition outcome simultaneously. The
client (resp. the server) chooses a blinding vector a.j; (resp.
ager), calculates the blinded comparison vector [[a;C]l (resp.
[aserC1), performs the initial partial decryption then sends
[ac:Cll and [aci;Cler (resp. [[aserCll and [agerClser) along
with ZK-proofs to the server (resp. client) who finishes the
decryption and learns the recognition outcome. Therefore,
our protocol is flexible in granting the recognition outcome
disclosure right to the client or the server or both of them
simultaneously.

IX. RELATED WORK

Over the past decades, several approaches were developed to
protect biometric data, known as biometric template protection
(BTP) [45], most of them protect it at rest when it is stored in
a biometric system. However, the increasing number of online
services requires a more sophisticated biometric solution that
protects the biometric data involved in the entire process for a
given adversarial scenario. In this direction, various biometric
systems have been proposed that can be categorized according
to their adversarial model.

A. Semi-Honest Client and Semi-Honest Server

this category assumes that the parties properly follow the
protocol steps and try to learn the biometric information only
from the exchanged messages. To prevent such biometric
information leakage, most of those systems perform the bio-
metric comparison in the encrypted domain. For instance, [4]
uses a support vector machine (SVM) classifier for the compar-
ison. This classifier yields the final score as a linear combina-
tion of the template and the probe. The idea consists of storing
the encrypted template on the server using a multiplicative
homomorphic encryption scheme. Then, for the authentication,
the client sends an encrypted probe to the server, which



5058

calculates the linear combination under encryption and sends
it randomized to the client, who decrypts it for the server.
After canceling out the randomization, the server learns the
final score and, based on it, makes its decision. To achieve
the same goal, another system [6] follows a hybrid approach,
which is a combination of additive homomorphic encryption
and garbled circuits, to perform the comparison based on
either Hamming distance or Euclidean distance. A common
drawback of those systems is that a decryption is performed
in the middle of the comparison process, creating a cheating
opportunity for a compromised client to change the decrypted
result. Ghostshell [7] addressed that by requiring the client
to decrypt the final score along with an encrypted message
authentication code (MAC) tag to ensure the integrity of the
decrypted score. The server, then, makes its decision only for
valid tags. Another limitation of those systems is that they
expose the final score to the server, which leaks the closeness
of a probe to the template as well as the quality of a user’s
probe. For instance, a server recording the final scores of its
users after a successful match can determine which of them
has the most stable biometric modality. This makes such a
user an interesting target to attack.

B. Malicious Client and Semi-Honest Server

this category intensifies the client’s adversarial model to the
malicious setting, assuming that an adversary can arbitrarily
deviate from the protocol not only to infer biometric infor-
mation from the template but also to compromise the security
of the protocol. Unlike the previous category, the client is
asked to provide proofs of each interaction it makes with
the server. For example, in [9] and [11], the client appends
a ZK-proof to each interaction; either to prove its encrypted
probe’s consistency or the correctness of its computations.
Also, [10] achieves this using garbled circuits empowered by
the cut-and-choose technique but at the cost of the protocol’s
efficiency. Besides, [12] uses HE that supports quadratic
operations and blinds the final score. They prove the security
of their protocol by separating two types of malicious clients.
Type 1 tries to obtain the clear-text values of the template, and
type 2 aims at being successfully authenticated without having
any biometric information of the legitimate user. Note that in
their design, the server makes the comparison decision that
delivers it to the client (representing a single user). In contrast
to our design, this decision is made by both and known only
by the client managing multiple users.

C. Malicious Client and Malicious Server

References [15] and [16] have emphasized that semi-honest
security is insufficient in the context of biometric recognition
since it leads to severe security risks. Systems belonging
to both previously discussed categories store the biometric
data encrypted on the server, assuming that it will follow
the computations as prescribed by the protocol. The server,
indeed, will learn nothing if it follows the protocol. How-
ever, an inevitable question arises: given the overwhelming
cyber-security threats, can we guarantee that a server holding
encrypted biometric data interacting with a client holding raw
biometric data will not try to deviate arbitrarily from the
protocol? Here, the threat is even worse due to cyberattacks
on such servers: the server operator might not have bad
intentions but can be manipulated by an external attacker.
Thus, such servers are promising targets by themselves. This

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

third category confronts any arbitrary deviation coming either
from the server or the client.

