
4924 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Adversarial XAI Methods in Cybersecurity
Aditya Kuppa and Nhien-An Le-Khac , Member, IEEE

Abstract— Machine Learning methods are playing a vital role
in combating ever-evolving threats in the cybersecurity domain.
Explanation methods that shed light on the decision process of
black-box classifiers are one of the biggest drivers in the success-
ful adoption of these models. Explaining predictions that address
‘Why?/Why Not?’ questions help users/stakeholders/analysts
understand and accept the predicted outputs with confidence and
build trust. Counterfactual explanations are gaining popularity
as an alternative method to help users to not only understand
the decisions of black-box models (why?) but also to provide a
mechanism to highlight mutually exclusive data instances that
would change the outcomes (why not?). Recent Explainable
Artificial Intelligence literature has focused on three main areas:
(a) creating and improving explainability methods that help
users better understand how the internal of ML models work
as well as their outputs; (b) attacks on interpreters with a
white-box setting; (c) defining the relevant properties, metrics
of explanations generated by models. Nevertheless, there is no
thorough study of how the model explanations can introduce
new attack surfaces to the underlying systems. A motivated
adversary can leverage the information provided by explanations
to launch membership inference, and model extraction attacks
to compromise the overall privacy of the system. Similarly,
explanations can also facilitate powerful evasion attacks such
as poisoning and back door attacks. In this paper, we cover
this gap by tackling various cybersecurity properties and threat
models related to counterfactual explanations. We propose a new
black-box attack that leverages Explainable Artificial Intelligence
(XAI) methods to compromise the confidentiality and privacy
properties of underlying classifiers. We validate our approach
with datasets and models used in the cyber security domain to
demonstrate that our method achieves the attacker’s goal under
threat models which reflect the real-world settings.

Index Terms— XAI, cybersecurity, counterfactual explanations,
adversarial attacks, poisoning attacks, model stealing, member-
ship inference attacks.

I. INTRODUCTION

EXPLAINABLE Artificial Intelligence (XAI) is a mul-
tifacet discipline with influences from social sciences,

philosophy, cognitive science, and psychology [1]–[3]. The
field of explanations of intelligent systems was active in the
1970s mainly focused around expert systems; to, a decade
after, neural networks; and then to recommendation systems
in the 2000s [6].

The technical aspects of XAI methods can be grouped
by when these methods are applied: before (pre-hoc), dur-
ing (in-model), or after (post-hoc) building the machine
learning (ML) model [4], [5]. Model explanations can
be both global or local. A global explanation checks the

Manuscript received March 1, 2021; revised July 13, 2021; accepted
September 15, 2021. Date of publication October 1, 2021; date of current
version October 25, 2021. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Clinton Fookes.
(Corresponding author: Nhien-An Le-Khac.)

The authors are with the School of Computer Science, Univer-
sity College Dublin, Belfield, Dublin 4, D04 V1W8 Ireland (e-mail:
aditya.kuppa@ucdconnect.ie; an.lekhac@ucd.ie).

Digital Object Identifier 10.1109/TIFS.2021.3117075

inner workings of the whole ML model, by modeling the
relationship between input and output spaces [10]. Local
explanations try to interpret behind a decision/prediction of
a single input data point (test sample), thus targeting a
sub-region of the input space. Three main strategies for
extracting explanations from ML models can be found in
the literature: domain-dependent, data-dependent and model-
dependent. Lately, methods leveraging optimization methods,
causal and counterfactual inference [7]–[9] are gaining popu-
larity in the literature.

With the successful deployment of XAI in real-world safety-
critical systems [11], [12], [12]–[14], assessing the security,
robustness, and reliability of underlying explanation methods
is paramount for gaining adoption. Several metrics have been
proposed in literature [15], [21] to measure the reliability,
understandability, accuracy, and fidelity of the underlying XAI
methods. Subjective metrics such as usefulness, completeness,
and end-user satisfaction of a given explanation can be mea-
sured by surveying end users with a set of questions [42]
or conducting controlled experiments. Similarly, biases in the
explanation method are understood by measuring how distinc-
tive/selective the method outputs are for different group/sub-
group of inputs.

Very recently real-world XAI tests [18] are conducted
on the fraud detection system in a Human-AI collaborative
setting to evaluate the value of explanations generated
by post-hoc methods. Authors observed that the decision
accuracy worsens when an analyst is provided with Machine
Learning (ML) model scores and explanations compared with
data-only information. One can attribute this result to Fuzzy
Trace Theory (FTT) [16] – an empirically validated theory of
how humans interpret numerical stimuli. According to FTT,
interpretability should be associated with less precise, yet
productive and gist processing, whereas explainability may
be more associated with the ability to understand the failure
modes of the system via debugging than to use their output
in real-world systems [17].

Real-world threat models to XAI systems can be categorized
into:

• In a setting where explanations are legally required [23]
manipulating the explanations may undermine the trust-
worthy evidence produced by these methods. In expla-
nation manipulation attacks, a malicious model owner
can leverage post-hoc explanation techniques to hide the
weakness (fairness property) of the model and justify
that the black-box model behaves fairly [19], [20]. Also,
recent work has shown that explanations are sensitive to
small perturbations of the input that do not change the
classification result [14], [22].

• An Adversary compromising the security of the under-
lying system by leveraging explanations exposed to the
system. These methods include Privacy compromises and
Evasion attacks [44], [46]. Privacy degradation attacks are
further categorized into model extraction and member-
ship/attribute inference attacks. Evasion attacks include

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-6855-6334
https://orcid.org/0000-0003-4373-2212


KUPPA AND LE-KHAC: ADVERSARIAL XAI METHODS IN CYBERSECURITY 4925

Fig. 1. Illustration of threats of real-world security systems which expose predictions and explanations to end-users; An anti-malware engine, which provides
threat score with different properties of the file that were used to make the decision in the form of a report, an attacker can leverage explanations to tune
the functionality of the file to bypass detection; A login authentication system which exposes masked phone numbers to third-party aggregators, a malicious
attacker can run a membership inference attack to connect users with their phone numbers; A Network anomaly detection system reports the threshold and
details about the attack in the report which can help an attacker to launch model stealing attacks on models shipped on edge devices.

Fig. 2. Illustration of real-world Membership Inference attack (MIA);
Attacker starts with sourcing two disjoint lists of leaked data, one with
username, password and the other with email and phone numbers pairs.
An attacker can run an MIA to establish a user account belongs to a service
provider and can link email and phone numbers from the meta-data exposed
by the service provider.

the generation of adversarial examples and, data/model
poisoning, and backdoor injection techniques.

In the context of the cybersecurity domain, little work is
done to understand the security robustness of explainable
methods with a realistic threat model. Figure 1 illustrates
different threats when a remote model provides explanation
reports to end-users. Motivated by this, in this study we
aim to conduct a security analysis of XAI methods, demon-
strating how an adversary can use explanations to conduct
evasion and privacy degradation attacks. More specifically,
we seek to answer- (i) How can an attacker, given only
outputs of explanation method and model predictions, can
conduct powerful black-box model extraction, membership
inference attacks? and, (ii) How explanation outputs facilitate
the generation of adversarial samples and poison/backdoor
samples to evade the underlying classifier? We first define
the properties of the threat model for XAI methods into a
unified attack framework and then conduct both analytical and
qualitative studies of the security properties of these methods
under realistic assumptions of the real-world adversary. The
contribution of this paper can be listed as:

• We provide the first holistic security analysis of methods
that exploit explanations, under real-world threat models.

• We propose a novel black-box attack, which leverages
XAI methods to compromise confidentiality and privacy
properties of underlying classifiers and show that our
attack outperforms the relevant state of art methods in
each attack category.

• Three cyber-security-relevant datasets and models are
used to validate our approach to show that it achieves
attacker goal under threat models which reflect the real-
world settings.

II. MOTIVATION

In this section, we cover our main motivation towards
understanding the risk of counterfactual explanations in the
context of cybersecurity use-cases.

A. Membership Inference Attacks (MIA)

The goal of a Membership Inference attack is to create a
function that accurately predicts whether a data point belongs
to the training set of the classifier or not [24], [25]. Recent
work by [29] investigates the privacy risks of feature-based
model explanations using MIA. They quantify information
leakage of training data of the model based on its predictions
and explanations.

Credentials stealing attacks can be formulated as MIA,
in which an attacker aims to extract full information about
a victim user from the data sourced from leaked databases to
advance his/her attack campaign. Leaked data sources mostly
contain only partial/incomplete information. Depending on the
data available at hand, an attacker may rely on brute force,
credential stuffing, and password spraying attacks to achieve
his goal as shown in Figure 2. When an attacker sends a
password reset request with a leaked email address, online
services provide the attacker a “feedback” as to whether the
email was valid or not with missing or contextual information.
This meta-data may include masked phone numbers, user-
names, etc. This information can be viewed as “what-if” and



4926 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

“why” explanations about login resets. Using this meta-data
and partial data from leaked sources, an attacker can run an
MIA to extract full information about the user.

B. Model Extraction Attacks (MEA)

Model Extraction [28] is the process where an adversary
tries to steal a copy of an ML model, that may have been
remotely deployed (such as over a prediction API). A recent
survey [26] categorized different types of model stealing
attacks into (i) Modification Attack in which an attacker
fine-tunes the last layer of the stolen model by retraining with a
new dataset and then compressing/pruning some layers to run
the model on resource constraint devices. (ii) Active attacks
are methods that tamper/modify the watermark/fingerprint of
the model or modify the query to steal the functionality of
the model. Leveraging gradient-based explanations for model
extraction attacks was first demonstrated by Milli et al. [65].

In the cybersecurity domain, model stealing attacks are
highly relevant due to the following reasons: (a) ML models
are shipped to endpoints where security is limited. A large
study [27] of AI mobile security applications indicates that
most deep learning (DL) models are exposed without pro-
tection and can be easily extracted and pirated by attackers;
(b) Adversary has a real motivation to steal the models to
understand its internals, to bypass detection and test the
attacks offline avoiding remote logging or alerting the owner;
(c) In the field of cyber forensics, the remote verification
of ML models is still in infancy. When a model exposes
an explanation interface there is an increase in the attack
surface, for example very recently authors [63], [88] used
counterfactual explanations to steal the functionality of models
under different threat model assumptions.

C. Poisoning Attacks (PA)

In a data poisoning attack, the attacker injects specially
crafted data points into the training set such that the trained
classifier predicted outputs can be influenced by attacker
choice. Training data poisoning is mainly considered a threat
when the system trains user-submitted/generated data in an
incremental fashion. Depending on the attacker’s goal, poi-
soning attacks can be executed to influence the prediction of
a class [30] or a particular instance [31].

D. Adversarial Examples (AE)

Inputs that are intentionally crafted to be in a close
resemblance with benign samples but cause a misclassification
by the underlying classifier. Depending on the threat model
assumptions AE generation methods are categorised into
three main classes: gradient estimation-based [32], [33],
transferability-based [35], [36], [48], and local search-based
methods [34]. Lately, researchers have explored explanation
methods to defend models against AE-based attacks [37],
but leveraging these methods to generate AE are slowly
surfacing [14].

Explanations can play an important role in helping the
adversary to improve his/her attack strategy for both poison-
ing and adversarial attacks. URL/File scanning/sandboxing1

engines provide free services to check for a given file/URL is

1https://www.joesandbox.com/

Fig. 3. Illustration of decision boundaries (DB) of human analyst and trained
model. Depending on where the samples are placed we can divide them into
5 categories. (a) Locally robust which stay in some � norm ball—Inside
both human and model DB. (b) Adversarial samples [59]—Inside human DB
but outside model DB. (c) Counterfactual—Outside both human and model
DB. (d) Invariant examples [60]—Outside human DB but inside model DB.
(e) Uncertainty samples—Both human and model DB are not well defined
for these samples.

malicious or not for end-users. The output is often accompa-
nied by a detailed report covering parameters, code blocks, and
other metadata about the file/URL were used to score them.
This content of the report can be viewed as explanations of
the decision and can be misused by malicious attackers to tune
their attack strategy of building malicious files. For example,
if the entropy of a file is scored high, then the attacker can
replace the obfuscation technique to reduce entropy and evade
the detection.

E. Counterfactual Explanations

Counterfactuals are human-friendly post-hoc local explana-
tion methods, which address some of the bottlenecks of pre-
vious methods such as avoiding baselines, approximations to
game theory constructs, and universality in features. Recently,
Wachter et al. [52] proposed the use of counterfactual expla-
nations in the context of GDPR [23] to help users to contest
and understand model-based real/alternative decisions by ask-
ing “Why/Why Not” questions through counterfactuals. User-
studies [41], [42] also showed that users prefer counterfactual
explanations when compared to feature importance methods.

Given an input instance to be explained, counterfactual data
instances of the input have - (a) similar feature values as input
(b) different model predictions from that of input (c) lay closer
to the decision boundary of an input class. Depending on the
counterfactual explanation generation algorithm, counterfac-
tual methods can be categorized based on their -

• Access to model internals, gradients and prediction func-
tions.

• Supports fully differentiable, linear, or piece-wise linear
input models.

• Satisfy feasibility, sparsity, data manifold and, causality
constraints.

We direct readers to recent surveys [53], [54] for a detailed
analysis of different counterfactual methods found in the
literature.

The astute reader may note that intuitively, counterfactual
explanations (CF) generation methods share some similarities
with Adversarial example (AE) generation methods in terms of
how they leverage gradient-based optimization techniques and
use of surrogate models for searching CF/AE for the target
model. But they vary in a conceptual objective and the end
goal, for example, AE aims to misclassify a sample to evade
the target classifier whereas CF work towards finding data



KUPPA AND LE-KHAC: ADVERSARIAL XAI METHODS IN CYBERSECURITY 4927

samples that not only have different predictions but also satisfy
feasibility, sparsity, data manifold and, causality constraints.
Similarly, AE’s are used to understand the failure modes of
underlying classifiers, whereas CF’s help end-users understand
the model decisions. Figure 3 summarizes different decision
boundaries of human and learned models and differentiates
between how CF/AE methods may be similar but satisfy
different end goals. But one persona who is common for
both AE and CF is a malicious user/attacker and he/she can
launch attacks exploiting both the methods. This motivated us
to explore the attacker’s view of CF’s i.e. how a motivated
attacker can leverage CF’s to achieve their goals.

III. BACKGROUND

In this section, we will cover preliminaries and describe the
threat model assumptions, attack definitions and, explanation
methods. First, we describe the notations used in this work.
We denote a scalar and a vector with a lowercase letter (e.g., t),
and a boldface uppercase letter (e.g., X), respectively. Table I
shows a summary of notations that are frequently referred to
and their problem context.

A. Attack Definitions

In a Membership Inference (MI) attack, the attacker’s goal
is to determine if a data sample (x) is a part of the training
datasets of a target model T . We formally define a MIA model
AMemInf as a binary classifier.

AMemInf : x,T �→ {member, non-member} (1)

In an attribute inference attack, the adversary’s goal is to
infer a specific sensitive attribute of a data sample from its
representation generated by a target model. This sensitive
attribute is not related to the target ML model’s original
classification task.

Given a data sample x and its representation from a target
model, denoted by h = f (x), attribute inference attack the
adversary trains an attack model AAttInf formally defined as
follows:

AAttInf : h �→ s (2)

where s represents the sensitive attribute.
In MEAs, the adversary goal is to steal the functionality

of a victim model by training a surrogate model that is
similar to the target model T . Depending on the threat model
assumptions, the success of the functionality replication is
measured in terms of the surrogate model AMoExt accuracy
on target model test set Dtest

target.

Acc(AMoExt) = 1

|Dtest
target|

�

x∈Dtest
target

I(AMoExt(x) = T (x)). (3)

In DP, the adversary manipulates (add/update/delete) the
training data in order to evade the classifier at the test
time. More formally, the adversary adds m poisoning points
Dpoison = {xi , yi }m

i=1 into the target model training set
Dtrain

target, so that the learner minimises the poisoned objective
�(Dtrain

target ∪Dpoison,T ) rather than �(Dtarget,T ). The poisoned
set Dpoison is constructed to achieve some adversarial objective
L(T (Dtrain

target ∪ Dpoison)).

For generating adversarial samples, which evade the
classifiers in the security domain, the attacker aims to manip-
ulate a malicious sample without breaking its malicious func-
tionalities, such that the underlying classifier misclassify it
as benign. Unlike image domain counterparts, in security
domain perturbations added to the sample have to preserve
the functionality of the original sample. To satisfy the domain
constraints, transformation functions seq = {a1, a2, . . . am}
from a predefined set A are used to modify the sample in the
input space. More concretely, generating adversarial samples’
problem can be viewed as optimisation problem with multiple
objectives defined in Eq. 4

min f1 = P(T (Ai + Xm) = T (Xmi ))

min f2 = �Xmi − Xm�0,2,∞
s.t. A = {a1, a2, . . . an} (4)

where P(·) denotes the confidence probability of the classi-
fication result; Xmi and Xm represent the adversarial per-
turbation and original malicious sample, respectively; seq =
{a1, a2, . . . am} from transformation set A when applied to
sample Xm preserves the functionalities of the original sample.

As shown in Eq. (4), the proposed multiobjective opti-
misation involves two objective functions. The first one f1
represents the probability that the target model T classifies
the generated adversarial example Ai + Xm into the correct
class. The remaining function are distance metrics, each of
which is employed to evaluate the similarity between the
original sample and the adversarial sample in feature space.
The constraint imposed to Ai defines the range of perturbation
functions based on the intrinsic property of the sample.

B. Explanation Methods

For a given data point x to be explained, CF methods aim
to find the data samples xc f which have similar feature values
but differ in target model predictions. This goal can be defined
in terms of a distance function Dist and a loss term L where
Dist minimizes the difference between an input and its CF in
some input space and L function ensures that the predictions
produced by a target model are different. More concretely,

xcf = arg min
xcf 1,...,xc f k

L(T (xcf ),T (x)) + Dist (xc f − x), (5)

where k is the number of CF to be generated. In our work we
use three different counterfactual methods in our experiments.
Here we describe briefly each one. Table II summarizes each
method loss function, optimisation algorithm and distance
metrics.

1) Latent CF: [38] uses the training set of a black-box
classifier to train an autoencoder. To generate counterfactuals
for a given data point, it perturbs the latent representation of
sample z = E(x) in the latent space until the desired class
probability f (D(z)), is close to p. The final latent vector is fed
into the decoder to generate the corresponding counterfactual.