Many studies have been approaching the problem of provid-
ing a biometric verification protocol for both client and server
in the malicious model. In that sense, THRIVE [19] tried to
solve this problem in the client/server architecture in a tailored
manner. While the authors made some steps forward in this
direction, the resulting protocol is unfortunately not secure
in the malicious model as their proof follows the definition
of the semi-honest model; see [27, Definition 2.2.1]. They
construct a simulator that does not consider the adversary’s
input, which is insufficient since a malicious adversary may
substitute the corrupted party’s input to affect the correctness
of the actual output. In the following, we explain why THRIVE
does not achieve security against malicious adversaries: It
performs the biometric recognition using Hamming distance
between two binary vectors, namely the probe and the tem-
plate. The server stores the template bit-wise encrypted using
a (2,2)-THE and signed by the client. For the authentica-
tion, the client sends the probe randomized and receives the
encrypted template along with its signature. Subsequently, the
client, homomorphically and bit-wise, combines the encrypted
randomness used to randomize the probe with the encrypted
template and partially decrypts the resulted encryption. Then,
it sends to the server the encrypted randomness, the partial
decryptions, and a signature that binds both. Note that this
signature ensures to the server that the received messages
(i.e., the encrypted randomness and the partial decryptions)
were sent by the client (i.e., authenticity) and received without
being modified during transmission (i.e., integrity). Hence, this
signature does not guarantee to the server that the client has
sent the correct encrypted randomness and partial decryptions
as prescribed by the protocol. In other terms, the server is
not sure about how the received messages were computed.
On the other hand, the server sends its comparison decision
to the client without employing any mechanism to prove
the correctness of its decision. In this case, it could skip
the last computations that lead to the comparison decision
and simply send arbitrary decisions to the client. Thus, the
simulator, in the proof of Theorem 1 provided in [19], does
not capture the above-mentioned malicious behaviors. This
design flaw enables a malicious client and a malicious server to
send inconsistent messages that affect the correctness of the
output. Therefore, THRIVE is not secure against malicious
adversaries.

Later [13] proposed a three-party protocol for continuous
authentication secure against malicious smartphone, cloud,
and server based on the garbled circuit construction in [10]
and without using the cut-and-choose technique. In their
protocol, the server is allowed to learn the distance between
the protected template and the protected probe. However, due
to their use of a one-time-pad over a finite field, this distance is
the same as the distance between the clear-text template and
clear-text probe. Leaking the clear-text distance makes [13]
vulnerable to hill-climbing and brute-force attacks [17], [18].
[13] runs in 0.72s (resp. 2s) for Manhattan distance using 8
(resp. 28) biometric features for a 80 bits security strength.
They achieve a runtime similar to ours for a reduced number
of features and security strength.

SEMBA [14] proposed a multimodal biometric verification
protocol based on SPDZ [20], [21] secure against malicious
client and server. As mentioned in Section VIII, SEMBA
assumes that the template is generated by the client and shared



BASSIT et al.: FAST AND ACCURATE LIKELIHOOD RATIO-BASED BIOMETRIC VERIFICATION SECURE

between the client and the server. Thus, both store a share
of the template of equal size, requiring the client to have a
similar storage capacity as the server. This is different from
our setting, where we assume that the template is only stored
protected on the server-side. SEMBA has only been evaluated
with an unrealistically low-security strength of 46 bits, for
which it runs nearly one order of magnitude faster than our
protocol, between 0.109s and 0.120s.% Doubling the size of the
security parameters in SPDZ is known to increase the runtime
by more than one order of magnitude [47]; it can hence be
assumed that SEMBA would have a runtime comparable to the
runtime of our approach when considering a 92 bits security
strength.

Unlike our protocol Figure 4 that is online-only, SEMBA
requires an expensive offline phase subject to a relaunch as
soon as the shared preprocessed data is entirely consumed.
This depends on how many authentications attempts the
preprocessed data can support. For a single authentication
attempt, SEMBA generates a list of 17332 (resp. 19252) mul-
tiplication triples and 2 square pairs to handle templates of size
5760 (resp. 6400) iris features and two eigenfaces. Moreover,
increasing the number of iris features for a fixed number
of eigenfaces and the same fusion coefficients degrades the
biometric accuracy and the runtime of SEMBA. For two
eigenfaces and fusion coefficients @ = 0.80 and f =1 — a,
SEMBA runs in 0.109s with an EER of 0.98% for 5760 iris
features while it runs in 0.120s with an EER of 1.15% for
6400 iris features. Contrary to our evaluation results, where
increasing the number of features improves both the biometric
accuracy and the runtime. For a security strength of 96 bits,
our protocol 4 runs in 0.95s with an EER of 0.25% for 94
facial features and runs in 2.10s with an EER of 0.27% for
49 facial features.