2) Permute Attack: [40] uses gradient-free optimisation
technique based on the genetic algorithm to generate counter-
factual. It leverages selection, crossover, and mutation steps to
perturb the sample by permuting randomly selected features
in an iterative fashion. The permutation values are selected
randomly from possible values of the feature in the training
data to make sure the chosen values are always valid and the
probability distribution of features remains the same in the
new generations. Hyperparameters mutation-range α, mutation



4928 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE I

NOTATIONS

TABLE II

COUNTERFACTUAL EXPLANATION METHODS LEVERAGED IN OUR WORK

probability ρ, population size d , and τ sampling temperature
are tuned to generate counterfactuals.

L = argmin
xc f1 ,...,xcfk

1

k
�k

i=1L(T (xcf ), )T (x)

proximi ty = λ1

k
�k

i=1 Dist (xcfi , x)

diversi ty = −λ2 dpp_diversity(xcf1, . . . , xc fk ),

xcf = L + proximi ty + diversi ty (6)

where λ1 and λ2 are the hyper parameters to tune the proximity
and diversity of CF.

3) Diverse Counterfactual Explanations (DiCE): [39] gen-
erates multiple diverse CF’s depending on the user input
which are based on the diversity and proximity properties of
CF’s. Hinge-loss is used to make sure CF generated meets a
minimum threshold of 0.5 between CF and the input class.
Compared to standard �1 loss which finds examples closer to
the input sample but maybe less feasible to the user, hinge-loss
gives a flexible penalty term which ensures a zero penalty if
the sample is above some threshold and a proportional penalty
when the CF is below 0.5 threshold.

C. Threat Models

Several attempts have been made to categorize threat models
for ML systems [43], [44], [46]. We distill the most important
aspects that are relevant to our discussion in Table III.

1) Domain Constraints: In the cybersecurity domain, adver-
sary has to respect the constraints i.e. given a feature vector
of benign sample any modification (addition/removal/change)

of features to achieve the attacker goal should preserve the
original functionality of the sample in its parent domain. This
is called the inverse feature-mapping problem and can result
in multiple solutions. For example, simple malware classifier
that uses byte code of the samples to train a n-gram classifier,
an attacker can add small perturbations to the byte code fooling
the classifier, but the perturbed file may not guarantee the
functionality of the original malware sample. Also, the attack
perturbation can be added to a feature or to the raw input.
In our work for malware use-cases, we use transformation
functions delete/modify/add A = {a1, a2, . . . am} which when
applied preserves the functionality of the file.

• Delete - Signer, Section, API calls and debugging infor-
mation from the file

• Modify/Add - Signer, Section, API calls information,
bytes to the end of file, N O P instructions such as,
mov eax, eax and bogus code blocks, abstract syntax
tree /control flow graph to insert dead nodes, API calls,
Section names

We use Cuckoo sandbox2 to verify the sample malicious
functionality is preserved or not. The Cuckoo sandbox runs
dynamic analysis on the sample and generates a report
about all the actions performed by the sample after the
execution. The report consists of malicious behaviours in
a human-understandable explanation of the sample with a
maliciousness score based on the behaviour. We consider
a sample as malicious if its maliciousness score is higher
than a threshold. For other datasets, we use feature-based

2https://cuckoosandbox.org/



KUPPA AND LE-KHAC: ADVERSARIAL XAI METHODS IN CYBERSECURITY 4929

TABLE III

THREAT MODEL ASSUMPTIONS FOR CF-BASED ATTACK

perturbations only, so we did not impose any domain specific
restrictions.

IV. PROPOSED ATTACK METHODOLOGY

In this section, we describe our attack methodology for
compromising the privacy and confidence of the classifiers
leveraging counterfactual explanations.

a) Problem Setup: Given a black-box access to a target
model T , prediction interface T (x) = y and its counter factual
explanation interface Eexplain(x) = xcf , and an auxiliary
dataset Daux of x1, . . . , xn the goal of the attacker is to
compromise the confidentiality and integrity of the underlying
ML system. Attacker can collect the Daux from publicly
available data and can reflect the Dtrain

target distributions or differ-
ent distributions depending on the threat model assumptions.
An attacker can send an inference request for a sample x to
T prediction interface and it will return the prediction and the
corresponding xcf explanations. Depending on the explanation
method employed Eexplain(x) can serve k CF.

A. Privacy Attacks

1) Explanation-Based Model Extraction: To execute a suc-
cessful MEA, an attacker has to take two things into consider-
ation that can influence the success of the attack - (a) The Daux
should reflect T training set. It may happen that the collected
data may not capture the training distributions, but given an
input sample, the counterfactual explanation gives samples
from different classes. An attacker can iteratively query differ-
ent class samples to build the Daux which capture the training
set distributions. (b) Knowledge of target model architecture,
a full knowledge can help to build a high accuracy/fidelity
S which replicates the functionality of the victim model.
In real-world threat models, the architecture of the victim
model is not known to attackers, which makes the attack hard.
To address this once we obtain data samples that reflect the
training set, we employ the knowledge distillation technique
to transfer knowledge from the target model to the surrogate
model. More concretely, given the probability vector of target
model Pt (x) and shadow model Ps(x) the distillation loss can

be calculated by:
LDist ill (T ,S) = LK L(Pt (x), Ps(x)), (7)

where LK L indicates the KL divergence loss.
In our setup, the attacker first queries the victim model(T )

with Daux he has collected publicly and in turn trains a
surrogate model S from the outputs provided by the Inference
and explanation interface. Finally, we use the distillation loss
in Eq. 7 to transfer knowledge from T to S.

2) Explanation-Based MI Attack: Similar to the seminal
work of Shokri et al. [24], we assume adversary can access
the target model T in a black-box fashion. The Daux, does
not come from the same distribution as the target model’s
training dataset. The auxiliary dataset and the counterfactual
are used to train a shadow model AMemInf, the goal of which
is to establish the membership evidence of a given sample.

Given a set of counterfactual examples xcf i for input
samples xi of class y, we train a 1-nearest neighbour (1-NN)
classifier that predicts the output class of any new input. The
trained classifier predicts an instance closer to the CF examples
as its counterfactual outcome class and instances closer to the
original input will be classified as the original outcome class.
We repeat the above process to train N 1-NN AMemInf models
one for each class in the dataset. For finding training data
membership of a given data point, we compare the prediction
probability between the AMemInf and T , if the difference is
below threshold t we declare that the sample is part of the
training set. The main intuition behind this method is if the
target model and the counterfactual model both have the same
prediction for a sample, that means that the sample should
be influential for its own prediction. The advantage of this
method is it does not need any access to the training set and
uses CF examples of previous data points to build new data.
The attacker can query the model in an iterative fashion to
obtain new data.

B. Evasion Attacks

1) Explanation-Based Poisoning Attack: For a successful
PA attack, one has to inject training samples, when trained
on these samples can evade the classifier at test time for the



4930 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

attacker given inputs. In order to achieve this, the attacker has
to first identify robust features which influence the classifier
predictions, next he has to perturb the values of the identified
features to sustain training loss. A trained poisoned model
produces the correct output for a normal data sample x ,
T (x) = y, and produces target class t as output for a poisoned
sample x p , T (x p) = t .

The first step in our approach is to identify robust features,
which influence the class decision boundaries of the classifier.
Once we have robust features we can perturb only these
features for crafting poison samples instead of all the features.
We observe the class-wise accuracy change by perturbing the
features and filter out a subset of features based on their
influence in prediction i.e. they are consistently same across
their counterfactual class. The next step is to find the optimal
value of the perturbation to make sure they achieve high
training accuracy. To achieve this step, we solve the following
optimization equation to minimize the distance between the
poisoned sample x p and a benign sample x in the input space.

argmin
x

�x p − x�2
2.

Intuitively, this attack is similar to the poison frog
attack [31], since counterfactual for a given sample already
minimizes the sample distance in the feature space, we only
have to work in the input space to find poison samples.

2) Explanation-Based Adversarial Sample Generation: For
Adversarial Samples, we leverage Permute attack as explana-
tion API where counterfactuals are adversarially generated.
Permute attack generates realistic counterfactual examples
using permutation as the adversarial perturbation that keeps
the range and the distribution of each individual feature the
same as the original training data. Permute attack only works
on the feature space, to support perturbation functions, which
are constrained by A (Eq. 4), we modify the permutation
	 = {π1, π2, · · · , πn!} with seq = {a1, a2, . . . am} keeping
the other dynamics same in the original algorithm.

V. EXPERIMENTAL SETTINGS

In this section, we describe the datasets and experiment
settings used to test the proposed attacks.

A. Datasets

a) Leaked Password Dataset: We use password-email
pair data to test the counterfactual explanation-based mem-
bership inference attack. The dataset consists of 1.4 billion
email password pairs with 1.1 unique emails and 463 million
unique passwords. This dataset is aggregated password leaks
from different incidents.