X. CONCLUSION

In this paper, we propose a biometric verification pro-
tocol secure against malicious adversaries and evaluate its
performance. We showed that the proposed HELR classifier
is accurate (EER between 0.25% and 0.27% for faces) and
diverse in terms of supported biometric modalities that can
be encoded as a fixed-length real-valued feature vector. This
approach allowed us to speed up the biometric recognition
in the encrypted domain by pre-computing the classifier and
organizing it into very fast lookup tables that are gener-
ated for the purpose of applying a homomorphic encryption
layer. Further, we achieved security in the malicious model
by strengthening our initial protocol that is secure in the
semi-honest model using ZK-proofs. The evaluation of our
protocols shows runtimes between 0.37s and 2.50s for security
strengths varying from 96 to 128 bits. This makes us achieve
a stronger security level for a runtime in the order of few
seconds and demonstrates that the case of malicious client
and malicious server is practical.

APPENDIX A
PROOFS OF X-PROTOCOLS
X -protocols XpecZero, ZBlind and Xparial corresponding to
the NIZKs NIZKpeczero, NIZKgiing and NIZKpatial, Table 11,
are obtained by sampling the challenge ¢ € {0, 1}’ instead
of calculating it via a hash function. Theorem 2 provides

SFor 5760 (resp. 6400) iris features and two eigenfaces, two eigenfaces and
fusion parameters a = 0.80 and f =1 —a.

5059

the proof for Zpaial. The remaining Xpeczero and Xpilind are
demonstrated in the same way; thus, their proofs are omitted.

Theorem 2: The protocol X pyiq Satisfies the three require-
ments of a X-protocol, namely completeness, special sound-
ness, and special honest verifier zero-knowledge.

Proof: Completeness: For a prover that knows the under-
lying partial private key sk; of the joint key pkjin also the
underlying private key of the public key pk;, a verifier will
always accept the proof on the input ((u, v), (u, ¢)) since:

g =g" (g% =X pkf
W = ur/ . (usk,')e =U-(v- cfl)e
This holds since ¢ = v - u—%i.
Special soundness: Suppose that (X, U;er;z1) and
(X, U; e2; z2) are two valid transcripts such that e; # e.
We have

ng — X . pklel
e
gzz =X pki2

21 —22

This implies that g% =% = pk;' > and g©1=2 = pk;. Since

ski = log,(pk;) then we succeed in extracting sk; = %

Special honest verifier Zero-Knowledge: Consider M a
simulator that is given an input ((u, ), (u,c), pk;) and a
challenge e. M operates as follows:

1) Chooses z € Zy.

2) Computes X = g°/pk¢ and U = u*/(v - ¢~ )“.

3) Outputs the transcript (U, V; e; z).

Thus, M outputs a transcript of the same probability distrib-
ution as transcripts between the honest prover and verifier on
common input ((u, v), (u, ), pk;).

ACKNOWLEDGMENT
The authors would like to thank Marta Gomez-Barrero,
Una Kelly and Ali Khodabakhsh for providing us with
the feature vectors for BMDB, PUT and FRGC databases
respectively.

REFERENCES

[11 G. Fawkes. (2019). Report: Data Breach in Biometric Security Plat-
form Affecting Millions of Users. vpnMentor. [Online]. Available:
https://www.vpnmentor.com/blog/report-biostar2-leak/

[2] B. Carl. (2020). Report: Retail-Focused Used Electronics Busi-
ness Leaks Customers’ IDS & Fingerprints in Data Breach. Web-
site Planet. [Online]. Available: https://www.websiteplanet.com/blog/
tronicsxchange-breach-report/

[3] O. Goldreich, Foundations of Cryptography: Basic Applications, vol. 2.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

[4] M. Upmanyu, A. M. Namboodiri, K. Srinathan, and C. V. Jawahar,
“Blind authentication: A secure crypto-biometric verification proto-
col,” IEEE Trans. Inf. Forensics Security, vol. 5, no. 2, pp. 255-268,
Jun. 2010.

[5] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba,
“Packed homomorphic encryption based on ideal lattices and its appli-
cation to biometrics,” in Proc. Int. Conf. Availability, Rel., Secur. Berlin,
Germany: Springer, 2013, pp. 55-74.

[6] H. Chun, Y. Elmehdwi, F. Li, P. Bhattacharya, and W. Jiang, “Outsource-
able two-party privacy-preserving biometric authentication,” in Proc. 9th
ACM Symp. Inf., Comput. Commun. Secur., Jun. 2014, pp. 401-412.