For a given leaked password and email address pair, the aim
of the attacker is to discover other account pairs of the same
user leveraging counterfactual explanations performing a MIA.
To create the training set first we need to find a different set of
usernames, emails, and passwords, which belong to the same
user in the leaked list. We assume users sharing the same
email address and username (the substring before @ of the
email) but different/overlapping passwords belong to the same
user, as it is a typical case of users having accounts in two
different services connected via one email/usernames. Once
we have email password pairs of the same user, we divide
the email-password pairs by the email service provider i.e.
we split the email ’alice@bob.com’ into ’alice’ and ’bob’ and

use ’bob’ as the class label. The adversary goal is to discover
other usernames/passwords for the same user with one leaked
password and service provider as input.

b) Network Traffic: We use CICIDS17 [51] dataset for
explanation based model extraction attacks. The network traf-
fic dataset was collected in a controlled environment and
contains network traffic in the packet-based and bidirectional
flow-based format. For each flow, the authors extracted more
than 80 features. The data set contains a wide range of attack
types like SSH brute force, Botnet, DoS, DDoS, web, and
infiltration attacks. We use this dataset for the model stealing
attacks. Features are extracted from bidirectional flows. Sta-
tistical time-related features are calculated separately for both
directions. TCP flows are terminated by FIN packet and UDP
flows are terminated by a flow timeout, which is set to 600 sec-
onds. There are 8 groups of features that are extracted from
raw pcaps: (a) Forward Inter Arrival Time, the time between
two packets sent in forward direction (mean, min, max, std);
(b) Backward Inter Arrival Time, the time between two packets
sent backwards (mean, min, max, std); (c) Flow Inter Arrival
Time, the time between two packets sent in either direction
(mean, min, max, std); (d) Active-Idle Time, amount of time
flow was idle before becoming active (mean, min, max, std)
and amount of time flow was active before becoming active
(mean, min, max, std); (e) Flags based features – Number of
times the URG, PSH flags are set both forward and backward
direction; (f) Flow characteristics – bytes per second, packets
per second, length of flow (mean,min,max,std) and download
and upload ratio of bytes; (g) Packet count with flags – FIN,
SYN, RST, PUSH, ACK, URG, CWE and ECE; (h) Average
number of bytes and packets sent in forward and backward
direction in the initial window, bulk rate, and sub flows.

c) Malware: For testing explanation based poisoned
and adversarial attacks, we collected a malicious sample
dataset of 30120 malware from publicly available malware
dataset virusShare3 and for benign samples we scrapped
20334 clean files from free ware sites,4,5,6.7 We extract both
raw and processed features for these binaries as described in
EMBER [47].

B. Model Training

d) Model Extraction Target Model: An auto-encoder
(AEnc) is trained on CICIDS data set with DDOS and benign
attack classes. The auto-encoder network parameters such as
(number of filters, filter size, strides) are chosen to be (53,10,1)
for first and second layers and (53,10,1) for third and fourth
layers of both encoder and decoder layers. The middle hidden
layer size is set to be the same as rank K = 20 and the model
is trained using Adam. Once the parameters are optimized
after training, the AEnc model is used for anomaly detection,
where an IP address and its time window are recognized as
abnormal when the reconstruction error of its input features
is high. Here, the reconstruction error is the mean square
difference between the observed features and the expectation
of their reconstruction as given by the AEnc. The threshold we
used is 5% of the data as anomalies as this reflects the actual
data set distribution. Once we have results from the anomaly

3https://virusshare.com/
4https://onlyfreewares.com/
5https://www.snapfiles.com/new/list-whatsnew.html
6https://downloadcrew.com/
7https://github.com/



KUPPA AND LE-KHAC: ADVERSARIAL XAI METHODS IN CYBERSECURITY 4931

TABLE IV

SUMMARY OF EXPERIMENT RESULTS—ADVERSARIAL ATTACKS ARE MEASURED BY EVASION RATE OF THE COUNTERFACTUALS GENERATED BY
PERMUTE METHOD. FUNCTIONAL COLUMN REPORTS NUMBER OF VALID SAMPLES GENERATED BY CF AND THEIR EVASION ACCURACY ON

TWO COMMERCIAL ANTI-MALWARE ENGINES AV1, AV2. THE SUCCESS OF THE POISONING ATTACK IS MEASURED BY THE ACCURACY

DROP OF T WHEN TRAINED ON POISONED CF’S GENERATED BY PERMUTE METHOD. MIA ATTACK IS COMPARED WITH SUPER-
VISED AND ENTROPY-BASED METHODS. SUCCESS IS MEASURED BY THE ACCURACY OF IDENTIFYING USER-PASSWORD

PAIRS AND THE NUMBER OF QUERIES TO THE MODEL FOR THE IDENTIFICATION OF ACCOUNTS. MODEL STEALING

ATTACKS ARE COMPARED WITH KNOWLEDGE DISTILLATION AND KNOCKOFFNETS. THE SUCCESS OF THE

ATTACK IS MEASURED BY THE ACCURACY OF THE EXTRACTED MODEL ON Dtest
target . Daux IS GENERATED BY

RANDOMLY SAMPLING 3% OF THE WHOLE Dtarget AND DISCARDED FROM

IT TO REFLECT REAL-WORLD SETUP

detector, we train a random forest binary classifier on the
output of the anomaly detector to make it a classification prob-
lem. We run the DICE explanation method in the black-box
mode, for generating counterfactual explanations, meaning no
feature scaling is done via median absolute deviation (MAD)
features as all features are weighted equally in the normalized
form. We sample 10k samples from the original dataset and
use them as Dshadow and remove them from the dataset
to train T . We select time-based statistical features in the
IDS dataset to ensure to respect the domain constraints in
raw input space. The parameters to desired_class to “oppo-
site”, proximity_weight to 1.5 and diversity_weight to 1.0,
features_to_vary=[’time_based_features] and feature_weights
by generating the MAD values from Dshadow. We compare
our model extraction attack with KnockoffNets (KN) [49],
and Knowledge distillation (KD) [50] attacks. KnockoffNets
trains a stolen model via labeling surrogate dataset querying
the victim model for predictions. We use Dshadow to train
the stolen models, and query the target model with training
samples of the shadow dataset. Next, we use the dataset built
from these queries to train the stolen model a 3-layer Multi-
Layer Perceptron (MLP) for 100 epochs using a Stochastic
Gradient Descent (SGD) optimizer with a learning rate of 0.1.
For KD we train each stolen model on the original training
data, but with labels replaced by predicted probabilities from
the target model.

e) Membership Inference Target Model: We first train an
auto-encoder as a feature transformer to convert email pass-
word pairs into latent vector z of size 15. We use the latent vec-
tor to train a classifier with the service provider as labels and
the latent vector as features. The network parameters (number

of filters, filter size, strides) are chosen to be (50, 30, 15).
Latent-CF is trained on a similar network as the target model
for generating counterfactuals on Dtransfer. We sample 10000
email-password pairs to create Daux dataset. We compare the
attack with the supervised learning-based approach [24] and
the entropy-based approach [55]. Both methods employ the
shadow model training technique, the former trains a S on
Daux to check for the membership of a given data sample. The
latter approach calculates a variant of the Shannon entropy
of the prediction vector and determines the membership
by checking whether this entropy value exceeds a certain
threshold. For classification-based approach, we train 30 S
3-layer MLP for 100 epochs using an SGD optimiser with
a learning rate of 0.1 on Daux by varying training size to
1000, 2000, 3000, 4000, 5000, 6000, 8000, and 1,0000. For the
membership classification, we train a binary classifier on logits
and probability from S. For entropy-based technique instead
of a binary classifier, the threshold τy between member/non-
member is learned with the shadow training technique [55].

f) Poison and Adversarial Attacks-Target Model: For
poisoning attacks we train two target models (a) Gradient
Boosting Model (GBM) similar to EMBER [47] (100 trees
and 31 leaves per tree) as parameters; and (b) simple Neural
Network (NN) based binary classifier 8 densely connected
layers with Rectified Linear Unit (ReLU) activation with batch
Normalisation and the final layer with Sigmoid activation.
We sample 3% of test data from the malware dataset as
Daux for our attack. We filter out these samples from the
Dtarget to reflect real-world threat model for the poisoning
attack. The Permuteattack explanation method is applied on
the Daux with ρ0 = 0.4 and ρ1 = 0.1, 100 generations,



4932 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE V

PERFORMANCE METRICS OF T ON EXPERIMENT DATASETS. FOR
ADVERSARIAL ATTACK WE MEASURE THE DETECTION

ACCURACY OF THE AV ENGINE ON THE TEST SET

and mutation count to 20 with sampling temperature 0.3. For
poisoning attacks, we aim to evade the GBM and NN models.
Adversarial examples generated by our attack are tested on
two commercial static anti-virus engines.

g) Evaluation Metrics: We adopt the attack accuracy
as our evaluation metric for membership inference attacks
following previous work [24]. Here accuracy means the suc-
cess of the identification of users from two email service
providers with respect to a number of counterfactual queries.
For the model extraction attack, we use S accuracy on T
test set Dtest

target. We measure Attack Success Rate (ASR)
for the poisoning and adversarial example generation. This
is measured by the accuracy of the model trained on poisoned
data by the percentage of times a poisoned model is effectively
tricked into misclassifying a previously correctly recognized
malicious binary as benign. Similar to ASR of adversarial
samples is measured by the evasion accuracy of the samples
generated by permutate attack. We run our experiments on a
server-grade machine with two IntelXeon E5-2640 v4 CPUs
running at 2.40GHz, 64 GB memory, and Geforce GTX
1080 Ti GPU card.

VI. RESULTS AND DISCUSSION

Counterfactual malware samples generated by our method,
which evaded the commercial anti-virus engines employed
simple changes to file. For example adding 1-4 bytes of
debugging information or section name changes were the
majority transformation functions employed by this attack
Figure 4 (b) illustrates the transformations function counts
in CF generated. Figure 4 (a) shows the evasion accuracy of
the anti-virus engines. Our attack achieved evasion accuracy
of 65% and 41% on two anti-virus engines under test. The
functionality of the samples was preserved greater than 90%,
which shows that counterfactual based adversarial sample
generation method is useful in the wild. The results may
highlight some of the weaknesses of the anti-virus engines
but generally anti-virus engines use results from both static
and dynamic analysis to make a decision. Our results are
biased towards static features only, so we need to enhance our
experiments to take into account dynamic features to test the
robustness of the anti-virus engines. However, counterfactual
explanation methods can help attackers to find quicker ways to
find adversarial samples, instead of solving a hard-to converge
black-box optimization problem in input space. Attackers can
simply use counterfactual explanations to optimize their attack
path.

Counterfactual based MIA on leaked passwords is a
serious threat. This attack can help attackers to link accounts
from various password leaks and improve their credential

stuffing schemes. Password leaks due to mishaps are
common in the real world and measures like cloaking and
behavior-based restricting the login attempts are still some of
the successful defensive methods. We measured the accuracy
of linking usernames with passwords from a sample set
of 1000 usernames. Other baseline methods such as shadow
model-based and entropy-based attacks needed a large number
of queries for a successful attack. We think the entropy-based
method performed better than the state of art model-based
method because of the difference in the distributions between
training and testing. Searching the latent space to find the
counterfactuals for a given sample worked because with a
generative model in our case, AEnc learns similar samples to
nearest neighborhoods [64]. In future we would like to explore
how this attack can speed up the password cracking methods.

Counterfactual-based poisoned attacks were successful with
the accuracy drop of the target model with a small percent-
age of poisoned samples in the training set, Figure 4 (d)
illustrates the accuracy drop with poison sample percentage.
We clearly see the correlation between increasing poison pool
sizes to lower the accuracy of the target model. Transformation
functions such as adding API calls and section informa-
tion were employed in majority of the generated samples.
We observed that the attack is successful at inducing targeted
misclassification in the GBM and NN models. Poisoning the
training pipeline of the security vendors is a major threat and
in future we would like to explore how defenders can use
counterfactuals to combat poisoning attacks.

Figure 4 (c) compares different attack models’ accuracy
with respect to the query count. Counterfactual-based model
extraction attack was highly successful when compared to
the other state of art methods. The main reason for this is
methods like DICE optimizes to satisfy multiple properties
like sparsity, proximity, diversity, and feasibility to generate
counterfactuals. This optimization step helps the attacker to
replicate the class-level decision boundaries of the target
model by querying counterfactuals for each class. However,
DICE does not support non-differential models and we aim
to address this problem in future work. Table IV summarises
all our experiment results and Table V gives the performance
measures for each target model.

A. Efficiency and Complexity of CF Attacks

We measure the computational efficiency of the proposed
attack in terms of (a) latency – time taken by the method
to generate the attack sample. (b) Sparsity – The changes
made to the features by the method to generate the attack
sample. We measure L1 distance between the attack sample
and original data for which CF was generated. Lesser the
distance indicates a better choice of CF. Ideally inference calls
to the original model for CF queries should be equal to the
number of attack samples but not all CF generated are valid or
satisfy domain constraints. Table VI summarizes the computa-
tional efficiency of the attacks proposed. Methods that query
latent space for CF generation perform lesser inference calls.
Gradient free methods based on genetic algorithms performed
poorly in terms of latency due to underlying randomness in
the search function.

The computational complexity of the attack depends on
the number of the classes n, feature dimension d , number
of queries q . For finding minimum perturbed attack samples
using gradient-based methods, the loss function l computa-
tion for each query influences the complexity of the attack.



KUPPA AND LE-KHAC: ADVERSARIAL XAI METHODS IN CYBERSECURITY 4933

TABLE VI

COMPUTATIONAL EFFICIENCY OF COUNTERFACTUAL ATTACKS. WE MEASURE THE LATENCY (IN SEC) OF EACH METHOD. L1 DISTANCE BETWEEN THE
ORIGINAL INPUT AND THE CF GIVES THE SPARSITY OF THE CF AND NUMBER OF CALLS TO VICTIM MODEL GIVES THE EFFICIENCY OF THE

SCHEME, LESSER THE CALLS THE MORE EFFICIENT THE SCHEME IS. WE COMPUTE THE MEAN OF EACH METRIC FOR 100 RANDOMLY

SELECTED TEST POINTS. WE REPORT THE MEAN±STD OF THIS MEAN OVER 5 SEEDS

Fig. 4. (a) Adversarial attack on AV1 and AV2 anti-virus engine: Evasion rate increases with counterfactual count but rate does not change with more than
50 counterfactuals which shows GA mutations exhausted the search space for transformation functions A. (b) Showcases the transformation functions applied
in each generated CF, section change and byte additions are most used functions. (c) Model extraction attack: With increase in number of queries to T the
attack accuracy increases for all the models but best accuracy comes from CF-based attack. (d) Poisoning attack: Accuracy drop of T is highly correlated
with increase in percentage of poisoned samples in Dtarget.

Similarly, for search-based methods the transformation func-
tions F used in the mutations and the number of counter-
factual k samples required to train the surrogate model play
a significant role in the attack efficiency. In our CF-based
attack, we apply KL-divergence loss for MEA and L2 loss
for poisoning attacks. For evasion and membership inference
attacks we apply the genetic algorithm and nearest-neighbor-
based search methods to achieve the attacker’s goal. Table VII
summarizes attack complexity of each attack type proposed.

B. Comparison With Baseline Methods

We compare the proposed CF based attack with different
state-of-the-art methods and report the performance.

1) Evasion: We compare the proposed CF-based evasion
attack with two black-box anti-virus static evasion sys-
tems. In our experiments we utilize the soft label genetic

TABLE VII

COMPUTATIONAL COMPLEXITY OF CF-BASED ATTACK. n REPRESENTS

THE NUMBER OF CLASSES OF VICTIM MODEL, d THE FEATURE

DIMENSION, ql AVERAGE GRADIENT UPDATES OF SURROGATE
MODEL PER CF QUERY, F THE TRANSFORMATION FUNCTIONS

APPLIED IN THE GENETIC ALGORITHM-BASED SEARCH,
AND k IS THE NUMBER OF CF SAMPLES TO TRAIN

NEAREST NEIGHBOUR SURROGATE MODELS

programming-based black-box attack (GAMMA) [82] and
Gym-malware [86] which uses OpenAI’s gym environment
to manipulate malware samples via reinforcement learning



4934 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

Fig. 5. Evasion results of anti-virus engines.

method. We measure the evasion rate by the ratio of the
number of samples for which the label was flipped from
malicious to benign. From Figure 5, we can see CF-based
attacks performed better than the other methods for both
black-box static anti-virus engines.

2) Poisoning: We compare the CF-based poisoning attack
with two state-of-art poisoning methods namely, (a) Feature
Collision (FC) attack [31], which crafts the poison samples
by adding small perturbations to features so that the decision
boundary lies closer to target sample; (b) Clean Label Poison
attack [87], which adds the adversarial perturbation to each
poisoned sample constrained by �∞-norm. We measure the
test accuracy drop of the victim model with an increase in
the percentage of training samples poisoned. From Figure 6,
we can see CF-based poisoning attacks performed better than
the other methods.

3) Membership Inference Attack: We compare the CF-based
membership inference attack with the modified prediction
entropy (MPE) attack [55] and the shadow models-based
attack proposed by Shokri et al. [24]. We measure the MIA
model accuracy with an increase in the size of the training set
to train surrogate models. Figure 7 shows the attack accuracy
increase with more training data exposed to attackers. In the
original experiments conducted by Song and Mittal [55],
the MPE attack outperformed the shadow model attack but

Fig. 6. Poisoning attack results.

Fig. 7. MIA attack results.

Fig. 8. Model extraction attack results.

we did not see the high-performance gain in our experiments.
It may be because if the confidence value distributions of train
and test data are dissimilar then a single threshold value will
not reflect the memberships.

4) Model Extraction Attack: We compare the pro-
posed CF-based Model Extraction attack with Knowledge



KUPPA AND LE-KHAC: ADVERSARIAL XAI METHODS IN CYBERSECURITY 4935

TABLE VIII

THE ADVANTAGES AND DISADVANTAGES OF DEFENSES

Distillation (KD) [50] and KnockoffNets [49]. KD methods
help to transfer knowledge from one model (teacher) to
another model (student) with similar accuracy as the teacher.
It is widely popular in the model compression, network archi-
tecture search etc. Most knowledge distillation approaches
require the knowledge of training data or teacher model inter-
mediate weights, gradients, and activation statistics. Orekondy
et al. proposed model stealing attacks that assumes access to a
large dataset and use active learning to select the best samples
to query [49]. We compare the accuracy of the stolen model
on the test dataset of the victim model. Figure 8 summarizes
the accuracy changes with the number of queries performed
to train the stolen model.

C. Defense Discussion

a) Defense Goals: An ideal defense method makes the
underlying classifier robust, trustworthy, secure and aim to
satisfy the following goals [68]

• Low impact on the model architecture and accuracy:
when constructing any defense, one should aim for min-
imal changes to model architectures and classification
metrics of the model.

• Maintain model speed: Defenses that are in line with
the inference steps of the model should aim to maintain
low latency to avoid degradation in response times.

• Implementation Goals:
– Applicability across multiple model architectures,

and domains.
– Not tuned to a particular attack, threat model,

or architecture.
– Extensible, modular, and easily tunable to allow the

designers to optimize on the utility-security trade-off
based on the application.