[7]1 J. H. Cheon, H. Chung, M. Kim, and K.-W. Lee, “Ghostshell: Secure
biometric authentication using integrity-based homomorphic evalua-
tions,” IACR Cryptol. ePrint Arch., vol. 4, p. 484, May 2016.

[8] J.-H. Im, J. Choi, D. Nyang, and M.-K. Lee, “Privacy-preserving palm
print authentication using homomorphic encryption,” in Proc. IEEE 14th
Int. Conf. Dependable, Autonomic Secure Comput., 14th Int. Conf. Per-
vas. Intell. Comput., 2nd Int. Conf. Big Data Intell. Comput. Cyber Sci.
Technol. Congr. (DASC/PiCom/DataCom/CyberSciTech), Aug. 2016,
pp- 878-881.



5060

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

S. F. Shahandashti, R. Safavi-Naini, and N. A. Safa, “Reconciling user
privacy and implicit authentication for mobile devices,” Comput. Secur.,
vol. 53, pp. 215-233, Sep. 2015.

J. Sedenka, S. Govindarajan, P. Gasti, and K. S. Balagani, “Secure
outsourced biometric authentication with performance evaluation on
smartphones,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 2,
pp. 384-396, Feb. 2014.

H. Gunasinghe and E. Bertino, “PrivBioMTAuth: Privacy preserving
biometrics-based and user centric protocol for user authentication from
mobile phones,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 4,
pp- 1042-1057, Apr. 2018.

J.-H. Im, S.-Y. Jeon, and M.-K. Lee, “Practical privacy-preserving
face authentication for smartphones secure against malicious clients,”
IEEE  Trans. Inf. Forensics Security, vol. 15, pp. 2386-2401,
2020.

P. Gasti, J. §edénka, Q. Yang, G. Zhou, and K. S. Balagani, “Secure,
fast, and energy-efficient outsourced authentication for smartphones,”
IEEE Trans. Inf. Forensics Security, vol. 11, no. 11, pp. 2556-2571,
Nov. 2016.

M. Barni, G. Droandi, R. Lazzeretti, and T. Pignata, “SEMBA:
Secure multi-biometric authentication,” IET Biometrics, vol. 8, no. 6,
pp. 411421, Nov. 2019.

K. Simoens, J. Bringer, H. Chabanne, and S. Seys, “A framework
for analyzing template security and privacy in biometric authentication
systems,” IEEE Trans. Inf. Forensics Security, vol. 7, no. 2, pp. 833-841,
Apr. 2012.

A. Abidin and A. Mitrokotsa, “Security aspects of privacy-preserving
biometric authentication based on ideal lattices and ring-LWE,” in
Proc. IEEE Int. Workshop Inf. Forensics Secur. (WIFS), Dec. 2014,
pp. 60-65.

R. M. Bolle, J. H. Connell, and N. K. Ratha, “Biometric perils
and patches,” Pattern Recognit., vol. 35, no. 12, pp. 2727-2738,
Dec. 2002.

M. Martinez-Diaz, J. Fierrez-Aguilar, F.  Alonso-Fernandez,
J. Ortega-Garcia, and J. A. Siguenza, “Hill-climbing and brute-force
attacks on biometric systems: A case study in match-on-card fingerprint
verification,” in Proc. 40th Annu. Int. Carnahan Conf. Secur. Technol.,
Oct. 2006, pp. 151-159.

C. Karabat, M. S. Kiraz, H. Erdogan, and E. Savas, “THRIVE: Threshold
homomorphic encryption based secure and privacy preserving biometric
verification system,” EURASIP J. Adv. Signal Process., vol. 2015, no. 1,
pp. 1-18, Dec. 2015.

I. Damgard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computa-
tion from somewhat homomorphic encryption,” in Proc. Annu. Cryptol.
Conf. Berlin, Germany: Springer, 2012.

I. Damgard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure MPC for dishonest majority—or: Breaking the
SPDZ limits,” in Proc. Eur. Symp. Res. Comput. Secur. Berlin, Germany:
Springer, 2013, pp. 1-18.

A. M. Bazen and R. N. J. Veldhuis, “Likelihood-ratio-based biometric
verification,” IEEE Trans. Circuits Syst. Video Technol., vol. 14, no. 1,
pp. 86-94, Jan. 2004.

D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun, “Bayesian face revisited:
A joint formulation,” in Computer Vision—ECCV 2012, A. Fitzgibbon,
S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, Eds. Berlin, Germany:
Springer, 2012.

R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally
efficient multi-authority election scheme,” Eur. Trans. Telecommun.,
vol. 8, no. 5, pp. 481490, Sep. 1997.