As we can see from Table VIII there is no single cate-
gory of defense that can support all the defense goals. The
closest category is network add-ons i.e., adversarial detection
methods that have the least dependency on model training
data, architecture, type of inputs, and assumptions about the
attacker threat models. Also, most of the auxiliary defenses
have detection modules attached to the network, which makes
this method suitable for different domains.

D. Potential Defenses for CF-Based Attacks

The process of generating counterfactual explanations
shares a large set of similarities with adversarial examples
concepts. For example, they both use similar distance met-
rics (L0, L2, and L∞) to solve an optimization problem
conditioned on some loss function. Given this resemblance,

a potential direction towards defending CF-based attacks can
be explored from adversarial defense literature. Adversarial
training [69], [70] and input/network randomization [71]–[74]
have proven to be most effective techniques against adver-
saries which employ first-order gradient-based optimisation
techniques constraint by �p-norm bounds. CF methods that
satisfy �p-norm constraint can adapt robust loss functions to
restrict the CF samples lie in a small � ball.

Other popular approaches in real-world scenarios – (a) Mon-
itoring/Filtering of the incoming samples at inference time for
behaviors which deviate from the clean sample via auxiliary
detectors [77], [78]; (b) using statistical properties of clean
samples to discover adversary injected samples [75], [76] and
(c) active learning-based approaches with analysts in the loop
can be explored to filter/identify attack samples.

Similarly, the choice of features used in the counterfac-
tual generation process can play a vital role in defend-
ing the proposed attacks. Features that make the classifier
output monotonically increasing have shown higher resis-
tance towards injection attacks steered by gradient [79], con-
tent [81] and mimicry attacks [80]. An attacker modifying
these monotonic features makes the sample more malicious
to the classifier instead of benign. CF methods that employ
feature-based distance methods to search for counterfactu-
als can leverage features that make the classifier prediction
monotonic. Also, for a given sample x and its CF xcf one
can restrict the CF’s feature values to lie in a very small
neighborhood of class boundary. The distance can be measured
in terms of largest change to any feature value, normalised by
the standard deviation of that input feature d(F(x), F(xcf )) =
maxi {|xi − xcfi |/σi }. This constraint can help defenders to flag
attacker-guided CF search queries vs natural CF queries.

E. Noise-Based Defense

In our threat model, the attacker trains a surrogate model
using the dataset collected from the public domain and queries
the defender model for predictions and counterfactual samples
to achieve his/her goal of evading the privacy/security of the
system. In this scenario, the defender has no control over the
attacker’s full training data but only a portion of it (query
response - counterfactual and predictions) used in training of
the attack model. One strategy to combat CF-based attacks
is – if the defender can transform the counterfactual samples
in such a way that they reduce the accuracy of the trained
surrogate model, then he can increase the attacker’s budget
making the attack hard if not impossible.

More formally, given an attacker collected dataset Daux and
corresponding counterfactual explanations C Faux from model
θD with Dtrain, Dtest as its train and test dataset. Our aim is
to design a transformation step Ts such that DNN trained on
Ts(C Faux) will perform poorly on Dtest. The main intuition
here is, generally, any ML model aims to learn the mapping
function from the feature space to the label space from the
training samples. So the Ts has to be designed in such a
way that it induces noise into the C Faux such that the learned
model has a strong correlation between the labels and noise
of the feature space instead of only features. This makes any
learned model trained on Ts(C Faux) effectively non-usable for
attacker. Noise can be added for each counterfactual sample
xcf +δi or to all the samples of same class xcf +δyi . Since most
of the CF methods already search for samples constrained by
� norm, adding noise at class level can fool the attacker model.
We design Ts similar to adversarial training but at the class



4936 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE IX

ACCURACY DROP OF SURROGATE MODELS WITH NOISE-BASED DEFENSE

level, adopting the first-order optimization method PGD [70].
For each example in class k, Ts applies δk to the original
example xcf to produce x �

c f . The δk accumulates over every
example for the corresponding class k.

Ts =

⎧⎪⎪⎨
⎪⎪⎩

None No transformation
φ, Random noise [−1, 1]
δxi , Adv. noise [−�, �]
δyi Adv. noise [−�, �]

(8)

To test our hypothesis we train four models on C Faux data
set transformed by Ts function as per Equation 8. We report
the drop in the accuracy of the model with respect to each
transformation step. CF examples were generated using the
DICE method for an MLP model trained on 10% of the
CICIDS17 dataset. Table IX summarizes the accuracy drop of
the models trained with different Ts transformations. We learn
that adversarial noise added at per class level combined with
random noise gives the highest drop in the attacker model
accuracy. We plan to perform a detailed experimental study of
the noise-based defense scheme in our future work.

F. Counterfactual Attack Games

Game theory can play a vital role in explaining and
predicting various defense/offense strategies and designing
effective threat models of security-sensitive systems [85]. In a
game model, attackers and defenders are treated like players
in a game and interactions between them are modeled as
strategies, moves, and intent of opponents with respect to
the utilities/actions of the players. Attacker and defender are
expressed as min-max 2 player games where game dynamics,
termination conditions are formulated as a Stackelberg/Nash
equilibrium [83], [84] problem. Depending on the assump-
tions and constraints imposed on the system, as the game
progresses a bi-level optimization problem, which is solved
in terms of attacker/defender loss functions. One can view the
CF-based attack setting as a min-max, max-min, or min-min
game model.

VII. RELATED WORK

For detailed coverage of each attack type, we refer readers
to corresponding recent survey works [24], [26], [45], [61].
Here we cover methods that leverage explanations to achieve
attackers’ goal.

b) Model Stealing: Very recent works [63], [65] have
started leveraging gradient-based and counterfactual explana-
tions to execute model stealing attacks. Model stealing attacks
in the cybersecurity domain are sparse and our work addresses
this problem in real-world use-cases.

c) Model Inference Attacks: Leveraging explanation
methods to execute an MIA is rare in literature and we
address this gap in a real-world setting. Authors [29] leverage
gradient-based explanations to perform membership and data

set reconstruction attacks. In one of the experiments, they
discuss an example-based explanation setup, for a given input
sample the explanation method return samples similar to the
input from the training set. Counterfactual examples can be
viewed as a similar setup but with different outputs.

d) Poisoning Attacks: Recent works performed poisoning
attacks through either polluting training data [31], [58] or
modifying benign deep neural networks [56], [57]. Very recent
work [62] similar to our work uses shapely values to perform
poisoning and backdoor attacks on malware classifiers.

e) Adversarial Attacks: Demetrio et al. [66] leverages
integrated gradients to find the influential features for
black-box decisions of an ML-based malware classifier.
In [35], [36] authors demonstrated functionality preserving
black-box attacks on network-based anomaly detectors and
in [14] adversarial attacks were performed on explainable
methods used in the security domain. In [88], a black box
query-based attack was successfully performed on a face
authentication system leveraging XAI techniques. In this work,
we demonstrate functionality preserving adversarial examples
that evade commercial antivirus systems leveraging counter-
factual explanations.

VIII. CONCLUSION

In this work, we performed a detailed security analysis of
models which expose counterfactual explanations. We design
4 black-box attacks that leverage explainable artificial intel-
ligence (XAI) methods to compromise confidentiality and
privacy properties of underlying classifiers. Leveraging 3
counterfactual explanation methods, we perform end-to-end
evasion attacks on commercially available anti-virus engines,
membership inference attacks to link users and discover their
passwords from leaked datasets, and launch successful poi-
soning and model extraction attacks on real-world datasets
and models. Through empirical and qualitative evaluation,
we show the effectiveness of the attacks on varied datasets
and highlight the security threats of exposing explanations to
users and attackers alike.

Here we note directions for future work. First, we did
not perform a detail study of CF based attack on different
datatypes and model architectures. We plan to explore this
direction in the future. Expand and improve the proposed
attacks for different data types, model architectures and prob-
lem domains. Also, we aim to explore the application of
counterfactual methods to defend against attacks similar to the
one proposed in this work in future. As a final thought, there
is always a tension between security and usability trade-offs in
the cybersecurity domain that has been manifested in the field
of explanations. On one hand, they can be excellent tools to
explore and debug the model and data internals on the other
hand, they may increase the attack surface of the system if
access is not restricted.

REFERENCES

[1] R. M. J. Byrne, “Counterfactuals in explainable artificial intelligence
(XAI): Evidence from human reasoning,” in Proc. IJCAI, 2019,
pp. 6276–6282.

[2] S. Venkatasubramanian and M. Alfano, “The philosophical basis of algo-
rithmic recourse,” in Proc. Conf. Fairness, Accountability, Transparency,
Jan. 2020, pp. 284–293.

[3] S. Barocas, A. D. Selbst, and M. Raghavan, “The hidden assumptions
behind counterfactual explanations and principal reasons,” in Proc. Conf.
Fairness, Accountability, Transparency, 2020, pp. 80–89.



KUPPA AND LE-KHAC: ADVERSARIAL XAI METHODS IN CYBERSECURITY 4937

[4] F. Doshi-Velez and B. Kim, “Towards a rigorous science of inter-
pretable machine learning,” 2017, arXiv:1702.08608. [Online]. Avail-
able: http://arxiv.org/abs/1702.08608

[5] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM Comput. Surv., vol. 51, no. 5, pp. 1–42, Jan. 2019.

[6] A. Abdul, J. Vermeulen, D. Wang, B. Y. Lim, and M. Kankanhalli,
“Trends and trajectories for explainable, accountable and intelligible
systems: An HCI research agenda,” in Proc. CHI Conf. Hum. Factors
Comput. Syst., 2018, pp. 1–18.

[7] R. Moraffah, M. Karami, R. Guo, A. Raglin, and H. Liu, “Causal
interpretability for machine learning-problems, methods and evaluation,”
ACM SIGKDD Explor. Newslett., vol. 22, no. 1, pp. 18–33, 2020.

[8] J. Woodward, “Causation and manipulability,” in The Stanford Ency-
clopedia of Philosophy (Metaphysics Research Lab), E. N. Zalta, Ed.
Stanford, CA, USA: Stanford Univ., 2016.

[9] A. Kuppa, L. Aouad, and N.-A. Le-Khac, “Effect of security controls on
patching window: A causal inference based approach,” in Proc. Annu.
Comput. Secur. Appl. Conf., Dec. 2020, pp. 556–566.

[10] P. H. N. Gill, Intr. to ML Interpre. Sebastopol, CA, USA:
O’Reilly Media, 2018.

[11] N. Siddiqi, Credit Risk Scorecards: Developing and Implementing Intel-
ligent Credit Scoring, vol. 3. Hoboken, NJ, USA: Wiley, 2012.

[12] J. Kleinberg, H. Lakkaraju, J. Leskovec, J. Ludwig, and S. Mullainathan,
“Human decisions and machine predictions,” Quart. J. Econ., vol. 133,
no. 1, pp. 237–293, 2017.

[13] C. C. Miller, “Can an algorithm hire better than a human,” The New
York Times, vol. 25, Jun. 2015.

[14] A. Kuppa and N.-A. Le-Khac, “Black box attacks on explainable
artificial intelligence(XAI) methods in cyber security,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Glasgow, U.K., Jul. 2020, pp. 1–8, doi:
10.1109/IJCNN48605.2020.9206780.

[15] D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine learning
interpretability: A survey on methods and metrics,” Electronics, vol. 8,
no. 8, p. 832, 2019.

[16] V. F. Reyna, “A new intuitionism: Meaning, memory, and develop-
ment in fuzzy-trace theory,” Judgment Decis. Making, vol. 7, no. 3,
pp. 332–359, 2012.

[17] L. P. Gleaves, R. Schwartz, and D. A. Broniatowski, “The role
of individual user differences in interpretable and explainable
machine learning systems,” 2020, arXiv:2009.06675. [Online]. Avail-
able: http://arxiv.org/abs/2009.06675

[18] S. Jesus et al., “How can i choose an explainer? An application-grounded
evaluation of post-hoc explanations,” 2021, arXiv:2101.08758. [Online].
Available: http://arxiv.org/abs/2101.08758

[19] U. Aïvodji, H. Arai, O. Fortineau, S. Gambs, S. Hara, and A. Tapp,
“Fairwashing: The risk of rationalization,” 2019, arXiv:1901.09749.
[Online]. Available: http://arxiv.org/abs/1901.09749

[20] T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and M. Detyniecki,
“The dangers of post-hoc interpretability: Unjustified counterfac-
tual explanations,” 2019, arXiv:1907.09294. [Online]. Available:
http://arxiv.org/abs/1907.09294

[21] A. Barredo Arrieta et al., “Explainable artificial intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible
AI,” Inf. Fusion, vol. 58, pp. 82–115, Jun. 2020.

[22] X. Zhang, N. Wang, H. Shen, S. Ji, X. Luo, and T. Wang, “Inter-
pretable deep learning under fire,” in Proc. 29th USENIX Secur. Symp.
(USENIXSecurity), 2020, pp. 1–18.

[23] European Commission, Regulation: General Data Protection Regulation
(GDPR), document (EU) 2016/679, 2016.

[24] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in Proc. IEEE Symp.
Secur. Privacy (SP), May 2017, pp. 3–18.

[25] A. Kuppa, L. Aouad, and N. A. Le-Khac, “Towards improving privacy of
synthetic datasets,” in Privacy Technologies and Policy (APF) (Lecture
Notes in Computer Science), vol. 12703, N. Gruschka, L. F. C. Antunes,
K. Rannenberg, P. Drogkaris, Eds. Cham, Switzerland: Springer, 2021,
pp. 106–119

[26] M. Xue, Y. Zhang, J. Wang, and W. Liu, “Intellectual prop-
erty protection for deep learning models: Taxonomy, methods,
attacks, and evaluations,” 2020, arXiv:2011.13564. [Online]. Available:
http://arxiv.org/abs/2011.13564

[27] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at
deep learning apps on smartphones,” in Proc. World Wide Web Conf.,
2019, pp. 2125–2136.

[28] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in Proc. 25th USENIX
Conf. Secur. Symp., 2016, pp. 601–618.

[29] R. Shokri, M. Strobel, and Y. Zick, “On the privacy risks of
model explanations,” 2019, arXiv:1907.00164. [Online]. Available:
http://arxiv.org/abs/1907.00164

[30] M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li,
“Manipulating machine learning: Poisoning attacks and countermeasures
for regression learning,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2018, pp. 19–35.

[31] A. Shafahi et al., “Poison frogs! targeted clean-label poisoning attacks
on neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 6103–6113.

[32] P. Chen, H. Zhang, Y. Sharma, J. Yi, and C. Hsieh, “ZOO: Zeroth order
optimization based black-box attacks to deep neural networks without
training substitute models,” in Proc. 10th ACM Workshop Artif. Intell.
Secur., 2017, pp. 15–26.

[33] Y. Du, M. Fang, J. Yi, J. Cheng, and D. Tao, “Towards query efficient
black-box attacks: An input-free perspective,” in Proc. 11th ACM
Workshop Artif. Intell. Secur., 2018, pp. 13–24.

[34] M. Alzantot, Y. Sharma, S. Chakraborty, H. Zhang, C.-J. Hsieh, and
M. B. Srivastava, “Genattack: Practical black-box attacks with gradient-
free optimization,” in Proc. Genetic Evol. Comput. Conf., Jul. 2019,
pp. 1111–1119.

[35] A. K. S. Grzonkowski and N. A. Lekhac, “Enabling trust in deep
learning models: A digital forensics case study,” in Proc. 17th IEEE
Int. Conf. Trust, Secur. Privacy Comput. Commun./12th IEEE Int. Conf.
Big Data Sci. Eng. (TrustCom/BigDataSE), Aug. 2018, pp. 1250–1255.

[36] A. Kuppa, S. Grzonkowski, M. R. Asghar, and N.-A. Le-Khac, “Black
box attacks on deep anomaly detectors,” in Proc. 14th Int. Conf.
Availability, Rel. Secur. (ARES), 2019, pp. 1–10.

[37] G. Fidel, R. Bitton, and A. Shabtai, “When explainability meets adver-
sarial learning: Detecting adversarial examples using SHAP signatures,”
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–8.

[38] R. Balasubramanian, S. Sharpe, B. Barr, J. Wittenbach, and
C. B. Bruss, “Latent-CF: A simple baseline for reverse counter-
factual explanations,” 2020, arXiv:2012.09301. [Online]. Available:
http://arxiv.org/abs/2012.09301

[39] R. K. Mothilal, A. Sharma, and C. Tan, “Explaining machine learning
classifiers through diverse counterfactual explanations,” in Proc. Conf.
Fairness, Accountability, Transparency, Jan. 2020, pp. 607–617.

[40] M. Hashemi and A. Fathi, “PermuteAttack: Counterfactual explana-
tion of machine learning credit scorecards,” 2020, arXiv:2008.10138.
[Online]. Available: http://arxiv.org/abs/2008.10138

[41] R. Binns, M. Van Kleek, M. Veale, U. Lyngs, J. Zhao, and
N. Shadbolt, “‘It’s reducing a human being to a percentage’: Percep-
tions of justice in algorithmic decisions,” in Proc. CHI Conf. Hum.
Factors Comput. Syst., New York, NY, USA, Apr. 2018, pp. 1–14, doi:
10.1145/3173574.3173951.

[42] J. Dodge, Q. V. Liao, Y. Zhang, R. K. E. Bellamy, and C. Dugan,
“Explaining models: An empirical study of how explanations impact
fairness judgment,” in Proc. 24th Int. Conf. Intell. User Inter-
faces, New York, NY, USA, Mar. 2019, pp. 275–285, doi: 10.1145/
3301275.3302310.

[43] L. Huang et al., “Adversarial machine learning,” in Proc. 4th ACM
Workshop Secur. Artif. Intell., 2011, pp. 43–58.

[44] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman, “Towards
the science of security and privacy in machine learning,” 2016,
arXiv:1611.03814. [Online]. Available: http://arxiv.org/abs/1611.03814

[45] I. Rosenberg, A. Shabtai, Y. Elovici, and L. Rokach, “Adver-
sarial machine learning attacks and defense methods in the
cyber security domain,” 2020, arXiv:2007.02407. [Online]. Available:
http://arxiv.org/abs/2007.02407

[46] B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognit., vol. 84, pp. 317–331,
Dec. 2018.

[47] H. S. Anderson and P. Roth, “EMBER: An open dataset for training
static PE malware machine learning models,” 2018, arXiv:1804.04637.
[Online]. Available: http://arxiv.org/abs/1804.04637

[48] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against machine learning,”
in Proc. ACM Asia Conf. Comput. Commun. Secur., Apr. 2017,
pp. 506–519.