T. P. Pedersen, “A threshold cryptosystem without a trusted party,”
in Proc. Workshop Theory Appl. Cryptograph. Techn. Springer,
1991, pp. 522-526.

P-A. Fouque and D. Pointcheval, “Threshold cryptosystems secure
against chosen-ciphertext attacks,” in Proc. Int. Conf. Theory Appl.
Cryptol. Inf. Secur. Berlin, Germany: Springer, 2001, pp. 351-368.

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

C. Hazay and Y. Lindell, Efficient Secure Two-Party Protocols: Tech-
niques and Constructions. Berlin, Germany: Springer-Verlag, 2010.
[Online]. Available: https://www.springer.com/gp/book/9783642143021,
doi: 10.1007/978-3-642-14303-8.

J. Camenisch, “Group signature schemes and payment systems based
on the discrete logarithm problem,” Ph.D. dissertation, Dept. Comput.
Sci., ETH Zurich, Ziirich, Switzerland, 1998.

A. Fiat and A. Shamir, “How to prove yourself: Practical solutions
to identification and signature problems,” in Proc. Conf. Appl. Cryp-
tograph. Techn. Berlin, Germany: Springer, 1986, pp. 186—194.

R. Canetti, “Security and composition of multiparty cryptographic
protocols,” J. Cryptol., vol. 13, no. 1, pp. 143-202, Jan. 2000.

R. Cramer, I. Damgard, and J. B. Nielsen, “Multiparty computation
from threshold homomorphic encryption,” in Proc. Int. Conf. Theory
Appl. Cryptograph. Techn. Adv. Cryptol. (EUROCRYPT), in Lecture
Notes in Computer Science, vol. 2045. Berlin, Germany: Springer, 2001,
pp- 280-300.

F. M. J. Willems and T. Ignatenko, “Quantization effects in biometric
systems,” in Proc. Inf. Theory Appl. Workshop, Feb. 2009, pp. 372-379.
J. Ortega-Garcia et al., “The multiscenario multienvironment BioSecure
multimodal database (BMDB),” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, no. 6, pp. 1097-1111, Jun. 2009.

A. Kasinski, A. Florek, and A. Schmidt, “The put face database,” Image
Process. Commun., vol. 13, nos. 3—4, pp. 59-64, 2008.

P. J. Phillips et al., “Overview of the face recognition grand challenge,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit.
(CVPR), vol. 1, Jun. 2005, pp. 947-954.

M. Gomez-Barrero, J. Fierrez, J. Galbally, E. Maiorana, and P. Campisi,
“Implementation of fixed-length template protection based on homomor-
phic encryption with application to signature biometrics,” in Proc. [EEE
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2016,
pp. 191-198.

O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in
Proc. Brit. Mach. Vis. Conf., 2015, pp. 41.1-41.12. [Online]. Available:
http://www.bmva.org/bmvc/2015/papers/paper04 1/index.html

R. C. Malli. Vggface Implementation With Keras Framework. Accessed:
Mar. 27, 2017. [Online]. Available: https://github.com/rcmalli/keras-
vggface

J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive angular
margin loss for deep face recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 4690-4699.

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes
in the wild,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015,
pp. 3730-3738.

B. I. C. R. Group et al., “LIBSCAPI: The secure computation api,”
Tech. Rep., 2016.

L. Dagum and R. Menon, “OpenMP: An industry standard API for
shared-memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1,
pp. 46-55, Jan. 1998.

D. Giry. (2020). Keylength—Cryptographic Key Length Recommenda-
tion. BlueKrypt. [Online]. Available: https://www.keylength.com/en/4/
M. Keller, “MP-SPDZ: A versatile framework for multi-party computa-
tion,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2020,
pp. 1575-1590.

ISO Central Secretary, Information Technology—Security Techniques—
Biometric Information Protection, International Organization for Stan-
dardization, Standard ISO/IEC 24745, 2011. [Online]. Available:
https://www.iso.org/standard/52946.html

U. Uludag, S. Pankanti, S. Prabhakar, and A. K. Jain, “Biometric
cryptosystems: Issues and challenges,” Proc. IEEE, vol. 92, no. 6,
pp. 948-960, Jun. 2004.

D. Rotaru, N. P. Smart, T. Tanguy, F. Vercauteren, and T. Wood,
“Actively secure setup for SPDZ,)” IACR Cryptol. ePrint Arch.,
vol. 2019, p. 1300, May 2021. [Online]. Available: https://eprint.iacr.org/
2019/1300


http://dx.doi.org/10.1007/978-3-642-14303-8


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