[49] T. Orekondy, B. Schiele, and M. Fritz, “Knockoff nets: Stealing func-
tionality of black-box models,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2019, pp. 4954–4963.

http://dx.doi.org/10.1109/IJCNN48605.2020.9206780
http://dx.doi.org/10.1145/3173574.3173951
http://dx.doi.org/10.1145/3301275.3302310
http://dx.doi.org/10.1145/3301275.3302310


4938 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

[50] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” 2015, arXiv:1503.02531. [Online]. Available:
https://arxiv.org/abs/1503.02531

[51] I. Sharafaldin, A. Habibi Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic char-
acterization,” in Proc. 4th Int. Conf. Inf. Syst. Secur. Privacy, 2018,
pp. 108–116.

[52] S. Wachter, B. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the GDPR,”
Harvard J. Law Technol., vol. 31, no. 2, p. 841, 2017.

[53] S. Verma, J. Dickerson, and K. Hines, “Counterfactual explanations
for machine learning: A review,” 2020, arXiv:2010.10596. [Online].
Available: http://arxiv.org/abs/2010.10596

[54] C. Molnar, Interpretable Machine Learning. 2019. [Online]. Available:
https://christophm.github.io/interpretable-ml-book/

[55] L. Song and P. Mittal, “Systematic evaluation of privacy risks of
machine learning models,” 2020, arXiv:2003.10595. [Online]. Available:
http://arxiv.org/abs/2003.10595

[56] Y. Liu et al., “Trojaning attack on neural networks,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2018, pp. 1–17.

[57] Y. Ji, X. Zhang, S. Ji, X. Luo, and T. Wang, “Model-reuse attacks on
deep learning systems,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2018, pp. 349–363.

[58] T. Gu, B. Dolan-Gavitt, and S. Garg, “BadNets: Identifying vul-
nerabilities in the machine learning model supply chain,” 2017,
arXiv:1708.06733. [Online]. Available: http://arxiv.org/abs/1708.06733

[59] C. Szegedy et al., “Intriguing properties of neural networks,” 2014,
arXiv:1312.6199. [Online]. Available: https://arxiv.org/abs/1312.6199

[60] J.-H. Jacobsen, J. Behrmann, N. Carlini, F. Tramèr, and A. N. Paper-
not, “Exploiting excessive invariance caused by norm-bounded adver-
sarial robustness,” Mar. 2019, arXiv:1903.10484. [Online]. Available:
https://arxiv.org/abs/1903.10484

[61] M. Goldblum et al., “Dataset security for machine learning: Data
poisoning, backdoor attacks, and defenses,” 2020, arXiv:2012.10544.
[Online]. Available: http://arxiv.org/abs/2012.10544

[62] G. Severi, J. Meyer, S. Coull, and A. Oprea, “Explanation-
guided backdoor poisoning attacks against malware classifiers,” 2020,
arXiv:2003.01031. [Online]. Available: http://arxiv.org/abs/2003.01031

[63] U. Aïvodji, A. Bolot, and S. Gambs, “Model extraction from coun-
terfactual explanations,” 2020, arXiv:2009.01884. [Online]. Available:
http://arxiv.org/abs/2009.01884

[64] F. Perez-Cruz, “PassGAN: A deep learning approach for password
guessing,” in Proc. 17th Int. Conf. Appl. Cryptogr. Netw. Secur. (ACNS),
vol. 11464, Bogota, Colombia. Springer, Jun. 2019, p. 217.

[65] S. Milli, L. Schmidt, A. D. Dragan, and M. Hardt, “Model reconstruction
from model explanations,” in Proc. Conf. Fairness, Accountability,
Transparency, 2019, pp. 1–9.

[66] L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando,
“Explaining vulnerabilities of deep learning to adversarial
malware binaries,” 2019, arXiv:1901.03583. [Online]. Available:
http://arxiv.org/abs/1901.03583

[67] H. Hu, Z. Salcic, G. Dobbie, and X. Zhang, “Membership infer-
ence attacks on machine learning: A survey,” 2021, arXiv:2103.07853.
[Online]. Available: http://arxiv.org/abs/2103.07853

[68] A. Aldahdooh, W. Hamidouche, S. Ahmed Fezza, and O. Deforges,
“Adversarial example detection for DNN models: A review and exper-
imental comparison,” 2021, arXiv:2105.00203. [Online]. Available:
http://arxiv.org/abs/2105.00203

[69] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” 2014, arXiv:1412.6572. [Online]. Available:
http://arxiv.org/abs/1412.6572

[70] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” 2018,
arXiv:1706.06083. [Online]. Available: https://arxiv.org/abs/1706.06083

[71] E. Raff, J. Sylvester, S. Forsyth, and M. McLean, “Barrage of random
transforms for adversarially robust defense,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 6528–6537.

[72] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified adversarial robustness
via randomized smoothing,” in Proc. ICML, 2019, pp. 1310–1320.

[73] T. Pang, K. Xu, and J. Zhu, “Mixup inference: Better exploiting
mixup to defend adversarial attacks,” 2020, arXiv:1909.11515. [Online].
Available: https://arxiv.org/abs/1909.11515

[74] G. S. Dhillon et al., “Stochastic activation pruning for robust
adversarial defense,” 2018, arXiv:1803.01442. [Online]. Available:
https://arxiv.org/abs/1803.01442

[75] D. Hendrycks and T. Dietterich, “Benchmarking neural network
robustness to common corruptions and perturbations,” 2019,
arXiv:1903.12261. [Online]. Available: https://arxiv.org/abs/1903.12261

[76] Z. Zheng and P. Hong, “Robust detection of adversarial attacks by
modeling the intrinsic properties of deep neural networks,” in Proc. Adv.
Neural Inf. Process. Syst., 2018, pp. 7913–7922.

[77] T. Pang, C. Du, Y. Dong, and J. Zhu, “Towards robust detection of
adversarial examples,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 4579–4589.

[78] F. Sheikholeslami, S. Jain, and G. B. Giannakis, “Minimum uncertainty
based detection of adversaries in deep neural networks,” in Proc.
Inf. Theory Appl. Workshop (ITA), San Diego, CA, USA, Feb. 2020,
pp. 1–16.

[79] Ì. Ìncer Romeo, M. Theodorides, S. Afroz, and D. Wagner, “Adversari-
ally robust malware detection using monotonic classification,” in Proc.
4th ACM Int. Workshop Secur. Privacy Analytics, Mar. 2018, pp. 54–63.

[80] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detec-
tion systems,” in Proc. 9th ACM Conf. Comput. Commun. Secur. (CCS),
2002, pp. 255–264.

[81] A. Wehenkel and G. Louppe, “Unconstrained monotonic neural net-
works,” in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 1545–1555.

[82] L. Demetrio and B. Biggio, “Secml-malware: Pentesting Windows
malware classifiers with adversarial EXEmples in Python,” 2021,
arXiv:2104.12848. [Online]. Available: http://arxiv.org/abs/2104.12848

[83] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games
for adversarial learning problems,” J. Mach. Learn. Res., vol. 13,
pp. 2617–2654, Sep. 2012.

[84] M. Brückner and T. Scheffer, “Stackelberg games for adversarial predic-
tion problems,” in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining (KDD), New York, NY, USA, 2011, pp. 547–555, doi:
10.1145/2020408.2020495.

[85] Y. Wang, Y. Wang, J. Liu, Z. Huang, and P. Xie, “A survey of game
theoretic methods for cyber security,” in Proc. IEEE 1st Int. Conf. Data
Sci. Cyberspace (DSC), Jun. 2016, pp. 631–636.

[86] H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading machine
learning malware detection,” Black Hat, 2017.

[87] A. Turner, D. Tsipras, and A. Madry, “Clean-label backdoor
attacks,” Tech. Rep., 2018. [Online]. Available: https://openreview.net/
pdf?id=HJg6e2CcK7

[88] W. Garcia, J. I. Choi, S. K. Adari, S. Jha, and K. R. B. Butler, “Explain-
able black-box attacks against model-based authentication,” 2018,
arXiv:1810.00024. [Online]. Available: http://arxiv.org/abs/1810.00024

Aditya Kuppa is currently pursuing the Ph.D.
degree with the School of Computer Science (CS),
UCD. He has worked in cyber security industry for
last 17 years at various roles. He has published
scientific papers in peer-reviewed conferences in
related research fields. He is also an active reviewer
of many key conferences and journals in related
disciplines.

Nhien-An Le-Khac (Member, IEEE) received the
Ph.D. degree in computer science from the Institut
National Polytechnique Grenoble (INPG), France,
in 2006. He is a Lecturer with the School of
Computer Science (CS), UCD. He is currently the
Programme Director of the M.Sc. Programme in
forensic computing and cybercrime investigation.
He is also the Co-Founder of UCD-GNECB Post-
graduate Certificate in fraud and E-crime investiga-
tion. Since 2008, he has been a Research Fellow with
Citibank, Ireland (Citi). Since 2013, he has collabo-

rated on many international and national research projects as a principal/co-
PI/funded investigator. His research interests span the areas of cybersecurity
and digital forensics, machine learning for security, fraud and criminal
detection, cloud security and privacy, grid and high performance computing,
and knowledge engineering. He has published more than 200 scientific papers
in peer-reviewed journals and conferences in related research fields.

http://dx.doi.org/10.1145/2020408.2020495


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


